
Inductive-Statistical Explanation 

1 I Inductive-Statistical Explanation 

As an explanation of why patient John Jones recovered from a streptococ- 
cus infection, we might be told that Jones had been given penicillin. But 
if we try to amplify this explanatory claim by indicating a general con- 
nection between penicillin treatment and the subsiding of a streptococcus 
infection we cannot justifiably invoke a general law to the effect that in 
all cases of such infection, administration of penicillin will lead to recov- 
ery. What can be asserted, and what surely is taken for granted here, is 
only that penicillin will effect a cure in a high percentage of cases, or 
with a high statistical probability. This statement has the general character 
of a law of statistical form, and while the probability value is not specified, 
the statement indicates that it is high. But in contrast to the cases of 
deductive-nomological and deductive-statistical explanation, the explanans. 
consisting of this statistical law together with the statement that the patient 
did receive penicillin obviously does not imply the explanandum state- 
ment, 'the patient recovered', with deductive certainty, but only, as we 
might say, with high likelihood, or near certaint).. Briefly, then, the expla- 
nation amounts to this argument: 

la The particular case of illness of John Jones-let us call it +was 
an instance of severe streptococcal infection (Sj) which was 
treated with large doses of penicillin (Pi); and the statistical prob- 
ability p(R, S . P)  of recovery in cases where S and P are present 
close to 1; hence, the case was practically certain to end in re- 
covery (R j).* 

FROM Aspects of Scientific Explanation (New York: Free Press, 1965), 381-83, 
394-403. 
* Throughout this paper, Hempel uses a dot to stand for conjunction, a bar over 
a letter to stand for negation, and a comma within-parentheses to represent con- 
ditional probabilities. Thus, for example, p(R, S.P) means the probability of R 
given S and not-P. 

This argument might invite the following schematization: 

Ib p(R, S . P) is close to 1 

(Therefore:) It is practically certain (very likely) that Rj 

In the literature on inductive inference, arguments thus based on 
statistical hypotheses have often been construed as having this form or a 
similar one. O n  this construal, the conclusion characteristically contains 
a modal qualifier such as 'almost certainly,' 'with high probability', 'very 
likely', etc But the conception of arguments having this character is un- 
tenable. For phrases of the form 'it is practically certain that p' or 'It is 
very likely that p', where the place of 'p' is taken by some statement, are 
not complete self-contained sentences that can be qualified as either true 
or false. The statement that takes the place of 'p'-for example, 'Rj'-is 
either true or false, quite independently of whatever relevant evidence may 
be available, but it can be qualified as more or less likely, probable, cer- 
tain, or the like only relative to some body of evidence. One and the same 
statement, such as 'Ri', will be certain, very likely, not very likely, highly 
likely, and so forth, depending upon what evidence is considered. The 
phrase 'it is almost certain that Ri' taken by itself is therefore neither true 
nor false; and it cannot be inferred from the premises specified in ( lb)  
nor from any other statements. 

The confusion underly~ng the schematization ( lb)  might be further 
illuminated by considering its analogue for the case of deductive argu- 
ments. The force of a deductive inference, such as that from 'all F are 
G' and 'a is F' to 'a is G', is sometimes indicated by saying that if the 
premises are true, then the conclusion is necessarily true or is certain to 
be true-a phrasing that might suggest the schematization 

All F are G 
a is F 

(Therefore:) It is necessary (certain) that a is G 

But clearly the given premises-which might be, for example, 'all men 
are mortal' and 'Socrates is a manJ-do not establish the sentence 'a is G' 
('Socrates is mortal') as a necessary or certain truth. The certainty referred 
to in the informal paraphrase of the argument is relational: the statement 
'a is G' is certain, or necessary, relative to the specified premises; i.e., their 
truth will guarantee its truth-which means nothing more than that 'a is 
G' is a logical consequence of those premises. 

Analogously, to present our statistical explanation in the manner of 
schema ( lb)  is to misconstrue the function of the words 'almost certain' 
or 'very likely' as they occur in the formal wording of the explanation. 



Those words clearly must be taken to indicate that on the evidence pro- 
vided by the explanans, or relative to that evidence, the explanandum is 
practically certain or very likely, i.e., that 

lc  'Rj' is practically certain (very likely) relative to the explanans 
containing the sentences 'p(R, S . P) is close to 1' and 'Si . Pi'.' 

The  explanatory argument misrepresented by (lb) might therefore 
suitably be schematized as follows: 

Id p(R, S . P) is close to 1 
s j  . Pi 

[makes practically certain] 
Ri 

In this schema, the double line separating the "premises" from the 
"conclusion" is to signify that the relation of the former to the latter is 
not that of deductive implication but that of inductive support, the strength 
of which is indicated in square brackets2 . . . 

2 I The Problem of Explanatory Ambiguity 

Consider once more the explanation ( Id )  of recovery in the particular 
case j of John Jones's illness. The statistical law there invoked claims re- 
covery in response to penicillin only for a high percentage of streptococcal 
infections, but not for all of them; and in fact, certain streptococcus strains 
are resistant to penicillin. Let us say that an occurrence, e.g. a particular 
case of illness, has the property S" (or belongs to the class S") if it is an 
instance of infection with a penicillin-resistant streptococcus strain. Then 
the probability of recovery among randomly chosen instances of S* which 
are treated with penicillin will be quite small, i.e, p(R, S" . P) will be 
close to 0 and the  roba ability of nonrecovery, p(R, S* . P) will be close 
to 1. But suppose now that Jones's illness is in fact a streptococcal infection 
of the penicillin-resistant variety, and consider the following argument: 

2a p(R, S* P)  is close to 1 
s * j e  Pj 

[makes practically certain] 
R j  

This "rival" argument has the same form as (Id),  and on our assumptions, 
its premises are true, just like those of (Id).  Yet its conclusion is the 
contradictory of the conclusion of (Id).  

O r  suppose that Jones is an octogenarian with a weak heart, and that 

in this group, S4" ,  the probability of recovery from a streptococcus infec- 
tion in response to penicillin treatment, p(R, S"" . P), is quite small. 
Then, there is the following rival argument to ( Id) ,  which presents Jones's 
nonrecovery as practically certain in the light of premises which are true: 

2b p(R, S*" . P)  is close to 1 
S0"j  . Pi 

[makes practically certain] 
R j 

The peculiar logical phenomenon here illustrated will be called the am- 
biguity of inductive-statistical explanation or, briefly, of statistical expla- 
nation. This ambiguity derives from the fact that a given individual event 
(e.g., Jones's illness) will often be obtainable by random selection from 
any one of several "reference classes" (such as S . P, S"  . P, S"" . P), with 
respect to which the kind of occurrence (e.g., R) instantiated by the given 
event has very different statistical probabilities. Hence, for a proposed prob- 
abilistic explanation with true explanans which confers near certainty upon 
a particular event, there will often exist a rival argument of the same 
probabilistic form and with equally true premises which confers near cer- 
tainty upon the nonoccurrence of the same event. And any statistical ex- 
planation for the occurrence of an event must seem suspect if there is the 
possibility of a logically and empirically equally sound probabilistic ac- 
count for its nonoccurrence. This predicament has no analogue in the case 
of deductive explanation; for if the premises of a proposed deductive ex- 
planation are true then so is its conclusion; and its contradictory, being 
false, cannot be a logical consequence of a rival set of premises that are 
equally true. 

Here is another example of the ambiguity of I-S explanation: Upon 
expressing surprise at finding the weather in Stanford warm and sunny on 
a date as autumnal as November 27, I might be told, by way of explana- 
tion, that this was rather to be expected because the probability of warm 
and sunny weather (W) on a November day in Stanford (N) is, say, .95. 
Schematically, this account would take the following form, where 'n' 
stands for 'November 27': 

. .. 
But suppose it happens to be the case that the day before, Novem- 

ber 26, was cold and rainy, and that the probability for the immediate 
successors (S) of cold and rainy days in Stanford to be warm and sunny is 
.2; then the account (2c) has a rival in the following argument which, 



by reference to equally true premises, presents it as fairly certain that 
November 27 is not warm and sunny: 

In this form, the problem of ambiguity concerns I-S arguments whose 
premises are in fact true, no matter whether we are aware of this or not. 
But, as will now be shown, the problem has a variant that concerns ex- 
planations whose explanans statements, no matter whether in fact true or 
not, are asserted or accepted by empirical science at the time when the 
explanation is proffered or contemplated. This variant will be called the 
problem of the epistemic ambiguity of statistical explanation, since it refers 
to what is presumed to be known in science rather than to what, perhaps 
unknown to anyone, is in fact the case. 

Let Kt be the class of all statements asserted or accepted by empirical 
science at time t. This class then represents the total scientific information, 
or "scientific knowledge" at time t. The word 'knowledge' is here used in 
the sense in which we commonly speak of the scientific knowledge at a 
given time. It is not meant to convey the claim that the elements of K ,  
are true, and hence neither that they are definitely known to be true. No 
such claim can justifiably be made for any of the statements established 
by empirical science; and the basic standards of scientific inquiry demand 
that a n  empirical statement, however well supported, be accepted and thus 
admitted to membership in Kt only tentatively, i.e., with the understanding , 

that the privilege may be withdrawn if unfavorable evidence should be 
discovered. The membership of Kt therefore changes in the course of time; 
for as a result of continuing research, new statements are admitted into 
that class; others may come to be discredited and dropped. Henceforth, 
the class of accepted statements will be referred to simply as K when 
specific reference to the time in question is not required. We will assume 
that K is logically consistent and that it is closed under logical implication, 
i.e., that it contains every statement that is logically implied by any of its 
subsets. 

T h e  epistemic ambiguity of I-S explanation can now be characterized 
as follows: The total set K of accepted scientific statements contains dif- 
ferent subsets of statements which can be used as premises in arguments 
of the  probabilistic form just considered, and which confer high proba- 
bilities on logically contradictory "conclusions." Our earlier examples (2a), 
(2b) and (2c), (2d) illustrate this point if we assume that the premises of 
those arguments all belong to K rather than that they are all true. If one 
of two such rival arguments with premises in K is proposed as an expla- 

nation of an event considered, or acknowledged, in science to have oc- 
curred, then the conclusion of the argument, i.e., the explanandum 
statement, will accordingly belong to K as well. And since K is consistent, 
the conclusion of the rival argument will not belong to K. Nonetheless 
it is disquieting that we should be able to say: No matter whether we 
are informed that the event. in question (e.g. warm and sunny weather on 
November 27 in Stanford) did occur or that it did not occur, we can 
produce an explanation of the reported outcome in either case; and an 
explanation, moreover, whose premises are scientifically established state- 
ments that confer a high logical probability upon the reported outcome. 

This epistemic ambiguity, again, has no analogue for deductive ex- 
planation; for since K is logically consistent, it cannot contain premise- 
sets that imply logically contradictory conclusions. 

Epistemic ambiguity also bedevils the predictive use of statistical ar- 
guments. Here, it has the alarming aspect of presenting us with two rival 
arguments whose premises are scientifically well established, but one of 
which characterizes a contemplated future occurrence as practically cer- 
tain, whereas the other characterizes it as practically impossible. Which 
of such conflicting arguments, if any, are rationally to be relied on for 
explanation or for prediction? 

3 I The Requirement of Maximal Specificity and the 
Epistemic Relativity of Inductive-S tatistical 
Explanation 

Our illustrations of explanatory ambiguity suggest that a decision on the 
acceptability of a proposed probabilistic explanation or prediction will have 
to be made in the light of all the relevant information at our disposal. 
This is indicated also by a general principle whose importance for induc- 
tive reasoning has been acknowledged, if not always very explicitly, by 
many writers, and which has recently been strongly emphasized by Car- 
nap, who calls it the requirement of total evidence. Carnap formulates it as 
follows: "in the application of inductive logic to a given knowledge situ- 
ation, the total evidence available must be taken as basis for determining 
the degree of confirmation."' Using only a part of the total evidence is 
permissible if the balance of the evidence is irrelevant to the inductive 
"conclusion," i.e., if on the partial evidence alone, the conclusion has the 
same confirmation, or logical probability, as on the total e ~ i d e n c e . ~  

The requirement of total evidence is not a postulate nor a theorem 
of inductive logic; it is not concerned with the formal validity of inductive 
arguments. Rather, as Carnap has stressed, it is a maxim for the application 
of inductive logic; we might say that it states a necessary condition of 



rationality of any such application in a given "knowledge situation," which 
we will think of as represented by the set K of all statements accepted in 
the situation. 

But in what manner should the basic idea of this requirement be 
brought to bear upon probabilistic explanation? Surely we should not lnsist 
that the explanans must contain all and only the empirical information 
available at the time. Not all the available information, because otherwise 
all probabilistic explanations acceptable at time t would have to have the 
same explanans, K t ;  and not only the available information, because a 
proffered explanation may meet the intent of the requirement in not over- 
looking any relevant information available, and may nevertheless invoke 
some explanans statements which have not as yet been sufficiently tested 
to be included in K t .  

The extent to which the requirement of total evidence should be 
imposed upon statistical explanations is suggested by considerations such 
as the following. A proffered explanation of Jones's recovery based on the 
information that Jones had a streptococcal infection and was treated with 
penicillin, and that the statistical probability for recovery in such cases is 
very high, is unacceptable if K includes the further informat~on that Jones's 
streptococci were resistant to penicillin, or that Jones was an octogenarian 
with a weak heart, and that in these reference classes the probability of 
recovery is small. Indeed, one would want an acceptable explanation to 
be based on a statistical probability statement pertaining to the narrowest 
reference class of which, according to our total information, the particular 
occurrence under consideration i$ a member. Thus, if K tells us not only 
that Jones had a streptococcus infection and was treated with penicillin, 
but also that he was an octogenarian with a weak heart (and if K provides 
no information more specific than that) then we would require that an 
acceptable explanation of Jones's response to the treatment be based on a 
statistical law stating the probability of that response in the narrowest ref- 
erence class to which our total information assigns Jones's illness, i.e., the 
class of streptococcal infections suffered by octogenarians with weak 
hearts.' 

Let me amplify this suggestion by reference to an example concerning 
the use of the law that the half-life of radon is 3.82 days in accounting for 
the fact that the residual amount of radon to which a sample of 10 mil- 
ligrams was reduced in 7264 days was within the range from 2.4 to 2.6 
milligrams. According to present scientific knowledge, the rate of decay 
of a radioactive element depends solely upon its atomic structure as char- 
acterized by its atomic number and its mass number, and it is thus un- 
affected by the age of the sample and by such factors as temperature, 
pressure, magnetic and electric forces, and chemical interactions. Thus, 
by specifying the half-life of radon as well as the initial mass of the sample 
and the  time interval in question, the explanans takes into account all the 

available information that is relevant to appraising the probability of the 
given outcome by means of statistical laws. To  state the point somewhat 
differently: Under the circumstances here assumed, our total information 
K assigns the case under study first of all to the reference class say F,, of 
cases where a 10 milligram sample of radon is allowed to decay for 7.64 
days; and the half-life law for radon assigns a very high probability, within 
Fl ,  to the "outcome," say C,  consisting in the fact that the residual mass 
of radon lies between 2.4 and 2.6 milligrams. Suppose now that K also 
contains information about the temperature of the given sample, the pres- 
sure and relative humidity under which it is kept, the surrounding electric 
and magnetic conditions, and so forth, so that K assigns the given case to 
a reference class much narrower than F,, let us say, F,F,F, . . . F,. Now 
the theory of radioactive decay, which is equally included in K, tells us 
that the statistical probability of C within this narrower class is the same 
as within C. For this reason, it suffices in our explanation to rely on the 
probability p(C, F,). 

Let us note, however, that "knowledge situations" are conceivable in 
which the same argument would not be an acceptable explanation. Sup- 
pose, for example, that in the case of the radon sample under study, the 
amount remaining one hour before the end of the 7.64 day period hap- 
pens to have been measured and found to be 2.7 milligrams, and thus 
markedly in excess of 2.6 milligrams-an occurrence which, considering 
the decay law for radon, is highly improbable, but not impossible. That 
finding, which then forms part of the total evidence K, assigns the partic- 
ular case at hand to a reference class, say F", within which, according to 
the decay law for radon, the outcome C is highly improbable since it 
would require a quite unusual spurt in the decay of the given sample to 
reduce the 2.7 milligrams, within the one final hour of the test, to an 
amount falling between 2.4 and 2.6 milligrams. Hence, the additional 
information here considered may not be disregarded, and an explanation 
of the observed outcome will be acceptable only if it takes account of the 
probability of C in the narrower reference class, i.e., p(C, FIF") .  (The 
theory of radioactive decay implies that this probability equals p(C, F"), 
so that as a consequence the membership of the given case in F, need 
not be explicitly taken into account.) 

The requirement suggested by the preceding considerations can now 
be stated more explicitly; we will call it the requirement of maximal spec- 
ificity for inductive-statistical explanations. Consider a proposed explana- 
tion of the basic statistical form 



Let s be the conjunction of the premises, and, if K is the set of all 
statements accepted at the given time, let k be a sentence that is logically 
equivalent to K (in the sense that k is implied by K and in turn implies 
every sentence in K). Then, to be rationally acceptable in the knowledge 
situation represented by K, the proposed explanation (3a) must meet the 
following condition (the requirement of maximal specificity): If s . k im- 
plies6 that b belongs to a class F,, and that F, is a subclass of F, then 
s . k must also imply a statement specifying the statistical probability of G 
in F,, say 

Here, r, must equal r unless the probability statement just cited is simply 
a theorem of mathematical probability theory. 

The  qualifying unless-clause here appended is quite proper, and its 
omission would result in undesirable consequences. It is proper because 
theorems of pure mathematical probability theory cannot provide an ex- 
planation of empirical subject matter. They may therefore be discounted 
when we inquire whether s . k might not give us statistical laws specifying 
the probability of G in reference classes narrower than F. And the omis- 
sion of the clause would prove troublesome, for if (3a) is proffered as an 
explanation, then it is presumably accepted as a fact that Gb; hence 'Gb' 
belongs to K. Thus K assigns b to the narrower class F . G, and concerning 
the probability of G in that class, s . k trivially implies the statement that 
p(G, F . G )  = 1, which is simply a consequence of the measure-theoretical 
postulates for statistical probability. Since s . k thus implies a more specific 
probability statement for G than that invoked in (3a), the requirement of 
maximal specificity would be violated by (3a)- and analogously by any 
proffered statistical explanation of an event that we take to have 
occurred-were it not for the unless-clause, which, in effect, disqualifies 
the notion that the statement 'p(G, F . G) = 1' affords a more appropriate 
law to account for the presumed fact that Gb. . 

T h e  requirement of maximal specificity, then, is here tentatively put 
forward as characterizing the extent to which the requirement of total 
evidence properly applies to inductive-statistical explanations. The general 
idea thus suggested comes to this: In formulating or appraising an I-S 
explanation, we should take into account all that information provided by 
K which is of potential explanatory relevance to the explanandum event; 
i.e., all pertinent statistical laws, and such particular facts as might be 
connected, by the statistical laws, with the explanandum event.' 

T h e  requirement of maximal specificity disposes of the problem of 
epistemic ambiguity; for it is readily seen that of two rival statistical ar- 
guments with high associated probabilities and with premises that all be- 
long t o  K, at least one violates the requirement of maximum specificity. 
Indeed, let 

be the arguments in question, with r, and r2 close to 1. Then, since K 
contains the premises of both arguments, it assigns b to both F and H and 
hence to F . H. Hence if both arguments satisfy the requirement of max- 
imal specificity, K must imply that 

and this is an arithmetic falsehood, since r, and r, are both close to 1; 
hence it cannot be implied by the consistent class K. 

Thus, for I-S explanations that meet the requirement of maximal spec- 
ificity the problem of epistemic ambiguity no longer arises. We are never 
in a position to say: No matter whether this particular event did or did 
not occur, we can produce an acceptable explanation of either outcome; 
and an explanation, moreover, whose premises are scientifically accepted 
statements which confer a high logical probability upon the given out- 
come. 

While the problem of epistemic ambiguity has thus been resolved, 
ambiguity in the fint sense discussed [in section 21 remains unaffected by 
our requirement; i.e., it remains the case that for a given statistical argu- 
ment with true premises and a high associated probability, there may exist 
a rival one with equally true premises and with a high associated proba- 
bility, whose conclusion contradicts that of the first argument. And though 
the set K of statements accepted at any time never includes all statements 
that are in fact true (and no doubt many that are false), it is perfectly 
possible that K should contain the premises of two such conflicting ar- 
guments; but as we have seen, at least one of the latter will fail to be 
rationally acceptable because it violates the requirement of maximal 
specificity. 

The preceding considerations show that the concept of statistical ex- 
planation for partzcubr events is essentially relative to a given knowledge 
situation as represented by a class K of accepted statements. Indeed, the 
requirement of maximal specificity makes explicit and unavoidable refer- 
ence to such a class, and it thus serves to characterize the concept of 
"I-S explanation relative to the knowledge situation represented by K." 
We will refer to this characteristic as the epistemic relativity of statistical 
explanation. 

It might seem that the concept of deductive explanation possesses the 



same kind of relativity, since whether a proposed D-N or D-S [deductive- 
statistical] account is acceptable will depend not only on whether it is 
deductively valid and makes essential use of the proper type of general 
law, but also on whether its premises are well supported by the relevant 
evidence at hand. Quite so; and this condition of empirical confirmation 
applies equally to statistical explanations that are to be acceptable in a 
given knowledge situation. But the epistemic relativity that the require- 
ment of maximal specificity implies for I-S explanations is of quite a dif- 
ferent kind and has no analogue for D-N explanations. For the specificity 
requirement is not concerned with the evidential support that the total 
evidence K affords for the explanans statements: it does not demand that 
the latter be included in K, nor even that K supply supporting evidence 
for them. It rather concerns what may be called the concept of a potential 
statistical explanation. For it stipulates that no matter how much evidential 
support there may be for the explanans, a proposed I-S explanation is not 
acceptable if its potential explanatory force with respect to the specified 
explanandum is vitiated by statistical laws which are included in K but 
not in the explanans, and which might permit the production of rival 
statistical arguments. As we have seen, this danger never arises for de- 
ductive explanations. Hence, these are not subject to any such restrictive 
condition, and the notion of a potential deductive explanation (as contra- 
distinguished from a deductive explanation with well-confirmed expla- 
nans) requires no relativization with respect to K. 

As a consequence, we can significantly speak of true D-N and D-S 
explanations: they are those potential D-N and D-S explanations whose 
premises (and hence also conclusions) are true-no matter whether this 
happens to be known or believed, and thus no matter whether the prem- 
ises are included in K. But this idea has no significant analogue for I-S 
explanation since, as we have seen, the concept of potential statistical 
explanation requires relativization with respect to K. 

I Notes 

1 Phrases such as 'It is almost certain (very likely) that j recovers', even when 
given the relational construal here suggested, are ostensibly concerned with re- 
lations between propositions, such as those expressed by the sentences form- 
ing the conclusion and the premises of an argument. For the purpose of 
the present discussion, however, involvement with propositions can be avoided 
by construing the phrases in question as expressing logical relations between 
corresponding sentences, e.g., the conclusion-sentence and the premise-sentence 
of a n  argument. This construal, which underlies the formulation of (ic),  will be 
adopted in this essay, though for the sake of convenience we may occasionally use 
a paraphrase. 

2. In the familiar schematization of deductive arguments, with a single line sep- 
arating the premises from the conclusion, no explicit distinction is made between 
a weaker and a stronger claim, either of which might be intended; namely 
(i) that the premises logically imply the conclusion and (ii) that, in addition, the 
premises are true. In the case of our probabilistic argument, ( lc)  expresses a 
weaker claim, analogous to (i), whereas (Id) may be taken to express a "proffered 
explanation" (the term is borrowed from I. Scheffler, 'Explanation, Prediction, and 
Abstraction', British \ournal for the Philosophy of Science 7 (1957), sect. 1) in 
which, in addition, the explanatory premises are-however tentatively-asserted as 
true. 

The considerations here outlined concerning the use of terms like 'probably' 
and 'certainly' as modal qualifiers of individual statements seem to me to militate 
also against the notion of categorical probability statement that C. I. Lewis sets 
forth in the following passage (italics the author's): 

Just as 'If D then (certainly) P, and D is the fact', leads to the categorical consequence, 
'Therefore (certainly) P'; so too, 'If D then probably P, and D is the fact', leads to a 
categorical consequence expressed by 'It is probable that P'. And this conclusion is not 
merely the statement over again of the probability relation between 'P' and 'D'; any 
more than 'Therefore (certainly) P' is the statement over again of 'If D th,en (certainly) 
P'. 'If the barometer is high, tomorrow will probably be fair; and the barometer is high', 
categorically assures something expressed by 'Tomorrow will probably be fair'. This 
probability is still relative to the grounds of judgment; but if these grounds are actual, 
and contain all the available evidence which is pertinent, then it is not only categorical 
but may fairly be called the probability of the event in question (1946: 319). 

This position seems to me to be open to just those objections suggested in 
the main text. If 'P' is a statement, then the expressions 'certainly P' and 'probably 
P '  as envisaged in the quoted passage are not statements. If we ask how,one would 
go about trying to ascertain whether they were true, we realize that we are entirely 
at a loss unless and until a reference set of statements or assumptions has been 
specified relative to which P may then be found to be certain, or to be highly 
probable, or neither. The expressions in question, then, are essentially incomplete; 
they are elliptic formulations of relational statements; neither of them can be the 
conclusion of an inference. However plausible Lewis's suggestion may seem, there 
is no analogue in inductive logic to modus ponens, or the "rule of detachment," 
of deductive logic, which, given the information that 'D' and also 'if D then P', 
are true statements, authorizes us to detach the consequent 'P' in the conditional 
premise and to assert it as a self-contained statement which must then be true as 
well. 

At the end of the quoted passage, Lewis suggests the important idea that 
'probably P' might be taken to mean that the total relevant evidence available at 
the time confers high probability upon P. But even this statement is relational in 
that it tacitly refers to some unspecified time, and, besides, his general notion of 
a categorical probability statement as a conclusion of an argument is not made 
dependent on the assumption that the premises of the argument include all the 
relevant evidence available. 

It must be stressed, however, that elsewhere in his discussion, Lewis empha- 
sizes the relativity of (logical) probability, and, thus, the very characteristic that 
rules out the conception of categorical probability statements. 

Similar objections apply, I think, to Toulmin's construal of probabilistic ar- 
guments; cf. Toulmin (1958) and the discussion in Hempel (1960), sects. 1-3. 



3. R. Carnap, Logical Foundations of Probability (Chicago, 1950), 21 1. The re- 
quirement is suggested, e.g., in the passage from Lewis quoted In n. [2]. Similarly 
Williams speaks of "the most fundamental of all rules of probability logic, that 
'the' probability of any proposition is its probability in relation to the known prem- 
ises and them only" (The Ground of lnduction (Cambridge, Mass., 1947), 72). 

I am greatly indebted to Professor Carnap for having pointed out to me in 
1945, when I first noticed the ambiguity of probabilistic arguments, that this was 
but one of several apparent paradoxes of inductive logic that result from disregard 
of the requirement of total evidence. 

S. F. Barker, Induction and Hypothesis (Ithaca, NY, 1957), 70-78, has given 
a lucrd independent presentation of the basic ambiguity of probabilistic arguments, 
and a skeptical appraisal of the requirement of total evidence as a means of dealing 
with the problem. However, I will presently suggest a way of remedying the am- 
biguity of probabilistic explanation with the help of a rather severely modified 
version of the requirement of total evidence. It will be called the requirement of 
maximal specificity, and is not open to the same criticism. 

4. Cf. Carnap, Logical Foundations, 2 11 and 494. 

5. This idea is closely related to one used by H. Reichenbach, (cf. The  heo oh of 
Probability (Berkeley, Calif., and Los Angeles, 1949), sect. 72) in an attempt to 
show that it is possible to assign probabilities to individual events within the frame- 
work of a strictly statistical conception of probability. Reichenbach proposed that 
the probability of a single event, such as the safe completion of a particular sched- 
uled flight of a given commercial plane, be construed as the statistical probability 
which the kind of event considered (safe completion of a flight) possesses within 
the narrowest reference class to which the given case (the specified flight of the 
given plane) belongs, and for which reliable statistical information is available (e.g., 
the class of scheduled flights undertaken so far by planes of the line to which the 
given plane belongs, and under weather conditions similar to those prevailing at 
the time of the flight in question). 

6. Reference to s . k rather than to k is called for because, as was noted earlier, 
we d o  not construe the condition here under discussion as requiring that all the 
explanans statements invoked be scientifically accepted at the time in question, 
and thus be included in the corresponding class K. 

7. By its reliance on this general idea, and specifically on the requirement of 
maximal specificity, the method here suggested for eliminating the epistemic am- 
biguity of statistical explanation differs substantially from the way in which 1 at- 
tempted in an earlier study (Hempel, 'Deductive-Nomological vs. Statistical 
Explanation', esp. sect. 10) to deal with the same problem. In that study, which 
did not distinguish explicitly between the two types of explanatory ambiguity char- 
acterized earlier in this section, I applied the requirement of total evidence to 
statistical explanations in a manner which presupposed that the explanans of any 
acceptable explanation belongs to the class K ,  and which then demanded that the 
probability which the explanans confers upon the explanandum be equal to that 
which the total evidence, K ,  imparts to the explanandum. The reasons why this 
approach seems unsatisfactory to me are suggested by the arguments set forth in 
the present section. Note in particular that, if strictly enforced, the requirement 
of total evidence would preclude the possibility of any significant statistical expla- 

nation for events whose occurrence is regarded as an established fact in science: 
for any sentence describing such an occurrence is logically implied by K and thus 
trivially has the logical probability 1 relative to K. 
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