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Think of confirmation in the context of the Ravens Paradox this way. The likelihood ratio 

measure of incremental confirmation gives us, for an observed Black Raven and for an observed 

non-Black non-Raven, respectively, the following “full” likelihood ratios:
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 P[Bc·Rc | HK]  P[Bc | RcHK]  P[Rc | HK] 

 ---------------------  = ---------------------   -----------------  

 P[Bc·Rc | ~HK]  P[Bc | Rc~HK]  P[Rc | ~HK] 

 

      = (1/ P[Bc | Rc~HK])    (P[Rc | HK]/P[Rc | ~HK])   and 

 

 P[~Bc·~Rc | HK]   P[~Rc | ~BcHK]   P[~Bc | HK] 

 -------------------------  = ------------------------    -------------------  

 P[~Bc·~Rc | ~HK]  P[~Rc | ~Bc~HK]  P[~Bc | ~HK] 

 

       = (1/ P[~Rc | ~Bc~HK])   (P[~Bc | HK]/P[~Bc | ~HK]). 

 

Each “full” likelihood ratio decomposes into two parts, a “standard” likelihood ratio, and a 

second likelihood ratio of a “non-standard” sort, involving what may be considered the 

experimental or observation conditions.  

 

In the case where a Black Raven is in evidence, the standard likelihood ratio compares the 

likelihood that a given Raven should turn out to be Black when H is true to its likelihood when H 

is false. The non-standard likelihood ratio compares the likelihood that a Raven should come to 

be in evidence at all when H is true, given background knowledge K, to its likelihood when H is 

false. The full likelihood ratio is just the product of these two parts. 

 

Similarly, when a non-Black non-Raven is in evidence, the standard likelihood ratio compares 

the likelihood that a given non-Black object should turn out to be a non-Raven when H is true to 

its likelihood when H is false. And the non-standard likelihood ratio compares the likelihood that 

a non-Black object should come to be in evidence at all when H is true, given background 

knowledge K, to its likelihood when H is false. And again, the full likelihood ratio is just the 

product of these two parts. 

 

Although Bayesians sometimes ignore this non-standard likelihood ratio, consisting of the 

experimental or observation conditions, Bayes‟ theorem actually requires this ratio. To see this, 

just have a look at the ratio form (i.e. odds form) of Bayes‟s theorem: 

 

                                                 
1
 „H‟ is our abbreviation for the Ravens hypothesis, “All Ravens are Black”: x(Rx  Bx). K is 

relevant background knowledge. The meanings of the remaining notation should be obvious. 



 P[H | Bc·RcK]  P[Bc | RcHK]  P[H | RcK] 

 -------------------- = --------------------  -----------------    

 P[~H | Bc·RcK]  P[Bc | Rc~HK]  P[~H | RcK] 

  

       P[Bc | RcHK]  P[Rc | HK]  P[H | K]  

      = --------------------  ----------------  ------------   

       P[Bc | Rc~HK]  P[Rc | ~HK]  P[~H | K] 

 

One might try to hide the non-standard ratio factor by burying Rc in K. But then K is just some 

background knowledge K* that has been updated with Rc; so in effect P[H | K] = P[H | RcK*]; 

so updating on Rc has occurred without explicit acknowledgement. Or one might just assume 

that Rc on its own (i.e., without Bc or ~Bc) makes no difference, that P[H | RcK] = P[H | K]. 

This assumption may provide an easy resolution of the Ravens paradox, but our approach will be 

more general. Taking P[H | RcK] to equal P[H | K] is just a special case of our resolution. 

 

At a glance you can see that for the incremental confirmation of H due to a Black Raven, 

(Bc·Rc), to beat out the incremental confirmation due to a non-Black non-Raven, (~Bc·~Rc), the 

following two conditions would suffice: 

 

 (1) the standard likelihood ratio for a given Raven to turn out Black,  

   P[Bc | RcHK] / P[Bc | Rc~HK]  =  1 / P[Bc | RcHK], 

  is larger than 

  the standard likelihood ratio for a given non-lack object to turn out to be a non-Raven, 

   P[~Rc | ~BcHK] / P[~Rc | ~Bc~HK]  =  1 / P[~Rc | ~BcHK] ; 

 

 (2) the incremental confirmation due to a non-Black object on its own, 

   P[~Bc | HK] / P[~Bc | ~HK], 

  is not so much larger than  

  the incremental confirmation due to a Raven on its own,  

   P[Rc | HK] / P[Rc | ~HK]  

  that it swamps the influence of the standard likelihood ratios in clause (1). 

 

Indeed, conditions (1) and (2) as we‟ve just stated them are stronger than required. All that‟s 

really needed is for the standard likelihood ratios in clause (1) to combine with the non-standard 

likelihood ratios of clause (2) in such as way as to make the full likelihood ratio due to a Black 

Raven larger than the full likelihood ratio due to a non-Black non-Raven. That is, we‟ll have 

 

 P[Bc·Rc | HK]  P[~Bc·~Rc | HK] 

 --------------------   >   -----------------------  just in case we have 

 P[Bc·Rc | ~HK]  P[~Bc·~Rc | ~HK] 

 

   P[Bc | RcHK]  P[Rc | HK]  P[~Rc | ~BcHK]  P[~Bc | HK] 

   --------------------  ----------------   >   -----------------------   ------------------ 

   P[Bc | Rc~HK]  P[Rc | ~HK]  P[~Rc | ~Bc~HK] P[~Bc | ~HK]  . 

 



Our resolution of the Ravens paradox will draw on a way to characterize the sizes of the 

standard likelihood ratios, together with an assessment of how this bears on the permitted sizes 

of the non-standard ratios. This approach leads to an exceptionally general resolution of the 

Ravens issue. It turns out to provide quite plausible necessary and sufficient conditions for a 

Black Raven to confer more incremental support on “All ravens are black” than does a non-

Black non-Raven. 

 

To be perfectly rigorous about all this let‟s first set down some very weak conditions that suffice 

to make all the conditional probabilities we‟ll be dealing with well-defined, so that no divisions 

by zero occur in the definitions of any conditional probabilities on which we‟ll be drawing. 

These conditions also suffice to avoid completely trivial confirmational contexts for the Ravens 

situation – e.g. they suffice to make the prior probability of “All ravens are Black” greater than 0 

and less than 1 relative to background knowledge K; and they guarantee the possibility that the 

evidence my turn up a Black Raven, or a non-Black Raven, or a non-Black non-Raven. 

 

Non-Triviality Assumptions:  P[~Bc·Rc | K]  >  0, and  

 P[Bc·Rc | K]  >  P[(Bc·Rc)~H | K] > 0, and P[~Bc·~Rc | K]  >  P[(~Bc·~Rc)~H | K]  > 0. 

 

The conditional probability P[Bc | Rc~HK] (that object c is Black given that it‟s a Raven and 

that the Ravens hypothesis H is false) will play an important role in our analysis. So let‟s label it 

by letting „p‟ represent its value:  p = P[Bc | Rc~HK]. The Non-Triviality Assumptions imply 

that 0 < p < 1.
2
  

 

Our analysis will draw on the relative sizes of the probabilities of an object turning out to be non-

Black as compared to it turning out to be a Raven, when the ravens hypothesis H (together with 

background K) is true. We label the numerical value of this ratio with the letter „r‟:  

r = P[~Bc | HK] / P[Rc | HK]. Presumably the value of r should be quite large. However, our 

analysis will not presuppose that this is so. The Non-Triviality Assumptions guarantee that the 

denominator P[Rc | HK] > 0 and that the numerator P[~Bc | HK] > 0. Thus, r is “well-defined” 

in the sense that the denominator of its definition cannot take the value 0; and r > 0. That‟s all 

we‟ll presuppose about r for now. In particular, although it may be reasonable to suppose that r is 

very much larger than 1 (perhaps a million to 1, or larger), we won‟t presuppose that here. 

Rather, we‟ll explicitly state any such supposition when it becomes relevant to our analysis. 

 

Our analysis will also draw on the relative sizes of the probabilities of an object turning out to be 

non-Black as compared to it turning out to be a Raven, when the ravens hypothesis H (together 

with background K) is false. We‟ll label the numerical value of this ratio with the letter „q‟:  

q = P[~Bc | ~HK] / P[Rc | ~HK]. The Non-Triviality Assumptions guarantee that the 

denominator P[Rc | ~HK] > 0 and that the numerator P[~Bc | ~HK] > 0. Thus, q is also “well-

defined” in the sense that the denominator of its definition cannot take the value 0. We‟ll 

presuppose nothing else about q. Although it may be reasonable to take q to be a lot larger than 

1, we won‟t presuppose that, but will explicitly state this supposition in cases where it becomes 
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 Because P[(Bc·Rc)~H | K] > 0 and (since ~BcRc |= ~H) P[~Bc·Rc~H | K] = P[~Bc·Rc | K] > 

0, so P[Rc~H | K] = P[Bc·Rc~H | K] + P[~Bc·Rc~H | K] > P[Bc·Rc~H | K] > 0, so 1 > 

P[(Bc·Rc)~H | K]/P[Rc~H | K] > 0, so 1 > P[Bc | Rc~HK] > 0. 



relevant to our analysis. One additional point about q: it follows from the Non-Triviality 

Assumptions that q > 1p > 0. (This and other such claims are proved in the Appendix.)  

 

The following theorem provides all of the essential ingredients of our resolution of the Ravens 

issue. (Non-Triviality implies that all conditional probabilities we draw on here and in the proof 

of this theorem are well-defined and greater than zero. All results are proved in the Appendix.)    

 

Ravens Theorem. Non-Trivality together with the definitions of factors p, q, and r suffice for: 

 

r = P[~Bc | HK]/P[Rc | HK]  > 0;   q = P[~Bc | ~HK]/P[Rc | ~HK]  > 0; 

 

1  >  p = P[Bc | Rc~HK]  > 0;   q  >  (1p)  > 0; 

 

P[Bc | RcHK]     P[~Rc | ~BcHK] 

--------------------  =  1/p > 1  ;  -----------------------  =  1 / (1  (1p)/q)  > 1  ; 

P[Bc | Rc~HK]     P[~Rc | ~Bc~HK] 

 

P[Bc | RcHK]   / P[~Rc | ~BcHK]   1  (1p)/q  1  (1p)/q 

-------------------- / ----------------------- = -------------- = ---------------  ; 

P[Bc | Rc~HK]  /  P[~Rc | ~Bc~HK]   p    1  (1p) 

            >  1  when q > 1, 

            =  1  when q = 1, 

            <  1  when q < 1  {note: q > (1p)}; 

 

P[Rc | HK]    / P[~Bc | HK] 

----------------  / ------------------  = q/r  ; 

P[Rc | ~HK]  / P[~Bc | ~HK] 

 

P[BcRc | HK]    / P[~Bc~Rc | HK] 

--------------------  / ----------------------- 

P[BcRc | ~HK]   / P[~Bc~Rc | ~HK] 

 

       1  (1p)/q P[Rc | HK]    / P[~Bc | HK] 

      = --------------  ----------------  / ------------------ 

        p   P[Rc | ~HK]  / P[~Bc | ~HK] 

 

      = [q  (1p)] / (rp)  ; 

 

P[BcRc | HK]  P[~Bc~Rc | HK] 

-------------------- > ----------------------- if and only if 

P[BcRc | ~HK]  P[~Bc~Rc | ~HK] 

 

     P[Rc | HK]       P[~Bc | HK] 

     ---------------- > (p + (1p)/r)   -----------------   

     P[Rc | ~HK]       P[~Bc | ~HK]  . 



 

This theorem presupposes nothing about the sizes of p, q, and r except what‟s already implied by 

Non-Triviality. In particular, it does not presuppose that P[~Bc | K] > P[Rc | K], or anything like 

that. The theorem begins by summarizing facts about the factors p, q, and r. It adds the fact that 

q > 1p, which is derived from the Non-Triviality Assumptions. It then tells us how p, q, and r 

figure into the various likelihood ratios and various ratios of likelihood ratios. 

 

First we see that the standard likelihood ratio that a given Raven will turn out to be Black is just 

1/p, which has to be greater than 1. So this must constitute positive evidence for “All ravens are 

black”. The theorem also shows that the standard likelihood ratio that a given non-Black object 

will turn out to be a non-Raven is 1 / (1  (1p)/q). This factor must also be greater than 1, so 

this must also constitute positive evidence for the Ravens hypothesis, H.
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The theorem next provides formulas for the ratio of standard likelihood ratios. It shows that with 

regard to the standard likelihood ratios, a Raven found to be Black is more support / equal 

support / less support for H than a non-Black object found to be a non-Raven just when q is 

greater than 1 / equal to 1 / less than 1, respectively. To see this clearly, first look at the formula 

(1  (1p)/q) / p. It shows that when q is quite large (which would be a very reasonable 

supposition), the ratio of standard likelihood ratios is only a tiny bit below 1/p > 1 (since  the 

numerator (1  (1p)/q) will be just a smidgen below 1). The alternative version of the formula, 

(1(1p)/q) / (1(1p)), makes it clear that if q is near 1 but larger than 1, then the whole 

formula remains larger than 1 (since the numerator will be just a bit larger than the denominator, 

because a tiny bit less is subtracted from 1 in the numerator than in the denominator); so for q > 

1, the standard likelihood ratios will continue to provide more evidential support from a Raven 

found to be Black than from a non-Black object found to be a non-Raven. This same formula 

shows that for q = 1 the ratio of standard likelihood ratios equals 1; so the evidential support 

from a Raven found to be Black is precisely the same as the evidential support from a non-Black 

object found to be a non-Raven. When q is just a bit below 1, the formula becomes less than 1 

(since the numerator will be just a bit smaller than the denominator, because a tiny bit more is 

subtracted from 1 in the numerator than in the denominator); so for q < 1, a non-Black object 

found to be a non-Raven will supply a bit more support than a Raven found to be Black. Both 

versions of the formula go on to show that as q approaches its lower bound (1p), the numerator 

approaches 0; so a Raven found to be Black supplies only an extremely tiny fraction of the 

support given by a non-Black object found to be a non-Raven. 

 

Next the theorem acknowledges that from the definitions of q and r alone we get 

 

  q/r  =   (P[Rc | HK]/P[Rc | ~HK]) / (P[~Bc | HK]/P[~Bc | ~HK]), 

 

which is the ratio of the non-standard likelihood ratios. 

 

Finally, the theorem provides a formula for the ratio of the full likelihood ratios, which is given 

by the product of the ratio of standard likelihood ratios and the ratio of the non-standard 

likelihood ratios. This formula is really the key to resolving the Ravens issue. The bi-conditional 
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 Because q > (1p) > 0, so 1 > (1p)/q > 0, so 1 > (1  (1p)/q) > 0, so 1 < 1/ (1  (1p)/q). 



at the end of the theorem expresses the most essential implications for the resolution of the 

Ravens issue. It says that a Black Raven incrementally supports “All ravens are black” more 

strongly than does a non-Black non-Raven (according to the likelihood ratio measure) just in 

case the two non-standard likelihood ratios are related by the inequality: 

 

  P[Rc | HK]/P[Rc | ~HK]  >  (p + (1p)/r)  (P[~Bc | HK]/P[~Bc | ~HK]). 

 

Thus, a Black Raven incrementally supports H more strongly than does a non-Black non-Raven 

just when 

 

the degree of incremental support for (or against) H due to an object that‟s merely establish 

to be a Raven (as measured by the likelihood ratio) must be larger than a multiplicative 

factor (p + (1p)/r) of the incremental support for (or against) H due to an object that‟s 

merely establish to be non-Black. 

 

Up to this point we have drawn on the Non-Triviality Assumption, and nothing more. However, 

in the context of the Ravens issue the results we‟ve been investigating will primarily of interest 

in the case where P[~Bc | HK]  P[Rc | HK] (i.e. where r  1). Taking the confirmational 

probability P[~Bc | HK] to be at least as large as P[Rc | HK] would be extremely plausible 

supposition. For instance, if we think of c as a randomly selected medium sized object, 

P[~Bc | HK] should be much larger than P[Rc | HK], given typical background knowledge that 

the number of non-Black objects far exceeds the number of Ravens. In any case, supposing 

merely that P[~Bc | HK]  P[Rc | HK], the multiplicative factor (p + (1p)/r) has to be less than 

or equal to 1 (since p is strictly between 0 and 1). In that case the following corollary goes right 

to the heart of the matter. 

 

Corollary to the Ravens Theorem:  Suppose Non-Trivality. And suppose in addition that 

P[~Bc | HK]    P[Rc | HK] (i.e. r  1).  Then 1  (p + (1p)/r) >  p > 0. 

Furthermore (given r  1), 

 

   P[Bc·Rc | HK]  P[~Bc~Rc | HK] 

   -------------------- > ----------------------- if and only if    either 

   P[Bc·Rc | ~HK]  P[~Bc~Rc | ~HK] 

 

    P[Rc | HK]  P[~Bc | HK] 

  (1)  ---------------- > ------------------    or 

    P[Rc | ~HK]  P[~Bc | ~HK] 

  

    P[~Bc | HK]  P[Rc | HK]      P[~Bc | HK] 

  (2)  ------------------  ---------------- > (p + (1p)/r) ------------------ and r > 1 ;

    P[~Bc | ~HK]  P[Rc | ~HK]      P[~Bc | ~HK]  

 

If the mere fact that object c is non-Black, all on its own, could supply much stronger 

incremental support for H than the mere fact that object c is a Raven, then a non-Black non-

Raven might turn out to supply stronger support for H than a Black Raven. But, if a mere non-



Black object is at best only a little more evidence for H than is a mere Raven, then a Black 

Raven must incrementally support H more strongly than a non-Black non-Raven. How much 

more strongly can a mere non-Black object incrementally support H than does a mere Raven 

while still permitting a Black Raven to incrementally support H more strongly than a non-Black 

non-Raven? The corollary answers this question precisely. It says that when P[~Bc | HK]  

P[Rc | HK] (i.e. when r  1), the following disjunction provides a necessary and sufficient 

condition for a Black Raven to support H more strongly than does a non-Black non-Raven: 

 

either (1) the incremental support for H conferred by a mere Raven is larger than the 

incremental support for H conferred by a mere non-Black object – i.e. 

    P[Rc | HK]/P[Rc | ~HK]  >  P[~Bc | HK]/P[~Bc | ~HK], 

 

or else (2) although the incremental support for H conferred by a mere non-Black object may be 

larger than (or as large as) the incremental support for H conferred by a mere Raven, 

nevertheless, at least some fraction (p + (1p)/r) of the degree of incremental support 

for H conferred by a mere non-Black object (as measured by the likelihood ratio 

measure), must remain smaller than the degree of incremental support for H 

conferred by a mere Raven (as measured by the likelihood ratio measure) – i.e.   

    P[~Bc | HK]/P[~Bc | ~HK]    P[Rc | HK]/P[Rc | ~HK]  >   

             (p + (1p)/r)  P[~Bc | HK]/P[~Bc | ~HK]. 

 

Finally, notice that if in some context the r  1 supposition doesn‟t seem appropriate, we don‟t 

really have to rely on it for a resolution of the Ravens issue. The main theorem itself tells us all 

that‟s really required. For, given only the Non-Triviality Assumptions, it‟s both sufficient and 

necessary that for a Black Raven to support H more strongly than a non-Black non-Raven, the 

non-standard likelihood ratios are related by the inequality 

 

 P[Rc | HK]/P[Rc | ~HK]  >  (p + (1p)/r)  (P[~Bc | HK]/P[~Bc | ~HK]), 

 

whatever the numerical value of r may be! 

 

One final bit of housekeeping:  

 

The equation for the ratio of full likelihood ratios in the Ravens Theorem also appears to suggest 

the following result: 

 

 

   P[Bc·Rc | HK]  P[~Bc~Rc | HK] 

(†)  -------------------- > ----------------------- if and only if 

  P[Bc·Rc | ~HK]  P[~Bc~Rc | ~HK] 

 

    P[Rc | HK]        p      P[~Bc | HK] 

    ---------------- > --------------  ------------------ 

    P[Rc | ~HK]       1  (1p)/q P[~Bc | ~HK]  . 

 

So why does our resolution of the Ravens issue draw on a different bi-conditional, 



 

  P[Bc·Rc | HK]  P[~Bc~Rc | HK] 

(*)  -------------------- > ------------------------ if and only if 

  P[Bc·Rc | ~HK]  P[~Bc~Rc | ~HK] 

 

    P[Rc | HK]       P[~Bc | HK] 

    ---------------- > (p + (1p)/r) ------------------ 

    P[Rc | ~HK]       P[~Bc | ~HK] 

 

instead of drawing on (†)? 

  

The alternative inequality (†) does indeed hold. However, it turns out that a Black Raven is more 

incrementally confirming than a non-Black non-Raven just when the factor (p + (1p)/r) is larger 

than the factor p/(1(1p)/q). So equation (*) is more telling than equation (†). That is, it turns 

out that for a Black Raven to be more confirming that a non-Black non-Raven we must have the 

following (necessary and sufficient) relationship among the non-standard likelihood ratios:
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 (P[Rc | HK]/P[Rc | ~HK])  >  [p + (1p)/r]  (P[~Bc | HK]/P[~Bc | ~HK]) 

 

          >  [p/(1  (1p)/q)]  (P[~Bc | HK]/P[~Bc | ~HK]) 

 

       >  p  (P[~Bc | HK]/P[~Bc | ~HK]) . 

 

All of this is established by the version of the main theorem we provide in the Appendix. 

 

 

Appendix 

 

It‟s easy to check that Non-Triviality yields 1 > p = P[Bc | Rc~HK] > 0, and P[Rc | HK] > 0, 

and P[~Bc | HK]/P[Rc | HK] = r > 0, and P[~Bc | ~HK] > 0, and P[Rc | ~HK] > 0. Define q = 

P[~Bc | ~HK]/P[Rc | ~HK]; and notice that q > 0 as well. 

 

Ravens Theorem. Non-Trivality together with the definitions of factors p, q, and r suffice for: 

 

r = P[~Bc | HK]/P[Rc | HK]  > 0;   q = P[~Bc | ~HK]/P[Rc | ~HK]  > 0; 

 

1  >  p = P[Bc | Rc~HK]  > 0;   q  >  (1p)  > 0; 

 

P[Bc | RcHK]     P[~Rc | ~BcHK] 

----------------------  =  1/p > 1  ; -------------------------  =  1 / (1  (1p)/q)  > 1  ; 

P[Bc | Rc~HK]     P[~Rc | ~Bc~HK] 
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 The necessity and sufficiency of this relationship doesn‟t depend at all on whether or not r  1.  



P[Bc | RcHK]    / P[~Rc | ~BcHK]   1  (1p)/q  1  (1p)/q 

----------------------  / ------------------------- = -------------- = ---------------  ; 

P[Bc | Rc~HK]   / P[~Rc | ~Bc~HK]   p    1  (1p) 

 

            >  1  when q > 1, 

            =  1  when q = 1, 

            <  1  when q < 1  {note: q > (1p)}; 

 

P[Rc | HK]     / P[~Bc | HK] 

------------------  / -------------------- = q/r  ; 

P[Rc | ~HK]   / P[~Bc | ~HK] 

 

P[BcRc | HK]    / P[~Bc~Rc | HK] 

----------------------  /   ------------------------- 

P[BcRc | ~HK]   /     P[~Bc~Rc | ~HK] 

 

       1  (1p)/q P[Rc | HK]     / P[~Bc | HK] 

      = --------------  ------------------   /   ------------------- 

        p   P[Rc | ~HK]   / P[~Bc | ~HK] 

 

      = [q  (1p)] / (rp)  ; 

 

P[BcRc | HK]  P[~Bc~Rc | HK] 

----------------------   > -------------------------   if and only if 

P[BcRc | ~HK]  P[~Bc~Rc | ~HK] 

 

     P[Rc | HK]       P[~Bc | HK] 

     -----------------  > (p + (1p)/r)   -------------------   

     P[Rc | ~HK]       P[~Bc | ~HK] 

 

     if and only if (p + (1p)/r)  >  p / (1  (1p)/q) 

 

     if and only if q  >  rp + (1p). 

 

Notice that both (p + (1p)/r) > p and p/(1  (1p)/q) > p. 

  Also notice that when q  >  rp + (1p): if r  1, then q  >  rp + (1p)    1; 

             if r  1, then q/r  >  p + (1p)/r    1. 

 

proof:  The first three equations come directly from the definitions of r, q, and p. 

 

 The fifth equation, P[Bc | RcHK]/P[Bc | Rc~HK]  =  1/p > 1, holds because 

P[Bc | RcHK] = 1 and 1 > p > 0. 

 

 The fourth and sixth equations follow from the following considerations: 

 



 P[~Rc | ~Bc~HK]  =  {1  (P[Rc~Bc | ~HK]/P[~Bc | ~HK])} 

 

  =  {1  (P[~Bc | Rc~HK] P[Rc | ~HK]/P[~Bc | ~HK])} 

 

  =  {1  (1p)/q} > 0, since P[~Rc | ~Bc~HK] > 0; so q > (1p) > 0.  

 

1 > P[~Rc | ~Bc~HK] > 0 because:  

give that ~H is logically equivalent to x(Rx~Bx), Non-Triviality provides 

P[(~BcRc)~H | K] = P[(~BcRc) | K] > 0, and P[(~Bc·~Rc)~H | K] > 0, so 

P[~Bc~H | K] = P[(~BcRc)~H | K] + P[(~Bc~Rc)~H | K] > P[(~Bc·~Rc)~H | K] > 

0, so 1 >  P[(~Bc·~Rc)~H | K]/P[~Bc~H | K] = P[~Rc | ~Bc~HK] > 0. 

 

Also, 1/{1  (1p)/q} > 1, since: from Non-Triviality, p < 1; and p < 1 iff 0 < (1p) iff 

0 > (1p)/q iff 1 > (1  (1p)/q) iff 1/{1  (1p)/q} > 1 (since q > (1p) > 0). 

 

 Thus, P[~Rc | ~BcHK]/P[~Rc | ~Bc~HK] = 1/{1  (1p)/q} > 1. 

 

 The seventh equation comes from the values of the standard likelihood ratios in the fifth and 

sixth equations: 

 

  (P[Bc | RcHK]/P[Bc | Rc~HK]) / (P[~Rc | ~BcHK]/P[~Rc | ~Bc~HK]) 

 

   =  (1/p)/(1/{1  (1p)/q})  =  {1(1p)/q}/p  = {1(1p)/q}/{1(1p)}. 

 

 We get the eighth equation from the definitions of q and r alone: 

  q/r  = (P[~Bc | ~HK]/P[Rc | ~HK]) / (P[~Bc | HK]/P[Rc | HK]) 

    =   (P[Rc | HK]/P[Rc | ~HK]) / (P[~Bc | HK]/P[~Bc | ~HK]), 

 which is the ratio of the non-standard likelihood ratios. 

 

The ninth equation uses the seventh and eighth equations to get the ratio of the full likelihood 

ratios from the product of the ratio of standard likelihood ratios and the ratio of the non-

standard likelihood ratios: 

 

P[BcRc | HK]    / P[~Bc~Rc | HK] 

----------------------  /   ------------------------- 

P[BcRc | ~HK]   /     P[~Bc~Rc | ~HK] 

 

          1  (1p)/q P[Rc | HK]     / P[~Bc | HK] 

         = --------------  ------------------   /   ------------------- 

           p   P[Rc | ~HK]   / P[~Bc | ~HK] 

 

   =  ([1  (1p)/q]/p)   (q/r)  =  [q p)] / (rp). 

 

The tenth “equation” is a series of bi-conditionals. The first bi-conditional follows from the 

following considerations: 



 

 

 Notice that [1  (1p)/q] > 0 (since q > (1p), so 1 > (1p)/q, so 1  (1p)/q > 0).  

 

 Now, from the ninth equation we have that 

  

P[BcRc | HK]    / P[~Bc~Rc | HK] 

----------------------  /   -------------------------  >  1  iff 

P[BcRc | ~HK]   /     P[~Bc~Rc | ~HK] 

 

        1  (1p)/q P[Rc | HK]     / P[~Bc | HK] 

        --------------  ------------------   /   -------------------  >  1  iff 

         p   P[Rc | ~HK]   / P[~Bc | ~HK] 

 

  (P[Rc | HK]/P[Rc | ~HK]) / (P[~Bc | HK]/P[~Bc | ~HK])  >   p/{1  (1p)/q}. 

 

However, it turns out that this is not the most telling condition for the ratio of full likelihood 

ratios to be greater than 1 (which is the reason that the theorem in the main text doesn‟t use 

this relationship). Rather, from the ninth equation we also have the following result: 

 

P[BcRc | HK]    / P[~Bc~Rc | HK] 

----------------------  /   -------------------------  >  1  iff    [q p)] / (rp)  >  1  iff 

P[BcRc | ~HK]   /     P[~Bc~Rc | ~HK] 

 

[(q/r)  (1p)/r] > p iff  (q/r) > p + (1p)/r iff 

 

(P[Rc | HK]/P[Rc | ~HK]) / (P[~Bc | HK]/P[~Bc | ~HK])  >  (p + (1p)/r),  

 

since (P[Rc | HK]/P[Rc | ~HK]) / (P[~Bc | HK]/P[~Bc | ~HK]) = (q/r). 

 

This yields the first bi-conditional of the tenth equation. 

 

Thus, the above formula for the ratio of full likelihood ratios implies both 

 

(1) (P[Bc·Rc | HK]/P[Bc·Rc | ~HK]) / (P[~Bc~Rc | HK]/P[~Bc~Rc | ~HK])  > 1 iff 

 (P[Rc | HK]/P[Rc | ~HK])/(P[~Bc | HK]/P[~Bc | ~HK])  >  p/[1  (1p)/q],  

and 

(2) (P[Bc·Rc | HK]/P[Bc·Rc | ~HK]) / (P[~Bc~Rc | HK]/P[~Bc~Rc | ~HK])  > 1 iff 

 (P[Rc | HK]/P[Rc | ~HK])/(P[~Bc | HK]/P[~Bc | ~HK]) >  (p + (1p)/r). 

 

However, (2) is more telling because we can also show that 

  (P[Bc·Rc | HK]/P[Bc·Rc | ~HK]) / (P[~Bc·~Rc | HK]/P[~Bc·~Rc | ~HK])  >  1   iff 

   [p + (1p)/r]  >  p/[1  (1p)/q] (we‟ll establish this in a moment).  

To see that (2) is more telling, suppose that the ratio of full likelihood ratios is greater 

than 1, and suppose (as I‟m claiming for now) that under this condition we must have 



[p + (1p)/r]  >  p/[1  (1p)/q]. Then both (1) and (2) hold, but (2) requires that 

(P[Rc | HK]/P[Rc | ~HK]) must be a larger (fractional) multiple of 

(P[~Bc | HK]/P[~Bc | ~HK]) than required by (1). And the larger (fractional) multiple 

turns out to be more important for the Corollary (below), because it places tighter bounds 

on how much smaller than (P[~Bc | HK]/P[~Bc | ~HK]) the ratio 

(P[Rc | HK]/P[Rc | ~HK]) is permitted to be while having Black Ravens remain more 

confirming than Non-black Non-ravens. 

 

 Here‟s proof of that  

(P[Bc·Rc | HK]/P[Bc·Rc | ~HK]) / (P[~Bc·~Rc | HK]/P[~Bc·~Rc | ~HK])  >  1   iff 

   [p + (1p)/r]  >  p/[1  (1p)/q] 

(which, when combined with the first bi-conditional, yields the second bi-conditional 

of the tenth equation).  

From the ninth equation we have that  

(P[Bc·Rc | HK]/P[Bc·Rc | ~HK]) / (P[~Bc·~Rc | HK]/P[~Bc·~Rc | ~HK])  >  1  iff 

(q p)) / (rp)  >  1  iff  ([q/r] p)/r)  >  p  iff  [q/r]  [p + (1p)/r] > 0  iff   

[1/r]  [1/q][p + (1p)/r] > 0  iff [(1p)/r]  [(1p)/q] [p + (1p)/r] > 0  iff   

[p + (1p)/r]  [(1p)/q] [p + (1p)/r] > p  iff [1  (1p)/q] [p + (1p)/r] > p  iff   

[p + (1p)/r] > p/[1  (1p)/q], since [1  (1p)/q] > 0  

(because q > (1p), so 1 > (1p)/q, so 1(1p)/q) > 0). 

 

To prove the third bi-conditional of the tenth equation, follow the chain of “iff”s in the 

previous derivation back up the chain from  

[p + (1p)/r] > p/[1  (1p)/q] to (q p)) / (rp)  >  1, yielding: 

[p + (1p)/r] > p/[1  (1p)/q]  iff  (q p)) / (rp)  >  1  iff 

 (q p))  >  rp  iff  q  >  rp + (1p). 

Notice that when q  >  rp + (1p): if r  1 we have q  >  rp + (1p)  1; and when r  1, 1/r 

 1, so (1p)/r  (1p), so q/r  >  p + (1p)/r    p + (1p) = 1, so q > r. 

 

Corollary to the Ravens Theorem:  Suppose Non-Trivality. And suppose in addition that 

P[~Bc | HK]    P[Rc | HK] (i.e. r  1).  Then 1  (p + (1p)/r) >  p > 0. 

Furthermore (given r  1), 

 

   P[Bc·Rc | HK]  P[~Bc~Rc | HK] 

   ---------------------  > -------------------------   if and only if    either 

   P[Bc·Rc | ~HK]  P[~Bc~Rc | ~HK] 

 

    P[Rc | HK]  P[~Bc | HK] 

  (1)  -----------------  > -------------------    or 

    P[Rc | ~HK]  P[~Bc | ~HK] 

  

    P[~Bc | HK]  P[Rc | HK]      P[~Bc | HK] 

  (2)  -------------------  ------------------  > (p + (1p)/r) ------------------- and r > 1.

    P[~Bc | ~HK]  P[Rc | ~HK]      P[~Bc | ~HK]  

 



proof:  Suppose throughout that r  1. 

 We already have 1 > p > 0, so 1 > 1p > 0. Then, for r > 1, we must have (1p) > (1p)/r 

> 0; thus 1 = p + (1p)  p + (1p)/r > p. 

 

  The theorem already gave us: 

 

(P[Bc·Rc | HK]/P[Bc·Rc | ~HK])  >  (P[~Bc·~Rc | HK]/P[~Bc·~Rc | ~HK])   iff 

P[Rc | HK]/P[Rc | ~HK]  >   (p + (1p)/r)  (P[~Bc | HK]/P[~Bc | ~HK]) 

 

and we just proved that 1  (p + (1p)/r) > 0 when r  1, so 

 

 (P[~Bc | HK]/P[~Bc | ~HK])    (p + (1p)/r)  (P[~Bc | HK]/P[~Bc | ~HK]). 

 

Thus, P[Bc·Rc | HK]/P[Bc·Rc | ~HK]  >  P[~Bc·~Rc | HK]/P[~Bc·~Rc | ~HK]  iff 

 either (P[Rc | HK]/P[Rc | ~HK])  > (P[~Bc | HK]/P[~Bc | ~HK]) 

   or (P[~Bc | HK]/P[~Bc | ~HK])    (P[Rc | HK]/P[Rc | ~HK])  > 

   (p + (1p)/r)  (P[~Bc | HK]/P[~Bc | ~HK])  

{where r > 1 whenever the second disjunct holds, because it requires that  

(P[~Bc | HK]/P[~Bc | ~HK]) > 

       (p + (1p)/r)  (P[~Bc | HK]/P[~Bc | ~HK])}. 

 

 

 


