Carnap [1] discusses 2 types of (probabilistic) confirmation.

- **Firmness.** \(E \) confirms \(f \) \(H \) iff
 \[
 \Pr(H \mid E) > t, \text{ where } t \geq 1/2.
 \]

- **Increase in Firmness.** \(E \) confirms \(i \) \(H \) iff
 \[
 \Pr(H \mid E) > \Pr(H).
 \]

Carnap also proposed (tentatively) a particular way of measuring the degree to which \(E \) confirms \(i \) \(H \):
\[
d(H, E) = \Pr(H \mid E) - \Pr(H).
\]

Confirms \(f \) & confirms \(i \) exhibit many theoretical divergences [15, 5, 10]. One of the most important of these divergences involves Hempel’s [13] **Special Consequence Condition**.

(SCC) If \(E \) confirms \(H_1 \) and \(H_1 \models H_2 \), then \(E \) confirms \(H_2 \).

Carnap [1, Ch. VI] discusses the fact that confirms \(f \) (generally) satisfies (SCC); but, confirms \(i \) does not.

Following Dretske [7], we may say that an epistemic operator \(\Theta(H, E) \) is a *penetrating operator* just in case \(\Theta(H, E) \) is always transmitted by deductive entailment.

Hempel’s (SCC) asserts that confirmation \(C(H, E) \) is a penetrating operator. Carnap shows that firmness \(C_f(H, E) \) is penetrating, while increase in firmness \(C_i(H, E) \) is not.

Dretske thought *knowledge* was not a penetrating operator (viz., that knowledge isn’t closed under entailment).

We will take no stand on knowledge closure here. But, it is worth noting that confirmation \([C_i(H, E)] \) is a *propositional* relation, whereas knowledge is a *doxastic* relation (e.g., for one thing, \(E \) may not capture the agent’s *total evidence*).

Having said that, our discussion may be of some relevance to these broader epistemic questions, since some (putative) failures of knowledge transmission may involve (i.e., implicitly trade on) failures of \(C_i(H, E) \)-transmission.

Dretske [7] discusses an example he thinks shows that knowledge is not a penetrating operator.

Zebra. You’re at the zoo, and in the pen in front of you is a striped horse-like animal (which happens to be a zebra).

The sign on the pen says “Zebra.” Do you know it’s a zebra?

Dretske says: Well, what about the possibility that it’s just a mule painted to look like a zebra? Do you know that the animal is not a cleverly-disguised mule?

Let \(E \equiv \) your perceptual evidence (from observing the animal in the pen), \(H_1 \equiv \) the animal before you is a zebra, and \(H_2 \equiv \) the animal before you is not a cleverly-disguised mule.

Dretske seems to be suggesting (among other things) that, while \(E \) confirms \(H_1 \) and \(H_1 \models H_2 \), \(E \) does not confirm \(H_2 \). At least: \(E \) does not favor \(H_1 \) over \(\neg H_2 \) (and vice versa).

This basic Dretskean intuition leads to a simple sufficient condition for confirmation, \(i \)-transmission *failure*.
Fact. Suppose E confirms, H_1 and $H_1 \vDash H_2$. Then, the following is a sufficient condition for the *failure* of confirmation,1-transmission (i.e., for E to *not* confirm,1 H_2).

Heavyweight. $\Pr(E \mid H_1) = \Pr(E \mid \neg H_2)$.

- **Heavyweight** is a natural way to explicate the claim that evidence E does not favor H_1 over $\neg H_2$ and *vice versa* [2].
- This way of understanding what Dretske means by “$\neg H_2$ is a heavy weight proposition” [6] is somewhat crude.
- For one thing, if E confirms, H_1, then **Heavyweight** entails that E disconfirms, H_2 — whether or not $H_1 \vDash H_2$.
- This makes **Heavyweight** not super interesting (for us). More interesting: conditions which (a) trade on $H_1 \vDash H_2$, and (b) are compatible with E being *irrelevant to H_2*.
- We will examine some more interesting conditions (in these and other senses) shortly. First, we will discuss some other ways in which confirmation,1-transmission can fail.

Confirm

- We will say that a probabilistic condition X is *sufficient* for confirmation,1-transmission, just in case the following holds.

 Sufficiency. There are no probability functions $\Pr(\cdot)$ s.t.

 (S_1) $\Pr(H_1 \& \neg H_2) = 0$, and these are the only zeros of $\Pr(\cdot)$.

 (S_2) $\Pr(H_1 \mid E) > \Pr(H_1)$. [E confirms, H_1, wrt $\Pr(\cdot)$]

 (S_3) $\Pr(\cdot)$ satisfies X.

 (S_4) $\Pr(H_2 \mid E) \leq \Pr(H_2)$. [E does not confirm, H_2, wrt $\Pr(\cdot)$]

- Kotzen [14] has an illuminating discussion of confirmation,1 transmission in which he identifies the following sufficient condition for confirmation,1 transmission.

 Dragging. $\Pr(H_2) < \Pr(H_1 \mid E)$.

- It is easy to see why **Dragging** is sufficient for transmission.

 Proof. (S_1) implies $\Pr(H_2 \mid E) \succeq \Pr(H_1 \mid E)$, (S_2) and Dragging then imply $\Pr(H_2 \mid E) > \Pr(H_2)$, which contradicts (S_4). □

Ace. You are going to draw a single card at random from a standard deck. Let E be the card is black, H_1 be the card is the ace of spades, and H_2 be the card is an ace.

- In **Ace**, E confirms, H_1, since $\Pr(H_1 \mid E) = 1/26 > 1/52 = \Pr(H_1)$. Moreover, $H_1 \vDash H_2$. However, E is *irrelevant to H_2*, since $\Pr(H_2 \mid E) = 2/26 = 4/52 = \Pr(H_2)$. [Note: $H_1 \vDash E$ in **Ace**.]

- Much more extreme failures of confirmation,1 transmission are possible. To wit, there are cases such that (see Extras 14)

 1. E *strongly* confirms, $H_1 [d(H_1, E) \gg 0]$.

 2. $H_1 \vDash H_2$ [more precisely, $\Pr(H_2 \mid H_1) = 1$].

 3. E *strongly* disconfirms, $H_2 [d(H_2, E) \ll 0]$.

 1There are limits on how badly (SCC) can fail (in this sense). Specifically, if we understand $x \gg y$ as $x - y \geq t$, then we must have $t < 1/2$ in (1) & (3).

Non-confirmation of Exhaustive Alternatives (NEA).

E does not confirm,1 $H_2 \supset H_1$ [viz., $d(H_2 \supset H_1, E) \leq 0$].

- We call this **Non-confirmation of Exhaustive Alternatives** because it involves the non-confirmation of a claim which asserts that $\neg H_2$ and H_1 are *exhaustive alternatives*.

- For instance, in **Zebra**, $H_2 \supset H_1$ asserts that the animal before you is *either* a cleverly-dressed mule or a zebra.

- In **Zebra**, whether E supports the exhaustivity of H_1 and $\neg H_2$ (as alternative hypotheses) seems probative (perhaps this relates to whether $\neg H_2$ is a “relevant alternative”?).

- Anyhow, in **Zebra**, E *may not* confirm,1 $H_2 \supset H_1$. And, if it doesn’t, then it turns out that E must (also) confirm,1 H_2.

Dragging. It is easy to see why **Dragging** is sufficient for transmission.

Proof. (S_1) implies $\Pr(H_2 \mid E) \succeq \Pr(H_1 \mid E)$. (S_2) and Dragging then imply $\Pr(H_2 \mid E) > \Pr(H_2)$, which contradicts (S_4). □
• A probabilistic condition X (e.g., \negHeavyweight) is necessary for confirmation transmission just in case

Necessity. There are no probability functions $\Pr(\cdot)$ s.t.

(S_1) $\Pr(H_1 \land \neg H_2) = 0$, and these are the only zeros of $\Pr(\cdot)$.

(S_2) $\Pr(H_1 \, | \, E) > \Pr(H_1)$. [E confirms, H_1, wrt $\Pr(\cdot)$]

$\neg(S_3)$ $\Pr(\cdot)$ does not satisfy X.

$\neg(S_4)$ $\Pr(H_2 \, | \, E) > \Pr(H_2)$. [E confirms, H_2, wrt $\Pr(\cdot)$]

• Kotzen [14, p. 70] voices skepticism about the existence of an interesting necessary and sufficient condition for confirmation transmission. We think we've found one.

Relative Disconfirmation of Exhaustive Alternatives (RDEA).

E confirms, H_1 more strongly than E confirms, $H_2 \supset H_1$, according to Carnap’s d [i.e., $d(H_1, E) > d(H_2 \supset H_1, E)$].

The confirmation E provides for H_1 transmits to H_2 iff E raises H_1’s probability more (as measured by d) than it does the claim that H_1 and $\neg H_2$ are exhaustive alternatives.

Yablo & Fitelson When Confirmation Transmits 8

• Here’s a summary of which measures $c(H, E)$ of the degree to which E confirms H imply sufficiency/necessity of

(RDEA$_c$) $c(H_1, E) > c(H_2 \supset H_1, E)$

for confirmation transmission.

<table>
<thead>
<tr>
<th>c</th>
<th>Is (RDEA$_c$) Sufficient?</th>
<th>Is (RDEA$_c$) Necessary?</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>r</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>z</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>l</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>s</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

The s-measure [3, 9, 8] also satisfies our quantitative

Theorem (see Extras 13). See Extras 17–18 for probability models establishing the four “No”s in the above table.

[Our proofs of the “Yes”s for (RDEA$_c$)/(RDEA$_z$) are complex (omitted).]

Yablo & Fitelson When Confirmation Transmits 9

• To prove our results, we’ll use the following algebraic representation, and the approach described in [12].

<table>
<thead>
<tr>
<th>State (s_i)</th>
<th>H_1</th>
<th>H_2</th>
<th>E</th>
<th>$\Pr(s_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>$\Pr(s_1) = a_1$</td>
</tr>
<tr>
<td>s_2</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>$\Pr(s_2) = a_2$</td>
</tr>
<tr>
<td>s_3</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>$\Pr(s_3) = a_3$</td>
</tr>
<tr>
<td>s_4</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>$\Pr(s_4) = a_4$</td>
</tr>
<tr>
<td>s_5</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>$\Pr(s_5) = a_5$</td>
</tr>
<tr>
<td>s_6</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>$\Pr(s_6) = a_6$</td>
</tr>
<tr>
<td>s_7</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>$\Pr(s_7) = a_7$</td>
</tr>
<tr>
<td>s_8</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>$\Pr(s_8) = a_8$</td>
</tr>
</tbody>
</table>

The fact that (RDEA) is necessary and sufficient for transmission of confirmation is a corollary of the following general, quantitative result (see Extras 12 for a proof of it).

Theorem. If $\Pr(H_2 \mid H_1) = 1$, then

$$d(H_2, E) = d(H_1, E) - d(H_2 \supset H_1, E).$$

• **Theorem** implies both (i) (RDEA) \iff transmission and (ii) (NEA) \iff transmission, and it (iii) gives the d-degree to which H_2 is confirmed by E, whenever $H_1 = H_2$.

• This result — and its qualitative corollary — depends on how we choose to measure degree of confirmation. Specifically, here are 4 other measures of degree of confirmation [11, 4].

$$r(H, E) \equiv \frac{\Pr(H|E)}{\Pr(H)} = \frac{\Pr(H|E) + \Pr(H|\neg E)}{\Pr(H|E) - \Pr(H|\neg E)}$$

$$l(H, E) \equiv \frac{\Pr(E|H)}{\Pr(E|H)} = \frac{\Pr(E|H) + \Pr(E|\neg H)}{\Pr(E|H) - \Pr(E|\neg H)}$$

$$z(H, E) \equiv \frac{d(H, E)}{d(H|E)}$$

Yablo & Fitelson When Confirmation Transmits 10

• This involves (a) translating the desired result into algebra, and (b) showing it corresponds to a theorem of algebra (or that it does not), assuming $a_i \in [0, 1]$ and $\sum a_i = 1$.

Yablo & Fitelson When Confirmation Transmits 11
If $\Pr(H_2 \mid H_1) = 1$, then $\alpha_3 = \alpha_4 = 0$. And, we have:

\[
\begin{align*}
 d(H_2, E) &= \frac{\alpha_1 + \alpha_5}{\alpha_1 + \alpha_5 + \alpha_7} - (\alpha_1 + \alpha_2 + \alpha_5 + \alpha_6), \\
 d(H_1, E) &= \frac{\alpha_1}{\alpha_1 + \alpha_5 + \alpha_7} - (\alpha_1 + \alpha_2), \\
 d(H_2 \supset H_1, E) &= \frac{\alpha_1 + \alpha_7}{\alpha_1 + \alpha_5 + \alpha_7} - (1 - (\alpha_5 + \alpha_6))
\end{align*}
\]

- Then, the following reasoning establishes our **Theorem**:

\[
\begin{align*}
 d(H_1, E) - d(H_2 \supset H_1, E) &= \left[1 - \frac{\alpha_7}{\alpha_1 + \alpha_5 + \alpha_7} \right] - (\alpha_1 + \alpha_2 + \alpha_5 + \alpha_6) \\
 &= \left[1 - \Pr(\neg H_1 \& \neg H_2 \mid E) \right] - \Pr(H_2) \\
 &= \Pr(H_1 \lor H_2 \mid E) - \Pr(H_2) \\
 &= \frac{\alpha_1 + \alpha_3}{\alpha_1 + \alpha_3 + \alpha_7} - (\alpha_1 + \alpha_2 + \alpha_5 + \alpha_6) \\
 &= d(H_2, E) \quad \Box
\end{align*}
\]

Here is a model (all models were found with PrSAT [12]) on which $(S_1), \, d(H_1, E) = 0.49$ and $d(H_2, E) = -0.49$. This is about as extreme a failure of (SCC) as possible (see fn. 1).

<table>
<thead>
<tr>
<th>State (s_i)</th>
<th>H_1</th>
<th>H_2</th>
<th>E</th>
<th>$\Pr(s_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>$\Pr(s_1) = \frac{450}{57600}$</td>
</tr>
<tr>
<td>s_2</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>$\Pr(s_2) = \frac{126}{57600}$</td>
</tr>
<tr>
<td>s_3</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>$\Pr(s_3) = 0$</td>
</tr>
<tr>
<td>s_4</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>$\Pr(s_4) = 0$</td>
</tr>
<tr>
<td>s_5</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>$\Pr(s_5) = \frac{1}{57600}$</td>
</tr>
<tr>
<td>s_6</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>$\Pr(s_6) = \frac{5611}{57600}$</td>
</tr>
<tr>
<td>s_7</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>$\Pr(s_7) = \frac{449}{57600}$</td>
</tr>
<tr>
<td>s_8</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>$\Pr(s_8) = \frac{63}{57600}$</td>
</tr>
</tbody>
</table>

- **If** $\Pr(H_2 \mid H_1) = 1$, then $\alpha_3 = \alpha_4 = 0$. And, we have:

\[
\begin{align*}
 s(H_2, E) &= \frac{\alpha_1 + \alpha_5}{\alpha_1 + \alpha_5 + \alpha_7} - \frac{\alpha_2 + \alpha_6}{\alpha_2 + \alpha_5 + \alpha_7}, \\
 s(H_1, E) &= \frac{\alpha_1}{\alpha_1 + \alpha_5 + \alpha_7} - \frac{\alpha_2}{\alpha_2 + \alpha_5 + \alpha_7}, \\
 s(H_2 \supset H_1, E) &= \frac{\alpha_1 + \alpha_7}{\alpha_1 + \alpha_5 + \alpha_7} - \frac{\alpha_2 + \alpha_6}{\alpha_2 + \alpha_5 + \alpha_7}
\end{align*}
\]

- Then, the following establishes the s-version of **Theorem**.

\[
\begin{align*}
 s(H_1, E) - s(H_2 \supset H_1, E) &= \frac{\alpha_1}{\alpha_1 + \alpha_5 + \alpha_7} - \frac{\alpha_2}{\alpha_2 + \alpha_5 + \alpha_7} - \frac{\alpha_2 + \alpha_6}{\alpha_2 + \alpha_5 + \alpha_7} + \frac{\alpha_1 + \alpha_7}{\alpha_1 + \alpha_5 + \alpha_7} \\
 &= \frac{\alpha_1 - \alpha_2 - \alpha_2 + \alpha_6}{\alpha_1 + \alpha_5 + \alpha_7} - \frac{\alpha_7}{\alpha_1 + \alpha_5 + \alpha_7} \\
 &= \Pr(\neg H_1 \& \neg H_2 \mid E) - \Pr(\neg H_1 \& \neg H_2 \mid E) \\
 &= \left[1 - \Pr(H_1 \lor H_2 \mid E) \right] - \left[1 - \Pr(H_1 \lor H_2 \mid E) \right] \\
 &= \frac{\alpha_1 - \alpha_2 + \alpha_6}{\alpha_1 + \alpha_5 + \alpha_7} - \frac{\alpha_7}{\alpha_1 + \alpha_5 + \alpha_7} \\
 &= s(H_2, E) \quad \Box
\end{align*}
\]

Here is a probability model on which $(S_1), \, (S_2)$, and (NEA) are true, but **Dragging** is false (this shows NEA \neq Dragging).

<table>
<thead>
<tr>
<th>State (s_i)</th>
<th>H_1</th>
<th>H_2</th>
<th>E</th>
<th>$\Pr(s_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>$\Pr(s_1) = \frac{256}{512}$</td>
</tr>
<tr>
<td>s_2</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>$\Pr(s_2) = \frac{28}{512}$</td>
</tr>
<tr>
<td>s_3</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>$\Pr(s_3) = 0$</td>
</tr>
<tr>
<td>s_4</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>$\Pr(s_4) = 0$</td>
</tr>
<tr>
<td>s_5</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>$\Pr(s_5) = \frac{64}{512}$</td>
</tr>
<tr>
<td>s_6</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>$\Pr(s_6) = \frac{5}{512}$</td>
</tr>
<tr>
<td>s_7</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>$\Pr(s_7) = \frac{128}{512}$</td>
</tr>
<tr>
<td>s_8</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>$\Pr(s_8) = \frac{31}{512}$</td>
</tr>
</tbody>
</table>
Here is a probability model on which \((S_1), (S_2), \) and Dragging are true, but (NEA) is false (this shows Dragging \(\neq\) NEA).

<table>
<thead>
<tr>
<th>State ((s_i))</th>
<th>(H_1)</th>
<th>(H_2)</th>
<th>(E)</th>
<th>(Pr(s_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>(\frac{128}{256})</td>
</tr>
<tr>
<td>(s_2)</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>(\frac{5}{256})</td>
</tr>
<tr>
<td>(s_3)</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>(s_4)</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>(s_5)</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>(\frac{12}{256})</td>
</tr>
<tr>
<td>(s_6)</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>(\frac{10}{256})</td>
</tr>
<tr>
<td>(s_7)</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>(\frac{64}{256})</td>
</tr>
<tr>
<td>(s_8)</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>(\frac{37}{256})</td>
</tr>
</tbody>
</table>

Yablo & Fitelson

When Confirmation Transmits 16

Here is a probability model on which \((S_1), (S_2), \) \(\neg\) (RDEA_1), \(\neg\) (RDEA_2), and \(\neg\) (S_4) are all true. This shows that neither (RDEA_1) nor (RDEA_2) is necessary for transmission.

<table>
<thead>
<tr>
<th>State ((s_i))</th>
<th>(H_1)</th>
<th>(H_2)</th>
<th>(E)</th>
<th>(Pr(s_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>(\frac{64}{512})</td>
</tr>
<tr>
<td>(s_2)</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>(\frac{5}{512})</td>
</tr>
<tr>
<td>(s_3)</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>(s_4)</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>(s_5)</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>(\frac{256}{512})</td>
</tr>
<tr>
<td>(s_6)</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>(\frac{45}{512})</td>
</tr>
<tr>
<td>(s_7)</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>(\frac{128}{512})</td>
</tr>
<tr>
<td>(s_8)</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>(\frac{14}{512})</td>
</tr>
</tbody>
</table>

Yablo & Fitelson

When Confirmation Transmits 17