THE PROBABILITY APPROACH
IN ECONOMETRICS

BY

TRYGVE HAAVELMO

COWLES FOUNDATION PAPER NO. 4

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
YALE UNIVERSITY
Box 208281
New Haven, Connecticut 06520-8281

1944

http://cowles.econ.yale.edu/



THE PROBABILITY APPROACH
IN ECONOMETRICS

By
Tryave HAAVELMO

RESEARCH ASSOQOCIATE
COWLES COMMISSION FOR
RESEARCH IN BCONOMICS

SUPPLEMENT TO ECONOMETRICA, VOLUME 12, JuLy, 1944

THE ECONOMETRIC SOCIETY
TagE UNIVERSITY OF CHICAGO
Cuicaco 37, ILuiNots



CoryrigHT 1944
BY THE EcoxoMETRIC SOCIETY

SET UP AND PRINTED IN THE UNITED STATES OF AMERICA
BY GEORGE BANTA PUBLISHING COMPANY
MENASHA, WISCONBIN



PREFACE

This study is intended as a contribution to econometries. It repre-
sents an attempt to supply a theoretical foundation for the analysis of
interrelations between economie variables. It is based upon modern
theory of probability and statistical inference. A few words may be said
to justify such a study.

The method of econometrie research aims, essentially, at a conjune-
tion of economic theory and actual measurements, using the theory and
technique of statistieal inference as a bridge pier. But the bridge itself
was never completely built. So far, the common procedure has been,
first to construct an economie theory involving exact funetional rela-
tionships, then to compare this theory with some actual measurements,
and, finally, “to judge” whether the correspondence is “good” or
“bad.” Tools of statistical inference have been introduced, in some
degree, to support such judgments, e.g., the calculation of a few stand-
ard errors and multiple-correlation eoefficients. The application of such
simple “statistics” has been considered legitimate, while, at the same
time, the adoption of definite probability models has been deemed a
crime in economie research, a violation of the very nature of economie
data. That is to say, it has been considered legitimate to use some of
the tools developed in statistical theory without accepting the very
foundation upon whieh statistical theory is built. For no tool developed
in the theory of statistics has any meaning—except, perhaps, for descrip-
tive purposes—uwithout being referred to some stochastic scheme.

The reluctance among economists to accept probability models as a
basis for economic research has, it seems, been founded upon a very
narrow eoncept of probability and random wvariables. Probability
schemes, it is held, apply only to sueh phenomena as lottery draw-
ings, or, at best, to those series of observations where cach observation
may be considered as an independent drawing from one and the same
“population.” From this point of view it has been argued, e.g., that
most economic time series do not conform well to any probability
model, “because the suceessive observations are not independent.” But
it is not necessary that the observations should be independent and
that they should all follow the same one-dimensional probability law.
Tt is sufficient to assume that the whole set of, say n, observations may
be considered as one observation of n variables (or a “‘sample point”)
following an n-dimensional joint probability law, the “existence” of
which may be purely hypothetical. Then, one ean test hypotheses re-
garding this joint probability law, and draw inference as to its possible
form, by means of one sample point (in n dimensions). Modern statis-

—1ii—



THE PROBABILITY APPROACH IN ECONOMETRICS

tical theory has made considerable progress in solving such problems
of statistical inference.

In fact, if we consider actual cconomic rescarch—even that carried
on by people who oppose the use of probability schemes—we find that
it rests, ultimately, upon some, perhaps very vague, notion of proba-
bility and random variables. For whenever we apply a theory to facts
we do not—and we do not expect to—obtain exact agreement. Certain
diserepancies are classified as “admissible,” others as “practically im-
possible” under the assumptions of the theory. And the principle of
such classification is itself a theoretieal scheme, namely one in which
the vaguc expressions ‘““practieally impossible’” or “almost certain’ are
replaced by “the probahility is near to zero,” or “the probability is
near to one.”

This iz nothing but a convenient way of expressing opinions about
real phenomena. But the probability coneept has the advantage that it is
“analytic,” we can derive new statements from it by the rules of logic.
Thus, starting from a purely formal probability model involving certain
probabilities which themselves may not have any counterparts in real
life, we may derive such statements as “The probability of A is almost
equal to 1.”” Substituting some real phenomenon for A, and transform-
ing the statement ““a probability near to 1" into “we are almost sure
that 4 will occur,” we have a statement about a real phenomenon, the
truth of which can be tested.

The class of scientific statements that ean be expressed in proba-
bility terms is enormous. In fact, this class contains all the “laws” that
have, so far, been formulated. For such “laws” say no more and no
less than this: The probability is almost 1 that a certain event will
oceur.

Thus, there appears to be a two-fold justification for our attempt to
give & more rigorous, probabilistic, formulation of the problems of eco-
nomic rescarch: First, if we want to apply statistieal inference to testing
the hypotheses of economic theory, it implies such a formulation of
economic theories that they represent statistical hypotheses, 1.e., state-
nents—perhaps very broad ones—regarding certain probability dis-
tributions. The belief that we can malke use of statistical inference with-
out this link can only be based upon lack of precision in formulating the
problems. Second, as we have indicated above, there is no loss of gen-
erality in choosing such an approach. We hope to demonstrate that it is
also convenient and fruitful.

The general principles of statistical inference introduced in this study
are based on the Neyman-Pearson theory of testing statistical hy-
potheses.

v
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Chapter I contains a general discussion of the connection between
abstract models and eeonomie reality.

Chapter II deals with the question of establishing ““constant relation-
ships” in the field of cconomics, and with the degree of invariance of
economic relations with respect to certain changes in structure.

In Chapter I1I we discuss the nature of stochastical models and their
applicability to cconomic data.

In Chapter IV it is shown that a hypothetical system of economic
relations may be transferred into a statement about the joint probability
law of the eeconomic variables involved, and that, therefore, such a sys-
tem ean be regarded as a statistieal hypothesis in the Neyman-Pearson
sense. A brief exposé of the Neyman-Pearson theory of testing statis-
tical hypotheses and estimation is given at the beginning of this chapter.

Chapter V deals, essentially, with the following problem of estima-
tion: Given a system of stochastical equations, involving a eertain num-
ber of parameters, such that the system is actually satisfied by economic
data when a eertain set of values of the parameters is ehosen, is then the
system also satisfied for other values of the parameters? If that be the
case, no unique estimate of the parameters can be obtained from the
data. (This is, in the case of linear relations, the now well-known prob-
lem of multicollinearity.) Mathematical rules for investigating sueh
situations are given.

Chapter V1 contains a short outline of the problems of predictions.

Some examples are presented to illustrate essential points.

* k  *

The idea of undertaking this study devcloped during my work as an
assistant to Professor Ragnar Frisch at the Oslo Institute of Economics.
The reader will reeognize many of Frisch’s ideas in the following, and
indirectly his influence can be traced in the formulation of problems
and the methods of analysis adopted. I am forever grateful for his
guiding influence and constant encouragement, for his patient teaching,
and for his interest in my work.

The analysis, as presented here, was worked out in detail during a
period of study in the United States, and was first issued in mimeo-
graphed form at Harvard in 1941. My most sincere thanks are due to
Professor Abraham Wald of Columbia University for numerous sug-
gestions and for help on many points in preparing the manuseript. Upon
his unigue knowledge of modern statistical theory and mathematics in
general T have drawn very heavily. Many of the statistical sections in
this study have been formulated, and others have been reformulated,
after discussions with him. The reader will find it partieularly useful in
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THE PROBABILITY APPROACH IN ECONOMETRICS

connection with the present analysis to study a recent article by
Professor Wald and Dr. H. B. Mann, “On the Statistical Treatment of
Linear Stochastic Difference Equations,” in EconoMETrICA, Vol. 11,
July-October, 1943, pp. 173-220. In that article will be found a more
explicit statistical treatment of problems that in the present study have
only been mentioned or dealt with in general terms.

I should also like to acknowledge my indebtedness to Professor Jacob
Marschak, researeh director of the Cowles Commission, for many stim-
ulating eonversations on the subject. I wish further to express my
gratitude to Professors Joseph A. Schumpeter and Edwin B. Wilson of
Harvard University for reading parts of the original manuscript, and
for criticisms which have been utilized in the present formulation.
Likewise, I am indebted to Mr. Leonid Hurwicz of the Cowles Com-
mission and to Miss Idith Elbogen of the National Bureau of Economic
Research for reading the manuscript and for valuable comments.

Of course, the author alone should be blamed for any mistake or in-
completeness.

TryGve HaaveELMO

New York, June, 1944
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CHAPTER I

ABSTRACT MODELS AND REALITY

1. Introduction

Theoretical models are necessary tools in our attempts to understand
and “cxplain” events in real life. In fact, even a simple description and
classification of real phenomena would probably not be possible or
feasible without viewing reality through the framework of some scheme
conceived a priori.

Within such theoretical models we draw conclusions of the type, ““if
4 is true, then B is true.” Also, we may decide whether a particular
statement or a link in the theory is right or wrong, i.e., whether it does
or does not violate the requirecments as to inner consistency of our
model. As long as we remain in the world of abstractions and simplifi-
cations there is no limit to what we might choose to prove or to dis-
prove; or, as Pareto has said, “Il n’y a pas de proposition qu’on ne
puisse certifier vraie sous certaines conditions, & déterminer.”? Our
guard against futile speculations is the requirement that the results of
our theoretical considerations are, ultimately, to be compared with
some real phenomecna. This, of course, docs not mean that every theo-
retical result, e.g., those of pure mathematics, must have an immediate
practical application. A good deal of the work in pure theory consists in
deriving rigorous statements which may not always have a direct bear-
ing upon facts. They may, however, help to consolidate and expand the
techniques and tools of analysis and, thus, increase our power of attack-
ing problems of reality.

When statements derived from a theoretical model are transferred
to facts, the question of “right” or “wrong” becomes more ambiguous.
The facts will usually disagree, in some respects, with any accurate a
priori statement we derive from a theoretical model. In other words,
such exact models are simply false in relation to the facts considered.
Can we have any use for models that imply false statements? It is
common to answer this question by observing that, since abstract
models never correspond cxactly to facts, we have to be satisfied when
the discrepancies are not “too large,” when there is “a fairly good cor-
respondence,” etc. But on sccond thought we shall realize that such a
point of view is not tenable. For we must then, evidently, have a rule
for deciding in advance when we shall say that our a priori statements
arc right or wrong. That is, such rules will have to be part of our

1 Manuel d'économie politique, 2nd ed., p. 9.
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2 THE PROBABILITY APPROACH IN ECONOMETRICS

models. Our models, thus expanded, then lcad to somewhat broader
statements which, when applied to facts, will be either true or false.

Still, whatever be the theory, it cannot remain true in regard to a
certain set of facts if it cver implies a false statement about those facts.
We shall then find that it is practically impossible to maintain any
theory that ¢mplies a nontrivial statement about certain facts, because
sooner or later the facts will, usually, contradict any such statement.
Therefore, we shall not only have to be satisfied with broader state-
ments than the ones usually implied by an “exact’” model, but we shall
also have to adopt a particular kind of model, namely such models
as permit statements that are not implications, but merely have a cer-
tain chance of being true. This will lead us to a probabilistie formula-
tion of theories that are meant to be applied.

Expressions like “the theory is almost true” simply do not make
sense unless specified in some such manner as we have indicated. There-
fore, when we say that an “exact” theory is “almost true’’ it scems that
we must mean that this theory, although wrong as its stands, in prac-
tice can replace another model which, first, would lead us to somewhat
broader statements and, sccond, would permit even these broader
statements to be wrong ‘“‘on rare occasions.”

Thus, the question of whether or not an exact theorctical model is
“almost true’ is really the same question as whether or not some other
model that claims less is actually true in relation to the facts, or at
least does not contradict the facts. It is with models of the latter type
that we have to concern oursclves when we want to engage in testing
theories against facts. As already mentioned, we shall see that this leads
us to adopting a probabilistic formulation of theories to be applied.

These remarks apply, more or less, to all types of economic theory,
whether quantitatively formulated or not. But we shall not follow up
the study of theory versus facts in this broad scnse. In all that follows
we shall be concerned with a particular, but very important, class of
economie theorics, namely those where the theoretical model consists of
a system of (ordinary or functional) cquations between certain eco-
nomic variables. A few remarks may be made as to the common sense
of this type of economic theory.

Broadly speaking, we may classify such quantitative economie rela-
tions in the three groups:

I. Definitional identities,
II. Technical relations,
ITI. Relations deseribing economie action.
The first group is exemplified by such relations as: Total expenditure =
price multiplicd by quantity bought, total output =output per worker
times the number of workers, and similar types of “bookkeeping iden-
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tities.” To the second group belong, e.g., technical production func-
tions, and other natural or institutional restrictions which arc usually
taken as data in economic planning. In the third group we find the
broad class of relations deseribing the behavior of individuals or collec-
tive units in their economic activity, their decisions to produce and
consume.

In such relations two sorts of quantities occur, viz., the variables un-
der investigation, and the parameters introduced in the process of analy-
sis. (The terms ‘“variables” and ‘“parameters’’ are rclative to the
particular problem in question, they cannot be defined in any absolute
sensc.) In relations of type I the parameters, if any, are given by defini-
tton, while in relations of type II or III the paramcters are at our
disposal for the purpose of adapting such hypothetical relations to a
set of economic variables. From the point of view of economic theory
this distinction applies in particular to relations of type III; it applies
perhaps less to those of type II, inasmuch as the choice of form and of
parameters in technical relations may be regarded as the task of other
sciences.

Let us consider in particular the relations of type III. Certainly we
know that decisions to consume, to invest, ete., depend on a great num-
ber of factors, many of which cannot be expressed in quantitative
terms. What is then the point of trying to associate such behavior with
only a limited sct of measurable phenomena, which cannot give more
than an incomplete picture of the whole “environment’” or “atmos-
phere” in which the economic planning and deeisions take place? First
of all, we should notice that “explanations’ of this kind are only at-
tempted for such phenomena as themselves arc of a quantitative nature,
such as prices, values, and physical volume. And when economic de-
cisions are of the type “more’” or “less,”” ‘“‘greater’” or “smaller,” they
must have consequences for some other measurable phenomena. Thus,
if a man starts to spend more of his (fixed) income on a certain com-
modity, he must spend less on other things. If a manufacturer wants to
increase his production, he must buy more means of production. If his
profit inereascs, this must have measurable consequences for his spend-
ing-saving policy; and so forth. It would certainly be very artificial to
assume that these quantities themselves do not nfluence the decisions
taken, and that there should be no system in such influences. It is,
then, only a natural step to attempt an approximate description of such
influences by means ot certain behavioristic parameters.

At least this is one type of “‘explanation.” Other types may be chosen.
But whatever be the “explanations’ we prefer, it is not to be forgotten
that they are all our own artificial inventions in a search for an under-
standing of real life; they are not hidden truths to be “discovered.”
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2. “Ezxact Quantitative Definitions of the Economic Variables”’

This phrase has become somcthing like a slogan among modern econ-
omists, but therc sometimes appears to be some confusion as to what
it actually means. The simple and rational interpretation would seem
to be that, since the most important facts we want to study in real
cconomic life present themselves in the form of numerieal measure-
ments, we shall have to ¢hoose our models from that field of logic which
deals with numbers, i.e., from the field of mathematies. But the con-
cepts of mathematics obtain their quantitative meaning implicitly
through the system of logical operations we impose. In pure mathe-
matics there really is no such problem as quantitative definition of a
concept per se, without reference to certain operations.

Therefore, when economists talk about the problem of quantitative
definitions of economic variables, they must have something in mind
which has to do with real economic phenomena. More precisely, they
want to “give exact rules how to measure certain phenomena of real
life,” they want to “know exactly what elements of real life correspond
to those of theory.” When considering a theorctical set-up, involving
certain variables and certain mathematical relations, it is common to
ask about the actual meaning of this and that variable. But this ques-
tion has no sense within a theoretical model. And if the question applics
to reality it has no precise answer. The answer we might give consists,
at best, of a tentative description involving words which we have
learned to associate, more or less vaguely, with certain real phenomena,

Therefore, it is one thing to build a theoretical model, it is another
thing to give rules for choosing the facts to which the theoretical model
is to be applied. It is one thing to choose the theoretical model from the
field of mathematics, it is another thing to classify and measure objccts
of real life. For the latter we shall always nced some willingness among
our fellow research workers to agree “for practical purposcs’ on ques-
tions of definitions. It is never possible—strictly speaking—to avoid
ambiguities in classifications and measurements of real phenomena. Not,
only is our technique of physical measurement unprecise, but in most
cascs we are not even able to give an unambiguous description of the
method of measurement to be used, nor are we ablc to give precise rules
for the choice of things to be measured in conncction with a certain
theory. Take, for instance, the apparently simple question of measuring
the total consumption of a commodity in a country during a given
period of time. Difficulties immediately arisc from the fact that the
notions of a “commodity,” “consumption,’”’ ete., are not precise terms;
there may be dispute concerning their content or quantitative measure.
And this applies to all quantities that represent practical mcasure-
ments of real objects.
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3. “Observational,” “True,” and Theoretical Variables;
an Important Distinction

Even though our aetual knowledge of economic facts is based on
rough classifications and approximate measurements, we f{cel that we
often “could do better than this,” that, in many ecases, it would be pos-
sible to give descriptions and rules of measurement in such a way that
two or more independent observers applying these rules to a desceribed
group of objects would obtain practically the same quantities. Often,
when we operate with such notions as national income, output of cer-
tain commodities, imports, exports, ete., we feel that these things have
a definite quantitative meaning and could possibly be measured rather
accurately, but—for financial reasons or lack of time—we are not able
to carry out the counting and measurement in the way we should
really like to do it, And we also usually feel that these problems of
measurements are somewhat different from those of scarching for “ex-
planations.” When we speak of certain known facts to be “explained”’
we think, in many cases, of some more correct or controlled measure-
ments of facts than those that happen to be given by current cconomic
statistics. From experience in various fields we have acquired empirical
knowledge as to sources of errors and the degree of precision connccted
with current types of statistical observation technique. At least as the
situation is at present in the field of economic statistics, we almost
always know that we could do better, if we could only find the
necessary time and money. When we speak of the “truc” values
of certain observable phenomena, as compared with some approximate
statistical information, the distinction we have in mind is probably
something like the one we have described above in somewhat vague
terms.

In pure theory we introduce variables (or time functions) which, by
construction, satisfy certain conditions of inner consistency of a theo-
retical model. These theoretical variables are usually given names that
indicate with what actual, “true,” measurements we hope the theoreti-
cal variables might be identified. But the theoretical variables arc not
defined as identical with some “true’” variables. For the process of cor-
rect measurement is, essentially, applied to each variable separately.
T'o impose some functional relationship upon the variables means going
much further. We may express the difference by saying that the “true”
variables (or time functions) represent our ideal as to accurate measure-
ments of reality “as it is in fact,” while the variables defined in a theory
are the true measurements that we should make if reality werc ac-
tually in aceordanec with our theoretical model.

The distinction between these three types of variables, although
somewhat vague, 1s one of great importance for the understanding of



6 THE PROBABILITY APPROACH IN ECONOMETRICS

the connection between pure theory and its applications. Let us try to
explain the matter in a different way that is, perhaps, clearer.

One of the most characteristic features of modern economic theory
is the cxtensive use of symbols, formulae, equations, and other mathe-
matical notions. Modern articles and books on economics are “full of
mathematics.” Many economists consider “mathematical cconomics’
as a separate branch of economics. The question suggests itself as to
what the difference is between “mathematical economics’” and “mathe-
matics.” Does a system of equations, say, become less mathematical
and more economic in character just by calling z “consumption,” y
“priee,” ete.? There are certainly many examples of studies to be found
that do not go very much further than this, as far as cconomic signifi-
ance is concerned. But they hardly deserve the ranking of contributions
to economies. What makes a picce of mathematical economices not only
mathematies but also economies is, I believe, this: When we set up a
system of thcoretical relationships and use economic names for the
otherwise purely theoretical variables involved, we have in mind some
actual experiment, or some design of an experiment, which we could at
lcast imagine arranging, in order to measure thosc quantities in real
ceconomic life that we think might obey the laws imposed on their
theoretical namesakes. For example, in the theory of choice we intro-
duce the notion of indifference surfaces, to show how an individual,
at given prices, would distribute his fixed income over the various com-
modities. This sounds like “economics’” but is actually only a formal
mathematical scheme, until we add a design of experiments that would
indicate, first, what real phenomena are to be identified with the theo-
retical prices, quantities, and income; second, what is to be meant by
an “individual”; and, third, how we should arrange to observe the in-
dividual actually making his choice.

There are many indications that economists nearly always have some
such design of idecal experiments in the back of their minds when they
build their theoretical models. For instance, there is hardly an econo-
mist who feels really happy about identifying current scries of “‘national
income,” “consumption,” ete., with the variables by these names in
his theories. Or, conversely, he would often find it too complicated or
perhaps even uninteresting to try to build models such that the ob-
servations he would like to identify with the corresponding theoretical
variables would correspond to those actually given by current economie
statistics. In the verbal description of his model, “in cconomic terms,”
the economist usually suggests, explicitly or implicitly, some type of
experiments or controlled mecasurcments designed to obtain the real
variables for which he thinks that his model would hold. That is, he
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has in mind some “true’’ variables that he would like to mecasure. The
data he actually obtains are, first of all, nearly always blurred by some
plain errors of measurements, that is, by certain extra “facts” which he
did not intend to “explain’ by his theory. Secondly, and that is still
more important, the economist is usually a rather passive obsecrver
with respect to important economic phenomena; he usually does not
control the actual collection of economie statistics. He is not in a posi-
tion to enforce the prescriptions of his own designs of ideal experiments.

One could perhaps also characterize the difference between the ““true”
and the “observational” variables in the following way. The “true”
variables are variables such that, if their behavior should contradict a
theory, the theory would be rejected as false; while ‘“‘observational”
variables, when contradicting the theory, leave the possibility that we
might be trying out the theory on facts for which the theory was not
nmeant to hold, the confusion being caused by the use of the same names
for quantities that are actually different.

In order to test a theory against facts, or to use it for predictions,
either the statistical observations available have to be “corrected,” or
the theory itself has to be adjusted, so as to make the facts we consider
the “true” variables relevant to the theory, as described above. To use
a mechanical illustration, suppose we should like to verify the law of
falling bodies (in vacuum), and suppose our measurements for that
purposc consisted of a series of observations of a stone (say) dropped
through the air from various levels above the ground. To use such data
we should at least have to calculate the extra effect of the air resistance
and extract this clement from the data. Or, what amounts to the same,
we should have to expand the simple theory of bodies falling in vacuum,
to allow for the air resistance (and probably many other factors). A
physicist would dismiss these measurements as absurd for such a pur-
pose because he can easily do much better. The economist, on the other
hand, often has to be satisfied with rough and biased measurements.
It 1s often his task to dig out the measurements he needs from data
that were collected for some other purposc; or, he is presented with
some results which, so to speak, Nature has produced in all their ecom-
plexity, his task being to build models that explain what has been
observed.

The practical conclusion of the discussion above is advice that
economists hardly ever fail to give, but that few actually follow, viz.,
that one should study very carefully the actual series considered and
the conditions under which they were produced, before identifying
them with the variables of a particular theoretical model. (We shall
discuss these problems further in Chapter 11.)
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4. Theoretical Models, Hypotheses, and Facts

Let 2/, zo, - - -, &/, be n real variables, and let (=, =2, - - -, z.),
or, for short, (z'), denote any particular set of values of these variables.
Any such set may be represented by a point in n-dimensional Cartesian
space. Let S be the set of all such points, and let “4” be a system of
rules or operations which defines a subset S, of S. (S might, for ex-
ample, be a certain n-dimensional surface.) The rules “A” ascribe to
each point (2) a property, viz., the property of belonging to S, or not
belonging to S4. If we allow the n variables 2’ to vary only under the
condition that (") must belong to S, this forms a theoretical model
for what the variables 2’ can do.

Similarly, consider n time functions z,/(f), z.'(¢), - - -, 2,/(1). Let F
be the set of all possible systems of n time functions, and let “B’ be a
system of rules or operations that defines a subclass Fy of FF. Any sys-
tem of n time functions will then have the property of either belonging
to I'5 or not belonging to Fy. The system of rules “B” defines a model
with respect to n time series.

Thus, a theoretical model may be said to be simply a restriction upon
the joint variations of a system of variable quantities (or, more gen-
erally, “objects’’) which otherwise might have any value or property.
More generally, the restrictions imposed might not absolutely exclude
any valuc of the quantities considered; it might merely give different
wetghts (or probhabilitics) to the various sets of possible values of the
variable quantities. The model in question would then usually be char-
acterized by the fact that it defines certain restricted subscts of the set
of all possible values of the quantities, such that these subsets have
nearly all of the total weight.

A theoretical model in this sense is, as it stands, void of any practical
meaning or intercst. And this situation is, as we have previously ex-
plained, not changed by merely introducing “cconomie names” for the
variable quantities or objects involved. The model attains economic
mcaning only after a corresponding system of quantities or objects in
real economic life has been chosen or described, in order to be identified
with those 1n the model. That is, the model will have an economic mean-
ing only when associated with a design of actual experiments that de-
scribes—and indicates how to measure—a system of “true’’ variables
(or objects) zy, «g, - - -, 7, that are to be identified with the corre-
sponding variables in the theory.

As a consequence of such identification all the permissible statements
that can be made within the model with respcet to the theoretical
variables or objects involved are automatically made also with respect
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to the actual, “true” variables. The model thereby becomes an a priori
hypothesis about real phenomena, stating that every system of values
that we might observe of the “true” variables will be one that belongs
 to the set of value-systems that is admissible within the model. The
idea behind this is, one could say, that Nature has a way of sclecting
joint value-systems of the “true’” variables such that these systems are
as if the selection had been made by the rule defining our theoretical
model. Hypotheses in the above sense are thus the joint implications——
and the only testable implications, as far as observations are concerned
—of a theory and a design of experiments. It is then natural to adopt
the convention that a theory is called true or false according as the
hypotheses implied are true or false, when tested against the data
chosen as the “true” variables. Then we may speak, interchangeably,
about testing hypotheses or testing theories.

If a certaln sct of value-systems of the variables is excluded in the
model then any one system of observed values that falls into this cx-
cluded set would be sufficient to reject the hypothesis (and, therefore,
the theory) as false with respect to the “truc’’ variables considered. But
as we have mentioned, the model may be (and we believe that to be
practical it has to be) such that it does not exclude any system of values
of the variables, but merely gives different weights or probabilitics to
the various value-systems. These weights then need a practical inter-
pretation in order that the model shall express a meaningful hypothesis
with respect to the corresponding “true’’ variables. According to ex-
perience it has very often been found fruitful to interpret such weights
as a mcasure of actual “frequency of occurrence.” If the total weight
ascribed to all the possible value-systems is finite, we can then say that
the practical meaning of a set of value-systems that has a weight almost
cqual to zero according to the model is a hypothesis saying that Nature
has a way of seleeting joint value-systems of the corresponding “true’”
variables that makes it “practically impossible” that a system of ob-
served values should fall within such a set. For the purpose of testing
the theory against some other alternative theories we might then agrec
to deem the hypothesis tested false whenever we observe a certain
number of such “almost impossible’” value-systems. That is, at the risk
of making an error, we should then prefer to adopt another hypothesis
under which the observations made are not of the ““almost impossible’’
type.

If we have found a certain hypothesis, and, therefore, the model be-
hind it, acceptable on the basis of a certain number of observations, we
may decide to use the theory for the purpose of predictions. If, after a
while, we find that we are not very successful with these predictions,



10 THE PROBABILITY APPROACH IN ECONOMETRICS

we should be inclined to doubt the validity of the hypothesis adopted
(and, therefore, the usefulness of the theory behind it). We should then
test it again on the basis of the extended set of observations.

It has been found fruitful to introduce a special calculus for deriving
such types of hypotheses. This is the calculus of probability. Later on
we shall study at length the common sense of applying this calculus for
the derivation of hypotheses about economic phenomena.

Now suppose that we have a set of observations that all confirm the
statements that are permissible within our model. Then these state-
ments become facts interpreted in the ight of our theoretical model, or,
in other words, our model is acceptable so far as the known observations
are concerned. But will the model hold also for future observations?
We cannot give any a priori reason for such a supposition. We can
only say that, according to a vast record of actual experiences, it seems
to have been fruitful to believe in the possibility of such empirical in-
ductions.

* * *

In the light of the above analysis we may now classify, roughly, the
main problems that confront us in scientific quantitative research.
They are:

1. The construction of tentative models. It is almost impossible, it
scems, to describe exactly how a scientist goes about constructing a
model. It is a creative process, an art, operating with rationalized no-
tions of some real phenomena and of the mechanism by which they are
produced. The whole idea of such models rests upon a belief, already
backed by a vast amount of experience in many ficlds, in the existencc
of certain elements of invariance in a relation between real phenomena,
provided we succeed in bringing together the right oncs.

2. The testing of theories, which is the problem of deciding, on the
basis of data, whether to maintain and use a certain theory or to dis-
miss it in exchange for another.

3. The problem of estimation, which, in the broadest sense, is the
problem of splitting, on the basis of data, all a priori possible theories
about certain variables into two groups, one containing the admissible
theories, the other containing those that must be rejected.

4. The problem of predictions.

The problems 2, 3, and 4 are closely bound to a probabilistic formula-
tion of hypotheses, and much confusion has been causcd by attempts to
deal with them otherwise. In a probabilistic formulation they can all be
precisely defined, and much of the confusion in current cconomic re-
search can then be cleared away. These problems will be the subjects
of Chapters IV, V, and VL
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Many ceonomists would, however, consider the problems 2-4 as de-
tails. Their principal conecern is in & scnse a more fundamental one,
namely the question of whether we might have any hope at all of con-
structing rational models that will eontribute anything to our under-
standing of real economie life. In the next chapter we shall try to
clarify some of the main arguments and points in this discussion.



CHAPTER II

Tar DEGREE oF PERMANENCE oF EcoNvoMic Laws

If we compare the historic developments of various branches of
quantitative sciences, we notice a striking similarity in the paths they
have followed. Their origin is Man's craving for “cxplanations” of
““curious happenings,” the observations of such happenings being more
or less accidental or, at any rate, of a very passive character. On the
basis of such—perhaps very vague—recognition of facts, people build
up some primitive explanations, usually of a metaphysieal type. Then,
some more ‘“‘cold-blooded” empiricists come along. They want to “know
the facts.” They observe, measure, and classify, and, while doing so,
they cannot fail to rccognize the possibility of establishing a certain
order, a certain system in the behavior of real phenomena. And so they
try to construct systems of relationships to copy reality as they sce it
from the point of view of a careful, but still passive, observer. As they
go on collecting better and better observations, they see that their
‘“eopy’’ of reality needs “repair.” And, successively, their schemes grow
into labyrinths of “extra assumptions” and “special cases,” the whole
apparatus becoming more and more difficult to manage. Some clearing
work is necded, and the key to such clearing is found in a priors reason-
ing, lcading to the introduction of some very general—and often very
simple—principles and relationships, from which whole classes of appar-
ently very different things may be deduced. In the natural sciences
this last stcp has provided much more powerful tools of analysis than
the purely empirical listing of cases.

We might be inclined to say that the possibility of such fruitful
hypothetical constructions and deductions depends upon two separate
factors, namely, on the one hand, the fact that there are laws of Nature,
on the other hand, the efficiency of our analytical tools. However, by
closer inspcetion we see that such a distinetion is a dubious one. Indeed,
we can hardly describe such a thing as 2 law of nature without referring
to certain principles of analysis. And the phrase, “In the natural sci-
ences we have stable laws,” means not much more and not much less
than this: The natural sciences have chosen very fruitful ways of look-
ing upon physical reality. So also, a phrase such as “In cconomie life
therc arc no constant laws,” is not only too pessimistic, it also seems
meaningless. At any rate, it cannot be tested. But we may discuss
whether the relationships that follow from our present scheme of eco-
nomic theory are such that they apply to facts of real economic life.
We may discuss problemis which arise in attempting to make compari-
sons between reality and our present sct-up of cconomic theory. We

—12—
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may try to find a rational cxplanation for the fact that relatively few
attempts to establish economic “laws” have been suceessful. 1 think
that considerable effort should first be spent on clarifying these re-
stricted problems.

In the following we propose to deal with some of the fundamental
problems that arise in judging the degree of persistence over time of
relations between economic variables. Yor the sake of simplicity we
shall often operate here with the notion of “cxact” rather than “sto-
chastical’” relationships. We can do this becausc the main points to be
discussed do not seem to be principally related to the particular type
of relations that we might hope to cstablish. The problems to be dis-
cussed are more direetly connected with the general question of whether
or not we might hope to find clements of invariance in economie life,
upon which to establish permanent “laws.”

§. What Do We Mean by e “Constant Eelationship”?

When we use the terms ‘‘constant relationships,” or ‘“unstable,
changing relationships,” we obviously refer to the behavior of some
real cconomic phenomena, as compared with some behavior that we
expect from theoretical considerations. The notion of constancy or
permanence of a relationship is, therefore, not one of purce theory. It
is a property of real phenomena as we look upon them from the point of
view of a particular theory. More preciscly, let x4, zo/, - - -, z,/, be n
theorctical variables, restricted by an equation

(5.1) Sz, 2, e ) =8

where the «’s arc constants, and where s’ is a shift possessing certain
specified properties. (5.1) does not become an economie theory just
by using economic terminology to name the variables involved. (5.1)
becomes an economic theory when associated with a rule of actual
measurement of n economic variables, z3, 22, - - -, 4, to be compared
with =, o', - - -, z.’, respectively. The esscntial feature of such a rule
of measurement is that it does not a priori impose the restriction (5.1)
upon the variables to be measured. If we did that, we should fall back
into the world of abstract theory, because one of the variables would
follow from the measurement of the n—1 others and the properties
assigned to §'. The rule of measurement is essentially a technical device
of measuring each variable separately. 1t is a design of actual experiments,
to obtain the “true’” variables as deseribed in Section 3.

All value-sets of the n theoretical variables 2” in (5.1) have a common
property, namely the property of satisfying that cquation. We are in-
terested in whether or not the “true’ variables @3, 25, - - -+, Za, have the
same property. Let (zy, 22, - + -, 2,) be any one of the results obtain-
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able by our design of experiments, and let s be a variable defined
implicitly by

(52) f(xl, Lo, ***y Tpy 0y gy~ ak) =8,

where f 1s the same as in (5.1). If then s has the same properties as s’
in (5.1) whatever be the system of experimentally observed values of
Ty, Te, * v ¢, Ta, We say that the observable “true’” variables z; follow
a constant law.

Therefore, given a thcorctical relation, a design of experiments, and
a sct of observations, the problem of constancy or invariance of an
economic relation comes down to the following two questions:

(1) Have we actually observed what we meant to obscrve, i.e., can
the given set of observations be considered as a result obtained by
following our design of “ideal” experiments?

(2) Do the “true” variables actually have the properties of the theo-
retical variables?

A design of experiments (a prescription of what the physicists call
a “erucial experiment’) is an essential appendix to any quantitative
theory. And we usually have some such experiments in mind when we
construct the theorics, although—unfortunately—most economists do
not describe their designs of experiments explicitly. If they did, they
would see that the experiments they have in mind may be grouped into
two different classes, namely, (1) experiments that we should Like to
make to see if certain rcal economic phenomena—when artificially iso-
lated from ‘“‘other influences”—would verify certain hypotheses, and
(2) the stream of experiments that Nature is steadily turning out from
her own enormous laboratory, and which we merely watch as passive
obscrvers. In both cascs the aim' of theory is the same, namely, to be-
come master of the happenings of real lifc. But our approach is a little
different in the two cases.

In the first case we can make the agreement or disagreement between
theory and facts depend upon two things: the facts we choosc to con-
sider, as well as our theory about them. As Bertrand Russell has said:
“The actual procedure of science consists of an alternation of observa-
tion, hypothesis, experiment, and theory.”!

In the second case we can only try to adjust our theories to reality
as it appears before us. And what is the meaning of a design of experi-
ments in this case? It is this: We try to choose a theory and a design of
experiments to go with it, in such a way that the resulting data would be
those which we get by passive observation of reality. And to the extent

1 The Analysis of Matter, New York, 1927, p. 194,



THE DEGREE OF PERMANENCE OF ECONOMIC LAWS 15

that we succced in doing so, we become master of reality
agreement,

Now, if we examine current economiec theories, we see that a great
many of them, in particular the more profound ones, require experi-
ments of the first type mentioned above. On the other hand, the kind
of economic data that we actually have belong mostly to the second
tvpe. In economics we usc a relatively small voeabulary to deseribe an
enormous variety of phenomena (and sometimes economists usc differ-
ent names for the same phenomenon). The result is that many different
things pass under the same name, and that, therefore, we are in danger
of considering them as identical. And thus, thcories are often being
compared with data which cannot at all be considercd as observations
obtained by following the design of experiment we had in mind when
constructing the theory. Of course, when a theory does not agree with
the facts we can always say that we do not have the right kind of data.
But this is an empty phrase, unless we can describe, at the same time,
what would be the right kind of data, and how to obtain them, at least
in point of prineiple. If every theory should be accompanied by a care-
fully deseribed design of experiments, much confusion on the subject
of constant versus changing economic “laws” would be cleared up.

This deseription of the problem of stability or permanence of eco-
nomic relations is a very broad one. It may give a preliminary answer
to very superficial crities of the possibility of developing economics as
a science. But it does not answer the many profound problems of de-
tails whieh confront us when we really try to investigate why econom-
ics, so far, has not led to very accurate and universal laws like those
obtaming in the natural scienccs.

Let us first onee more look upon the general argument: “Therc are
no constant laws deseribing phenomena of economie life.”” Above we
sald that this argument was meaningless. We shall support this state-
ment a little further. It is not possible to give any precise answer to the
argument, because it does not itself represent a precise question. But
let us try to understand what the argument means. Suppose, first, we
should consider the “‘class of all designs of experiments,” the results of
which ““we should be interested in as ceonomists.” Here, of course, we
get into difficulty immecdiately, because it is probably not possible to
define such a class. We do not know all the experiments we might be
interested in. Consider, on the other hand, the elass of all possible eco-
nomic theories (of the type we are discussing here). By each design of
experiments therc is defined a sequence of actual measurements. Con-
sider, for each such measurement, the subelass of theories with which
the mcasurement agrees. For a sequcnce of measurements we get a

by passive
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sequence of such subclasses of theories. Now, if these classes of theories
did not have any nontrivial property in common, we might say that
the measurements obtained by the design of experiments uscd do not
follow any law. But docs this statement really say anything? Obviously,
very little. Because it is a statement about classes of things which are
completely undefined. No matter how much we try and fail, we should
never be able to establish such a conclusion as “In economice life there
are no constant laws.”

‘We shall consider a much more restricted problem, namely this: How
far do the hypothetical “laws” of economic theory in its present stage
apply to such data as we get by passive observations? By passive ob-
servations we mean observable results of what individuals, firms, ete.,
actually do in the course of events, not what they might do, or what
they think they would do under certain other specified circumstances.
It would be superficial to constder this problem merely as a question of
whether our present economic theory is good or bad, or, rather, that is
not a fruitful setting of the problem. We have to start out by analyzing
what we are actually trying to achieve by economic theory. We have to
compare its designs of idealized experiments with those which would
be required to reproduce the phenomena of real cconomic life that we
observe passively.

In such a discussion we soon discover that we have to deal with a
noanifold of different questions. Let us try to review the most important
ones:

(a) Are most of the theories we construet in ‘‘rational economics”
oncs for which historical data and passive observations are not ade-
quate experiments? This question is connected with the following:

(b) Do we try to construct theories deseribing what individuals,
firms, ete., actually do in the course of events, or do we construct theo-
ries describing schedules of alternatives at a given moment? If the lat-
ter is the case, what bearing do such schedules of alternatives have upon
2 serles of decisions and actions actually carried out?

(¢) Why do we not confine oursclves only to such theories as arc di-
rectly verifiable? Or, why arc we interested in relations for which Na-
ture does not furnish experiments?

(d) Very often our theorics are such that we think certain directly
observable series would give adequate experimental results for a verifi-
cation, provided other things did not change. What bearing may such
theories have upon reality, if we simply neglect the influences of these
“other things’'? This, again, is econnected with the following problem:

(e) Are we interested in deseribing what actually does happen, or are
we interested in what would happen if we could keep “other things”
unchanged? In the first case we construct theories for which we hope
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Nature itself will take care of the necessary ceteris paribus conditions,
knowing, e.g., that this has been approximately so in the past. In the
sccond casc we try to take care of the ceferis paribus conditions our-
sclves, by statistical devices of elearing the data from influences not
taken account of in the theory (e.g., by multiple-correlation analysis).

(f) From experience with correlation of time series we know that it
1s often possible to establish very close relationships between economic
variables for some particular time period, while the relationships break
down for the next time period. Docs this fact mean that we cannot hope
to establish constant laws of cconomie life?

These questions, being taken more or less directly out of current dis-
cussions on problems of cconomie research, are, as can be scen, hope-
tessly overtapping; nor does any onc of them form a precise analytical
problem. We, therefore, ask: Can thesc problems be covered, at least
partly, by analysis of a sct of simplified and more disjunct problems?
In the following we shall try to do so by studying three different groups
of problems, which we may call, for short,

1. The reversibility of economic relations,
I1. The question of simplicity m the formulation of economic laws,
1I1. The autonomy of an economic relation.

6. The Reversibility of Economic Relalions

In the ficld of economie rescarch the application of relations of pure
theory to time series or historic records has become something like
taboo. Many economists, not sufficiently trained in statistical theory,
have, it seems, becn “scarcd away’’ by such critical work as, e.g., that
of G. U. Yule.? They have come to think that there is something in-
herent in economic time series as such, which make these data unfit
for applieation of pure economic theory. The general argument is some-
thing like this: In economic thcory we operate with hypothetical sched-
ules of decisions, which individuals, firms, ete., may take in response
to certain allernatively fixed conditions (e.g., adaptation of quantity
consumed to a given price change). But economic time scries showing
actual results of decisions taken arc only historic descriptions of a
one-way journey through a scquence of ever-shifting “environments,”
so that it is not possible to make actual predictions by means of the
schedules of alternatives given by pure economic thcory.

In trying to analyze this problem more preciscly, we notice first that
the gencral argument above docs not deny the possibility that relations
deduced from economic theory may prove very persistent and accurate

R E.g., “Why Do We Sometimes Get Nonsense-correlations between Time
Series?’’ Journal of the Royal Statistical Society, Vol. 89, 1926, pp. 1-64.
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when applied to facts. The argument implies only that the types of
data represented by economic time series are not those which would re-
sult from the designs of experiments prescribed in economic theory.
Here we should, first of all, think of the difficulties that arise from
the fact that series of passive observations are influenced by a great
many factors not accounted for in theory; in other words, the difficulties
of fulfilling the condition “Other things being equal.” But this is a
problem ecommon to all practical observations and measurements; it is,
in point of principle, not a particular defeet of cconomic time series.
If we cannot clear the data of such “other influences,” we have to try
to introduce these influences in the theory, in order to bring about more
agreement between theory and facts. Also, it might be that the data,
as given by economic time series, are restricted by a whole system of
relations, such that the series do not display cnough variations to verify
each rclation separately. These problems we shall discuss at length in
the next two sections. Again, there is the problem of errors of measure-
ments proper. But this problem also is a general one, and not onc pecu-
liar to economic time scries.

If these difficulties are put aside, is there still some property peculiar
to economie time series that makes them unfit for the application
of rclations deduced from pure economic theory? Even by a careful
inspection it is difficult to see what such a property could be, because,
if we ean construct any general laws at all, describing what individuals
actually do, and if we have a series of observations of what the individ-
uals actually have done in the past, then, necessarily, the theoretical
law would fit these observation series. If, therefore, we see here a
problem at all, I think it arises, mostly, from a confusion of two differ-
ent kinds of relations oceurring in economic theory, namely (1) those
intended to describe what the individuals actually do at any time, and
(2) thosc desceribing a sehedule of altcrnatives at a given moment, before
any particular decision has been taken. Relations of the first typc are,
usually, derived from a system of relations of the sccond type. To make
the discussion on this point more conercte we shall consider a simple
example of consumers’ demand for a single commodity.

Suppose that an individual consumes n different commodities, and
let x;, 25, - - -, z, denote quantities of these n commodities. And let
P1, D2, * -+, Pn be their ecorresponding prices. Assume that the individ-
ual has constant moncy income. According to the general theory of con-
sumecrs’ choice, we may write

(6'1) I; = f!'(ply Y Z I pﬂ) (Z =1, 2; Tty n):

wherc f; are some demand functions. Assume now that all prices, except
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one, say pi, are constant, and consider the corresponding quantity, z;,
of commodity No. 1. We may then write

(6.2) x1 = f(p1).

What does this function mean, under the assumptions made above? It
may mean two different things.

One interpretation is that, whenever pyhas a particular value, say py/,
the individual chooses to buy a quantity z,"=f(p/) of commodity
No. 1.

Another interpretation is this: Suppose that the individual is in a
position where he pays the price »,° and consumes a quantity z,°. He
considers in that position the possible changes in his consumption of
commodity No. 1 that he would choose in response to various changes
in the price from p,° If the price be changed from p,° to p/, say, he will
buy )" =f(p!); if the price be changed from p:° to p)"’ say, he will buy
/' =f(p/"); and so forth. That is to say, he has a schedule of alterna-
tives with respect to the nezt price change as judged from his present
position (z,° p1°). To indicate that his schedule may dcpend upon his
present position, we might write

(6.3) 1 = fp),

where f° satisfies 2,°=f%(p:%).

It is elear that these two types of demand schedules arc of different
nature, and, furthermore, that the first one claims more than the scc-
ond one. For the first one requires the assumption that there is a unique
relation between consumption and prices according to which the indi-
vidual acts srrespective of the position he happens to be in at the mo-
ment the decision has to be taken. The second only says that the
individual has a schedule of alternatives with respect to the next price
change, as judged from his present position (z,°, p:°). After be has taken
a decision in response to a price change, so that he no longer is in the
position (z.%, p1%), he might change his schedule of alternatives, because
from the new position he might “‘see things differently.”

If the individual has a fixed demand schedule that is independent
of the point on it where he is at any given moment [i.e., a schedule of
type (6.2)], then, of course, a historical record of prices and correspond-
ing quantities consumed would represent points on this demand sched-
ule, and we could usc it for predicting the consumption for any given
value of the price (under the assumption, as before, that other prices
did not change). On the other hand, if the demand schedule depends
upon the actual position of the individual, there might, for each such
actual posttion, be a perfcctly well-defined schedule of alternatives,
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which, if we knew it, would allow us to predict the quantity that would
be bought if the price were changed from p,° to p.’, say. But as soon as
the new position (py, z1') is actually reached, we might need another
schedule, f' say, to predict the quantity bought if the price were
changed from pi’ to pi'/, say. The two situations are illustrated graph-
ically in Figures 1 and 2.

P b

'0

X| M xl
Figure 1,—Reversible Demand Fraure 2.-—“Milieu”-affected De-
Schedule, mand Schedule. Irreversible Demand

Process.

In Figure 2 a historical record of the actual positions (p:°, z:"),
(py, x)), etc., would not form points on any fixed demand curve. And
if we should fit some curve through these points of actual positions,
such a curve could not be used for predicting the effect of the next price
change. To find the demand schedule of the individual at a given mo-
ment we should have to inferview him, asking him what he would do
if the price were changed alternatively by certain amounts.

We might consider I'igure 1 as a static scheme, while Figure 2 repre-
sents a dynamic one, beeause in Figure 1 the sequence of price changes
1s irrelevant, while in Figure 2 it is essential. However, we do not here
emphasize so much the time succession of the price-quantity changes
as the fact that the actual carrying out of a planned decision may bring
the individual into a new “milieu,” so to speak, where he fcels differ-
ently from the way that he thought he would fecl before he got there.

If, actually, a set-up like that in Figure 2 is nearer to reality than
that in Figure 1, then, naturally, an attempt to use the scheme in Fig-
urc 1 would fail. On the other hand, if the theory operates with
“milieu”’-bound schedules like those in Figure 2, then historical records
of actual pricec-quantity combinations are simply not the data that are
rclevant to the theory.

An irreversible scheme like that in Figure 2 may often be reduced to
a reversible one by introducing more variables. We might, e.g., assume




THE DEGREE OF PERMANENCE OF ECONOMIC LAWS 21

that the demand schedules in Figure 2 change in a regular manner with
the initial positions with which they are associated. Let the variables
%1, p1 be the quantity and priee that represent actual positions of the
mdividual, and let (z;, p1) be any point on the demand schedule through
(%1, P1). It might be that the individual’s behavior could be deseribed
by a relation of the type

(64) Iy = F(pb X, 151):
where F is such that
(6.4") &= I'(§, &1, f1).

This funetion would then be compatible with the time series for actual
prices and quantities consumed. More specifically, edch pair of sue-
cessive points representing actual positions would satisfy (6.4); i.e., if
(2% p1%) and (%), pi’) be two such sucecssive points, we should have

(65) & = F(fl', Y flo)-

We could then determine the parameters of ¥ from the actual time se-
ries, and then, by (6.4), we could caleulate the demand sehedule for any
given initial point (&1, §1).

This scheme would probably be too simple. In general we should
probably have to introduce as variables, not only the instantaneous
position of the individual, but also the whole sequence of past posi-
tions, as well as the lengths of the time intervals between the price
changes. And the situation would, of course, be still more complicated
when all the other prices also varied. This was excluded in our discus-
sion above. Whether or not it be actually possible in this way to fit
historical records into schemes of reversible relationships is a question
which eannot be answered a priori. We have to try to find out.

Beside difficulties of the type discussed above, which seem—in point
of principle—very simple and clear ones, 1 do not sce that economic
time scries have any other “mystic”’ property that makes them in-
compatible with ceonomic theory.

7. The Question of Simplicity in the Formulation of Economic Laws

Let y denote an economic variable, the observed valucs of which may
he considered as results of planned economic deccisions taken by in-
dividuals, firms, cte. (e.g., ¥ might be the annual consumption of a
certain commodity within a eertain group of individuals, or the annual
amount they save out of their income, etc.; or, it might be the rate of
production in a monopolized industry, or monthly imports of a certain
raw matcrial, cte., cte.). And let us start from the assumption that the
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variable ¥, is influenced by a number of causal factors, This viewpoint
is something that is deeply rooted in our way of reasoning about the
things we observe in reality. We do not need to take the notions of
cause and effeet in any metaphysical sense. What we mean is simply
that the individuals, firms, ete., are bound in their planning and de-
cisions by a set of conditions that are data in the process of adaptation.
Within the limits of these given conditions the adaptation process
consists in choosing what is deemed the “best’” decision, in some sense
or another. And we assume that the individuals have a system of prefer-
ence schedules which determine “best decisions’’ corresponding to any
given set of choice-limiting conditions. We, therefore, have the follow-
ing scheme:

Given conditions

(the independent
variables)

(7.1)

—

{the dependent
variables)

preference
schedules

System of
o

“Best decision’’ 1

If the system of preference schedules establishes a correspondence
between sets of given eonditions and ‘‘best decisions,” such that for
each sct of conditions there is one and only one best decision, we may
“Jump over” the middle link in (7.1), and say that the decisions of in-
dividuals, firms, or groups, are determined by the system of given choice-
limiting conditions (the independent variables).

In point of principle there may, perhaps, appear to be some logical
difficulties involved in operating with such one-way, or causal relation-
ships. In fact, modern economists have stressed very much the neees-
sity of operating with relations of the mutual-dependence type, rather
than relations of the cause-effect type. However, both types of rela-
tions have, I think, their place in economic theory; and, moreover, they
are not necessarily opposed to cach other, because a system of relations
of the mutual-dependence type for the economy as a whole may be
built up from open systems of causal relations within the various sectors
of the economy. The causal factors (or the “independent variables’)
for one seetion of the cconomy may, themselves, be dependent variables
in another section, while here the dependent variables from the first
section enter as independent variables. The essential thing is that,
while for the economy as a whole everything depends upon everything
else, so to speak, there are, for each individual, firm, or group, certain
factors which thss individual, firm, or group considers as data. The no-
tion of causal factors is of a relative character, rather than an absolute
one.

Let us, therefore, accept the point of view that decisions to produce,
to consume, to save, etc., are influenced by a number of quantitatively
defined relative causal factors x1, z2, - - + . Our hope in economie theory
and research is that it may be possible to establish constant and rela-
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tively stmple relations between dependent variables, y (of the type
described above), and a relatively small number of independent vari-
ables, z. In other words, we hope that, for each variable, y, to be “ex-
plained,” there is a relatively small number of explaining factors the
variations of which are practically decisive in determining the varia-
tions of y. (The problem of simplicity of the form of a relationship is
usually far less important than that of the number of variables in-
volved, because, if we know there is a functional relationship at all,
it is, usually, possible to approximate it, e.g., by expanding the function
in series.)

Whether or not such simple relations can be established must be de-
eided by actual trials. A priori it can neither be shown to be possible
nor proved impossible. But we may do something else, which may give
us some hint as to how optimistic or pessimistic we have reason to be:
we can try to indicate what would have to be the actual situation in
order that there should be no hope of establishing simple and stable
causal relations.

First of all, it is necessary to define what we mean by the “influence”
of an economic factor. This expression, as used in the economic litera-
ture, seems to have several different meanings. We shall distinguish
between two different notions of “influence,” which we shall call po-
tential influence, and factual influence respectively. We shall first define
these two concepts in a purely formal way.

Let ¥’ be a theoretical variable defined as a funetion of n independent
“causal” vanables 2y, @3, « - -, za, €.8.,

(72) y’ = f(xl! Ty, * 0, I,;),

where f is defined within a certain domain of the variables z. The poten-
tial influence of the factor z; upon ¥’ we shall define as Ay’ given by

(73) Aiyl = f[xh Ty, =", (I{ + AI;), Tty I,,] - f(xl, Loy * * 0y, In))

where Az, is a positive magnitude such that z;4Az; is within the do-
main of definition of f. It is clear that this quantity Az’ will, in general,
depend upon the variables z as well as upon the value of Az;. And, fur-
thermore, what we shall mean by a large or a small Az; depends, of
course, upon the units of measurement of the variables z. To compare
the size of the influence of each of the variables = we have, for any point
(%1, 2, - -+, Ta), to choose a set of displacements Ax;, Axs, - + -, AZ,,
which are considered to be of equal size according to some standard of
Judgment. (E.g., one particular such standard would be to define the
increments Az; at any point in the space of the variables z as constant
and equal percentages of xy, xo, - - -, 2, respectively.) For a given sys-
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tem of displacements Axy, Axe, - - -, Az,, the potential influences are,
clearly, formal properties of the funetion f.

Now, let us define the notion of factual influence of 2; upon y'. In
contrast to the potential influence, the factual influence refers to a set
of values of %’ corresponding to a set of value systems of the variables
Iy, X3, -+, Z,, chosen according to some outside principle. Let

’
'!/1 ¥ xll; I2l’ oty xﬂf)

’
(7.4) Yo', Tig, Xee, ¢, Tag,

!
Yx'y, Tinvy Ton, * 0 v, Tan,

be a set of N such value systems. By the factual influence of z; upon y’
within this set of value systems we mean, broadly speaking, the parts of
yi'y ¥, -+ -, yx’ that may be ascribed to the variations in z; This
could be defined quantitatively in various ways. One way would be the
following: Let us replace the variable z; in (7.2) by a constant, ¢; say,
so determined that

N

Qi = Ej[f(x‘f) x2J'! Tty xij: oty xnj)
1

(7.5)

— J(@rg, Tajy o, Gy ey ) )2

= minimum with respect to ¢,

assuming that such a minimum exists. The factual influence upon y’ of
the variable z; in the system (7.4) could then, for example, be defined
as: Constant 4/Q;min5,

From the definitions above it is clear that the potential influence of
a factor may be large, while—at the same time—the factual influence
of this factor in a particular sef of data may be zero or very small. And,
conversely, the factual influences may he very large even if the po-
tential influence is small (but not identically zero).

This distinction is fundamental. For, if we are trying to explain a
certain observable variable, y, by a system of causal {actors, there is,
in general, no limit to the number of such factors that might have a
potentral influence upon . But Nature may limit the number of factors
that have a nonnegligible factual influence to a relatively small number,
Our hope for simple laws in economics rests upon the assumption that
we may proceed as if such natural limitations of the number of relevant
factors exist. We shall now discuss this a little more closely.
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Suppose that, out of a—possibly infinite—number of factors

Zy, xo, + + -, With a potential influence upon y, we pick out a rela-
tively small number, say z;, zs, - - -, 2, and consider a certain function
(7.6) y* = Ulzy 22, - - -, 20)

of these variables. Suppose that, ¢f all the other factors, zayy, Zase, - * -,
(assuming them to be denumerable) did not vary, we should have y=y*
for every observed value-set (y, 1, 2p, * - -, T.). Would the knowledge
of such a relationship help us to “explain’ the actual, observed values
of y? It would, provided the factual influence of all the unspecified
factors together were very small as compared with the factual influence
of the specified factors z,, zs, -+ -, z.. This might be the case even if
(1) the unspecified factors varied considerably, provided their potential
influence was very small, or if (2) the potential influences of the un-
specified factors were considerable, but at the same time these factors
did not change much, or did so only very seldom as compared with the
specified factors.

On the other hand, suppose that all the factors zy, s, - - -,
Znpy, * * ¢+, OF at least a very large number of them, were of the following
type: (1) Kach factor z has a considerable potential influence upon y;
(2) each z varies usually very little, but occasionally some great varia-
tions oceur. Since there are a great many factors z, we might then still
have great variations going on almost all the time, tn one factor or the
other. To pick out a small number of factors z, assuming the rest to be
constant, would then be of very little help in “‘explaining” the actual
variations observed for y, i.e., relations of the form (7.6) would show
very little persistence over time if y were substituted for y*, simply
because the ceteris paribus conditions, z,.,=constant, z.,»= constant,
etc., would be no approximation to reality. From the point of view of
“explaining” reality, we might then say that it would be practically
impossible to construct a theory such that its associated design of ex-
periments would approximate that followed by Nature. From the point
of view of verifying certain simplified relations of theory we might say
that, under the situation just described, it would be impossible to find
data for such a purpose by the method of passive observation.

What is the actual situation as we know it from experience in eco-
nomic research? Do we actually need to consider an enormous number
of factors to “explain” decisions to produce, to consume, ete.? I think
our experience is rather to the contrary. Whenever we try, a priori, to
specify what we should think to be “important factors,” our imagina-
tion is usually exhausted rather quickly; and when we attempt to apply
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our theory to actual data (e.g., by using certain regression methods),
we often find that even a great many of the factors in our a priori list
turn out to have practically no factual influence.

Frequently, our greatest difficulty in economic research does not lie
in establishing simple relations between actual observation series, but
rather in the fact that the observable relations, over certain time inter-
vals, appear to be still simpler than we expect them to be from theory,
so that we are thereby led to throw away elements of a theory that would
be sufficient to explain apparent “breaks in structure’ later. This is the
problem of autonomy of economic relations, which we now shall discuss.

8. The Autonomy of an Economic Relation

Every research worker in the field of economies has, probably, had
the following experience: When we try to apply relations established
by economic theory to actually observed series for the variables in-
volved, we frequently find that the theoretical relations are “unneces-
sarily complicated”; we can do well with fewer variables than assumed
a priori. But we also know that, when we try to make predictions by
such simplified relations for a new set of data, the relations often break
down, i.e., there appears to be a break in the structure of the data. For
the new set of data we might also find a simple relation, but a different
one. Even if no such breaks appear, we are puzzled by this unexpected
simplicity, because, from our theoretical considerations we have the
feeling that economic life is capable of producing variations of a much
more general type. Sometimes, of course, this situation may be ex-
plained directly by the fact that we have included in our theory factors
which have no potential influence upon the variables to be explained.
But more frequently, I think, the puzzle is a result of confusing two
different kinds of variations of economie variables, namely hypothetical,
free variations, and variations which are restricled by a system of simul-
taneous relations.

We see this difference best by considering the rational operations by
which a theoretical system of relations is constructed. Such systems
represent attempts to reconstruct, in a simplified way, the mechanisms
which we think lie behind the phenomena we observe in the real world.
In trying to rebuild these mechanisms we consider one relationship af
a lime.

Suppose, e.g., we are considering n theoretical variables
zy, z, -+ -, 2, to be compared with n observational variables
Z1, Zs, - * ¢, Za, respectively. We impose certain relations between
the n theoretical variables, of such a type that we think the theo-



THE DEGREE OF PERMANENCE OF ECONOMIC LAWS 27

retical variables, so restricted, will show some eorrespondence with the
observed variables.

Let us consider one such particular relation, say x,"=f(z, - - -, z.).
In constructing such a relation, we reason in the following way: If z,’
be such and such, 23’ such and such, ete., then this implies a certain
value of xy". In this process we do not question whether these “ifs’’ can
actually occur or not. When we impose more relations upon the vari-
ables, a great many of these “ifs,”” which were possible for the relation
zy' =f separatcly, may be impossible, because they violate the other
relations. After having imposed a whole system of relations, there may
not be very much left of all the hypothetical variation with which we
started out. At the same time, if we have made a lucky choice of theo-
retical relations, it may be that the possible variations that are left
over agree well with those of the observed variables.

But why do we start out with much more general variations than
those we finally need? For example, suppose that the Walrasian system
of general-equilibrium relations were a true picture of reality; what
would be gained by operating with this general system, as compared
with the simple statement that each of the quantities involved is equal
to a constant? The gain is this: In setting up the different general rela-
tions we conceive of a wider set of possibelities that might correspond to
reality, were it ruled by one of the relations only. The simultaneous
system of relations gives us an explanation of the fact that, out of this
enormous set of possibilities, only one very particular one actually
emerges. But once this is established, could we not then forget about
the whole process, and keep to the much simpler picture that is the
actual one? Here is where the problem of autonomy of an economic rela-
tion comes in. The meaning of this notion, and its importance, can, I
think, be rather well illustrated by the following mechanical analogy:

If we should make a series of speed tests with an automobile, driving
on a flat, dry road, we might be able to establish a very accurate func-
tional relationship between the pressure on the gas throttle (or the
distance of the gas pedal from the bottom of the car) and the corre-
sponding maximum speed of the car. And the knowledge of this rela-
tionship might be sufficient to operate the car at a prescribed speed.
But if a man did not know anything about automobiles, and he wanted
to understand how they work, we should not advise him to spend time
and effort in measuring a relationship like that. Why? Because (1) such
a relation leaves the whole inner mechanism of a car in complete mys-
tery, and (2) such a relation might break down at any time, as soon as
there is some disorder or change in any working part of the car. (Com-
pare this, ¢.g., with the well-known lag-reclations between the Harvard
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A-B-C-curves.) We say that such a relation has very little autonomy,?
because its existence depends upon the simultaneous fulfilment of a
great many other relations, some of which are of a transitory nature.
On the other hand, the general laws of thermodynamics, the dynamics
of friction, cte., etc., are highly autonomous relations with respect to
the automobile mechanism, because these relations desecribe the func-
tioning of some parts of the mechanism trrespective of what happens
in some other parts.

Let us turn from this analogy to the mechanisms of economie life.
Feconomie theory builds on the assumption that individuals’ decisions
to produce and to consume can be described by certain fundamental
behavioristic relations, and that, besides, there are certain technical
and institutional restrictions upon the freedom of choice (such as tech-
nical production functions, legal restrictions, cte.).

A particular system of such relationships defines one particular theo-
retical structure of the economy; that is to say, it defines a theoretical
set of possible simultaneous sets of value or sets of time series for the
economic variables. It might be necessary—and that is the task of
economic theory-—to consider various alfernatives to such systems of
relationships, that is, various alternative structures that might, ap-
proximately, correspond to cconomie reality at any time. For the “real
structure’” might, and usually does, change in various respects.

T'o make this idea more precise, suppose that it be possible to define
a class, @, of structures, such that one member or another of this class
would, approximately, deseribe ecconomic reality in any practically con-
cetvable situation. And supposc that we define some nonnegative measure
of the “size” (or of the “importance’”’ or “credibility’) of any subclass,
w in Q, including Q itself, such that, if a subclass contains completely
another subclass, the measure of the former is greater than, or at
least equal to, that of the latter, and such that the measure of € is
positive. Now consider a particular subeclass (of ), containing all
those—and only those—structures that satisfy a particular relation
“A." Let wy be this particular subclass. (E.g., ws might be the sub-
class of all those structurcs that satisfy a particular demand func-
tion “A.”) We then say that the relation “A’ is autonomous with
respect to the subelass of structures ws. And we say that “A” has a

* Thisg term, together with many ideas to the analysis in the present section,
I have taken from a mimeographed paper by Ragnar Frisch: “Statistical versus
Theoretical Relations in Economic Macro-Dynamics” (Mimeographed memo-
randum prepared for the Business Cycle Conference at Cambridge, England,
July 18-20, 1938, to diseuss J. Tinbergen’s publication of 1938 for the League of
Nations.)
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degree of autonomy which is the greater the larger be the “size’’ of wy
as compared with that of Q.

The principal task of economic theory is to establish such relations
as might be expected to possess as high a degree of autonomy as possible.

Any relation that is derived by combining two or more relations
within a system, we call a confluent relation. Such a confluent relation
has, of course, usually a lower degree of autonomy (and never a higher
one) than each of the relations from which it was derived, and all the
more so the greater the number of different relations upon which it
depends. From a system of relations, with a certain degree of autonoimny,
we may derive an infinity of systems of confluent relations. How can
we actually distinguish between the “original”’ system and a derived
system of confluent relations? That is not a problem of mathematical
independence or the like; more generally, it is not a problem of pure
logic, but a problem of actually knowing something about real phe-
nomena, and of making realistic assumptions about them. In trying
to establish relations with high degree of autonomy we take into con-
sideration various changes in the economic structure which might up-
set our relations, we try to dig down to such relationships as actually
might be expected to have a great degree of invariance with respect to
certain changes in structure that are “reasonable.”

It is obvious that the autonomy of a relation is a highly relative con-
cept, in the sense that any system of hypothetical relations between
real phenomena might itself be deducible from another, still more basic
gystem, i.e., a system with still higher degree of autonomy with respect
to structural changes.

The construction of systems of autonomous relations is, therefore, a
matter of intuition and factual knowledge; it is an art.

What is the connection between the degree of autonomy of a relation
and its observable degree of constancy or persistence?

If we should take constancy or persistence to mean simply invariance
with respect to certain hypothetical changes in structure, then the de-
gree of constaney and the degree of autonomy would simply be two
different names for the same property of an economic relation. But if
we consider the constaney of a relation as a property of the behavior of
actual observations, then there is clearly a difference between the two
properties, because then the degree of autonomy refers to a class of
hypothetical variations in structure, for which the relation would be in-
variant, while its actual persistence depends upon what variations ac-
tually occur. On the other hand, if we always try to form such relations
as are autonomous with respect to those changes that are in fact most
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likely to occur, and if we succeed in doing so, then, of course, there will
be a very close connection between actual persistence and theoretical
degree of autonomy. To bring out these ideas a little more clearly we
shall consider a purely formal set-up.

Suppose we have an economic system, the mechanism of which
might be characterized by the variations of n measurable quantities
Ty, e, -+ -, Zn. Suppose that the structure of this mechanism could be
described by a system of m <n equations,

(8'1) fi(xly Ta, =", I,-,) =0 (7'- =12, 7"’)-

(n—m) of the variables—let them be zny1, Zmye, * + -+ , 2,—are assumed
to be given from outside. From the system (8.1) it might, e.g., be pos-
sible to express each of the first m variables uniquely in terms of the
n—m remaining ones. Let such a solution be

1 = Uy (xm+1; Tmiey ** ) xﬂ))

T2 = Ue (xm+l; zm-{-?, Y xn),

(8.2)

Iym = um(xnﬂ-l, Tmpe, * * ¢, xn)-

The system (8.2) would describe the covariations of the variables just
as well as would the original system (8.1). But suppose now that there
should be a change in structure of the following type: One of the func-
tions f; in (8.1), say fy, is replaced by another function, say fy, while all
the other relations in (8.1) remain unchanged. In general, this would
change the whole system (8.2), and if we did nof ehange the system
(8.2) [e.g., because we did not know the original system (8.1) ], some
or all of its relations would show lack of constaney with respect to the
obscrvations that would result from the new structure. On the other
hand, the last m—1 equations in (8.1) would—by definition—still hold
good, unaffected by the structural change. It might be that, as a matter
of faet, one or two particular equations in (8.1) would break down very
often, while the others remained valid. Then any system (8.2) corre-
sponding to a fized system (8.1) would show little persistence with re-
spect to the actual observations.

In this scheme the variables Zmi1, Tmiz, * -+, Za, Were, in point of
principle, free: they might move in any arbitrary way. This includes
also the possibility that, e.g., all these free variables might move as
certain well-defined functions of time, e.g.,
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Tmpl = gl(t):

(8.3) Tmpe = g2(t))

Tn = gnom(l).

As long as this should hold, we might be able to express the variables
Ty, L3, + * +, Tm, a8 functions of Zmyy, Tmye, © © +, Ta, in many different
ways. For example, it might be possible to express z; as a function of
Tn, SAY

(84) I = F(In)'

But could this relation be used to judge the effeet upon z; of various
arbitrary changes in z,? Obviously not, because the very existence of
(8.4) rests upon the assumption that (8.3) holds. The relation (8.4)
might be highly unstable for such arbitrary changes, and the eventual
persistence observed for (8.4) in the past when (8.3) held good, would
not mean anything in this new situation. In the next situation the origi-
nal system (8.1), or even system (8.2), would still be good, if we knew
it, But to find such a basic system of highly autonomous relations in an
actual case is not an analytical process, it is a task of making fruitful
hypotheses as to how reality actually is.

We shall illustrate these points by two examples.

First we shall consider a scheme which, I think, has some bearing
upon the problem of deriving demand eurves from time series.

Let z be the rate of per capita consumption of a commodity in a
group of people who all have equal money income, K. Let p be the price
of the commodity, and let P be an index of cost of living. Assume that
the following demand function is actually true:

(8.5) el iyt
. :t—aP 7 c+ ¢

where a, b, ¢, are certain constants, and ¢ is a random variable with
“rather small’”’ variance, and such that the expected values of z are

v R) P R
—_—y — ] =qaq— b'——'+C
P+ P

(8.6) E(x 7P

Assume that (8.5) is autonomous in the following sense: For any arbi-
trary values of p/P and R/P, the corresponding value of z ean he
estimated by (8.6). Suppose we are interested only in variations that
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are small relative to certain constant levels of the variables. Then we
may approximate (8.5) by a linear relation in the following way: Let
Do, Ro, and Py be the average values of p, R, and P respectively. Then
we have

aPO'*‘(P‘PO) bRo‘l'(R“RO)

Py + (P — Py) Po+ (P — Py) ‘
=ap°+(P—Po)' 1
P, P — P,
14— 2°
+ 7.
R0+(R_R0) ]_
b .
+ P, P — P, +c+ e
1+
Py
(8.5
P+ (@ — po)( P — Po)
~a 1 —
Pg PO
R0+(R—Ro)( P - P,
b 1 —
+ P, Py >+C+€
=ip_@fp+@ha(P—Po)(P—Po)
Py Pg? P, Py
b bRo bRy bR — R)(P — P
_R_____P _ .
et TRl T, o +eot e

If the deviations (p—pe), (P—Py), and (R— Ry) are small compared
with po, Po, and R, we may neglect produet terms of these deviations.
Then we obtain

(8.7 zx=Ap+ BR+ CP + D + ¢,
where
a b apo bR, aps bR,
A=_}B=_7 C=—(-—— ~—),D=— — ¢,
PO 0 PD2 P[)2 PD + PO +

and where € is a new residual term now also containing the errors made
by the above approximation. For small variations of the variables,
¢ may not be practically distinguishable from e.
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What we shall now show is that, if the data for p, P, and R, to be
used for deriving the demand funetion have, for some reason or another,
happened to move as certain regular functions of time, there may in
these data exist another relation which has exactly the same form as
(8.7), but different coefficients, and which may fit the data still better
than (8.7) would do in general. And if we mistake this other relation
for (8.7), we get merely a confluent relationship, and not an approxima-
tion to the demand funection (8.5).

To see this let us write (8.5) as

(8.5') z(t) = a PO + b P + ¢ + €(0).

Assume now that the time functions p(f), P({), and R({)—for some rea-

son—happen to be such that they satisfy the functional relations

| p(f) ‘
(8.8) 0 kip() + keP() + ko,
8.9) 2O R + mPO +
. P(t) =m ( + me my,

where the k’s and the m’s are certain constants. A wide class of elemen-
tary time functions satisfy such funectional equations. And whenever
this is the case for the actual observations of p, P, and R, an equation
of the form (8.7) could be fitted to the data. But we could not use the
equation thus obtained for predicting the effect of an arbitrary price
change, or an arbitrary income change, because this equation is not in
general an approximation to (8.5) but merely a confluent result of
(8.5), (8.8), and (8.9). It, therefore, does not hold, e.g., for price changes
which violate (8.8), (8.9), or both.

In general, we have to be very careful in using a particular set of
data to modify the form of relationships which we have arrived at on
strong theoretical grounds. For example, in the case above we might be
led to conclude that (8.7) might be a more correct “form’ of the de-
mand function than (8.5), or at least as good, while actually, when (8.8)
and (8.9) are fulfilled, we may obtain a relationship of the form (8.7),
which is not a demand function at all, and which breaks down as soon
as p(f), P(f), and R(¢) take on some other time shape.

As an lllustration to the question of autonomy of an economic rela-
tion with respect to a change in economaic policy, let us consider the eco-
nomic¢ model underlying the famous Wicksellian theory of interest rates
and commodity prices. (For the sake of simplicity and shortness we
shall, however, make somewhat more restrictive assumptions than
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Wicksell himself did. Our model does not do full justice to Wicksell’s
profound ideas.)

Consider a society where there are only three different economic
groups: (a) individuals, (b) private firms, and (c¢) banks. We assume
that: (1) Al individuals divide their income into two parts, one part
consisting of spending4increase in cashholding, the other part being
saved, and all savings go into banks as (time) deposits. There is no
other saving in the society. (2) All production in the society takes place
in firms. The firms are impersonal organizations, guided in their produc-
tion policy by profit expectations only. They can make new investments
by means of bank loans only. They distribute all their profit to in-
dividuals. (3) Prices of goods and services of all kinds vary proportion-
ally through time, and may be represented by a common variable,
called the price level. (4) The banks have the power of expanding or
contracting credit. We assume that there is only one money rate of
interest, which is the same for all banks and the same for loans as for
deposits. (This gives a rough description of the model we are going to
discuss. 1t is hardly possible to give an exhaustive deseription of a
model in words. The precise description is given implicitly through the
relations imposed in the model.)

We are principally intercsted in the price effect of certain changes
in the credit policy of the banks.

Let us introduce the following notations:

(1) S(t) =total saving per unit of time,

(2) I(t)=total investment per unit of time,

(3) p(t) =bank rate of interest at point of time ¢,
(4) P(t) =price level at point of time ¢,

(6) R(t)=total national income per unit of time.

Now we shall introduce a system of fundamental relations describing
the mechanism of our model. We consider linear relations, for sim-
plicity.

First, we assume that there exists a market supply function for sav-
ings of the following form.

(8.10) 8() = as + a1p(t) + @P() + a:P(t) + aiR(8).

This equation says that the supply of savings (bank deposits)—apart
from a constant—depends upon the rate of interest, the total income,
the price level, and the expectations regarding the future real value of
money saved, as represented by the rate of change in the price level
P(1). It might be realistic to assume that a; and a, are positive, a; and a;
negative.
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Next, we assume the following demand function for bank loans:

(8.11) I(t) = bo -+ bup(t) + bP (1) + buP (D),

where b, is negative and b; positive, while the sign of b, may be uncer-
tain, a priori. bs would be positive because, when the price level is in-
creasing, the firms expect to buy factors of production in a less expen-
sive market than that in which they later sell the finished produects, and
this profit element is an inducement to invest.

Now, if the banks should lend to firms an amount equal to deposits,
neither more nor less, ie., if

(8.12) 1) = 8(),

then it follows from (8.10), (8.11), and (8.12), that to each value of
R(), P(1), and P(1), there would correspond a certain market equilib-
rium rate of interest, 5(f), called by Wicksell the normal rate. That is,
we should have

bo—ao bz'—az b3—(13 .
5(8) = P + Plt) —
(8.13) 0 P E— ® @ — b 0 @ — by

= Ao + AIP() + AP(t) + AsR(D),

where p(?) is a value of p(t) satisfying (8.10), (8.11), and (8.12), and
where the A’s are abbreviated notations for the coefficients in the mid-
dle term.

If the banks want, actively, to expand or contract currency (that is,
if they want to change that amount of money outside the banks), they
have to fix a rate of interest p(¢), which differs from p(t) as defined by
(8.13). [Note that p(f) is by no means a constant over time.] From
(8.10) and (8.11) we get
I(t)— 8() = (bo — a0) + (br — ar)p(t) + (b2 — @) P (1)

+ (ba —_ aa)P(t) - (hR(t),
which, for p(t) = p(t), reduces to

0 = (by — @) + (b1 — a)p(t) + (be — a2) P(¥)
+ (bs — as)P(t) — a,R(t).

Subtracting (8.15) from (8.14) we obtain

(8.16) Ity — 8@) = (br — a) [p(t) — 5(1) ],

which tells us that the amount of “money inflation,” I{f)—S8(t), is
(negatively) proportional to the difference between the actual bank rate
of interest and the normal rate as defined by (8.13).

(27!

R(1)

(8.14)

(8.15)
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Assuming the “inflation” stream I(t) —S(f) (taken as a barometer
for total spending) to be accompanied by a proportional rige in the
priee level, we have

(8.17) P = k[I®) - S@)] (k a positive constant),
Combining (8.16) and (8.17) we obtain
(8.18) P(t) = k(b — a)[o(t) — 5],

which is a simplified expression for Wicksell’s fundamental theorem
about the price effect of a bank rate of interest that differs from the
normal rate.

Accepting this theory (we arce not interested in analyzing its actual
validity any further in this connection, as we use it merely for illus-
tration), what would be the degree of autonomy of the three equations
(8.16), (8.17), and (8.18)?

Let us first consider the equation (8.16). Its validity in our set-up
rests upon the two fundamental relations (8.10) and (8.11). In setting
up these two equations we did not impose any restrictions upon the
time shape of the functions p(f), P(t), and R(f). Therefore, by hypothe-
sis, whatever be the time shape of these functions, the corresponding
time shapes of I(f) and S({)—and, therefore, also the time shape of
I()— S(t)—follow from (8.10) and (8.11). [(8.18) is merely another
way of caleulating the difference I(f)—S(t).] From (8.13) it follows
that to each pair of time functions P(¢) [provided its derivative P(¢)
exists] and R(f) there corresponds a time function 3(f), while to each
given time function p(f) there corresponds, in general, an infinity of time
functions P({) and R({). The equation (8.16) is, therefore—by assump-
tion—autonomous in the following sensc: For any arbitrarily chosen
time functions for p(¢) and p(f) the credit inflation I(f) —S(¢) can be
calculated from (8.16).

We should notice that this property of (8.16)—if truec—is not a
mathematical property of the equation: it cannot be found by looking
at the equation. It rests upon a hypothesis as to how the difference
I{t)—8(t) in fact would behave for various arbitrary changes in the
interest rate and the normal rate. In another model we might obtain
an equation of exactly the same form, but without the same property
of autonomy. I'or example, assume that—as a consequence of some
model, whatever be the particular economic reasoning underlying it—
all the time functions above were bound to follow certain linear trends.
In particular, suppose that we had I(§)—S()=mt, p({) — p() =nt. We
should then have

m
(8.19) Im—&0=;hm—mm,
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which is of the form (8.16). But from (8.19) we could not calculate the
effect upon I(t) —S(¢) of, say, various types of interest policy, because
any changes in p(f) that would violate the condition p(t) —p({) =nt
would break up the very foundation upon which (8.19) rests. The equa-
tion (8.19) might still hold after such a break, but that would have to
follow from enother model.

The equation (8.17) represents, per se, also an autonomous relation
with respect to certain changes in structure. It is an independent hy-
pothesis about the price level, saying that, whatever be the credit
inflation I(f) —S(t), we may calculate the corresponding rate of change
in the price level. Here too, we cannot know how far this property of
autonomy would in fact be true. It is an assumption, and it is a task
of economic theory and research to justify it.

Let it be established that (8.16) and (8.17) are, in fact, highly autono-
mous relations. What is the situation with respeet to the equation
(8.18)? Obviously (8.18) would have a smaller degree of autonomy than
either (8.16) or (8.17) separately, because the class of time functions
satisfying (8.18) is—by definition—only the class of functions that
satisfy (8.16) and (8.17) jointly.

So far we have not assumed any definite relations describing the
credit policy of the banks. We have merely described the behavior of
individuals and firms in response to a given bank rate of interest.
Starting from certain assumptions as to the willingness to save and to
invest, and assuming that an inflow of extra credit into the market
causes a proportional change in the price level, we have obtained two
structural relations (8.16) and (8.17). The variable p(t) was considered
as a free parameter. It might be, however, that the banks, over a cer-
tain period of time at least, choose to follow a certain pattern in their
interest policy, or that they have to do so in order to secure their own
liquidity. Over this period of time it might then be that we could add
a new relation to the ones above, namely a relation deseribing—tem-
porarily—the banking policy. Assume for instance, that the banks,
over a certain period of time, act as follows: Whenever they realize
that I(t) —S(f) has become positive they start raising the interest rate,
in order to protect their liquidity, and, eonversely, they lower the rate
of interest when they realize a negative I(t) —S(t). Such a policy might
be described by the relation

(8.20) pt) = c[I1(t) — S@],
where ¢ is a positive constant. Because of (8.16) we have

(8.21) p(t) = e(br — an)[p() — A(t)].
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And combining (8.18) and (8.21) we have
. k
(8.22) P{t) = — p(1),
c

which apparently says that the price level moves in the same direction
as the interest rate. But could we use this relation to calculate the
“would-be” effect upon the price level of some arbitrary interest policy?
Obviously not, because (8.22) holds only when R(z), I(t), S(), P(¢),
p(t), and p(¢) are such time functions as satisfy, simultaneously, (8.13),
(8.16), (8.17), and (8.20). Thercfore, (8.22) is of no use for judging the
effect of a change in interest policy. To obtain an equation for this pur-
pose we might combine (8.13) and (8.18), which give a relation of the
form

(8.23) P(@t) + BP(t) = Hip(t) + ILR() + H,,

where B, H,, Hs, and H, are constants depending upon those in (8.13)
and (8.18). Here there are—by hypothesis—no restrictions upon the
time shape of the functions p(t) and R(f). We may choose such functions
arbitrarily and solve the equation (8.23) to obtain P(f) as an explicit
function of p(t) and R(?).

But how could we know that (8.23) is the equation to use, and not
(8.22)? There is no forma! method by which to establish such a con-
clusion. In fact, by starting from another model with different assump-
tions, we might reach the opposite conclusion. To reach a decision we
have to know or to imagine—on the basis of general experience—which
of the two relations (8.22) or (8.23) would in fact be the most stable
one if either of them were used as an autonomous relation.

* k%

To summarize this discussion on the problem of autonomous rela-
tions: In scientific research—in the field of economics as well as in
other fields—our search for “explanations’” consists of digging down to
more fundamental relations than those that appear before us when we
merely ‘“‘stand and look.” Each of thesc fundamental relations we eon-
ceive of as invariant with respect to a much wider class of variations
than those particular ones that are displayed before us in the natural
course of events. Now, if the real phenomena we observe day by day
are really ruled by the simultaneous action of a whole system of funda-
mental laws, we see only very little of the whole class of hypothetical
variations for which each of the fundamental relations might be as-
sumed to hold. (This fact also raises very serious problems of estimating
fundamental relations from current observations. This whole problem
we shall discuss in Chapter V.) For the variations we observe, it is
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possible to establish an infinity of relationships, simply by combining
two or more of the fundamental relations in various ways. In particular,
it might be possible to write one economic variable as a function of a set
of other variables in a great variety of ways. To state, therefore, that
an economic variable is “‘some function’ of a certain set of other vari-
ables, does not mean much, unless we specify in what “milieu” the
relation is supposed to hold. This, of course, is just another aspeet of
the general rule we laid down at the beginning of this chapter: The rule
that every theory should be accompanied by a design of experiments.



CHAPTER III

STOCHASTICAL SCHEMES AS A BAgIS FOR ECONOMETRICS

From experience we know that attempts to establish ezact funetional
relationships between observable eeconomie variables would be futile. It
would indeed be strange if it were otherwise, sinee eeonomists would
then find themselves in a meore favorable position than any other re-
scarch workers, ineluding the astronomers. Aetual observations, in
whatever field we consider, will deviate more or less from any exaet
functional relationship we might try to establish. On the other hand,
as we have seen, the testing of a theory involves the identifieation of
its variables with some “true” observable variables. If in any given
case we believe, cven without trying, that such an identification would
not work, that is only another way of saying that the theory would be
falsc with respeet to the “true” varables considered. In order that the
testing of a theory shall have any meaning we must first agree to iden-
tify the theoretical with the observable variables, and then see whether
or not the observations contradiet the theory.

We can therefore, a priori, say something about a theory that we
think might be truc with respect to a system of observable variables,
namely, that it must not exclude as impossible any value system of the
“true’’ variables that we have already observed or that it is prac-
tically eonceivable to obtain in the future. But theories deseribing
merely the set of values of the ““true” variables that we conceive of
as practically possible, would hardly ever tell us anything of practical
use. Such statements would be much too broad. What we want are theo-
ries that, without involving us in direct logical contradietions, state
that the observations will as a rule eluster in a limited subset of the set
of all eoneeivable observations, while it is still consistent with the the-
ory that an observation falls outside this subset “now and then.”

As far as is known, the seheme of probability and random variables
15, at least for the time being, the only seheme suitable for formulating
such theories. We may have objections to using this scheme, but among
these objections there is at least one that can be safely dismissed, viz.,
the objection that the seheme of probability and random variables is
not general enough for application to economic data. Since, however,
this is apparently not eommonly aceepted by eeconomists we find our-
selves justified in starting our diseussion in this chapter with a brief
outline of the modern theory of stochastical variables, with particular
emphasis on eertain points that seem relevant to economics.

—40—
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9. Probability and Random Variables

The more reeent developments in statistical theery are based upon
the so-called modernized elassieal theory of probability. Here “proba-
bility”’ is defined as an absolutely additive and nonnegative set-func-
tion,! satisfying eertain formal properties.?

Let us first take an example to illustrate this probability concept.

1 Sce e.g. Stanislaw Saks, Theory of the Integral, New York, 1937; and Nicolas
Lusin, Les ensembles analytiques, Paris, 1930.

We shall make frequent use of the following common notations and definitions
from the theory of sets:

If A be a set of elements or objects, a, the symbol a ¢ A isused to indicate that
a is an clement of A, or that a belongs to A.

Let (A) be a family of sets 4, and let A, and 4: be two members of (A). If
every element of A; is also an element of As, we say that A: contains, or cov-
ers, A;.

The symbol -A;4+A: (called the logical sum of 4, and 4.) indicates the set of
all elements ¢ which belong to atleast one of the two sets 41 and 4a. A1+ A; (called
the logleal product of A, and 4.) indicates the set of all those elements a which
belong to both 4, and 4, (i.c., their common part). These notions of sum and
product may be extended to any sequence of sets, finite or infinite,

If a product 4, 4. is empty, 41 and 4. arc called disjunct sets.

If A containg As, A;— 4 1s called the difference between A, and 4,, and de-
notes the set of elements that belong to 4; but not to 4,

A family of sets that is such that (1) the summation of any, at most de-
numerable, set of disjunct members of the family as well as (2) the subtraction
A;:—A; of any two members where 4; is contained in A,, give sets which belong
to the family is called a Borel corpus. We denote it by {4].

Suppose that we associate, with each member, 4, of {4}, a finite number
F{A), Then F(A) is called a set-function. (For example, if 4 be an interval on a
straight line, its length is a set-function.) The function F(A) is called additive if,
for any arbitrary disjunct pair of sets 4; and 4;in {4}, we have

F(A: + 4;) = F(4) + F(4)).

F(A) is called absolutely additive if, for any at most denumerable set of disjunct
subsets Ay, A, - -+, An, - -+, in {A}], we have

FlAit 4+ - - - +Aat - - )=FA)+F(A)+ - - - +F(A)+ - - -

By the measure of a set 4, belonging to a corpus {4}, we understand an ab-
golutely additive set-function, m(4), such that m(A) 20, and m(4) =0 when A
is empty. (Length, area, volume are simple examples of measures.)

2 See e.g., J. Neyman, Leclures and Conferences on JMathemalical Sieiystics,
Washington, 1937, pp. 2-18; “1/estimation statistique traitée comme un probléme
classique de probabilité,” Actualités scientifiques ef industrielles, 789, Conférence
tnternalionales de sciences mathématigues, Paris, 1938, pp. 25-57; Paul Levy,
Théorie de U'addition des variables aléatoires, Paris, 1937; 8. S. Wilks, Statistical
Inference, 1936-87, Princeton, N. J., 1937; Mathematical Siatistics, Princeton,
1943.
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Consider an ordinary die with six sides. For the purpose of probability
ealculus a die can be described as a set of 6 points on a straight line,
z=1,2,--., 6. Consider now all the points on a straight line from
— o« to 4. Over this set of points (i.e., over the whole real axis) we
define a nonnegative real measure-function (or, a system of “‘weights’”)
of the following type:

(1) To the point =1 we ascribe a measure Py, to the point z=2 we
ascribe a measure Py, ete., to the point z =6, finally, we aseribe a meas-
ure P, such that P;=0,7=1,2, - - -, 6, and such that Py+P.+ - - -
+P5 = 1

(2) If w be any subset of points (e.g., an interval) on the z-axis, the
measure, P(w), of the set w is defined as the sum of the measures, P;,
of those points, if any, among the 6 particular points z=1,2, - - -, 6,
which belong to the set w. (For example, the measure of a set w defined
by 1=r<4 would be P,4+P;+4P3.)

(3) If w does not contain any of the pointsz=1,2, - - -, 6, then, for
any sueh w, P(w) =0. [For example, if w is the interval 0<z <3, then
P(w)=0.] P(w), so defined, is called the probability that a point z be-
longs to the point-set w, or, for short, the probability of w. It follows
that, if w is the whole real axis, then P(w)=1. If w contains just the
point =1, orz=2, or - - -, or £=6, then P(w)=P,, or Py, or - - -,
or P respeetively.

Now let us eonsider n dice, Nos. 1, 2, - - -, n, (or n hypothetical
throws with the same die), all having the same system of probabilities
Py, Ps, -+ -, Ps. Let z; be the result of one throw with the ith die,
t=1,2,---,n (le,z;=1,0r2 or .., or6, with the probabilities
P\, Py, - - -, Py, respeetively, all other values of z; having the probabil-
ity zero). Consider any possible system (zi, x2, - - -, Tn) of values of the
n variables z, one for each die. Any such sequence zy, 2, - - -, Z,, €a0
be represented by a point in n-dimensional Fuclidean space. If we de-
fine the probability of any sueh point as the product of the probabilities
of each of the z’s separately, we may ealculate the probability of an
arbitrary point (zy, zs, - - -, z.), or more generally, the probability of
any arbitrary set of points in the n-dimensional linear space. It is easy
to see that the system of all such probabilities satisfies conditions ex-
actly similar to (1)-(3) above. The only difference is that we now eon-
sider points in n-dimensional space, instead of points on a straight line.
For example, we might calculate the probability that exaetly k& (no
matter which) out of the n variables z have the value 6, i.e., the proba-
bility of a peint (24, 75, - - -, z.) having exactly & of its co-ordinates
equal to 6. This probability is the sum of n!/k!(n—k)! produets, each
equal to Pg*(1— Pg)"~*, or



STOCHASTICAL SCHEMES AS A BASIS FOR ECONOMETRICS 43

n!
0. — 2 pe(1 — Py,
(9-2) M —mi 0T

whieh is, of eourse, also the probability of a proportion of “sixes” equal
to k/n. From the formula (9.a) we may calculate the total probability
of a setf of points in the n-dimensional z-space, eorresponding to a whole
system of values of k, simply by summing up the probabilities (9.a) for
these values of k. Hence we might also caleulate, e.g., the probability,
P, say, of Ps—e=<k/n=Ps+e¢, where € is any positive number. It fol-
lows from formula (9.a), as is well known, that if Ps be a finite number,
and if a positive ¢ be ehosen, no matter how small, then P> can be made
as near to 1 as we please by ehoosing n suffieiently large.

What is the usefulness, if any, of such a purely formal apparatus, or,
in other words, does it have any eounterpart in the real world?

First of all, let us agree to assign a practieal meaning to the theoreti-
eal notion “A probability near to 1.” By this statement—when applied
to real phenomena—we mean “practical eertainty,” that is, when we
say—in the theory—that the probability of an event is near to 1, this
means, in practieal applieation, that we are “almost sure” that the
event will actually oceur.

Now let us apply this to the dice-example above. If the probability
of a “six” be P (not necessarily 1/6), then the probability calculus
says that, when n is sufficiently large, the probability of a proportion
k/n of “sixes’” in n independent castings being near to Ps is almost 1.
Translated into practical language, this means: If we cast a dic ; times,
where n; is a large number, say n,=10,000, and obtain a proportion
ki/ny of “sixes,” then we are practically sure that in a new large number,
ny, of eastings with this die, say n,=10,000, the proportion k»/n, of
“sixes” will be near to ki/n).. Thus, for example, if we obtained
ki/n1=1/5 for the first 10,000 eastings, and, say, k./na=2/5 for the
seeond 10,000 eastings, we should be inelined to start investigations
of the die and the easting proeedure, beeause we should be almost sure,
on the basis of a great many similar experiments in the past, that
“something was wrong.”

Purely empirieal investigations have taught us that eertain things in
the real world happen only very rarely, they are “miracles,” while
others are “‘usual events.” The probability ealeulus has developed out
out of a desire to have a formal logieal apparatus for dealing with suech
phenomena of real life. The question is not whether probabilities exast
or not, but whether—if we proeced as ¢f they existed—we are able to
make statements about real phenomena that are “‘correct for praetical
purposes.” .

The above example may serve to illustrate the meaning of probabil-
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ity, and of probability ealeculus. We shall now give a more general defi-
nition of probability.

Let A be a set (finite or infinite) of specified objeets of any kind
(e.g., a set of points In a certain region of space). Let Ax=A Ax be
a subset of 4, consisting of all those elements of A which possess a
eertain property X among a system of properties X, such that the family
of all the corresponding sets 4 - Ax form a Borel eorpus {4-Ax}, and
such that A ¢ {A Ax}. Assume, furthermore, that we have defined a
mecasure, m{A-Ax)20, within {A-Ax}, such that m(4)>0, and
m(A-Ax)=0 when A+ Ay is empty. The set A is then said to be proba-
bilized (Neyman). A is ealled a fundamental probability set. For any

element A-Ax of {A-Ax} we define
1-A

9.1) P@hﬂ=ﬁ&—ﬁ
m(A)

as the probability of an element of A possessing the property X. From
the definition of a Borel eorpus, and the definition of the measure
m(4-Ax) it follows that

0<P(X|A)<1 and PX

A+ P(X|4) =1,

where X is the property “not X.”

Any real variable, z, defined as a single-valued measurable function
of the elements in a probabilized set A, is ealled a random variable. As
a partieular case z =1°=constant may have the probability 1, while all
other values of = have the probability 0. Then z is a eonstant in the
stochastical sense. The values of z may be considered as properties of
the elements of A.

A function, z, of the clements in the set A is measurable if the sub-
set of A given by z <c is measurable, in the probability measure de-
fined, for every finite value of ¢. Therefore, whatever be the real num-
bers ¢1 <¢g, the definitions of A and z determine uniquely the probability

(9.2) Pl £ 7 < | 4).

And it is always possible to find ¢; and ¢; such that
(9.3) 0<Pla2z<a|d <1l

For any fixed ¢y, P(ci=z <02| A) is 2 monotonically nondeereasing func-
tion of ¢y, ealled the infegral probability law of =.

The above definition of probability and random variables is prac-
tically equivalent to the following more direet definition: Let = be a
rcal variable; its values can be represented by points on a straight line
from — « to 4+ «. Let {w} be a Borel corpus of measurable sets, w, on
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this line, such that, in particular, {w} contains the system of all infer-
vals ¢ £z Z¢q, where ¢; <ce may be any pair of real numbers. Let P(w)
be a sel-function defined over {w}, such that P(w) is (1) nonnegative,
(2) absolutely additive, and (3) equal to 1 if w eontains all points
from — = to -4 . Then this defines r as a random variable such that
the probability of (x £ w) is given by P(w).

If there exists a nonnegative, Lebesgue-measurable function, p(z),
such that, for every interval (ci, ¢s) for which P(e, <z <02| A) i1s defined,
we have

(9.4) Pasz<ald)= [ ? p(e)dz,

&

where the integral is that of Lebesgue, then p(z) is called the elementary
probability law (or the probability density funetion) of z.

In statistics we usually have to consider systems of several random
variables. There are two prineipal types of such systems, and—al-
though they are not really different from the point of view of statistical
methodology—the distinction between them helps when we want to
eompare a hypothetical model with actual observations.

The first type refers to a system of several random variables
Ty, T2, * ¢, Ty, associated with cach element of a fundamental proba-
bility set. (For example, the fundamental probability set may be all
persons who lived in the United States during the whole year 1940;
x1 may be personal income, z; may be private fortune, ete.) For each
element of the fundamental probability sct, the system of values
Ty, X9, * ¢, Zr, may be represented by a point, E,, say, in r-dimensional
space R,. If w be any measurable set of points in R,, we denote by

(9.5) P(E, ew

A), or, for short, P(w)

the probability that an arbitrary point E, belongs to w. [In the follow-
ing we shall use the shorter notation P(w) in all cases where there is
no danger of eonfusion as to what variable-space is considered.] P(w),
considered as a function of the set w, is called the stmultaneous inlegral
probability law of zy, 2o, - - -, ,, within the fundamental probability
set A.

It will be noticed that we use the same symbol P to indicate two
different things, namely (1) a number, and (2) a function. If the argu-
ment, w, is & fized set of points, w, say, then P(wy) means a number,
namely the probability of wy. If w is considered as an arbitrary, vari-
able argument, then P(w) means the probability function. We shall
use particular letters or subscripts, cte., to indicate fixed sets in the
variable-spaces in question, so no confusion can arise.
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If therc exists a nonnegative, Lebesgue-measurable funetion

p(zy, Z2, -+ -, Z,), such that, for every w for which P(w) is defined,
we have
(96) Plw) = ff cee f’p(:cl, Tg, + + +, zr)dTdrs - - - dzy,

(w)
then p(zy, 3, + + -, z,) is ealled the joint elementary probability law of
Ty Loy * * * 4, Ty,

Let pi(2y), me(x2), - - -, p-(2,) be the elementary probability laws of
the 7 variables = taken separately (i.e., the marginal distributions of
the z's), within A. If then

9.7) plry, To, -+ ¢, ) = Po(T0) - pa(z2) - - - pely),

the variables 2y, z,, - - +, 2., are said to be stochastically independent.

The second type of systems of random variables refers to random
sampling. Suppose that we have a fundamental probability set, A, each
element of whieh is characterized by the values of r random variables,
Ty, T2, - - -, Zr. And suppose that we fix a eertain rule by which to piek
out & system of s elements from A. Let (21, 2oy, - - -, T,1) denote the
system of values of the first element picked, (212, 24, + - -, zr2) that for
the seeond element, and so forth. Let B; denote the subset of A corre-
sponding to all a prior: possible value-systems (zyi, Zes, - -+ -, Zr) for the
element to be picked as No.7 (1=1,2, - - -, §). B; may be considered as
the fundamental probability set of the random variables zy;, 22:, - - -, %ri.
The system

(zn, T2, * -+, 2n1),

(xlh x22) AR x’"z))

(9.8)

(xla, Tasy * * xrt);

is called a sample of size s from the r-variate fundamental probability
set (or “population’) A4, or, what amounts to the same thing, s samples
of one observation each, namely one system of values (zy, z2, - - -, %)
for each fundamental probability set B;. The joint distribution of
(zyi, T2iy - - -, Zrs) may elearly change with 4. The system (9.8) may
also be eonsidered as one sample of just one observation, namely one
element picked from an rs-variate population, say B. Each element
in B would then be characterized by a set of values of the rs random
variables (9.8), and the probability distribution associated with B
would be of rs dimensions. Each system of values (9.8) may be repre-
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sented by a point, F, in rs-dimensional Euclidean space. Such a point,
E, is called a sample point, or a point in the rs-dimensional sample space.

By random sampling we usually understand an experimental arrange-
ment such that the various sets Bi= (2y, 22i, - - -, 20) (1=1,2, - - -, 9),
in (9.8) are mutually independent, i.e., sueh that, if the elementary
probability laws exist,

(9.9) p(E) = pu(Ey)-pa(F) - - - pu(EL).

The dependence or independenee within each system F;== (21, Z2;, -« -,
z,.:) is usually “given by Nature.”

When the (integral or clementary) probability law of a system of
random variables is known, there are standard mathematical rules for
deriving the probability laws of functions of these variables. (See, e.g.,
J. V. Uspensky, Mathematical Probability, New York, 1937.)

10. The Practical Meaning of Probability Statements

At the beginning of the preceding seetion we gave a simple illustra-
tion of the practical meaning of probability statements. We ean now
give a more general interpretation of sueh statements.

Suppose we should know that n observable variables zy, 22, - - -, Za,
have the joint elementary probability law p(zi, e, - - -, Z.). What
are the practical statements we could make about a set of values
(z1, 2o, + - -, ,) nOt yet observed? It has been found fruitful in various
fields of research to use the observable “frequency of occurrence’” of
an cvent as a practical counterpart to the purely theoretical notion of
probability. That is, if the elementary probability law p implies that
the probability of a certain region or set, w say, in the n-dimensional
z-space is P(w), we take this to mean that by repeated actual observa-
tions of points (zy, s, - - -, Z,) in the z-spacc the rclative frequency
of points falling into w would, for a very large number of points of
observation, be close to P(w).

However, as a rule we are not partieularly interested in making state-
ments about such a large number of observations. Usually, we are inter-
ested in statements that eould be made about a relatively small number
of observation points; or, perhaps even more frequently, we are inter-
ested in a praetical a priori statement about just one single new ob-
servation. Then it is of relatively little practical value to know that
P(w) is, let us say, 0.4, 0.5, or 0.6. For then we cannot have much eon-
fidenee, either in the statement that the next observation point will
fall into w or in the statement that it will fall outside w. In order to
be able to make a useful statement, the situation must be such that
there exists an “interesting” subset w for which the probability P(w)
1s near to 1; or, in practieal interpretation, such that “nearly every”
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observation will fall into w. Then we eould say that it would be a
“miracle’” if, in particular, the next observation should fall outside w.
That is, we should be almost sure that this would not happen. Experi-
ence has shown that the purely hypothetical notion of probability dis-
tributions is a useful tool for deriving such praetical statements.

Above we considered “frequency of occurrenee’’ as a practical coun-
terpart to probability. But in many cases such an interpretation would
seem rather artificial, e.g., for economie time series where a repetition
of the “experiment,” in the usual sense, is not possible or feasible.
Here we might then, alternatively, interpret ‘“probability” simply as
a measure of our a priori confidence in the occurrence of a certain event.
Also then the theoretical notion of a probability distribution serves us
chiefly as a tool for deriving statements that have a very high proba-
hility of being true, the praetical counterpart of which is that “we are
almost sure that the event will actually occur.”

Much futile discussion has taken place in regard to the questions of
what probabilities actually are, the type of events for which probabili-
ties “exist,”” and so forth. Vartous types of “foundations of probability”
have been offered, some of them starting from observable frequencies
of events, some appealing to the idea of a priori belief or to some other
notion of reality. Still other “foundations” are of a purecly formal na-
ture without any reference to real phenomena. But they all have one
thing in common, namely, that they end up with a certain concept of
probability that is of a purely abstract nature. For in all the “founda-
tions” offered the system of probabilities involved are, finally, required
to satisfy some logical consistency requirements, and to have these ful-
filled a price must be paid, which invariably eonsists in giving up the
exact equivalence between the theoretical probabilities and whatever
real phenomena we might consider. In this respect, probability schemes
are not different from other theoretical schemes. The rigorous notions
of probabilities and probability distributions “exist” only in our ra-
tional mind, serving us only as a tool for deriving practical statements
of the type deseribed above.

When we state that a certain number of observable variables have
a eertain joint probability law we may consider this as a construction
of 4 rational mechanism, capable of produeing (or reproducing) the ob-
servable values of the variables eonsidered. When we have observed a
set of values of n observable variables (z1, 22, - -+, Ta) we may, without
any possibility of a contradietion, say that these n values represent a
sample point drawn from a universe obeying some unknown n-dimen-
sional (integral) probability law. Whatever be the a priori statement
we want to make about the values of n observable variables, we can
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derive this statement from one of several (perhaps infinitely many)
suitably chosen n-dimensional probability laws. The elass of all n-di-
mensional probability laws ean, therefore, be eonsidered as a rational
classification of all a priori conceivable mechanisms that could rule the
behavior of the n observable variables eonsidered.

Sinee the assignment of a certain probability law to a system of ob-
servable variables is a trick of our own, invented for analytical pur-
poses, and since the same observable results may be produeed under a
great variety of different probability schemes, the question arises as to
which probability law should be ehosen, in any given case, to represent
the “true’” mechanism under which the data considered are being pro-
duced. To make this a rational problem of statistical inference we have
to start out by an axiom, postulating that every set of observable vari-
ables has associated with it one partieular “true,” but unknown, proba-
bility law. Since the knowledge of this true probability law would
permit us to answer any question that could possibly be answered in
advance with respect to the values of the observable variables involved,
the whole problem of quantitative inference may then in each case be
eonsidered as a problem of gathering information about some unknown
probability law.

11. Random Variables and Probability Distributions in
Relation to Economic Data

Through experience we have learned much about the type of real
phenomena to whieh the schemes of probability theory are most suc-
cessfully applied. (Later, we shall show that the field of application
for probability schemes is much more general than is indicated in this
section.) These phenomena we group under the name “random experi-
ments.”” We cannot give a precise answer as to what is a random ex-
periment, because it is not an abstract coneept, but only a name applied
to certain real phenomena. But we may indicate some of the essential
propertics that we ascribe to such experiments. Kirst, the notion of
random experiments implies, usually, some hypothetical or actual pos-
sibility of “‘repeating the experiment’” under approximately the “same
conditions.” Seeond, it is implied that sueh repetitions may give vary-
ing results. And third, the inferences we draw from random experiments
are essentially of the type: How often does a eertain result occur?

Does this description apply to economic data?

Here, I think, it is useful—though not always aetually possible—to
make a distinetion betwcen two different classes of experiments,
namely, on the one hand, those we plan and perform oursclves, as
research workers, to investigate eertain facts already present; on the
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other hand, the experiments which, so to speak, are products of Nature,
and by which the facts come into existence. To bring out this distinetion
more clearly, let us consider an example.

Suppose we try to “explain’ the size and the variations of consump-
tion of a given commodity, 4, in a society or group consisting of N
individuals or families. What we usually mean by “explanation” in such
a case is that we want to pick out certain other measurable factors, the
variations of which—by hypothesis or by expericnce—might be ex-
pected to ‘“influence” the behavior of each individual, or family, ete.,
in the same way. Suppose we have speeified a certain number of such
factors, in the present case, for instance, price of the commodity A4,
prices of other commodities, individual (or family) income, the age of
the individuals, etc. Let there be, all together, n such specified factors,
£y, T2, - - -, a; and let the actual consumption of the commodity A
for a given individual (or family) be denoted by y. We neglect for the
moment the errors of observation due to lack of precision in the defini-
tions of what y and the variables x represent, as well as imprecision
due to errors of measurement proper. In other words, we deal here with
“true’’ variables as described in Section 3.

Let us assume, tentatively, that, for eaeh individual, we could “ex-
plain’ his eonsumption of 4 by an equation, say

(111) y* = f(xl: To, * v, 2?,.), ’

where y*, for each individual, is obtained by inserting in the right-hand
side of (11.1) those values of the influeneing factors z that are rele-
vant to him. However, if we do this for eaeh individual, we shall ind—
no matter what be the fixed function f—that our “explanation’ is ineom-
plete. More specifieally, we shall find that two individuals, or the same
individual in two different time periods, may be confronted with ex-
actly the same set of specified influencing factors z {and, hence, they
have the same y*, by (11.1)], and still the two individuals may have
different quantities y, neither of which may be equal to y*. We may try
to remove such discrepancies by introducing more “explaining factors,”
z. But, usually, we shall soon exhaust the number of factors which
could be considered as common to all individuals, and which, at the
same time, were not merely of negligible influence upon y. The dis-
crepancies y—y* for each individual may depend upon a great variety
of factors, these factors may be different from one individual to an-
other, and they may vary with time for each individual.

In a purely formal way we may replace y* by ¥ in (11.1) and, instead,
add a general shift, s, to take care of the discrepancies betwcen y
and y*, i.e.,
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(112) y = f(xla Ty, *t 0y xn) + s

Suppose, e.g., we should know or assume that, for each set of values of
the variables z, s (and, therefore, y) is a random variable having a cer-
tain probability distribution with zero mean (say). What is the mean-
ing of such a scheme?

Let us pick out a subgroup of individuals from the total group of N,
such that, for each member of this subgroup, the factors = are identi-
cally the same. When, nevertheless, the quantities y for the members
of this subgroup are different, it means that the decisions of the in-
dividuals, even after fixing the values of x4, 2, - - -, x,, are still to
some extent uncertain. The individuals do not all act alike. When we
assume that s has, for each fixed set of values of the variables z, a
certain probability distribution, we aecept the parameters (or some
more general propertics) of these distributions as certain additional
characteristics of the theorctical model itself. These parameters (or
properties) describe the structure of the model just as much as do the
systematic influences of zy, 22, - - -, 2, upon y. Such random elements
are not merely some superficial additions “for statistical purposes.”

When we describe s as a randem variable with a certain probability
distribution for each fixed set of values of the variables x, we are
thinking of a class of hypothetical, infinite populations, each of which
is completely described by the scheme (11.1) and by the characteristics
of the distributions of s. The total number of individuals, N, actually
prescnt may then be considered as a mixed sample consisting of sub-
samples drawn from members of the hypothetical class of populations.
There is no logical difficulty involved in considering the ‘“whole popu-
lation as a sample,” for the class of populations we are dealing with
does not consist of an infinity of different individuals, it consists of an
infinity of possible decisions which might be taken with respect to the
valuc of y. And all the decisions taken by all the individuals who were
present during one year, say, may be considered as one sample, all the
decisions taken by, perhaps, the same individuals during another year
may be considered as another sample, and so forth. From this point of
view we may consider the total number of possible observations (the
total number of decisions to consume 4 by all individuals) as result
of a sampling procedure, which Naifure is carrying out, and which we
merely watch as passive observers.

It is on purpose that we have used as an illustration an example of
individual economic behavior, rather than an average market relation.
For it seems rational to introduce the assumptions about the stochasti-
cal elements of our economic theories already in the “laws’ of behavior
for the single individuals, firms, ete., as a characteristic of their be-
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havior, and then derive the average market relations or relations for
the whole society, from these individual ‘“laws.” It will then, for ex-
ample, in many cases be possible to show that, even under very weak
assumptions about the distributions of the stochastical elements in
these individual relations, the derived average or total relations for the
whole market or the whole society will be characterized by certain com-
pound stochastical variables (e.g., sums of individual error terms)
which, by the laws of large numbers, will be approximately normally
distributed.

As active researeh workers we may produce another type of random
experiments. For instance, in the example above we might pick out,
by some random process, a subgroup of all individuals actually present,
and measure their y’s and z’s. From this subgroup we might draw infer-
ence as to the behavior of the whole group. But the connection between
such a subgroup and the total group that we might have observed
is different from that between this total group of individuals (or de-
cisions) present and the hypothetical class of infinite populations from
which the total group present is supposed to be drawn; for the first
connection is, essentially, dependent upon our own choice of the ran-
dom sampling procedure to be used. By choosing another random proc-
ess we get another connection. And we might here gradually remove
all possible sampling errors by increasing the size of the sample, so
that, finally, we should obtain a true picture of the sample of all in-
dividuals present. But the uncertainty in the correspondence between
this sample of all individuals and the hypothetical class of infinite
populations still remains. One problem is to construet hypothetical
probability models from which it is possible, by random drawings, to
reproduce samples of the type given by “Nature.”” Another problem is
to make exact measurements of these samples. The first task is essen-
tially one of economic theory. The second is one of statistical observa-
tion technique and “classical”’ sampling theory. Of course, after the
stochastic schemes have been chosen, there is no essential difference
betwecn the problems of statistical inference they present.

12. The Method of Splitting the Observable Variables into
“Systematic Parts”’ and *‘Disturbances”

Observable economic variables do not satisfy exact relationships (ex-
cept, perhaps, some trivial identities). Therefore, if we start out with
such a theoretical scheme, we have—for the purpose of applieation—to
add some stochastical elements, to bridge the gap between the theory
and the facts. One much-discussed way of doing this is to adopt the
convention that the observable variables considered are each made up
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of two parts, viz., a systematic part which, by assumption, satisfies the
exact relation considered, and an error part, or “disturbance,” of a
stochastical nature.®

Let z/, 2, - -+, z.) be n theoretical variables satisfying, by as-
sumption, a certain exact functional relationship. And let z), 25, - -+, .,
be the corresponding observable variables to be considered. We then
write ;=2 4z, 1=1, 2, - - -, n, where the variables ' are certain
stochastical variables. In order that our relation between the variables
z’ should also tell something about the observable variables z we have
to make certain additional assumptions about the distribution of the
variables 2/, Then our exact relation betwceen the variables 2’ hecomes
in fact a stochastical relation in the variables z and z'/, by substituting
zi—ax" for z.

It is important to notice, however, that such a splitting of the varia-
bles is necessarily of a relative nature, depending on the particular sys-
tem of theoretical equations with which we are concerned.

This can be brought out rather well by means of a theoretical illus-
tration.

Consider for this purpose three ordinary dice, one black, one red, and
one white, and let us perform the following series of experiments: First,
we cast all three dice. We obtain as result three numbers, say x» for
the black die, z, for the red, and z,, for the white. Let the sum of these
three numbers be X =x,+x,+ .. Next, we let the black die remain in
its position from the first casting (of all three dice), but we cast again
both the red and the white one. Let the result of this experiment be y,
(=m), ¥, and y., and let Y =y +y,.+y.. Now, finally, we let both the
black and the red dice remain untouched, but we cast the white one
again, Let the result of this experiment be 2z, (=ws=2), 2. (=y.),
and z,, and let Z=2z,+z +z,. Assume that we repeat this whole ex-
periment N times. We obtain three series :

X, Yy, Z, (1st experiment),
X, Y, Z 2nd experiment),
(12.1) Booh ( p )
Xw, Yn, Zx (Nth experiment).

From the set-up of these experiments it is evident that the three se-
ries X, Y, Z, are correlated, beeause they have some common compo-

3 'This scheme is, e.g., the basis for Frisch’s method of “Confluence Analysis.”
See Ragnar Frisch, Statistical Confluence Analysis by Means of Complete Regres-
ston Systems, Oslo, 1934, Sce also T, Koopmans, Linear Regression Analysis of
Lconomic Time Series, Haarlem, De Erven F. Bohn N. V., 1937.
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nents. Indeed, for any triple, say X, Y, Z: (the result of the ¢th experi-
ment), we have

X = x5 + Tre + ZTui,
(12.2) }7‘_ = Tbs + Yrs + Ywiy (i = 1; 2) Ct Yy N)'
Zi = Tpi + Yri + 2wi,

Suppose now that we want to study the interdependences between
the three variables X, Y, Z, separating as “disturbances” those factors
which are not “common causes.” From (12.2) we derive

)ri - (yn' + yws') - Xt' - (xrs' + xwt‘),
(12.3) Zi— Yri + 20:) = Xi — (2ri + Tui), (t=1,2---,N),
Zi = (2oi) = Yi— (yui)y

where the expressions in brackets indicate ‘“‘disturbances.” The com-
position of the disturbances clearly depends upon which relation we are
investigating. And to negleet this would make inefficient theory.

This schematic set-up has, I think, some relevance to many impor-
tant problems in economics. E.g., let X, Y, and Z represent results of
decisions taken in some economic planning. Then the scheme above
may be looked upon in the following way: First X is determined by
some considerations, which we do not investigate in this connection.
Once this decision is taken, the deccision Y is no longer quite free, it is
“influenced” by X. But there are also other factors determining ¥ that
have nothing to do with X, namely y, and y.. These factors, however,
which act as disturbances in ¥ with respect to the “cause’’ X, are them-
selves partly systematic “causes” with respect to the decision Z after
Y is chosen.

Let us consider an example from economic dynamics: The interrela-
tion between investment and profit. Let »(f) denote observed invest-
ment activity (per year) at point of time ¢, and let z(t) be observed
profit. Assume there are no errors made in registering these quantities.
We make the following hypotheses: Investment activity at ¢ depends
upon profit realized at some previous time, say at ({—0), while profit
at ¢ depends upon current investment at . Letting ¢ (¢) and e(f) denote
certain general random shifts, we may express these hvpotheses by

(12.4) o) = flzlt — O] + ald),
(12.5) 2(t) = glv(D] + e,
where 6 1s positive, and where f and g are certain functions. Now it may

be that, in (12.4), we have to allow for a considerable disturbance,
& (i), in v(t) as compared with that part of v(f), [namely v(f)— e(?)],
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which is “explained” by z(t— 6). But this does not mean that only this
part of v(t) influences z(¢) through (12.5) [i.e., that we could replace
v(¢) by v(t)— & (£) in (12.5)]. Most certainly the actual investment [ie.,
»(t) ] has a more direct bearing upon the profit z{f) than our hypotheti-
cally construeted “systematic part” of it [namely v(f) — ex(t) ].

The occurrence of such situations has very important consequences
for the problem of linking together conclusions drawn from different
relationships, as we shall see in the next section.

13. Stochastic Equations versus Exact Equations

The statement: “A set of variables satisfies a certain equation,” has
a different meaning according as it is applied to an abstract mathe-
matical scheme or to variables observed in real life.

In an abstract mathematieal scheme the statement means the fol-
lowing: Let z/, zo', - - -, =/, be n real variables. Each set of values
of these n variables may be represented by a point in n-dimensional
Cartesian space. Let us denote by S the set of all points in this space,
and let “A” be a rule by which to pick out 2 certain subset of points,
Sa, of 8. Let us exclude all points of S which do not belong to S4. Then,
if a function f exists that is not identically zero but is such that

(131) f(ﬂh’, 272/, ter, 27,,’) = {

for all points belonging to S4, we say that the variables zy/, o/, - - -, x4’
(the variations of which are limited by the rule “A"") have the property
of satisfying the equation f=0. Here the whole set S is given by defini-
tion through a logical operation A, and we may check whether the
statement in (13.1) is right or wrong.

Similar statements about variables observed in real life are of a much
more hypothetical character. When we make statements-of the type
(13.1) about a set of observable variables, say i, Zs, * -+, Tn, We as-
sume, s0 to speak, that Nature has a rule for picking out such observa-
tion points (xy, *3, - -, z,) in the z-space in such a way that none
of these points contradict the hypothesis (13.1) when the variables z’
are replaced by the variables z. We then say that (13.1) is a law of
Nature. We try to establish such laws by testing the truth of (13.1)
with respect to past observations. But even if they all satisfy (13.1),
we eannot know that the next observation will do so. We usually, how-
ever, think that it will, because we have an enormous record of empiri-
cal cases showing that such empirical inductions have actually been
very fruitful. At the same time, we have also learned that, in empirical
research, it is useful to replace the expression “a set of variables satis-
fies a certain equation” by the expression “satisfies approximately’’
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sueh an equation. This means that, if we insert observation points
(@1, T2, - + -, Ta) In the left-hand side of (13.1), we obtain, on the right-
hand side, a certain variable, s.

Then—as we have already discussed above—if such an expression
as ‘‘satisfies approximately’’ shall have a nontrivial meaning, we must
change the hypothesis (13.1) in such a way that it expresses what kind
of approximation we assume. One way of doing this is to change the
hypothesis (13.1) to

(132) f(:l?l, Toy * v vy Iﬂ) =g

and ascribe to s certain general properties which should not be contra-
dicted by data. We are particularly interested in such schemes as
ascribe to s certain general properties of a random variable, first, be-
cause we have a large record of empirical cases showing that such
schemes have been suceessfully applied to observed phenomena, and,
secondly, because the theory of such schemes has been more developed
than any other approximation schemes. And we find justification for
applying them to economic phenomena also in the fact that we usually
deal only with—and are interested only in—total or average effects of
many individual decisions, which are partly guided by common fac-
tors, partly by individual specific factors (see Section 11).

In case s is assumed to be a random variable, we say that the varia-
bles z satisfy a stochastic equation (13.2). This is, of course, only a very
particular type of stochastic equations. Here we have not “blamed”
any particular element in our secheme for the fact that the observed
variables xy, 2, - - -, x,, do not satisfy (13.1) exactly. We may operate
with other schemes specifying more in detail where the stochastic ele-
ments come in. In general, we may lay down the following definition: If
Ty, T2, - - -, T, be a set of observational variables, and if ¢, €, - - -, €n
be m random variables, and if a function, #, not identically zero, ex-
ists, such that for all observations

(13.3) F(xy, @2, - -, Tn; €1, €2, * + , €m) = 0,

then z, 23, - + +, x,, are said to satisfy a stochastic equation. Thus, a
stochastic equation in n variables may be an exact equation in n+m
variables.

Suppose that our observation material consists of N>>n points in
the n-dimensional space of the variables z, and suppose that we ascribe
to the joint probability distribution of e, e, - * +, e, certain proper-
ties a priori. Now we insert, successively, the N observation points for
the variables z in (13.3), and for each observation point we ehoose a



STOCHASTICAL SCHEMES A8 A BASIS FOR ECONOMETRICS 57

set of values of the ¢'s such that (13.3) is fulfilled. Thus, we get a sample
of N points in the m-dimensional Cartesian space of the ¢'s. On the
other hand, by ascribing a priori certain properties to the probability
distribution of the ¢'s, and by excluding the possibility of obtaining
certain samples of the ¢'s which then are “improbable” (in some sense
or other, a question to be discussed later), we have set a probability
limit to the subset of admissible samples of the ¢s. Let this set of ad-
missible sample points for the ¢'s be @. Then we may say that, if the N
observation points in the z-space are such that—under the condition
(13.3)—-it is possible to choose a sample of N sets of ¢'s which belong
to the set @, then we cannot reject the hypothesis that the n variables
Ty, T2, - * -, T, satisly the stochastic equation (13.3).

From a stochastic scheme of the form (13.3) we may derive certain
exact equations, not containing the random variables ¢, by giving one or
more of the variables ¢ a new tnterpretation. There are two important
different types of such derived exact equations. The first type could
be called “‘if-there-were-no-errors equations,” the second, “‘expected-
value equations.”

The first type is obtained by assigning to the random variables e in
(13.3) certain consiant values. In most cases we should formulate the
stochastic equation in such a way, if possible, that these constant val-
ues of the ¢'s would be zero. Then, of course, if we require that

(134) F(:Iil,xz,"',37,,}0,0,"',0)=0

we impose a condition upon the variables z which, in most cases, will
be violated by aetual observations. Therefore, if (13.4) is imposed, one
or more of the variables x must stand for—not what they actually are—
but what they would be “if there were no errors.” This kind of simpli-
fied exaet equations, therefore, represents a hypothetical correction of
the individual observation points in the z-space.

The second type of “exact” equations, on the other hand, represents
average relations in a group of observations. Here we do not simplify
the original scheme, but we confine ourselves to studying certain
stoehastic limit properties of the scheme. We may illustrate the differ-
ence by a simple example.

Consider a group of families of equal size and composition. Let r be
family income, and let z be family spending, during a certain period of
time. Assume all prices constant and the same for all families during
this period. Still, among those families who have the same income, the
amount spent, z, will vary from one family to the other, because of a
great many neglected factors. Let us assume that the spending habits
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of an infinite population of such families could be described by the
following stochastic equation

(13.5) logex = klog.r 4+ ko + ¢ (k and k; = constants),

where e is a random variable, normally distributed with zero mean and
variance = o2, From this stochastic scheme we may derive the following
two “exact” equations:

First, let us imagine that we eould, somehow, remove the forces
which eause the discrepancies e, In this hypothetical population all
families with the same r would act alike, and we should have

(13.6) log, z = k log, r + k.

Secondly, let the “errors’” e remain in the seheme, but consider only
the average or expected consumption for those families who have the
same income r. This gives

VvV il}—a' e~ 12 e = ghotiot. pk
where E(m‘ r) means: Ixpected value of z, given r.

Therefore, what the average family in the scheme (13.5) does is not
necessarily the same as what the families would all do if they acted
alike.

It is particularly important to be aware of the difference between
these two types of relations when we want to perform algebraic opera-
tions within stochastie equation systems. For instance, from the theo-
retical scheme (13.6) we may derive

(13.7) E(:cl ry = &(r) = e“O-r"f+we‘

(13.8) x = ekork,

But from E(log, :c| r) =k log, r+ko we do not get E(:z:l r) =ekork,

Therefore, when we perform such operations, we must keep in mind
that we are using the hypothetical “if-there-were-no-errors” scheme,
and not the “expected-value’ scheme. Confusion on this point ariscs
usually from the habit of dropping the operation symbol E (or the bar
over z, ete.) in such equations as (13.7). Confusion arises in particular
when we have a sysfem of stochastic equations and apply algebraic
elimination processes to the corresponding ‘‘expected-value” equations.
The usual mistake here is that we identify the expected values of a
variable in one equation with the expected values of the same variable
in another equation. This may lead to nonsensical results. The following
is an illustration:
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Let 7y, 22, z; be three observable variables, defined by z;=¢ 4 ¢,
T =kiey, and 3 = koes, where e and ¢ are two independent random vari-
ables with zero means. Then we have

1 1
(13.9) = E(anI 222) = — Ty, CE]“ = E(:ﬁl! xa) = ]\— T3.

C1 '2
Now, if we identify (by mistake) the two variables z," and z,”, denoting
them both by & say, we get 2= (ky/k2)zs, which has no meaning.



CHAPTER IV

TuE TESTING oF HYPOTHESES

Statisticians have, often with much right, argued that the econ-
omists do not present their theories in such a form that these theories
represent well-specified statistical hypotheses, and that, therefore, the
statisticians simply do not “understand the language” of the econo-
mists. The economists, however, are not the only ones to be blamed.
Indeed, the whole statistical theory was, until rather recently, in a
state of much confusion. But this situation is now disappearing rapidly,
through a very fruitful change of direction brought about by the funda-
mental work of J. Neyman and L. 8. Pearson.! By introducing a few
very general—and, in themselves, very simple—principles of testing
statistical hypotheses and estimation, they opened up the way for a
whole stream of high-quality work, which gradually is lifting statistical
theory to a real scientific level. The working out of technical details
on the basis of the general principles introduced by Neyman and Pear-
son is still only in its beginning. And very difficult technical problems
are likely to arise. But the fundamental importance of the Neyman-
Pearson prineiples lies in the fact that these principles specify clearly
the class of problems that fall within the field of statistical theory and
statistical inference. Thus, it has now become possible for the econo-
mist to see exactly how he has to formulate his theories if he wants the
assistance of a statistician. It is of the greatest importance that the
economist himself should know these principles of formulation, for then,
even if he is not himself a statistical expert, he can at least ask intelli-
gent statistical questions.

In the following we shall give a brief outline of the basic principles
in the Neyman-Pearson theory of testing statistieal hypotheses and
estimation, and, thereafter, we shall use these principles for a statistical
formulation of hypotheses consiructed in economic theory. This will, it is
hoped, clear up a few controversial issues in connection with the prob-
lem of statistical ‘“verification” of economic relations.

14. An Oulline of the Neyman-Pearson Theory of Testing
Statistical Hypotheses and Estimalion

Let zy, 2o, - - +, ., dcnote n random variables defined within a
fundamental probability set A. And let P(E, e w.|A4), or, for short,
P(w), be their joint integral probability law.

1 See, in particular, Statistical Eesearch Memoirs, Yol. I, 1936, Vol. II, 1938,
London. Other references are given in the following text.
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Any tentative statement, I, eoncerning the integral probability law
P(w) of the variables z, 23, - - -, ¥, [or concerning their elementary
probability law, p(z;, 2, - - -, Z,) if this is assumed to exist], is called
a statistical hypothests. More precisely, let Q,, or for short, €, denote
the set, or class, of all possible n-dimensional integral probability laws,
and let w be any specified subset of @ (w may, e.g., be the set of all
n-variate normal distributions, or the set of all n-variate continuous
distributions, or any other subset of ). A statement of the form

(14.1) Pw)ew

(read: The integral probability law of zi, zz, - - -, z.4 belongs fo the
class w) is called a statistical hypothesis.
The statement (14.1) might be wrong, and then the alternative is that

(14.2) P(w) e (2 — w).

Above, the only thing assumed to be known for certarn was that
P(w) ¢ Q, which is trivial. Usually, however, we know—or at least we
assume that we know—more than this. Let ©° denote a subset of €.
And let w® be any subset of £2° If, on the one hand, we know or assume
that the statement

(14.3) Plw) e Q°

is true, while, on the other hand, we admit that for any subset w®> Q9
the statement

(14.4) P(w) e

may be wrong, then Q° is called the set of a priori admissible hypotheses
with respect to the probability law P(w). (For example, Q° might be
the set of all n-dimensional probability laws for which the elementary
probability law exists, and «»® might, e.g., be the set of all probability
laws the elementary probability laws of which are symmetric about the
mean.) In problems of testing a statistieal hypothesis the specification
of the set of a priori admissible hypotheses is, as we shall see, of funda-
mental importance.

A statistical hypothesis is called simple if it specifies compleiely the
probability law P(w). E.g., the statement

1 . -
14.5) P =ff f—— ~01 =2 g day - - - da,
(14.5) P(w) " Var o ‘ 147,

where #; (¢=1, 2, - - -, n) and ¢ arc numerically specified constant
parameters, is a simple hypothesis. Any hypothesis that is not simple
is ecalled composite. For example, if the value of the parameter ¢ or
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some of the means Z; or all together are not uniquely specified, then
(14.5) is a composite hypothesis.

A set of admissible hypotheses, Q°, is called parameiric, if all the
prohability laws P(w) belonging to Q° are given by analytie expressions
which differ from cach other only with respeet to the numerical values
of a finite number of parameters. For example, all probability laws
(14.5) such that >0, i=1, 2, - - -, n, form a parametric set. A set
which is not parametrie is called nonparametric. If Q° is parametric
then the set «® must be parametric. But if ©° is nonparametric, «°
[in (14.4) ] may or may not be parametric.

A test of a statistical hypothesis is a rule of rejection or nonrejec-
fzon of the hypothesis, on the basis of a given sample poini. Let
Ty, Z2, + + -, Tn, be n random variables, and let Q° be the set of all a
priori admissible hypotheses about their simultaneous integral proba-
bility law P{(w). For any particular member of the set @, and for any
particular subset, w, of points in the sample space E,, we might cal-
culate the probability that a sample point, ¥, falls into w. If w be fixed,
the probability of E falling into w (=w° say) will generally vary ac-
cording to which member of Q° is used to calculate it. What is an
“Improbable” part of the samplc space with respect to one probability
law in ©° may be a more probable one for another probability law in ©°,
And this fact, of course, forms the basis for testing any particular hy-
pothesis within Q° against the other a priori admissible ones.

Much controversy is found on this point in earlier literature, in par-
ticular because it was thought that a reasoning baeck from a sample
point to its true population would involve the notion of “inverse proba-
bility.” One often finds expressions such as “the most probable distribu-
tion” from which a given sample may have been drawn. Such a
statement, of course, implies a certain probability distribution of the
hypotheses within ©° In most cases, however, such a model does not
have much sense, because, when we draw a sample, we take it from a
fized but unknown member of Q°. The probability of any member of Q°
being the true one, i.e., the one we sample from, is, therefore, either 0
or 1, independent of what be the sample point obtained.

On the other hand, if we establish a rule by which to rejeet or not
reject a hypothesis, and if the decision is made to depend uniquely upon
the location of a sample point, we may speak of the probability of our
dectsion being right or wrong, because the decision—being a function of
the sample point £—is then a random variable.

Let us now formulate more precisely what is a test of a statistical
hypothesis. Let Q° be the sct of all a priori admissible hypotheses as
to the probability law P(w) of the n random variables xy, 23, - - -, Za,
and let P(w) e o’ where w® is a subset of Q% be the hypothesis, H,,
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to be tested. This means: We know for certain that, whatever be the
sample point observed, the true probability distribution of the » ran-
dom variables is one and only one member (fixed, but so far unknown)
of the set Q° and our hypothesis is that P(w) belongs to a more re-
stricted set of distributions, w® within Q° The class w® may contain
only one single member (a simple hypothesis) or several members (a
composite hypothesis). In the last case all members of w? are treated
as equivalent, we are not interested in distinguishing between them.

Now, let Wy be a set of points in the n-dimensional sample space B,
such that, whenever a sample point falls into W, ie., E e W, we
reject the hypothesis H,, otherwise not. Wy is then called a critical region
(or more generally a eritical set of points) for testing the hypothesis H,,
Le., P(w) £ »° against the alternatives P(w) e (2°— w?). A critical region
and a test are evidently just two different names for the same thing.

In particular cases a test of a hypothesis H, might be decisive, namely
in cases where there exists a subset W, of the sample space which bas
probability=1 according to H,, but probability =0 according to any
other member of ©°. Then, by means of one single sample point, we
could decide—with a probability =1 of being correct—whether /1, were
true or false, by rejecting I, if and only if E ¢ (R,— W,). Also, suppose
that the set Q° of hypotheses H could be divided into a system of &
disjunct subsets ©,° @° - - ., &9 corresponding, one-to-one, with
k nonoverlapping subsets Wy, Wi, - - -, Wi, of the sample space,
such that P(W,-|He$2,-°) be =0 when %7, but =1 when ¢=j,
(4,5=1,2, - - -, k). Then one single sample point would, at once, re-
strict the set of a priori admissible hypotheses to one of these subsets
% Sueh cases, although important, are trivial from the point of view
of statistical theory. We may, therefore, assume the set £° to be so
reduced in advance, that any subset, W, of the sample space having
probability =1 acecording to one member of Q9 has also a positive
probability with respect to all other members of Q°. The application
of a test as defined above will then always involve some risk of errone-
ous decisions.

Now, if the region of rejection W, should be the whole sample space
R, (or the whole space minus a part of it that has probability zero ac-
cording to any member of €%, then we should always (or almost al-
ways) reject H,. This is evidently not what we want, because when we
desire to test H,y, we imply that it might be correct, and in that case
the test would constantly lead to wrong decisions. On the other hand,
if P(R,,—Wo| H,) and P(WO|H0)2 be both positive, we usually run a
two-way risk of making an crroncous decision by the test.

2 We recall that the general symbol P(X] Y) means: The probability of X
given Y, or, the probability of X ealculated under the assumption that ¥ is true.
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First, suppose that the hypothesis is actually true and, at the same
time, the sample point does fall into W, (which is—by assumption—
possible). Then we reject Hy, hence, we make an error. This is called an
error of the first kind.

Second, suppose that the hypothesis is actually wrong (i.e., one of the
alternative hypotheses is the true one), and, at the same time, the
sample point does notf fall into W,. Then we do not reject I, hence, we
make an error. This is called an error of the second kind.

For any given size of the sample we can make the probability of one
or the other of these errors as small as we please, by an appropriate
choice of W), but it is not possible to do so for both errors at the same
time. We therefore have to make a compromise, depending upon the
kind of risk we are willing to run, and this, again, depends upon the
consequences which erroncous decisions may have in any particular
case.

The whole problem of testing statistical hypotheses, and also that of
cstimation, consists of dedueing “best critical regions” Wy, on the basis
of certain risk paramelers, which, themselves, are given by some outside
considerations, and arc taken as data in the statistical theory. We shall
now indicate briefly the Neyman-Pearson approach to the solution of
this problem. The fundamental prineiples of this approach rest upon
the distinction between the two kinds of errors deseribed above, a dis-
tinetion suggesting itself by recognizing the simple fact that, when we
desire to test a hypothesis, we imply that it mught be wrong, and that,
therefore, it is necessary to specify in what sense it might be wrong.
The recognition and precise formulation of such elementary—appar-
ently almost trivial—principles is often among the very greatest
achievements of scientific thought.

Let us first consider the simple case when w® consists of only one
single probability distribution, say P, and let the set Q°—w® also con-
tain just one single clement, say P17 Py. We want to test, on the basis
of a sample point E, the hypothesis Hy, that the true probability dis-
tribution is P, the only alternative being that it is Py. Let Wy be a
critical region such that the probability P(W,! %) is exactly equal to «
(say «=0.05). « is called the level of significance, or also, the size of the
critical region W, and is an a priori chosen risk parameter. It tells us
that, if we choose W, as a eritical region for rejecting the hypothesis H,
the probability that we shall rejeet the hypothesis when it is frue (i.e.,
the probability of error of the first kind) is exaectly equal to «. But
there are in general many such different regions W, of the same size a.
Now, if the hypothesis is not true, i.c., if the true distribution is Py,
we want, of course, to have as great a probability as possible of rejecting
the hypothesis H,, i.e., we want the probability P(W|Py) of E falling
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into W, when P is true, to be as great as possible. This probability
P(W0| P)) is called the power of the test Wy with respect to the alterna-
tive Py Let Wo* be that region of size « for which this power is a maxi-
mum. We then obviously want to use this region Wy* as our eritical
region, rather than any other region of size a. Wy* is then called the best
critical region for testing P = P, with respect to the alternative P =Py.

Suppose now that we enlarge the set £°—w® to comprise a whole sys-
tem of alternative probability distributions. Then, if Wy* above is at
the same time the best critical region for testing P> =P, with respect
to every clement of the sct of alternative hypotheses, Wo* is called a
untformly most powerful test. In a few important cases it can be shown
that such regions exist. But this holds only for certain types of hy-
potheses tested against certain restricted sets of alternatives. And if no
such test exists, we have to choose some critical region of size a which is
“as powerful as possible’” with respect to the set of alternative hy-
potheses in question. And the choice of a “best’’ test will then be some-
what more subjective. It might be that we have in mind a eertain
system of weights of importance for the errors of the second kind, for
the various elements in the set of alternative hypotheses. For example,
if the hypothesis to be tested is that a certain parameter, 6, in a proba-
bility distribution (the form of which is known) is equal to a specified
value, 6°, the possible alternatives being all other values of @ from — =
to + » say, it might be that, for some reason, we should consider it
more important to detect the alternatives 6> 6° than the alternatives
8 < 6°. The problem of introducing such weight functions has been dis-
cussed by A, Wald.?

Above we have assumed that the hypothesis to be tested was a simple
one, but the general idea is readily extended to composite hypotheses,
although the technical difficulties of deriving critical regions of the type
discussed here become more serious. Even the problem of determining
regions Wy that have the same size for every member of the set w® to be
tested may here present complicated mathematical problems, and
sometimes no such region exists.4

Whatever be the principles by which we choose a “best” critical re-
gion of size «, the essential thing is that a test is always developed with
respect to a given fized set of possible alternatives Q°. If, on the basis
of some general principle, a “‘best’’ test, or region, Wy say, is developed
for testing a given hypothesis P e w® with respect to a set, Q9 of a

# A. Wald, “Contribution to the Theory of Statistical Estimation and Testing
Hypotheses,” Annals of Mathematical Statistics, Vol. 10, Dccember, 1939, pp.
299--326.

4 See, e.g., W. Feller, “Note on Regions Similar to the Sample Space,” Stalis-
tical Research Memeoirs, Vol. I1, London, 1938, pp. 107-125.
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priori admissible hypotheses, and if we shift the attention to another
a priort admisstble set, €', also containing w® the same general principle
will, usually, lead to another “best’” critical region, say Wy'’. In other
words, if a test is developed on the basis of a given set of a priori ad-
missible hypotheses, Q¢ the test is, in general, valid only for this set, £°.
By extending the set of admissible hypotheses to include new alterna-
tives without changing the critical region, one can always find alterna-
tives such that, whatever be the fixed critical region chosen, its power
with respect to some of the new alternative hypotheses is very poor.
This is a more precise expression for such eommon phrases as: “What is
the use of testing, say, the significance of regression ecoefficients, when,
maybe, the whole assumption of a linear regression equation is wrong?”’
This is just the type of arguments we have discussed above. Usually,
when we test the significance of regression coefficients, the alternative
set of hypotheses, Q° is only the system of regression equations of the
same form, but with regression coefficients that are different from zero.
Q° does not include other forms of regressions (although this might very
well be done).

In general, if a critical region W, for a given hypothesis Hy be de-
veloped on the basis of a set, Q9 of a priori admissible hypotheses,
and if the {rue hypothesis—instead of belonging to £° as assumed—
actually belongs to @— Q0 (1.e., the set complementary to ©°), we have
lost the control of errors, originally ascribed to the test. It might, of
course, be that the power of the test, even with respeet to these hy-
potheses “off the scheme,” is still good, i.e., when one of these new
alternatives is true instead of the hypothesis tested, the probability of
the sample point falling into W, might be high. But this probability
might also be very small, even smaller than «, which means that we
should have an even smaller probability of rejecting the hypothesis
tested when it is wrong than when it is correct.

The requirement of a specification of the set of a priori admissible
hypotheses before constructing a test forees us to state explicitly what
we assume known beyond doubt, and what we desire to test.

* ok %k

The problem of esiimation is the problem of drawing inference, from
a sample point, as to the probability law of the fundamental probability
set from which the sample was drawn. The problem of estimation is
closely conneeted with the problem of testing statistical hypotheses, in
fact, estimation may be econsidered as a particular form of festing
hypotheses.

Letzy, 22, - -+, 24, be n random variables with the {unknown) proba-
bility law P(w). Let it be known that P(w) belongs to a parameiric
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class of distributions, Q° i.e., P(w) is known except for the values of a
certain finite number of parameters, 6y, &, - - -, 6, say. We may write
this as P(w)=P(w|01, by, - - -, 8z), or, for short, P(w[ﬁ), where the
SJunction P is known. A sample, E, is drawn from one of the members of
2° but we do not know from which. The problem is to draw inference
from E regarding the corresponding values of the parameters 8. Let
these true unknown values be 6,°, &°, - - -, 8:°. Any system of values
of the parameters @ may be represented by a point, 8, in the parameter
space, i.c., a k-dimensional Euclidean space, where the axes represent
the k parameters 8. The problem of estimation is to define a funetion
which assoctates every point, E, in the sample space with a well-defined
set of points @ in the parameter space. If this function is such that to
each point £ in the sample space there corresponds one and only one
point 6 in the parameter space, we speak of point-estimation. If, to each
point E in the sample space, the estimation formula ascribes a region
I(E) [or more gencrally a set of points I(E)] in the parameter space, we
speak of inferval- (or set-) estimation. In the particular case of point-
estimation 7(¥) contains only one point @ for each E.

The interval (or set) I(E) is, clearly, a random set, because it is a
function of the sample point £. We may, therefore, speak of the proba-
bilety, B say, of a set I(E) covering the true parameter point 6°, and we
may choose the value of 8 according to the amount of risk we are willing
to take, say 8=10.95. Since we do not know the true parameter point 6°,
B ought to be independent of 6°, i.e., whatever be the true paramecter
point 8° of the distribution from which we draw the sample, the proba-
bility P(6° ¢ [ | 6°)5 should be the same. 8 is called the confidence co-
eflicient for the estimate of 6° and the corresponding I(E) is called a
confidence interval (or, morc generally, a confidence set) for the true
parameter point.

Now consider the set of all a priori admissible parameter points cor-
responding to £2° This set of parameter points may be considered as
the set of all simple hypotheses contained in Q° i.e., all hypotheses
6=10° where 6° may be any point among the a priori admissible set of
parameter points. (We now consider 6° as a variable point.) Assume
that for every stmple hypothesis = 6°, in the a priori admissible set Q°,
we construct, by some principle, a “best”’ critical region Wo(6°) of size a,
as described above. Wy(8° is the region (or set) of rejection of §=246°
R,—Wy(6° is, therefore, the region of nonrejection or, for short, the
region of acceptance of 6=46° and its size is 1 —a. Let 1 —a=g=the
eonfidence coefficient for estimating the parameter point by means of a
sample point. Let I, be any arbitrarily fixed sample point. Since we

5 When using the notation 6° £ I we should remember that 4° is the constant
element, while I is the random variable.
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assume that the true hypothesis is contained in 9, it is reasonable to
require that, in our system of regions of acceptance, B,— W,(6°), there
should be af least one region such that E; belongs to it. In general,
E, will be an element of a whole system of regions of acceptance. Con-
sider all the regions of acceptance of size 8, of which E; is a member.
To each region of acceptance, KB,— W,(€%), corresponds a point in the
parameter space, namely the point 8° representing the hypothesis 6° for
which W(68° is a region of rejection. To the system of all the regions of
acceptance of which E, is a member, there corresponds, therefore, a set
of parameter points, say I(E,). Since E; was arbitrary and, therefore,
might be any point ¥ in the sample space, this defines a function I(E)
for every E. This I(¥) clearly has the properties of a confidence set for
estimating the parameters 8 by means of a sample point Z, beecause,
whatever be the true parameter point 6° the probability that a sample
point E falls into its corresponding region of acceptance is 1—a=8=
constant, and whencver E falls into the region of acceptance for =246,

then also 6° ¢ I(E). The probability that (&) covers the true parame-
~ ter point, no matter what this is, is therefore equal to 8.

The estimation problem may be formulated more generally. Let
Ty, T2, * , Tn, be n random variables with the probability distribution
P(w), about which it is known only that it belongs to a certain a priori
admissible set, Q° of distribution functions. Q° may be considered as
the set of all a priori admissible simple hypotheses. For each of these
simple hypotheses let there be constructed a certain region of accep-
tance, U, of size 8, and let (U) be the family of all such regions corre-
sponding to the set ©°. A sample point E, is given. Let [U(X1)] be the
family of all those regions of acceptance of which E; is a member, and
let I(F:) be the set of all simple hypotheses (contained in £°) which
correspond to the system of regions [U(Z)]. Since E; might be any
point K, there corresponds an I (E) to every E. I(Z), thus defined, is a
confidence set with the confidence coefficient 8, i.c., the probability that
I(E) will contain the true member of 9°, no matter what this is, 1s
equal to 8.

15. General Formulation of the Problem of
Testing Economic Relations

The Neyman-Pearson theory of testing statistical hypotheses is
purely abstract, like any other theoretical scheme. The question which
interests us here is therefore: Does this scheme represent a useful in-
strument by which to deal with the problem of verifying economic theo-
ries? Can it help us to understand better the nature of these problems,
and to reach practical solutions of them? I think these questions may be
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answered very much in the affirmative. The following diseussion will,
it is hoped, support this view.

We shall attempt to give a general axiomatic, formulation of the
problem of testing economic relations, using principles of the Neyman-
Pearson theory.

A. Dala relevant to econometric research

The objects of economie rescarch are variations and covariations
within groups of phenomena of economic life. Let Ky, K3, - - -, K, be
such a group. K, may, e.g., mean a certain type of consumption goods,
K, may denote the phenomenon called “price” of K, ete. Each K is
just the name of a certain calegory of real phenomena conceived of as
more or less equivalent, and distinet from those in other categories.
Many kinds of variations and shifting conditions may unfold them-
selves within each such category. We are here interested in only
such variations as are shown by a certain measurable characteristic
of each K. Let these n measurable characteristies be denoted by

Ty, T, -+ -, T, respectively, and let (zys, 2oy, - - -, Zae) be a set of
values observed jointly for the n K’s, ¢; indicating “obscervation at point
of time ¢;,” or simply observation No. ¢ ({3, ls, - - - ete., need not be
equidistant). Let

(Ta, Tany, - 0y Tat)y

(xltgs x2t2; vty xntz),
(15.1)

(:‘Ell,\'J Loty * ", x"‘N)J

be a system of N such joint observations. Each column in (15.1) repre-
sents a series of measurements of ‘‘the same variable,” e.g., a time se-
ries.

B. Fundamental assumption about the nature of economic data

The nN values (Tyy, Zosy * + + ) Tns), L=ty bo, + + -, v, 0 the syslem
(15.1) of N value-sets, may be considered as a sample point E in the
nN-dimensional sample space of nN random variables (z1s, Zae, -+, Tnt),
t=ty, la, + + « , by, wilth a cerlain joinl integral probability law P(w). (w de-
notes an arbitrary point-set in the nN-dimensional sample space.)
What this assumption means is the following: Consider the situation
before the sample (15.1) was drawn, i.e., consider the system (15.1) as
nN emply cells. And consider the whole set of alternative systems, each
of nN elements, which, a priord, might fill the nV cells. The above as-
sumption amounts to assuming—as a fact or by a hypothetical con-
struction—that, before the sample was drawn, there was a set of such
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systems satisfying the requirements of a fundamental probability set as
defined in Scction 9. This assumption is extremely general, as is seen
from the definition of a random variable in Section 9.

It is indeed difficult to conceive of any case which would be con-
tradictory to this assumption. For the purpose of testing hypotheses
it 18 not cven necessary to assumec that the sample could actually be
repeated. We make hypothetical statements before we draw the sample,
and we are only concerned with whether the sample rejects or does not
reject an a priori hypothesis. The above assumption covers also, as a
particular case, the situation where, for certain cells in (15.1), therc
would actually be just one fixed system of numbers that could fill
these cells, i.e., the case where—for some of the cells in (15.1)—certain
fixed values of the corresponding z’s have probability =1 (i.e., they are
stochastically constant). This is of importance in many economic prob-
lems where some of the variables arc considered as autonomously given.

C. The formulation of a theoretical stochastic scheme

There are two kinds of abstract schemes occurring in cconomic the-
ory, namely, one type which we introduce merely as a matter of exercise
in logical reasoning or as a modcl of an idealized economy (i.e., schemes
for which a comparison with reality has no meaning), and another type
which—although abstract—we think may have some bearing upon rcal
economic phenomena. For our study here only the latter is relevant.

In constructing schemes of this latter type we nearly always have
some real phenomena in mind, and we try to include in the scheme—
in a simplified manner, of course—certain characteristic elements of
reality. At the same time we realize that such schemes can never give
a complete picture of reality. We must allow for certain discrepancies.
In Chapter III we discussed how a stochastic scheme might be used for
this purpose. Because of the very general definition of random varia-
bles, stochastic schemes represent an extremely general class of theo-
retical models. We shall, therefore, assume that the problem of testing
economic relations consists in confronting certain specificd stochastic
models with a set of data (15.1).

Let
! ’ '
Ty Taty * 0y Taty
I’ 2?, 23’
gy w2y T " Ty Anty
(15.2)
' ’ '
Tiegy Totyy * ° * ) Tty

denote a system of theoretical random variables to be compared with
the corresponding observed variables in (15.1).
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Further, let

éltl, €y "ty €mtty

€1ty €2ty " " 7y Emiy
(15.8)

€y, €2ty " " 0 ) Emeyy

be another system of mN random variables introduced in the theoreti-
cal scheme as auziliary random paramelers, possessing certain specified
joint distribution properties. (‘The €'s may also be introduced as coun-
terparts to some real phenomena. See Section 11.)

Finally, let

(154) oy Oyt " "y Ok

be a set of constants.
Now we impose a system of restrictions,

13 14 ! N 4 ! ’ . .
fh[xlh': Trgigs ¢y Taes Doy Toeyyy " 0 0y Lot 0t
/ ’ !
(15.5) xﬂl.‘; xn!;_l, oty xntl; (XO); ay, Qgy * "ty ak;

€1ty €21 ° 7 7, emt{] = 0, (f=12--- ’ ‘N)r

upon the quantities (15.2)-(15.4). Iere f:, is a specified function for
each value of 7,7=1, 2, - - - , N. (In particular all the /’s might be the
same, independent of ¢; then only the arguments of the function would
change.) (X,) 1s a short symbol for a set of tnitial conditions, i.e., the val-
ves of z;, (§=1,2, - « -, n), fori=ty, t_y, {s, - - - . Such quantities may
or may not enter into (15.5). If they do, we assume them to be constants
having known values.

(15.5) is, for each point of time, {=1{,, ,, - - -, tn, a stochastical rela-
tion, defining, implicitly, one of the variables, say z;¢/, as a function of

(1) the previous values of that same variable,
(2) the simultaneous and the previous values of the other variables z’,
(3) m random variables e.

Let (15.5) be our economic theory to be tested, the random variables
¢ having certain prescribed distribution propertics. The principal task
of economic theory is to make a fruitful choice of the forms f.

In this general formulation, (15.5) with its associated assumptions
about the €s may represent a static or a dynamic theory. Assume, as
above, that each equation (15.5) can be solved for z';,,,7=1,2, - - -, N.
The theory is then static if (1) only variables z’ for the same point of
time ¢; enter into each of the equations (15.5), and, at the same time,
(2) the n—1 random variables 'z, '35, - - -, ¥'ns,, and the m random
variables ey, €1, - - -, €ms; (1=1,2, - - -+, N), are assumed to be sto-
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chastically independent of the previous values of the variables z and
the previous values of the variables e. Otherwisc the theory is dynamic
in the sense that “what happens at point of time ¢; depends upon what
happened previously.”

(15.5) is, of course, an empty statement about the variables (15.2)
unless we know something about the random variables ¢ in addition to
(15.5), for—whatever be the variables z—we could define such vari-
ables e that (15.5) would be fulfilled. We must make some additional
statement (however weak) about the properties of the joint conditional
probability law of all the variables ¢ for given values of the (n—1)N
“independent’ variables, which we assumed to be 2'a, 2’51, -+« , 2'ns
(t=ty, ba, - - -, tx). When that is done, it follows from (15.5) that the
joint probability law of all the variables 2’ in (15.2) can not be just any
distribution, it must belong to a (more or less) restricted class of proba-
bility laws.

As an example, suppose that (15.5) were of the form

(15.5") 951,:,- — 61’1952,:‘- — e, = 0 ({=12---,N)

and suppose that the variables ¢ were assumed to be distributed
independently of the variables z2¢/. And let pi(en, e, - -, €1ey)
be the joint elementary probability law of the N variables e. Then
it follows that, for given valucs of the variables z's., the variables
z'y;; have the joint elementary probability law pi[(2'1,—ai2'2s),
(@1, —ai'ss), -+ + 5 (B2, —@2'se,) . And hence, whatever be the ele-
mentary probability law, p: say, of all the variables z'y,, themselves,
the joint elementary probability law, p; say, of the 2N variables z’
must have the form ps=7p;-p2.

Thus, (15.5) together with any additional assumption made as to the
distribution properties of the ¢'s, will imply that the nN-dimensional
probability law of the n;V random 2’ must belong to a certain restricted
subclass, w say, of the class of all possible nV-dimensional probability
laws. At the same time, this is also, clearly, all that our theory implies,
so far as possible observations of thc variables 2’ arc concerned. [The
equations (15.5) say, of course, much more about the variables ' and
the variables e taken together, but—by assumption—there is no possi-
hility of observing individual values of the ¢s.] Now, if we add a new
system of nN equations, namely, z=2a’, i.e., if we identify each theo-
retical variable 2’ in the system (15.2) with the corresponding observed
variable in (15.1), our theory leads to a statistical hypothesis, namely,
the hypothesis that P(w) £ w. We shall formulate this a little more in
detail.
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D. The formulation of (15.5) as a statistical hypothesis with respect to
the probability law of the observable variables (15.1)

Let € denote a point in the mN-dimensional sample space of the
variables e in (15.3). And let D(E ¢ v), where » is the argument of
the set-function D, denote the joint conditional integral probabil-
ity law of the mA variables ¢, given the values of the (n — 1)N variables
2ot 2'3s, - -, Tlar (t=U, by, - - -, ty) (the “independent variables’).
This distribution is at our disposal in formulating the theory. It, there-
fore, belongs—by hypothesis—to & certain set, S say, of mN-dimen-
sional probability laws. In case we have specified the distribution D of
the variables ¢ completely in our theory, S contains only one element.

We shall consider the general case where the values of the parame-
ters a in (15.5) are not fixed by theory, but are at our disposal, i.e., we
arc prepared to accept any values of the «’s. Then the definition of S,
and the restrictions (15.5), define a certain class, w say, of probability
laws of the variables z’. This class w we could imagine to be obtained
by the following process:

Consider one single member D of the system S, and consider all pos-
sible joint distributions of the variables z', subject to the resiriclions
(15.5), for an arbitrarily fixed system of values of the a’s. Repeat this
process for (1) all possible value-systems of the parameters « and (2) for
every mcmber of the system S. Al the joint probability laws of the
variables 2’ obtained in this way together form the class w.

We are intercsted in whether P(w), i.e., the joint probability law of
the nN observable variables z, belongs to w. The hypothesis to be tested
1s, therefore,

(15.6) P(w) £ w; admissible alternatives: P(w) ¢ (8 — w);

where Q is the set of all nN-dimensional probability laws.

This formutation of the problem of testing economic relations is very
general. In order to develop nontrivial tests it is, however, necessary
to impose further restrictions upon the sets @ and « (in particular, by
restricting the set S of conditional probability laws of the random vari-
ables ¢). We shall mention some important types of restrictions of the
sets Q and w.

{1) Restriction of the random variables € to variables following cer-
tain simple probability laws, or restriction of the system S to a certain
parametric family of distributions, or cven to one perfectly specified
distribution.

(2) Restriction of the set of a priori admissible hypotheses to such a
set, {2° as the w defined above, i.c., to the set of all probability dis-
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tributions that are compatible with (15.5) for at least one system of
values of the parameters e, and then restriction of the set of probability
laws fo be tested to a particular subsct, w®say, of this Q° corresponding
to one fixed system of values of the parameters « (e.g., test of signifi-
cance). This means that we are sure—or that we accept without test—
that the theory (15.5) is all right so far as the forms of the functions f
are concerned.

(3) Restrictions imposed upon the variables ' by some other rela-
tionships in the economic theory besides (15.5). This is very often the
casc when we consider systems of economic relations, and it must be
taken account of in formulating the set w® above.

An interesting and important question in this connection is the fol-
lowing: Is a test of the hypothesis (15.6) also a test of the “correctness’
of the form of the f’s in (15.5)?

First of all, what is a “correct” system of functions f,? A pre-
cisc answer can be given to this question, namely: Any system of
functions f, which is such that [P(w)] e (fe, fu, - -+, fu), where
o(fe, fey + + +, f1y), o1, for short, w(f), denotes the set w (or w?%) corre-
gponding to that system of f’s, is a corrcet system of functions f. There
will, therefore, in general be an infinity of “correct” theories (15.5).
In particular, there might be various different systems of f’s which—
together with various assumptions about the distribution propertics of
the e's—all lead to identically the same set of probability laws w, i.e.,
they are indistinguishable from the point of view of observattons. This,
of course, does not mean that all “correct” forms of theories are cqually
good, or “intcresting,’ e.g., for prediction purposes. The “goodness’ of
a stochastical relation, if it be a “correct” one, will in general be judged
from the properties of the random variables ¢ which it contains. Usu-
ally we want these errors to be “small,”” in some sense or another.

Now, let w(f°, S) be a set of probability laws of the variables z/,
defined by a particular system, f, of functions in (15.5) and a set S of
e-distributions. Then, if a test Wy of the hypothesis P(w) £ w(f°, S)
should have high power with respect to every alternative nof contained
in w(f9 S), the test W, would, of course, also have a high power of de-
tecting, in particular, a wrong choice of the forms f°.

If we try, however, to test a hypothesis (15.6), the alternatives being,
50 to speak, “everything clsc¢’’ (i.e., the set of a priori admissible hy-
potheses 1s Q), then, no matter what be the test chosen, there will
always within this “everything else’” be alternatives for which the
power of the test is very poor. In case one of thesc alternatives were
actually the true one, we should have only a very slight chance of
rejecting the hypothesis tested. In all practical cases it is, therefore,
necessary to be able to restrict, in advance, the set of admissible hy-
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potheses 2° as much as possible, having at the same time strong reasons
to believe that the true hypothesis is not outside this Q°.

¥ % %

We have not here gone into any technical details as to the actual
construction of tests, the theory of which was described briefly in See-
tion 14. Our purpose has been to show how an cconomist should formu-
late testing problems for which he asks the help of a statistician. To
give a more concrete illustration, however, we shall in the next scetion
consider a simple, but rather important, example from economic sta-
tistics, namely the problem of testing a time series for trend, assuming
that its additional variations are random variables of a simple type.

16. Ezample of Testing Hypotheses: A Simple Problem of Trend Fitting

Let y. be an observable time series, where {=1,2, - - -, N, denote N
equidistant, discrete points of time. Suppose we know, or believe without
test, that the following model (where E means “cxpected value of”) is
true:

(16.1) ye=kt+b+e¢ (t=12---,N),
(16.2) Eglt =kt +1b (t=1,2,---,N),
(16.2") E(e) = 0, E(e? = o (independent of ),
(16.3) p(y:| 6 e— (1123 (k1) %,

T Vore

¢ is assumed to be numerically known (for the sake of simplicity of our
llustration in the following).

Consider N populations (or universes) corresponding to the N fixed
values 1, 2, - - - | N, of {. For cach ¢, y, is normally distributed about
the mean (kt+b) with variance ¢2. For each value of { we assumec that
we draw exactly one value of y,, such that these drawings arc stochasti-
cally independent. The sampling distribution of these N drawings is,
therefore,

Py, Yo, vt 5 YN)
(16.4) 1 l: 1 j]
= —— X — —— —_— kt — b 2
(V2m o)¥ P 202 Z W )

(2, means D, throughout this section).

All these things are assumed known, the only unknown elements in
our set-up being the values of the constants & and b; i.e., we know that
1t is possible to choose k and b such that the obscrvable scrics y, satisfly
our model.
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By the method of least squarcs [or by thc method of maximum
likelihood applied to (16.4) | we obtain the following estimation formula

for the parameter k:
t—1t -
(16.5) Bst, of b = b = 220 DW =9
2=

where £ and § denote the observed arithmetic means of ¢ and y respec-
tively. £ is, of course, a random variable in repeated samples (each of N
drawings, the 's being the same all the time). Using (16.1) wc have
(16.6) b = St—0Hk+b+e—k—b— 8 gt Be Dot De:.

2 =D S-Br
Thus, E(k) =k, i.c., we have an unbiascd estimatc. We want fo test the
hypothesis that k=0. What is the set of a priori admissible hypothcses,
i.e., the set Q°? It is: The system of all probability distributions (16.4)
obtained by letting k and b run (independently) through all values from
— © to 4 o, and no other alternatives. The hypothesis to be tested 1s
that £=0, b being anything from — o to -, i.e., the set «° is the
system of all probability distributions obtained from (16.4) by putting
k=0 and letting b take, successively, all values from -- « to 4. We,
therefore, have a camposite hypothesis to be tested.

To test k=0 we have to choose a critical region of rejection W, in
the N-dimensional sample space of the variables y such that the proba-
bility of a sample point falling into Wy, no matter what be the value
of b, i3 equal to « (say 0.05) when the hypothesis k=0 is true; and be-
sides, the region W, should be such that the probability of a sample
point falling into it when the hypothesis k=0 is false is as great as
possible, and independent of the valuc of b.

Let us for this purpose consider the sampling distribution of the esti-
mate £. From (16.6) it is seen that £ is a linear function of the N inde-
pendent normally distributed variables e, e, - - -, ey, the s being a

set of constants—by assumption. £ itself is, therefore, also normally
distributed with

c?

S—-Dnr

The distribution of % is independent of b, and we have

VZt—D?p[ Z“_D%k—mj

(16.8) plk) = ———-
And corresponding to our hypothesis to be tested, k=0, we have

\Vor
YOI p[_ 2 - ;’ea]
\/ Qo 202

(16.7) mean = k, variance =

(16.8") po(k) =
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Let us consider the following two equal “tails” of this distribution

(16.9) % < — K — dk>+K + oo
. - = ___—— 7 an = Ty
VONUEE V2 (-
where ¢ is a positive constant so determined that
+K
(16.10) 1-— po(B)dE = o (= 0.05, say).
-K

The two intervals (16.9) together define a certain region of rejection
W, in the sample space of the variables y, because % is, by (16.5), a
single-valued function of the y's. The probabihity—when the hypothesis
k=0 is actually true—that £ should fall in either of the two intervals
(16.9) is the samec as the probability that the sample point falls into W,
and this probability is exactly equal to a. On the other hand, what are
the properties of this critical region if the hypothesis is wrong, i.e.,
if k7 0? It has been shown that the region of rejection Wy corresponding
to the two tails (16.9) has the following properties:®

Whenever the hypothesis k=0 is wrong, i.e., when k#0, the proba-
bility that the sample point should fall into Wy (i.e., the power of the
test) is >, which means that the test is unbiased. And for any other
unbiased critical region of size « thc power is smaller.

If we rcject the hypothesis k=0 whenever  falls in either one of the
intervals (16.9) we thus have a best unbiased fest of the hypothesis
k =0 corresponding to the level of significance a.

The probability that £ should fall into cither of the intervals (16.9)
when k70, i.e., the power of the test, can be calculated as a function
of k directly from (16.8). This power-function—let us call it B(k)—is
simply

(16.11) B(k)=1— VEe-p 0 p[ Z(i—az

K AV 21!' [
where K is given by (16.9).
Let us, as an example, take N =9, =1, a=0.05, ¢ =1.96 (from tables

of the normal curve). We then have Z(t—7)?=60. If we introduce these
numerical values, and change the variable of integration by the trans-

formation x=(1/0)V Z(t—0)*(k—k), (16.11) becomes

(- k)’l]dk

1 +1.96-+/G0L A
(16.11)  B(R) = 1 — ——= f exp [~ 3x2]dx.

~1.98—+/60k

Values of 8(k) for different values of k then follow directly from tables
of the normal distribution.

¢ See, e.g., Neyman, Lectures and Conferences on Mathematical Staiistics, Wash-
ington, 1937, p, 29,
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In Table 1 are given the results for a few values of k. The smooth
curve in Figure 3 represents the continuous power function g(k).

TansLE I

the probability that we shall reject

If the true value of k is k=0 by the test (16.9) (i.e., the
power of the test) is
k B k)
0 0.05 (=a)
+0.1 0.12
+0.2 0.34
+0.3 0.64
+0.4 0.87
+0.5 0.97

$(K

L 1 1 1 1 ! LS ! 1 1 I N 1k
08 -05 04 03 -02 -0! 0 al 02 03 04 05 o8

Ficure 3.—The Power Function of the Test (16.9),
(N=9, c=1, «=0.05, c=1.96)

Horizontal axis gives values of k¥ (k=0 is the hypothesis tested; other values
of k represent alternative hypotheses).

Vertical axis gives values of 8(k), represcnting the probability of £ falling into
the region of rejection (16.9) for the hypothesis k=0, when % is the true value
of the parameter.

a =0.05 represents the level of significance.

The encircled points (©) show the power of the same test (16.9) when the ¢'s
are dependent as defined by (16.12).

This graph (the smooth curve) shows, for k0, the probability of rejecting—
correctly—the hypothesis k=0 when it is false. The further away from k=0 we
get, the greater is the probability that we shall reject & =0. 8(k) is the probability
of not making an error of the second kind, considered as g function of the true k.
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Now we shall consider an example showing what happens if the alter-
native which is actually {rue is not included in the set of a priori ad-
missible hypotheses Q9 which was the basis for the above test.

One of the restrictions above was that the €'s in the N observations
werce stochastically #ndependent. This was taken as a known fact, and
not as a hypothesis which might be right or wrong. Suppose that we
were not justified in doing so. As an example, let us assume that, without
our knowledge and while proceeding as f our original scheme were cor-
rect, the actual series of ¢’s is of the following nature:

Let &, &y, - - -, £v, be N 41 normally and independently distributed
random variables, each with zcro mean and variance =¢?=that of the
¢'s above. And let us consider a new series of €'s given by the formulac

1
(1612) € = -\—/_i(ft—l + &) (t = 1, 2) Tt N)-
Each of these new ¢’'s taken scparately then has mean =0, and the same
variance ¢ as the former escries. But ¢: and €;4y are now positively
correlated (correlation coefficient =3).

Suppose now that we proceed as 1f we had to decal with the original
e-series instead of (16.12). By (16.6) £ is still a linear function of nor-
mally and independently distributed variables, viz.,

Dt =D+ &)
V2 (—pr

and, therefore, % is also now normally distributed with mecan =k, and
the variance of £ is now that of the lincar function

2.0t — Dk + £

(16.13) E=k+

16.14)
( V22—
which gives
1 N1
(16.15) a‘2=-—--————-——l: (t—0)202+ (t-—t‘)(t+1—x‘)a2].
TSl %
Taking, as in the previous example, N =9, =1, ¢=1.96, we obtain
1 1
16.16 12 = — (60 + 40) = —
(1616 W= e OO0 =5
and, therefore, in analogy to (16.11') we now get
1 +1.52—-6k
(16.17) Bk =1 —— = f exp [— xt]dx.
\/271' —1.52—8k

g*(k) is the probability that 2—calculated by (16.5), the ¢'s being as
defined by (16.12)—falls into either of the two intervals defined by
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(16.9), this probability being considered as a funection of the parameter
k. As examples the values of g*(k) for k=0, k= +0.3, and k= + 0.4 are
plotted in Figure 3 (the encircled points). These values, as obtained
from (16.17), arc: 8*(0) =0.13, 8*(+£0.3)=0.61, and g*(+0.4) =0.81.

What do these results show? They show that the test (16.9) for an
alternative hypothesis (namely dependent ¢’s) not included in Q°, may
—Iincorrectly—reject the hypothesis tested (i.e., k=0), when it is true,
more frequently than assumed (here 13 per cent instead of 5 per cent).
That is to say, we had actually constructed the test such that we should
reject the hypothesis X =0—when true—in only 5 per cent of the cases
where the test is applied. But this no longer holds. The reason for this
is easy to recognize: In order to make a=0.05 in our first example (with
independent errors) we had to fix a value of ¢ such that the integral in
(16.10) should be equal to 0.95. In the present case the integral over the
same range [given by (16.9) ]is, of course, smaller than 0.95, because the
variance of the £ we now have is greater (namely 1/36 instead of 1/60).
1 minus this integral is, therefore, greater than «=0.05.

Also, we thought that we should be rejecting the false hypothesis k=0
in 87 per cent of those cases where k= +0.4, while in fact we now do
so only in 81 per cent of the cases, because, in constructing the test for
the hypothesis £ =0, we did not take account of the possibility that
the €'s might be dependent.

The hypothesis k=0, as well as the alternative hypotheses about %
in the last set-up, do not mean the same thing as in the first example
with independent errors. In particular, the hypothesis tested (i.e., k=0)
is mot the one we set out to test, because it now includes the possibility
of the crrors being dependent. In other words: Even though the hy-
pothesis k=0 might be true there is still something wrong with that case
also—as compared with the hypothesis tested in the case of independ-
ent errors—namely the correlation between the ¢’s now present. Itis
interesting to note that the test above shows this to some extent, by
rejecting the hypothesis k=0 in 13 per cent, and not 5 per cent, of the
cases where k=0 is actually true. This result, however, is not a general
one. The opposite may occur in other cases.

Of course, in the case above the mistake would not be so very bad,
beeause 7t so happens that the power of the test is rather good also for
the hypotheses outside Q° which we just have considered. And in many
important cases this might happen; that is to say, even if we develop a
test only with respect to a certain very restricted class of a priori ad-
missible hypotheses Q) this test might—just by sheer luck, so to speak
—be good also with respect to a much wider class of alternatives.

The example ahove illustrates, I think, a very useful method of pro-
cceding in testing cconomie relations: We define first a certain sct of a
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priori admissible schemes, Q° containing what we feel strongly to be
the most important alternatives, and being at the same time such
that it can be handled without prohibitive technical difficulties. Then,
later, if—for some reason or another—we become suspicious as to the
completeness of this Q° we may study the power of the test for certain
outside schemes not contained in Q° For instance, it might be that a
certain hypothesis outside Q°, i.c., a hypothesis rejected a priori, would,
if it nevertheless were the true one, have important consequences for
our decisions. To see what risk we are laking as to this hypothesis by
using a test that simply neglects the possibility of this hypothesis being
true, we calculate the power of the test for this outside hypothests.

Of course, whatever be the test developed on the basis of a certain
set, Q°, of a priori admissible hypotheses, it will always be possible to
find hypothesecs outside Q°, such that the power of the test with respect
to these hypotheses is very poor; at least that is so if we want to have a
test that is any good at all withtn Q° To have some chance of reaching
nontrivial conclusions we must assume a certain a priori knowledge, or
be willing to take a certain amount of risk in order to restrict Q°.
And the total risk involved in restricting Q° is one which cannot be
evaluated in probability terms. The choice of an a priori admissible set
Q0 is, indeed, & matter of general knowledge and intwition.

The discussion above gives also, I think, a clearer interpretation of
the general phrase, “Supposc the whole formal sct-up of the theory is
wrong, what is the use of testing significance of coefficients, cte.?” As
a matter of fact, this question is, strictly speaking, alwavs justified
when we try to explain reality by a theoretical model. But if we follow
this attitude to its bitter end, we shall never be able to accomplish any-
thing in the way of explaining real phenomena.

1?7. The Meaning of the Phrase “To Formulate Theories
by Looking at the Data”

All models of economic theory, however abstract they may be, proba-
bly arise from the consideration of some real economic phenomena.
“Data’” in the broad sense of empirical knowledge will, therefore, al-
ways to some extent influence our formulation of theories about them.

If we try to give only simplified and condensed descriptions of em-
pirical cases, there is, of course, no risk in choosing a theory which “fits
well.” The risk comes in if we generalize, in the following sense: We
specifly an empirical class of phenomena (e.g., the class of all corre-
sponding values of price and quantity sold of a certain commodity).
We know empirically a certain number of members of this elass. We
form a theoretical class (e.g., a stochastic price-quantity relation) cover-
ing in particular the known members of the empirical class. We hope
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that the theoretical class will cover all members of the empirical class.
To construct such theoretical classes is, indeed, the problem of inductive
science. And it involves risk of failures, which are beyond our control.
A general discussion of “right” or “wrong” in connection with such
empirical, inductive processes would take us into metaphysies.

But the phrase, “To formulate theories by looking at the data,” has,
among cconomic rescarch workers, a narrower meaning, which it might
be worth while to clanfy. The common argument is as follows: Suppose
we have a certain number of observations of simultaneous values of a
system of economic variables. We have a broadly formulated economic
theory about these variables, stating that there is some relation be-
tween the variables, without specifying the form of this relationship.
We try out a great many different forms of relations, until we find one
which “fits the data’ (in some sense or another). Now, if we finally
find a form of the relation which “fits well,” is this in itself any verifica-
tion of the “goodness’” of that relation as a theory? Is notsuch a for-
mula only a trivial restatement of facts?

Much discussion has taken place on this subject, e.g., in connection
with the problem of testing business-cycle theories. For instance, a
great many simplified dynamic models imply that each of the variables
involved satisfies (apart from error terms) some linear difference equa-
tion of a certain order, with constant coefficients. It is clear that we
may reach this same result by starting from different fundamental
models, 1.e., we might construct a great many models that are very
different as to their basic assumptions or the type of economic mecha-
nism they describe, and yet they may all imply that the variables,
separately, satisfy certain linear difference equations as described.
Now, if the observed series show some rather regular eyeles, such differ-
ence equations may often be made to fit the serics very well, by a
proper choice of the coefficients. And if we aceept this as a verification
that the observed series actually satisfy such difference equations, we
could say that the ‘“‘correct’”” theory must belong to the class of models
which lead to such difference equations. But we could not by this fitting
alone pick out the ‘“‘correct” theory from the class of admissible models.
And if we choose one particular model, the fact that the corresponding
difference equations in each variable may be made to fit the data gives
no guarantee that just this modelis the “correct” one. 1t is, therefore,
generally argued that such good fits of ““final”’ equations are not worth
much from the point of view of verifving theories.

This argument, however, does not quite cover the real trouble point.
In fact, if we could establish that the observed variables satisfied very
closely a certain system of linear difference equations (say), we should
have a strong and very useful restriction upon the class of a priori ad-
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missible theoretical models. In gencral, whenever we can establish that
certain data satisfy certain relationships, we add something to our
knowledge, namely a restriction of the class of a priori admissible hy-
potheses. The real difficulty lies in deciding whether or not a given rela-
tion is actually compatible with the data; and the important thing to
be analyzed 1s the reliability of the test by which the decision is made,
since we have to deal with stochastic relations and random variables,
not exact relations.

From this point of view there is, therefore, no justified objection
against trying out various theories to find one which ““fits the data.”
But objections may be made against certain methods of testing the fit.
Let us examine this a little closer.

Consider a system of observable random variables, as in (15.1), and
a relation to be tested, like (15.5). The theory defines a class, «® say,
of probability laws, and we want to test P(w) ¢ »°. Now we have
seen that, in order to develop a test of this hypothesis, we have to de-
fine a set, Q° of a priori admissible hypotheses. Let (% be a system
of different sets w? corresponding to diffcrent relations to be tested,
and such that each «? is contained in Q° For any one of these sets w°
we may test the hypothesis P(w) e »° the set of a priori admissible
hypotheses being constantly the same, namely Q°. It is clearly irrelevant
how we happen to choose the hypothesis to be tested within Q° In par-
ticular, the hypothesis might be one that suggests itself by tnspection
of the data. This is perfcctly legitimate as long as the set Q° of admissible
alternatives 1s a prior: fixzed and remains so. For then we can calculate
the power of the test used, and sce what nsk we run if we accept the
hypothesis tested. What is not permissible is to let Q° be a function of
the sample pornt. Because then the test no longer controls the two types
of possible errors in testing hypotheses. If Q° be fixed on the basis of a
sample point, and a test developed with respect to this set of admissible
hypotheses, we have no idea whether the true hypothesis is actually
contained in Q° or not. We should have the untenable situation that
the method of testing would itself be varying at random from one sample
to the other.

The essential thing is, therefore, not the way in which we choose the
hypothesis to be tested. Essential is what we know or believe to be the
class of a priort admissible hypotheses, and what power our test has of
rejecting the hypothesis tested, if a “really different” one among the
alternatives be true.



CHAPTER V

ProsreEMs oF EsriMATION

In Section 14 we deseribed the general problem and the general prin-
ciples of statistical estimation. More specific estimation problems arise
in various fields of application. In the following we shall discuss a prob-
lem which is particularly relevant to economic research, namely that
of estimating parameters in systems of stochastic equations.

A most dangerous—but often used—procedure in this field is to “fit
each equation separately’” without regard to the fact that the variables
involved are, usually, assumed to satisfy, simultaneously, a number of
other stochastic relations. If that is done, it is afterwards almost sheer
luck if we have not created inner inconsistency in the system as a
whole, such as, for instance, the assumption that some of the variables
in one equation remain constant in repeated samples, while—because of
another equation in the system—this is impossible. We shall llustrate
this by an example later (see Section 21).

Even if no such inconsistency is created, the procedure of “fitting
each equation separately’’ usually does not give the most efficient esti-
mates of the parameters. For additional information about the parame-
ters in one equation may be contained in the fact that, simultaneously,
the variables satisfy another equation. And, what is even more impor-
tant, we may fail to recognize that one or more of the parameters to
be estimated might, in fact, be arbitrary with respect to the system of
equations. This is the statistical side of the problem of autonomous rela-
tions, which we discussed in Section 8. It may be described in words
as follows:

Suppose that a certain set of economic variables actually satisfies a
system of (static or dynamic) equations, each of which we expect to
have a certain degree of autonomy, so that we are interested in measur-
ing the constant parameters involved (e.g., certain elasticitics). From
this equation system we ean, by algebraic operations, derive an infinity
of confluent systems. Suppose that, in particular, it is possible to derive
an infinity of new systems which have exactly the same form as the
original system, but with different values of the coefficients involved.
(Usually this means that the number of parameters of the equation
system may be reduced, as explained in Section 19.) Then, if we do not
know anything about the values of the parameters in the original equa-
tion system, it is clearly not possible to obtain a unique estimate of
them by any number of observations of the variables. And if we did
obtain some “cstimate’” that appeared to be unique in such ecases, it
could only be due to the application of estimation formulae leading to

— 84—
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spurious or biased results. For example, the question of deriving both
demand and supply curves from the same set of price-quantity data
is a classical example of this type of problems.

This question (in the case of linear relations known as the problems
of multicollinearity) is of great importance in economic research, be-
cause such research has to build, mostly, on passive observations of facts,
instead of data obtained by rationally planned experiments (see Chap-
ter IT). And this means that we can obtain only such data as are the
results of the cconomie system as ¢ in fact s, and not as it would be
under those unrestricted hypothetical variations with which we operate
in economic theory, and in which we are interested for the purpose of
economic policy. Considerable elarification on this point has been
reached in recent years, following the pioneer work of Frisch.!

In the following we shall see that the investigation of this problem of
indeterminate coefficients, as well as other questions of estimation in
relation to economic equation systems, all come down to one and the
same thing, namely, lo study the properties of the joint probability distri-
bution of the random {(observable) variables in a stochastic equation system.

18. General Formulation of the Problem of Estimaling
Parameters in Systems of Economic Relations

We shall discuss one general class of static systems and onc general
class of dynamie systems.

A. Static systems

Let us denote by & &y -+, &my, -+ -, & (j=1,2,---, N, N
“true’”’ measurements of n economic variables. The subseript 7 indicates
“observation No. 7.”” The actual measurcments of these variables might
(and usually will) be subject to errors of measurement proper. Let the
corresponding actually observed variables be zi;, defined by

(181) Zij = G{j(Ei;‘, 77:':') (7‘ = 1: 2: ] nJJ = 1: 2; Ty N):

1 R. Frisch, “Correlation and Scatter in Statistical Variables,”’ Nordic Statisti-
cal Journal, Vol. 1, 1929, pp. 36-102; “Statistical Correlation and the Theory
of Cluster Types” (joint authorship with B. D. Mudgett), Journal of American
Statistical Associaiton, Vol. 26, December, 1931, pp. 375-392; Piifalls in the
Statistical Construction of Demand and Supply Curves (Veroffentlichungen der
Frankfurter Gesellschaft fiir Konjunkturforschung, Neue Folge, Heft 5), Leipzig,
1933, 39 pp.; Statisitcal Confluence Analysis by Means of Completle Regression
Systems, Publication No, 5 from the Institute of Economics, Oslo, 1934; “Sta-
tistical versus Theoretical Relations in Economic Macro-Dynamies” (Mimeo-
graphed Memorandum prepared for the DBusiness Cyele Conference at
Cambridge, IEngland, July 18-20, 1938, to discuss J. Tinbergen’s Publica-
tions of 1938 for the League of Nations)., See also J. Marschak, “Economie
Interdependence and Statistical Analysis,” in Studies in Mathematical Economics
and Econometrics, in Memory of Henry Schuliz, Chicago, 1942, pp. 135-150.
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or, when solved for »;;,
(18.1%) N = §is(Zes i),

where #4;; are random variables characterizing the errors of measure-
ment, and where (75 (and g:;) are certain known functions. We introduce
these functions G:; for the following reason: If we wrote just

(18.2) r:; = & + error,

the distribution of the errors would in general depend upon ;. If this
be the case we assume it to be possible to write the error part as a known
function of §&;; and a new random variable, namely #:;, which is sto-
chastically independent of &;; (and also, of course, independent of &
when &, k#1, 7). These transformations are expresscd by the functions
Gi;in (18.1). This leads us to

Assumption 1: The nN random variables 7:;; (i=1, 2, -, n;
j=1,2,---, N), have a joint elementary® probability law
(18.3) pl(nll; Tty nﬂ-N; Yy Y, vt ’Yq)

which is known, except—perhaps—for the values of ¢ parameters
1, * * *, Ye and which is independent of the variables £:; and the varia-
bles e defined below.

Assumption 2: The (n—m)N quantities npry - -+, £ (F=1,
2, -+, N; m<n), arc considered as constants in repeated samples.
The economic meaning of this is that these variables are autonomous
parameters fixed by forces external to the economie sector under con-
sideration.?

Assumption 3: The mN quantities &, - -+, &.;(7=1,2, - - -, N) are
random variables (*‘dependent variables’) in repeated samples, and are
known to satisfy m stochastical equations,

ff[élix E?f: T Emi; E"H-l‘f; T, E’U’; Qy, g, * * o Ok,

(18.4)

€1j, €25, * ° ", Eh:‘] =0

(hgm;i=1,2,---,m;j=1,2,'--,N),

where ay, as, « + -, ay, are k unknown constants, and where e, &j, * + -, &
(7=1,2, - - -, N) are hN random variables. Here a1, @, - - -, a; mean
all the unknown constants in the whole system of equations (18.4).

2 For the sake of simplicity we restrict ourselves, in this and the following
sections, to cases where the elementary probability laws are assumed to exist,
However, in point of principle, there would be no difficulty in reformulating our
statements on the basis of iniegral probability laws,

? This assumption might, if it be desirable, be replaced by the assumption
that the autonomous £'s are themselves random variables. That would cause only
small changes in the subsequent formulations,
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There might actually be only a few of them present in each of the m
equations. And similarly for the h ¢'s.

(18.4) represents an cconomic theory when certain restrictions are
imposed upon the distribution of the ¢'s characterizing the stochastical
model.

Assumption 4: The kN random variables ey ej -+ -, @y (=1,
2, + - -, N) have a joint elementary probability law

(18.5) palen, - eav | Emirgy -, Eax; By Boy 0y Br)

(l.e., the conditional distribution of the AN ¢’s, when the autonomous
&’s are given), which i1s known, except—perhaps—for the values of r
parameters S, * + -, 8- By introducing a considcrable number of 8s,
P. may be made to comprise a wide class of distributions.

The problem is: To estimate the values of ay, as, - - « , a, on the basis

of a sample point (zu, To1, * =+, Tar, Tizy T, + * + ) Tagy * * * , Tiv, Tow,

*, Zox) in the nN dimensional sample space of the observable varia-
bles z. And in order to do this it may, or may not, be necessary also
to estimate the parameters y and g in (18.3) and (18.5). We shall now
see that this problem is a problem of statistical estimation as described
under Section 14.

From the mN equations (18.4) we may (under certain conditions for
solvability) express mN of the AN ¢’s as functions of the mN random
variables ¢y, - - -, Eaw, and the (h—m)N remaining €'s. These functions
will, in general, involve the parameters o and the (n—m)N autonomous
£'s. Introducing these expressions for mN ¢'s into (18.5), multiplying
by the Jacobian of the transformation, and integrating over the
(h—m)N remaining ¢'s from — o to 4 =, we obtain the joint elemen-
tary probability law of the mN (“‘dependent’’) variables &y, « -+, Ean.
Let this probability law be

pa[fu, R Ele oy Oz, ¢ v c, O,
Bl: 62) T, Br; Em-{—l.l; Tty EnN]'

This is the conditional distribution of the mN random wvariables
Su, - - -, Env, for given values of the autonomous ¢'s. By assumption,
this distribution is 7ndependent of the variables 4 defined by (18.1%).

(18.6)

Therefore, the joint distribution of (&, - - -, &my) and (my, =+ -, 7aw)
is equal to
(18.7) D1 Ps.

Introdueing the transformations (18.1’) in (18.7) and integrating the
resutt with respect to the mN random variables £y, » - -, Eny from —
to 4, we obtain the joint elementary probability law of the nN ran-
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dom variables z;; {the observed variables). Let this probability law be

‘19[1511, e, an[ Entryy - 0y Eung
(18.8)

al;"':Qk;ﬂl;"';Br;yly"':Tq]'

We can now say: Our eeonomie theory, so far as the observable varia-
bles = are concerned, is indistinguishable from (and it may even be
equivalent to) the statement that the observable variables x have the joint
probability law (18.8), where & is a known function. And the problem
of estimating the unknown parameters is reduced to an ordinary prob-
lem of statistical estimation.

If, in particular, all the variables be observed without errors of meas-
urement, our economic theory would be expressed by (18.6).

If, in particular, all the autonomous ¢'s be measured without errors,
we should—instead of (18.8)—have¢

S(zs1, ¢y Ty lfm+1.1. sy s
(18.8")

al, PRI ak;ﬁl} [ )Br;ﬂlllla . s ,Yq’);

that is to say, a distribution with only mA instead of nN random vari-
ables z.

In (18.8) the (n—m)N autonomous &s are unknown parameters
which it might or might not be necessary to estimate in order to esti-
mate the o’s.

Clearly no more complete deseription of the interconncetions be-
tween a certain number of random variables can be given than that
which is contained in their joint probability law. If, therefore, two differ-
ent formulations of an economic theory lead to identically the same joint
probability law of the observable random wvariables involved, we can
not distinguish between them on the basis of observations. (But the theories
may not be equivalent in certain other respects.)

The joint probability law of all the variables covers also the particu-
lar case where the set of random variables ean be split up into independ-
ently distributed subgroups of variables with different parameters to be
estimated oceurring in the distribution of each subgroup. And in all
other cases the joint probability law of all the variables contains more
information than that obtained from the probability laws of subgroups

of variables. It is, therefore, clear that the joint probability law of all
~ the observable random variables in an eeonomic system is the only gen-
eral basis for estimating the unknown parameters of the system.

+ Here ;' denote the parameters in an mN-dimensional distribution instead of
the nN-dirnensional distribution (18.3).
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B. Dynamic systems

We shall consider the following general type of dynamie economic
systems (making similar assumptions to those above):

Let £(8), £(t), « + +, En(t), - - -, Ea(t;) be n time series defined at
the points of time

(189) Iv, vy, - -+, &y, to, t_x, l_g, = - .

For the moment we shall neglect the problem of errors of measurcment
proper.
The (n—m) series £na(s), + -+, E(t:), are assumed to be autono-
mous variables, they are assumed to remain fixed in repeated samples.
For each point of time (18.9) the quantities &), - - -, &a(t;) are
random variables defined implicitly by a system of dynamic relations
of the type

E(t) = F,0la), &), - - - 5 b)), &), - - ;
Ei(tinr), Eiltica)y - o 50 5 B, Ellica), - -
(18.10) Enna(8i), Empr(licy), - - - o0 o Ea(tD), Ealticy), - - -
oy, Q2 * vty Oy €1y €215 ° 0, éhc.-]

=12 -,N;7=1,2,---,m;h>m).

Or, expressed in words: Each of the ‘“dependent’” variables
§(8), - - -, &a(t), is a function of (1) the previous values of that
same variable and (2) the simultaneous and the previous values of
the other n—1 variables. The m functions F ;{9 may be different for
each point of time ¢, but they have known forms.

The system (18.10) involves, altogether, k¥ unknown constants
ay, az, + -+ -, ai, some or all of which might be lacking in any particu-
lar one of the equations. For each point of time ¢ the system involves,
altogcther, A random variables ¢, which have certain known distribu-
tion properties. We refer all these & random variables e to the same
point of time as that for the variable to the left in (18.10), although
the actual events from which they emerge might take place at different
points of time. This is merely a simple transformation of variables in
the joint probability law of all the ¢'s. If there happens to be func-
tional relationship between the €'s at two different points of time (c.g.,
€46, = €,,1,_,), the dimensionality of the joint distribution of all the
hN €'s can be correspondingly reduced.

(18.10) gives, altogether, mN equations. From these equations we can
(under certain conditions for solvability) express the mN random vari-
ables &(t:), - -+, &) (E=1, 2, - - -, N) as functions of: (1) initial
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conditions, i.e., all {(or some) of the values of &(¢), - -+, &.(t) for
=0, =1, —=2,--.; (2) the values of the autonomous variables
Emp1(ts), -+ ¢, Ea(t), for i=1,2, - - -, N; (3) the AN random variables
€y Ty €Ay (i=1J 2) Ty ]V)

We shall assume the initial conditions to be given and constant in
repeated samples. For short we denote the whole set of initial condi-
tions by (£9).

Let

(18.11) po’[ers, -+, &nay | Emia(l), ~ - -, E(ty); (§9; By Boy - -+, B

be the joint elementary probability law of all the AN random variables ¢
for given instial conditions of the &s and given values of the autonomous
¥s. (p’ might or might not actually depend upon these quantities.)
The B's are parameters which might or might not be known.

Since the mN random variables £(8:), - - -, &.(8) (1=1,2, - - -, N),
can be expressed as functions of the random variables ¢, we can derive

the joint distribution of the mN random variables &(8;), - - -, &a(£)
(z=1,2, - - -, N) in exactly the same manner as was discussed under A

above. Let this probability distribution be

P [, - oy Entw) | Empa (), - - o, Ealty);
(EO);ah N2 4 31 Bl; tTt Br]

If the measurements of the £s (but not those of the initial condi-
tions) are subject to errors, we have an additional problem exactly
similar to that discussed for static systems.

The problem of estimating the parameters in & dynamic system of
the form (18.10) is, thercfore, reduced to the problem of estimating the
parameters of an mN - (or nN-) dimensional elementary probability law,
by means of a sample point associated with this probability law.®

This way of condensing the statements implied in a system of sto-
chastic relations may be extended to more general classes of economic
schemes. And this procedure is not only convenient but, I think, neces-
sary, if we want to make sure that the various assumptions made about
the distribution properties of the random wvariables involved do not
lead to inner contradictions, like those we mentioned in the introduc-
tion to this chapter.

(18.12)

¥ ok k

We are now in a position to formulate precisely the two fundamental

5 For explicit estimation formulae and confidence limits, ete., 1n the ease of a
system of linear stochastic difference cquations see the article by H. B. Mann
and A. Wald, “On the Statistical Treatment of Linear Stochastic Difference
Equations,” EconoMrrrIca, Vol. 11, July-October, 1943, pp. 173-220, in par-
ticular, Part 11, pp. 192-216.
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problems of estimation in economic research, namely (1) the problem of
confluent relations, and (2) the problem of “best estimates’:

I. The problem of confluent relations (or, the problem of arbitrary pa-
rameters)

If two stochastical equation systems lead to the same joint proba-
bility law of the observable random variables, they are indistinguish-
able (on the basis of observations). In particular, the systems might be
such that they differ only with respect to the values of the (unknown)
parameters involved. The problem of arbitrary cocfficients is, there-
fore, included in the following general mathematical problem: Let

p(xl,xg,---,x,lel, Ogy » v, O3 21, 20 5 ¢ 0, 2p)

be a funetion of s independent variables 2y, 22, - - -, z,, involving « un-
known parameters 8, and » known parameters z. Let 6,°, 6,%, - - -, 89, or,
for short, 8°, be a point in the k-dimensional parameter space of the &'s,
Does there, or does there not, exist at least one parameter point ¢
(#0°%, such that

p(ilh,"',513,]010,‘",9,(0;21,"',2,»)

(18.13) , ,
Ep(xlt"':xslaly"';el;zlx"‘:zf)

for all values of the variables z? The answer to this question depends
upon one or more of the following things: 1. The form of the funetion p.
2. The parameter point 8° 3. The values of the known parameters z.

If (18.13) be fulfilled, and if §° be the “true’” parameter point, then,
no matter how many observations we have of the variables z, there is
no unique estimate to be obtained for 8° because we cannot then dis-
tinguish between 6° and ¢’. (The well-known problem of “multicolline-
arity” is, of course, included in this formulation as a very special case
of the arbitrary parameter problem.)®

II. The problem of “best estimates’’
Let

(1814) y= p(xb 2T I‘| by, b, - - -, b 21y %2y 0 7 ,Z,-)

be a parametric family of joint elementary probability laws of s ran-
dom wvariables 2y, g, - - -, 2z, involving x unknown parameters
b, b, - -+, 8, If, for given values of the known paramcters z, there
be a one-to-one correspondence between the parameter points 6 and
the members of the x-parametric family (18.14), and if 6° be the true

8 Cf. the discussion by Mann and Wald on the problem of whether to deal
with the “reduced” equations or the “original”’ equations, op. cit., pp. 200-202.
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paramecter point, what is the best estimate of 6° to be obtained from a
sample point (zy, 2o, » -+, z,)?
LI I

The problem II is—at least in point of principle—a straightforward
problem of statistical estimation, and there is no need, nor justification,
for a separate discussion of that statistical problem here.

The same could, of course, also be said about problem I. It is a prob-
lem of pure mathematics. This problem, however, is of particular
significance in the field of econometrics, and relevant to the very con-
struction of economic models, and besides, this particular mathematical
problem does not seem to have attracted the interest of mathema-
ticians. In the following sections we shall, therefore, develop some
mathematieal tools of analysis for this particular purpose.

19. On the Reductbility of a Function with Respect to Its
Number of Parameters

Let
(191) y= f(:r'l: T, ©°° y Tey 81; 62; Ty 0‘)
be a real function of s real independent (i.e., not functionally related)
variables =, xo, * - -, z,, involving « parameters 8, 8, - - -, 0. [E.g.,

f might be the function (18.14) for fixed values of the 2’s.] Let 6° de-
note a point in the x-dimensional parameter space of the 's. And let
S(6% be the corresponding set of all points (y, 21, 2, - - -, 2,) In the
(s+1)-dimensional variable space, that is to say, the sct of all points
(y, 21, T3, * + +, z,) defined by (19.1) when 6= 6° Let 6’ denote another
parameter point #6° and let S{#’) be the corresponding set of points

(y, &, 22, - - -, z,). If there exists at least one parameter point 8’69,
such that
(19.2) S(8°) = S(6'),
or—what amounts to the same—such that
Ty, Tp, *c v, Xey 6%, 8°, - ¢, 6,0
(193) f( 1, L2 » ey V1 2, ’ ) ) )
Ef(xl,xz,---,:v,;();’, 02,‘-‘,9.:)

identically, for all values of the variables z, we shall say that the pa-
rameter point 6 has (a certain amount of) arbitrariness with respect to
the set S(6°).

We may here distinguish between the following two cases:

(A): There exists a finite neighborhood of the point #° such that
within this neighborhood there is no point 67 6° satisfying (19.3),
while outside, or on the border of, this neighborhood there may be one
or more points 8 satisfying (19.3).
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Example 1.
Yy = 91231.

Here, if 6,=6,°>0 there is 7o point 6,">6,° in the range 6, > — 6,° that
satisfies (19.3), while, in the range 6, < - 6,° there is just one point 8,
satisfying (19.3), namely 8= — 6,°.

Example 2.

Yy = 91 sin (02 + 933?1).

Here, if 6° be a parameter point, there are no parameter points in
the immediate vicinity of 6° satisfying (19.3), but there is an in-
finity of ¢solated parameter points 6’ satisfying (19.3), namely 6,'=6,°,
0y = (6:°427n), 0 =0", n=1, 2, 3, - - - ad inf.

Fxample 3.

y =20 0(6) = (| 6]+ 6+ 1) —2[] 6~ 1|+ (6 - D].

Suppose that 6,°=2, then 2(6,")=1. Now, if 6,>2, then v(6,) <1, and
no point 6’>2 will satisfy (19.3). Next, if 2>6,>0, then »(6:) >1;
therefore no points 8’ such that 2> 6,>0 will satisfy (19.3). But if -
6:50, then v(6,)=1; hence, all points 8,/ <0 will satisfy (19.3).
(B): If a finite neighborhood of 8° be chosen, no matter how small,
there are points &% ¢° in this neighborhood, satisfying (19.3).
Isxample:

y = (6, + O)zy + b5z

We shall now derive certain general conditions under which (A) or
(B) will occur.

T'or this purpose we consider the function f in (19.1) as a function
of s+« independent variables, zy, @y, « + -, 2y, b1, 8, - + -, 0 We as-
sume, throughout the rest of this section, that

(1) fisdefined over a certain domain 1), of the s-dimensional z-space,
and over a certain simply conneeted region Dy of the x-dimensional
parameter space, and is a single-valued function for every point z e [,
and for every point 8 & 1.

(2) Forevery point z € D, and for every interior point 6 of Dy, f has

continuous first-order partial derivatives af/0; (i=1,2, -+, k) (Le.,
continuous in the ’s).
Definition: The function f(zy, 25, - - -, 24; 6, b, + - -, 6,) is said to

be v-fold reducible (x=»>0) at the parameter point 6 where 6° is an
interior point of Ds, if there exist x—» functions u, (6, 8, - -+, 6,),
Up(, B2, - - -, 6, ¢ v, Us(By, Gy, - - -, 04, noOt depending upon the

point z, and a function f(zy, 2s, - - -, 24; Uy, Us, * * *, Uey), having the
following properties:
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(a)f(xli Ta, * vty Xay b, 6g, 0 0 0, 9;) Ef(xl: Loy * v 0, Tay UL U, 0, uK—P)
for every point z £ D., and for every point 6 in an arbitrarily small but
finite ncighborhood of 6°.

(b) du;/06; (i=1,2, - -+, k—w; §=1,2, -+, k) exist and are con-
tinuous for every point @ within an arbitrarily small but finite neigh-
borhood of 6°.

(¢) The Jacobian matrix 8(uy, ug, * * «, Ues,)/3(61, 6, « -+, 6,) 15 Of
rank x—v at 6=146°,

If a function f has these properties at a parameter point 6° then,
clearly, there exist infinitely many points ' in the neighborhood of 69,
such that (19.3) is satisfied, for if i, ug, - - -, u.—, be fixed, v parameters
# may be chosen arbitrarily in a certain neighborhood of ¢° without
changing the value of f, whatever be x ¢ D ..

TaEOREM 1. If a function f(x1, %3, + + -, Z4; 61, 02, + + +, 6.) 28 v-fold
reducible at the parameter point 6° there exists a system of functions
N (6, B2, + -+, 0 (i=1,2, - -+ k;j=1,2, - - -, v) that are independ-
ent of the point x, and continuous tn the neighborhood of 6°, such that

A, A2ty c vy Aa

(194) )\12; )\22; Ty )\x2

>‘h, k?v; tr ity )\u
is of rank v at 6=6°, and

af of af
(19.5) Mj—— + Aj—+ - + N
96, 96, a0,

=0 (j=1,2,'~',1l),

Jor all points x ¢ D., and for all poinis 8 in an arbitrarily small but finite
netghborhood of 6°,

N

Proof: Since the Jacobian matrix 8(u;, ug, - « -, %._,)/3(6y, 62, - + -, 8,)
is of rank «x—» at 6=6% it contains at least one (x—w)-rowed
determinant that is not zero at 6=0° Since the numbering of
the 6's is arbitrary, we may, without loss of generality, assume that
A(uy, sy + -y Uey)/9(6y, Og, - - -, 0,,) is Of rank x—» for §=6°. Then
the system

ul(Bl, Bg, vy 6,) = U,

w0y, O, - -+, 0) = us,
(19.6) 28, )=

ux—r(el, 02; Tty 0::) = Ug—ry
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has a solution

8,‘ = ¢€(u1; u‘z, oty un—v; 9‘—)’-{-13 Y 6‘)

(197) (1:=1,2,"',K—-V)

which is unique in a certain finite neighborhood of 8=6° and such that

ifdu; (i=1, 2,---, k—v; j=1, 2,--+, k—v) and 09¢,/36:
(t=1, 2, - - -, k—»; k=k—w»+1, - - -, k) exist and are continuous
functions of uy, s, * =+, Usey, Oevir, + + +, O In this neighborhood,

(This follows from the classical theory of functional determinants.)
Hcnce we have

f(xly Za, © 0 0y Tay 61, 62:"':61)

(198) Ef(xl; Lo, 00, Tay @1, P2, 0 0, Peyy 6‘—'4-1: Tty BK)
Ef_(xl’ Lo, * 0ty oy Us,y Uy > 0 0y, ul—")"

By definition fhas continuous partialderivatives 9f/86:(z=1,2, - - - x);

thercfore, 8f/a¢; (i=1, 2, - - -, k—») exist and are continuous in the

neighborhood of #°. Since also d¢,/0u; =1,2, - - - ,k—v;j=1,2, - - -,
k—v) exist and are continuous as shown above, f has continuous partial

derivatives 8f/du; (j=1, 2, - - -, k—») in a certain finite neighborhood
of 6°. But when f=f also df/ou; (j=1, 2, - - -, k—») must exist and be
continuous in the same neighborhood. We therefore have

af of duy af  du.,

— = ..+ ,

691 6u1 691 aux_, (991

of  of ou f U,

= 4.4+ ,
(199) a0 aul 692 Uy 862

af  af au of  du._,

= + e + .
a0, duy a6, duy—, 9006,

(19.9) can be considered as a singular linear transformation of the
k—w variables 8f/du; (j=1, 2, - - -, k=), into the « variables 3f/d6;
(i=1, 2, - - -, k), the matrix of the transformation being—by defini-
tion—of rank x—y» for §=6° and having continuous elements in the
vieinity of ° But then Theorem 1 follows immediately from the theory
of lincar dependence.

The convcerse of Theorem 1 may be shown, under certain weak addi-
tional restrictions upon the Ns.

We shall now prove a theorem which gives a sufficient condition for
the nonexistence of a relation of type (19.3) in the vicinity of a parame-
ter point 6°, namely :
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THEOREM 2. If the functions 3f/36,, 8f/36s, - + -, 8f/36k, are linearly
independent at the point 6° i.e., if, at the parameter point 6°,

x i)
(19.10) DAL 9 Z 0
Pl ael
whatever be the system of constants X% \e° - - -, N.%, not all equal to zero,

then there exists a fintle neighborhood of the parameter point 69 such that,
in this neighborhood, there are no parameter points 6’ 6° for which (19.3)
1s satisfied.

Proof: First, it is easy to see that the linear independence of the func-
tions 3f/46; at 6 =6° implies that the sct S(6°) defined above contains at

least « different points (¥, 1, @, 2@, « . - [ 2,0} (j=1,2, - - -, k) sueh
that if
(19.11) yr = f@ (G=12 -, x),

be the system of equations obtained by inserting successively these «
point in (19.1), the Jacobian

afw i af®
06, 08, a6
af® i@ af®
(19.12) 36, o6, 86, | =0 for 6 = 6,
af(-:) af(x) af(x)
a8, as, a6

Since also, by definition, 9f/86: are continuous functions of the pa-
rameters 6, and the z’s in (19.11) are constants, it follows from the
theory of functional determinants that the system (19.11) can be solved
for 6., 6, - - -+, 6., and the solution is unigue, and therefore equal to
6,° 6,° - - -, 6,°. Within a certain finitc neighborhood of the parameter
point #° there are no other parameter points #6° satisfying (19.11).
This proves Theorem 2.
From this follows immediately

THEOREM 3. If 3f /364, f/36s, - - -, 8f /06, are linearly independent for
every point 8° in the interior of Dy, then (19.3) is at most satisfied for pa-
rameter points between which there is a finite distance greater than a cer-
fatn postiive e,

Thus, in most practical cases the question of arbitrary coeflicients
can be answered by investigating whether or not the partial derivatives
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of f with respect to the ¢’s are lincarly dependent. But for this purpose
we need—at least in the more complicated cases—a rule that decides,
in a finite number of steps, whether or not such linear dependence
exists. In the next section we shall give such a rule.

20, The Gramian Criterion for Linear Dependence of Functions
Exlended to Funetions of Several Variables

Let
Uy = Us(n, v, - -+, 5),
(20.1) Ve = Drlum )
Ua = Un(vy, 03, - - -, ¥n),
be m real functions of n>m independent real variables, vy, vg, - - -, v,

Assumption: Uy, Uy, - -+, U, are continuous functions of the n
variables v over a certain closed domain W in the v-space, defined by

(20.2) a; = 2 =12 —---,n)

where a;, @; (1=1, 2, - - -, n) are 2n real numbers.
Consider the expression

(20.3) s=cqUr+ alUy+ - 4+ calUpn,

where the ¢’s do not depend upon the ¢’s, nor the a’s in (20.2). If a sys-
tem of ¢’s, not all zero, can be found, such that

(20.4) s=0

for all values of vy, vy, - - -, v, in the domain defined by (20.2), the m

funetions (20.1) are said to be linearly dependent in W.
Let us consider the integral

(20.5) S = ff ce fs”dvldv, + oo dog.
(W)

We have
(20.6) Sz 0.

8 is zero when and only when (20.4) is true. Therefore, if a set of ¢'s,
not all zero, exists for which (20.4) is satisfied, it must—at the same
time—be such a set of ¢’s as makes S a mingmum and equal to zero. And,
conversely, if there is a set of ¢’s, not all zero, such that =0, then
(20.4) is fulfilled. The problem of lincar dependence is, thercfore, re-
duced to a study of the minimum of S with respect to the ¢’s.
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Since not all ¢’s should be zcro, we may assume that
(20.7) d>er=1
fe=1

We have to find the minimum of S under the side condition (20.7), or,
what amounts to the same, to find the unrestricted minimum of

(20.8) 8 =8 —\D ¢k

=1

where \ is a Lagrange multiplier. Let us introduce the following nota-
tions

(209) M;,‘ = ff R f U;‘(]j(d'vld?)g e dl}n)
()
(i=],2,---,m; j=1;2;"')m)-

A set of ¢’s minimizing (20.8) must satisfy the following system of lin-
ear equations

(M — Ney + M2Ce 4+ -+ Mimtm = (,

M My — A SR MamCm = 0,
(20.10) 211 + ( 22 )02 + + 2

M + Mascs - 4+ - (Mpm = Nem = 0.

(20.10) has a solution of ¢’s not all zcro when and only when the de-
terminant formed by the coefficients of the ¢’s is equal to zero, i.e.,

(Muy—2N) Mo ceo My
M My —2) -+ M,

(20.11) 21 (Ma — N) 2 -0
Ma M. s (Mam — N

Now 8 is a positive (semi) definite symmetric quadratic form. There-
fore, all A\-roots of (20.11) are nonnegative. S has, therefore, a mini-
mum =0, for other values of the ¢’s than all zeros, when and only when
the minimal A-root of (20.11) is equal to zero. 4 necessary and sufficient
condition for the linear dependence of the m functions (20.1) is, therefore,
that

(20.12) | ;| =0,
where | M| is the determinant (20.11) for XA=0.




PROBLEMS OF ESTIMATION 99

21. An Illustration of the Problems of Estimation

We shall consider a simple linear supply-demand scheme, including
certain random elements and an autonomously imposed sales tax.

Let £, be the quantity demanded at point of time £, £, the
quantity supplicd, & the price per unit sold, and &3, a sales tax per unit
sold, fixed for cach point of time independent of the quantity sold. Con-
sider these variables at & equidistant points of time ¢=1,2, - - -, N,
We shall assume it known that these variables satisfy the following
system of random equations:

(21.1) £P) = anky e t=12---,N),
i.e., a linear demand curve with random shifts e,,;
(21.2) £ = (b — &) @0 (E=1,2,---, N)

i.e., the supply is a lincar function of (price minus tax) and a random
shift e Further, we impose the market relation

(21.3) £12) = £, = &, = quantity sold at i.

We assume known the following properties of the 2N random varia-
bles ey, e, -+, an, €, €3, -+, ay: () They are tndependently and
normally distributed and (b) their distribution does not depend upon
£3.. (¢) All the & random variables ¢, {=1, 2, - - -, N, have the same
mean & and the same variance a,%; likewise, all the N random variables
€ t=1,2, - - -, N, have the same mcan & and the same variance os%

Further, we assume that there are errors of measurement in the ob-
servations of the quantity sold, £,,, such that, instead of &,, we observe

(21.4) Zre = &+ me (t=12"---,N),
while the price &; and the tax &;, are observed without errors, i.c.,

(21.5) T = bay,  Zse = a (t=1,2 -, N).
We assume that the N random variables #y, 71, + + -, 71y, are inde-

pendently normally distributed with zero means and the same vari-
ance o2, and that their distribution does not depend upon the £’s nor
the €'s.

The N numbers £, £, - - -, &v, are assumed to remain fixed in
repeated samples.

Because of (21.3), both £, and £, will be random variables. Indeed,
from (21.3), (21.1), and (21.2) we obtain (provided a; ay)

oie Q€1 — (€3¢
b= —— &3 [
Ao — X1 o —
(21.6)
s €1 = €3¢
by = ——— f3y + ——»

Qg — g ay — Qg
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which shows that both &, and &, are functions of the two independent
random variables e, and e;,.

If we could make experiments to study, separately, the demand func-
tion (21.1) and the supply function (21.2), we could reason in this way:
(1) For a given value of &, £, is a random variable with expected
value equal to ayf+&. (2) For given values of & and &3, £,9 is a
random variable with expceted value cqual to ae(f— £3,)+ & And we
could “fit each of the equations (21.1) and (21.2) scparately’ to the
respective data obtained by the two serics of cxperiments. But in our
case, becausc of the market relation (21.3), we cannot assume £ to
remain fixed in repeated samples. That would simply be inconsistent
with the original assumption that the errors ¢ and e; are independent.
To realize clearly all the implications of our scheme we have to consider
the joint probability distribution of the observed variables z;, and 2y,
given z3, 1=1,2, - -+, N.

Introducing (21.4) and (21.5) in (21.1) and (21.2), we obtain

(21.1) Z1e = oulay + e + My
(21.2%) Tre = o9(Zoe — Ta) + en +
or
Q10 Qp€1: — Q1Egg
2y =——2u +—— + my,
ap — oy — Ay
(21.6")
) €1; — €2t
Ty = ———— I + —
oy — Q) ay — o

21, and 2y, are jointly normally distributed, because they are linear
functions of the normally distributed variables e, ey, 71.. We therefore
have, for any fixed point of time ¢,

( ) . exp { : [ Skl
Pz, T Ly =———————— -
A T oy T— 2 2(1—p%) p?

_Qﬂ(xu—f:n)(xzt—ifzz)_*_ (x2¢—:22,)9]} ,

2

(21.7)

H1p2 2

where 112, 2 arc the variances of xy and z;, respectively, Zy., T2 their
mean values, and p their correlation coefficient, z;, being given. From
(21.6’) we obtain

[041s 0] 05251 - (1152

(21.8) %y = Z3 + )

ay = oy Qy —

o €1 — &
(219) Zoy = Z3: + )

Qg ™ Xy ez ™ a1
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1
(21.10)  m? = E(z1. — $1)* = ———— (a?01® + a®0e?) + 0¥,

(ar — a)?

1
(2L11) g = E(2er — T2))? = ————— (o2 + a?),
(o2 — a)?
a1 + aa,?

E(zy — £10)(%e — Z2r) = T
Hip2 (02 - al)'#l#z
This shows that only the averages % and Z;; depend upon ¢, while the
other parameters are independent of ¢.

Since the random variables 2y, 22 for one value of ¢ are distributed
independently of those at another value of ¢, the joint distribution of

the 2V variables zy, 2y, < « <, 21y, Zo1, Z29, * * *, Zow, IS

(21'13) p(xlly PR 5 LP ) VIR 1:2_\') = IIp, (t =12 ’ A")‘

(21.12) =

Let us introduce new parameters by the transformations

) 12314 2)
(21.14) aQ=—-,
dg — 1
(21.15) gy = 20T AT
Q) — ay
ay
(21.16) by = ——,
o9 — A
(21.17) by = = %
Qy — A
Then (21.8) and (21.9) become
(21.8") Z1e = mZa + @,
(21.99 Zay = bizs + bo.
Introducing (21.7) in (21.13), and using (21.8") and (21.9’), we obtain
(21.18) p = Ce?
where
0=— 1 Z[($1t—01$3¢"'a2)2
(21.19) 2(1—-p%) pr?
' 2p(¢1z—a1-’531—0r2) (xzt—blxst“b2)+ (xzz—bli'at—bﬁ]
Mipie #22 ’
and
1
(21.20)

 @mam)V(1 —
(> means, throughout this section, Y ,¥)).
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The distribution (21.18) is, therefore, characterized by 7 unknown
parameters, namely ai, s, by, by, p1, p2, p. If there exists a unique esti-
mate of these 7 parameters, the question of uniqueness of the original
parameters depends only upon the transformations (21.10)-(21.12) and
(21.14)~(21.17). Now it is easy to sce that these transformations estab-
lish a one-to-one correspondence between the old and the new parame-
ters over the whole parameter space, cxcept for a trivial set of measure
zero (namely o; =0, or az=0, or ay=a,). We therefore have to investi-
gate the uniqueness of the paramecters in (21.18). This can be done by
means of the theorems in Seetion 19.

The partial derivatives of p [in (21.18)] with respcet to the parame-
ters arc

3 3 3 3
P _ Q 9 Q
day da; aaz aa2
3 aQ 3 3
o _ e
aby aby b, by

(21.21)

ap aQ g aQ
2. eQ( +C ), L ( +C —)
s A s Ops Ouz A2

3 3
 _ ( + C_ﬁ_?)
dp ap dp

According to Scction 19 we are interested in whether these 7 partial
derivatives arc linearly dependent. If that should be the case, there
would have to exist 7\’s, Ay, Ne, - « +, A7, which are independent of the
variables z, not all zcro at the same time, and such that

aQ aQ 0Q oQ ( aC aQ )

MO 4200 —+NC — N — N —+C —
i 6a,+2 aa+3 ab1+4 b2+5 #1+ ™

+( +08—Q-) ( +ci@)=
Qus Qo dp dp

for all values of the variables z. Since we do not know the true parame-
ter values we are interested in whether there is any paramcter point
at all for which (21.22) is fulfilled.

From (21.19) and (21.20) we sec that the left-hand side of (21.22)
will be a sccond-degree polynomial in the variables z. (21.22) can be
fulfilled only if the coefficients of equal terms in this polynomial vanish
separately. Using this we verify easily that all the 7 X's must be equal
to zero, whatever be the true parameter point (except p= £1, which is
trivial), provided among the sct of ¥ constants zs, 2, « -+, Zsy, there
are at least two that are different.

(21.22)
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All the 7 parameters of (21.18) can, therefore, in general be esti-
mated.

We shall consider, in particular, the maximum-likelihood estimates™ of
the parameters in (21.18), i.¢., the parameter values obtained by setting
each of the 7 derivatives in (21.21) equal to zero and solving this system
of 7 equations. We obtain the following equations defining the maxi-
mum-likelihood estimates (which we denote by d;, d», etc.):

(21.23) 3 (24 — Gas — dy) = 0,
(21.24) 3 (22 ~ buzae ~ b) = 0,
(21.25) 2 (T — darge — do)xs = 0,
(21.26) 2 (w2 — Abx-T:u - ?)2)95& = 0,
(21.27) N2 — 2 (21 — diza — Go)2 = 0,
(21.28) . Np?— 3 (@ — byzge — b)? = 0,

> @y — Gixse — 82) (22 — bys: — ?72) _

(21.29) Np =

— = ().

g2
It is easy to verify that this system has, in general, a unique solution
with respect to the 7 parameters d;, ds, - - - ete. For example, from the
first 4 of these equations we ohtain

Mz = MM

(21.30) G =———

Mg = Ma*

~ m _— m m

(21.31) By = ————,

M3z — My’
where

1 1

(21.32) m:; = ‘ﬁ Z Tit%jt, m; = Ff- Z Zit-

These are the same results as we should obtain by writing the “con-
fluent”’ relations (21.6') in the form

(21.6"") 21 = @i%3 + a2 + crror, ro, = bixs, + be + error,

7 The method of maximum likelihood, commonly used by statisticians, was
originally founded more or less upon intuition, but recently it has been shown by
A. Wald that the method, under certain conditions, can be justified on the basis
of modern theory of confidence intervals. See his articles, ““A New Foundation
of the Method of Maximum Likelihood in Statistical Theory,” Cowles Commis-
sion for Research in Economics, Report of Sizth Annual Research Conference on
Economics and Statistics . . . 1940, pp. 33-35, and ‘“Asymptotically Most Power-
ful Tests of Statistical Hypotheses,” Annals of Mathematical Statistics, Vol. 12,
March, 1941, pp. 1-19.
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and fitting each of these equations to the data by the method of least
squares, treating z:. and .., respectively, as the dependent variable.
This would, therefore, also be a correct procedure. But the results
(21.30), (21.31) are not the same as those we should obtain by fitting
the two original equations (21.1) and (21.2') separately, treating z,, as
dependent variable in both equations. For example, from (21.14),
(21.16), (21.30), and (21.31) we obtain

my3 — Mmyamg

- —m—————

Moz — MaiN3

(21.33) & =

55")[ E)

while, if we should fit (21.1) directly by the method of least squares,
we should obtain
(21.34) ot = 2 T,

Moy — M~
which is obviously different from (21.33) since (21.34) does not depend
directly upon z3, while (21.33) does.

or* in (21.34) is simply not an estimate of a;, but something else.
The point is this: Consider the equation (21.1). From this equation we
have B(z1,| 7o) = cres+ Bl ex] 220). (21.34) would have been an estimate
of a1 if E(eie| 22¢) had been independent of zz, and z3.. But that is not
the case here. And, therefore, the assumption upon which the least-
squares ‘‘estimate’” (21.34) is based, namely that E(xu[zu)=a1x2,
-+constant, is here simply wrong. In fact, from the joint distribution
(21.18) of zy; and za, and the transformations (21.10)-(21.12) and
(21.14)—-(21.17) we obtain easily that E(xu] Z2) 1s a linear function of
Zo, and 3, namely

2 2 2
car” + oy Tor — B Z3: -+ const.
a? + ay? o + o7?

If we want to predict z\,, given z,; and z;, this formula (21.35) is
the one to be used. For that purpose we may, if we like, write (21.35)
as E(:cu[ To) = A2y + Bzs,+C, and fit this equation directly to the data
by the method of least squares. That gives the same resutt as if we first
estimate all the coefficients in (21.35) by the method of maximum like-
lihood as described above, and then insert these estimates in (21.35).

Thus, we see that the method of least squares applied to the original
equations (21.1") and (21.2') separately, netther gives correct estima-
tion formulae for the coefficients, nor does it give the correct formulae
for prediction. This shows the importance of studying the join{ dis-
tribution of all the observable random variables in a system of sto-
chastic relations,

(21.35)  E(wy| 22) =




CHAPTER VI

PronLeMs oF PREDICTION

A statistical prediction means simply a (probability) statement about
the location of a sample point not yet observed. If we consider » ran-

dom variables, say o, &3, « -+, T, and if we know their joint probabil-
ity law we may, at least in point of principle, calculate the probability
of a sample point (zy, x, - - -, z,.) falling into any given region or point-

set of the sample space, or we may prescribe a certain fixed probability
level and derive a system of regions (or point-sets) which have this
probability. In practice we should then usually be interested in that
region which, at a given probability level, is the “smallest” (in some
sense or another). Thus, if we actually knew the joint probability
law of the variables to be predicted, the problem of deriving a predic-
tion formula having certain desired propertics would merely be one of
probability calculus. And the question of choosing a “best” prediction
formula would, largely, be a subjective matter, that is, a question of the
type of “gambling” we should be willing to accept.

Usually, however, we do not know the probability law of the varia-
bles to be predicted. Then the problem of prediction becomes one
closely connected with the problems of testing hypotheses and estima-
tion. For we then have to draw inference concerning the probability
law of the variables to be predicted from samples alrcady observed.
We shall attempt to give a more general and rigorous formulation of
these problems,

22. (eneral Formulation of the Problem of Prediclion

Consider n sequences or time series of random variables zi
(1=1,2, - - -, n) observable from t=1 on, Values, if any, of the varia-
bles prior to ¢=1 we shall here consider as given constants. Suppose
that we can observe values of each series up to a certain point of time.
Let t=s; be this point of time for the 7th series. And suppose that the
problem is to predict the results of later observations not yet made.
We then have the following schedule of random variables to be con-
sidered.

Tig = Tiy Tigy * °  y Loy Tisagtly Tiegd2, © °

(221) (7' =12 -, n)-

Tyt Zau, * v v, Za,e, May for example be n related economic time sc-
ries, t=s; denoting the latest point of time for which an observation
of z; . is, so far, available. We might want to predict the next value

— 1056 —
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in one or more of the series, or the second next, or both, or any other
joint system of future values of the variables not yet observed. Con-
sider any system of M variables chosen among the variables z; .4,
(i=1,2,---,n;7r=1,2,3, - - - ). Together with the s;+s,4+ - - - +s,
=N observed variables the variables to be predicted form a system of
N<4+M random variables. Let us, for simplicity, change notations of
these variables, denoting the N observable variables by @y, oy, - - -, 2,
and the M wvariables to be predicted by ayxy1, Znys, © <+, Tayar, 80
that there is a onc-to-onc correspondence between these variables and
the N M variables z;,; considered.

The problem of prediction is then the problem of establishing cer-
tain functions of the observable variables i, 2, - - -, Zwn, that may
be used as guess values for the outcome of the future observations of
TNi1, TN4e, 7 0, Tvgar !

We shall assume that, whatever be sy, s2, - + -, 84, and whatever be
the set of M future variables considered, the joint elementary probabil-
ity law of the N+ M variables 2y, 2, « - -, 2y, vy, * © +, Tnyn eXists,
(But it might not be—and usually is not—known.) Let this joint proba-
bility be denoted by p(zy, 2, + + -, Tn, Twgy, * -+, Tvnr), OF, for short,
p. This probability law would usually be described implicitly by a sys-
tem of stochastical relations between the variables considered, as ex-
plained in Chapters IV and V.

Let us for 2 moment suppose that pis known. From p we might then
calculate the conditional elementary probability law of the A{ variables
Tngy, - v 0, Tngan given the N variables zy, o, - - -, av. Let this condi-
tional probability law be denoted by pe(zxpa, - - -,x,lexl, Ta, ¢ ¢, TN,
or for short, p.. Let p(ay, 23, - - -, 2n), or for short, p;, denote the
joint probability law of the N observable variables. We may then write

(22.2) D = Pr P

Let, further, E, denote any particular system of values—one for each—
of the observable variables z;, z - - -, zy; and, similarly, let K,
denote any system of values of the future variables Zxy1, « * +, Zyyn.
Any F; may be represented by a point in the N-dimensional sample
space R, of the variables &y, z,, - + -, Zy; and, similarly, any E; may be
represented by a point in the M-dimensional sample space R; of the
variables zxy1, - - -, Tv4ar to be predicted. Finally, let £ denote a point
in the sample space R of all N4 M variables.

Now, given any particular E,, we may from p, calculate the condi-
tional probability of K, falling into a prescribed point-set of the sample
space K This probability would usually be a function of F.. Also,

1 Bee, c.g., Harold Hotelling, “Problems of Predictions,” The American Journal
of Sociology, Vol. 48, July, 1942, pp. 61-76.
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for any given E; and for any given level of probability, 8 say, we may
derive a system of point-sets or regions in R, such that the probability
of E; falling into any particular one of these setsis 8. That is, we may
predict, with probability =8 of being correct, that E, will fall into any
particular one among these point-sets. Any such point-set in K, we
shall call a region of prediction, and we shall denote such a region by W,

In general, however, not all the regions W, of probability 8 are
equally “intercsting.” Usually (though not always) we are interested
in that region, with probability 8, which is the “narrowest,” in some
sense or another. Or, we might also be interested in predicting that the
sample point E; will not fall within a certain region. In any case the
choice of the probability level 8 and of the location of that region W,
with probability 8, which we want to use as a prediction formula will
depend on the practical use we want to make of it. This choice is not a
statistical problem. We shall simply assume that, whatever be the con-
ditional probability law p,, the purpose of our attempts to predict will
lead us to one and only one region W, of predicting E,, for every set of
values of the “predictors” z,, z, + + +, 2n.

If, therefore, we knew p, the problem of prediction would merely be
a problem of probability calculus, and not one of statistical inference
from a sample. But in most practical cases p; is not known, and we then
have to try to get information about p. from samples E; of the previous
observations. The possibility of doing so rests upon a basic assumption,
which can be formulated as follows: The probability law p of the N+ M
variables T, Ta, * + * , Ty, Tva1, * *  , Tvear 18 of such a type that the speci-
fication of py implies the complete specification of p and, therefore, of pe.

For instance, if p is characterized by a certain number of unknown
parameters, then all these parameters must also be the characteristics
of p; so that p. will contain no new parameters in addition to those
occurring in p;. This is only another, more precise, way of stating that,
in order to be able to predict there must be a certain persistence in the
type of mechanism that produces the series to be predicted.

Suppose now that the only thing known about p, is that it belongs
to a certain specified class € of elementary probability laws, and that,
therefore, p, belongs to a certain corresponding class @. Let pi* denote
any arbitrary member of €. And let Wi(;m*) be a critical region, of
size (1—a), in R, chosen according to some rule, such that the hy-
pothesis p;=p;* is rejected when and only when E| falls into Wi(p:®).
Let there be established a system of such critical regions in E,, one for
every member pi* of Q. If E, falls outside Wi(p*) then p;=p* is not
rejected. If the system of regions Wy (p*) is not to be trivial, any sample
point E; will fall outside some of the regions Wi(p*). E; being an arbi-
trary sample point of the N observable variables, let w(E:) be the sub-
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set of € in whose critical regions [of size (1—a)] E; does not fall. As
explained in Section 14 it then seems reasonable to estimate the un-
known probability law p; on the basis of I} by stating that p, € w(E£)).
Now, we have assumed above that, for every member p,* of € (or—
what is the same—for every p.* of @) and for every set of values of
I, T, - -+, Zn, our choice of prediction formula leads to one and only
one region of prediction Wy* of size 8. To the subclass w(#)) there
therefore corresponds a certain subelass of such regions of predietion.
Let K(E,) be the (logical) sum of all the elements W2* of this subclass,
It might then seem reasonable to predict E,, on the basis of the sample
point E;, by stating that

(22.3) . E, will fall into K(E)).

What is the probability of this statement bcing true? Let
g[K|pi e w(E)], or, for short, g(K) be the probability of E. falling
into K when p; ¢ w(E)). And let g{Kl D1 e [Q;—w(El)]}, or, for short,
g(K), be the probability of E; falling into K when p, is outside w(E}).
The probability, P(E, e K), of (22.3) being true is then evidently

(22.4) P(E;eK) = ag(K) + (1 — 2)2(K),

i.e., the probability of (22.3) being true is the probability of w(E\))
covering py times the probability that F, then falls into K plus the
probability that w(#;) does not cover p; times the probability that E,
then falls into K. Now, the probabilities g(K) and g(K) will, in general,
be functions of the true distribution p,. But we may give inequalities
for P(E; ¢ K). Evidently 12 ¢(K) 28, while 0= (K) £1. Therefore,

(22.5) 1= P(E;¢eK) = of.

(For particular &'s there might exist narrower limits.)

The procedure just described might also be looked upon in the follow-
ing way: We have assumed that to every member p* of @ there is a
certain region of prediction Wy* which we should use if p* were the
true distribution. If p* is the true distribution the probability that
K(E,) shall cover the corresponding region of prediction is evidently
equal to a. Therefore, K(E;) may be considered as a confidence region,
with confidence coefficient «, for estimating the location of the “ideal”
region of prediction W, corresponding to the true hypothesis.

The usual problem in practice is, however, to derive regions of predic-
tion for E. which, with a given probability level, are as ‘“‘small” as
possible. Then the regions K derived as described above might not nec-
essarily be the “best” regions to choose. More precisely, if for a given 8
the regions Wy* were the “smallest” regions (according to some meas-
ure), and if the confidence sets w(E;) were the “smallest’” confidence
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scts, the question of whether or not the corresponding K(E,), measured
in the same measure as the regions Wy* would be the “smallest” re-
gion of predietion would depend on the way in which the term “small-
est’” is defined with respect to w(E;). Or, expressed in simpler terms,
the choice of a particular system of confidence sets for estimating py
depends on some system of weights of the type of errors that might be
committed by stating that w(¥;) will cover pi. If, on the other hand,
the purpose is to derive a region of prediction K(E), a different weight-
ing of the crrors of estimate might be necessary in order to arrive at
the desired weighting of the possible errors of prediction.

We see therefore that the seemingly logical ‘“two-step’ procedure of
first estimating the unknown distribution of the variables to be pre-
dicted and then using this estimate to derive a prediction formula for
the variables may not be very cfficient. We shall discuss a simpler and
more direct method of deriving prediction formulae that avoids the
difficulties discussed above,

Let ., denote any point in the sample space Rs of Zyq1, « « -, v,
and let T7; denote a point in R, to be used as a prediction of F;. We con-
sider the problem of defining 7, as a function of z;, x5, - - -, 2w, in such
a way that the probability will be high that E; will be close to E, (in
some sense or another). We shall call E, a prediction function. If we
statc that E, will coincide with E, and this does not occur, we commit
an error the consequences of which will depend on the purpose of the
prediction. Using an idea of A. Wald? we might assign a system of
welghts to the various possible errors. Let this system be defined by
a weight function Q(E,, E;), such that Q=0 if E;=E; and Q=0 (and
not identically zero) for all points Ey s E;. Q might be considered as the
“loss'’ incurred if By E,. The expected value r of this loss, in repeated
samples, is given by

(22.6) r= f Q(E,, E;)pdE,
R

the integral being taken over the whole sample space R of the N4/
variables i, 2, * + -+, Tw, Tngy, - -+, Tvpm. We have to choose E; as
a function of z;, 2z, - - -, 2y, and we should, naturally, try to choose
Ey(xy, 13, + -+, zw) in such a way that r (the “risk’’) becomes as small
as possible.

Suppose there should exist a prediction function Eax(xy, s, + - -, o),
depending on z,, 2, - + -, 2y only, such that for this particular function
r would be at a minimum, independently of what be the true distribu-

* Bee A. Wald, “Contributions to the Theory of Statistical Estimation and

Testing Hypotheses,” Annals of Mathematical Statistics, Vol. 10, December, 1939,
pp. 299-326.
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tion p; (within ©;). Then we should naturally choose this function at
the best prediction relative to the given weight-function . We might
call such a prediction function “uniformly best (within Q) relative to
the given weight function.”

In a few simple cases such prediction functions might exist. In gen-
eral, however, we may expect that no uniformly best prediction func-
tion exists. Then we¢ have to introduce some additional principles in
order to choose a prediction function. We may then, first, obviously
disregard all those prediction functions that are such that there exists
another prediction function that makes r smaller for every member of Q.
If this is not the case we call the prediction function considered an
admissible prediction function. To choose between several admissible
prediction functions we might adopt the following principle, introduced
by Wald: For every admissible prediction function E, the “risk” 7 is
a function of the true distribution p. Consider that prediction func-
tion E, among the admissible ones, for which the largest value of r
is at a minimum (i.c., smaller than or at most cqual to the largest value
of  for any other admissible E;). Such a prediction function, if it exists,
may be said to be the least risky among the admissible prediction func-
tions. The problem of deriving such prediction functions is closely re-
lated to the similar problem of deriving best estimates.®

23. Some Practical Suggestions for the Derivation of
Prediction Formulae

From the discussion just concluded it is seen that the choice of a
prediction formula cannot, in general, be made entirely on objcctive
grounds. The choice of the weight function @, for instance, is not an
objective statistical problem. Also, the choice of a prediction formula
when no uniformly best prediction formula exists is a more or less
subjective matter. The advantage of the formal procedure we have out-
lined is, however, that it describes precisely where and how the subjec-
tive elements come into the picture, and what their logical consequences
are. The apparatus described gives us more efficient tools for forming
the prediction functions according to our wish. Thus, for instance, the
notion of a weight function @ is useful in the sense that, if we should
choose a prediction functon more or less arbitrarily (by a freehand
method, let us say), the corresponding weight function that would
make this arbitrary choice the “best” might be such that we would
not accept it. That is, we should realize that the arbitrarily chosen
prediction function was not very good after all.

3 For a discussion of the problems of predietion within a model of linear sto-
chastic difference equations see Mann and Wald op. cit., pp. 192-202.
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A practical rule, perhaps not generally recognized, in dealing with
several time sequences simultaneously is the following: If we want to
predict future values for one or morc of the sequences it is usually
necessary to derive the prediction formulae on the basis of the joint
distribution of the observable elements in all the series. That is, we have
to take into account, not only the serial, stochastical, dependence be-
tween successive observations in one and the same sequence, but also
the interdependence, if any, between the various sequences considered.
The situation is here similar to the situation in regard to estimation of
unknown parameters, as discussed in Chapter V.4

The apparatus set up in the preceding scction, although simple in
principle, will in general involve considerable mathematical problems
and heavy algebra. There are, however, important cases where more
simple procedures will be sufficient. We should hike to suggest one such
procedure that might be applied with success in certain ordinary cascs
oceurring frequently in econometrics and other types of statistical re-
search.

Suppose we have a case where the following assumptions are fulfilled
(using here the notations of Scetion 22):

1. The distribution p; of zy, 2o, - - -, 25 1s known to belong to a
parametric family of distributions, involving the unknown parame-
ters ay, as, - - -, ap ie, we may write m=piz), I, e , TN
o, az, ¢ -+, ), or, for short, pi[Ey; () ].

2. The distribution p of all the N+ M variables considered is ob-
tained simply by substituting N+M for N in p,, N and M being arbi-
trary positive integers (except, perhaps, that N may have to be larger
than a certain positive integer, say Ny). ps is, therefore, also known,
except for the values of the parameters a.

3. It is established that the maximum-likelihood estimates of the o’s
derived from pi[Ey; ()] for an observed sample E; are unbiasced and
converge stochastically to the true parameter values with increasing N,
and that these estimates are “good” estimates also for moderate size
of N.

Consider the “conditional risk” 7 defined by

(231) F = Q(Eg, Ez)])z[Eg,' (a) I E1] dEz

B,
For fixed £; we may consider 7 as a function of F2. We might then pro-
ceed as follows, to derive the prediction function By = Ea(zy, 23, - - -, 2¥):

¢ For further discussion of this particular problem see the author’s article,
“Statistical Implications of a System of Simultancous Equations,” FEcoNoMET-
Rica, Vol. 11, January, 1943, pp. 1-12. See also the discussion by H. B. Mann
and A. Wald, op. cit.,, pp. 215-218.



112 THE PROBABILITY APPROACH IN ECONOMETRICS

I. Find that point E, which, for a given set of &’s and a given sample
of xy, za, - - -, Ty, makes 7 & minimum (assuming that such a minimum
exists). The point E; corresponding to this minimum of 7 will, in gen-
eral, be a function of the o’s and the observable variables zy, 2, - - -, 2x.
Denoting this function by E, we may therefore write

E, = Eﬁ(xl, Xoy, *+ , TN, 1, Q2, * * -, ak)-

IT. In the function E; insert for the o’s their maximum-likelihood es-
timates i, as, - - -, &, as derived from the observations zy, r2, - -, zx
and the distribution p,. The resulting prediction formula B = Fa(z1, 2s,

.-+, Xy} &1, &, - - -, &) then contains only known elements and is,
therefore, determined.

This procedure can be shown to lead to the same prediction formulae,
in certain ordinary cases, as those which are already established as
“best’” on the basis of the general theory of statistical estimation. We
shall give an example.

Consider a sequence of random variables defined by the recurrence
formula

(232) = kx4 & (t =12 .- )7

where 7, is a given constant, while k is an unknown constant, and where
the ¢'s are independently, normally distributed with means equal to
zero, and the same variances, cqual to o2 Suppose we have observed z,
up to and including zy and we want to predict 2x,; and zy42. Assume
further that we have chosen a weight function of the following type:

Q = a(Tyir — Eni2)? + 2b(Tvys — Taye) (@vgr — Tagr)

+ clzvp — Ex1)y

(23.3)

where Zy41 and Zx,42 denote the predicted values of zy,1 and 2y, and
where >0, b, and ¢ are certain known constants, such that ac> b2
(That is, the weight of an error in prediction is constant along an ellipse,
with center at Eyy1, Zxys.)

The joint distribution of zxy1 and zx e, given the preceding z’s, is

23.4 = g (/Y

( ) pe 2ro?

where

(23.5) V = (avp1 — kan)? 4+ (znge — kzyg)

The conditional expectation of @ is then [see (23.1)],

+-= o0 l
(23.6) = f f Qe 01D Y dgy dzy 4.
-% —0

2rg?
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Minimizing 7 with respect to Zy41 and Zy2 we obtain the following two
equations for &y and Zy,s,

AQTyye + b‘.t-?N+1 = gklzy + bkx,v,

(23.7) ]
bEyye + cEnvyr = bk*ry + ckaw,
which give
Iy = kaw,
(23.8) T *

Inse = k%,

independently of the values of a, b, and ¢. That is, the “best” prediction
values relative to the weight function (23.3) are the expected values of
Ty41 and Ty But we do not know k. Its maximum-likelihood estimate
k is, however,

i TiTtn1
(23.9) S

N
Z Ty y?

t=l

Our prediction formulae are thercfore, according to the principle
adopted,
ig\'{-l = }}x:\r’

(23.10)

Byp2 = By

To judge the reliability of the prediction we may, e.g., consider the
probability of (zwy1—&nx41) and (Tyje—ZEws42) being within certain
bounds, the variables Zv.,1 and &v.. being defined by (23.9) and (23.10);
or, we could simply study the values of the risk, as calculated from
(22.6).
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CoNCLUSION

The patient reader, now at the end of our analysis, might well be
left with the feeling that the approach we have outlined, although
simple in point of principle, in most cases would involve a tremendous
amount of work. He might remark, sarcastically, that “it would take
him a lifetime to obtain one single demand elasticity.” And he might
be inclined to wonder: Is it worth while? Can we not get along, for
practical purposes, by the usual short-cut methods, by graphical curve-
fitting, or by making fair guesses combining our general experiences
with the inference that appears “reasonable’’ from the particular data
at hand?

It would be arrogant and, indeed, unjustificd to condemn all the
short-cut methods and the practical guesswork which thousands of
economists rely upon in their daily work as administrators or as ad-
visers to those who run our economy. In fact, what we have attempted
to show is that this kind of inference actually is based, implicitly and
perhaps subconsciouslty, upon the same principles as those we have
tried to describe with more precision in our analysis. We do, however,
believe that economists might get more useful and reliable information
(and also fewer spurious results) out of their data by adopting more
clearly formulated probability models; and that such formulation might
help in suggesting what data to look for and how to collect them. We
should like to go further. We believe that, if economics is to establish
itself as a reputable quantitative science, many economists will have
to revise their ideas as to the level of statistical theory and technique
and the amount of tedious work that will be required, even for modest
projects of research. On the other side we must count the time and work
that might be saved by climinating a good deal of planless and futile
juggling with figures. Also, it is hoped that expert statisticians, once
they can be persuaded to take more interest in the particular statistical
problems related to econometries, will be able to work out, explicitly,
many standard formulae and tables. One of the aims of the preceding
analysis has been to indicate the kind of language that we believe the
cconomist should adopt in order to make his problems clear to statis-
ticians. No doubt the statisticians will then be able to do their job.

In other quantitative sciences the discovery of “laws,” even in highly
specialized fields, has moved from the private study into huge scientific
laboratories where scores of experts are engaged, not only in carrying
out actual measurements, but also in working out, with painstaking
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precision, the formulae to be tested and the plans for the crucial experi-
ments to be made. Should we expect less in economic research, if its
results are to be the basis for economic policy upon which might depend
billions of dollars of national income and the general economic welfare
of millions of people?
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