Answers to Some Open Questions of Ulrich & Meredith

Matthew Walsh & Branden Fitelson[†]

06/26/21

1 The Open Questions

Ulrich [11] poses twenty six open questions concerning the axiomatization of various sentential logics. In this note, we report solutions to three of these open questions involving axiomatizations of classical sentential logic. We adopt Ulrich's notation (*viz.*, traditional, Polish notation) throughout. And, the sole rule of inference we will be assuming throughout is condensed detachment [2]: from Cpq and p infer q (where C is the implication operator, and where most general substitution instances are used in each *modus ponens* inference).

 (Q_1) Is Meredith's [9] 21-symbol single axiom

(*M*₁) *CCCCCpqCNrNsrtCCtpCsp*

for classical sentential logic the shortest possible (where N is the negation operator)?

 (Q_2) Are Meredith's [9] two 19-symbol single axioms

(M₄) CCCCCpqCrfstCCtpCrp

 (M_5) CCCpqCCfrsCCspCtCup

for classical sentential logic the shortest possible (where f is the constant *falsum* operator, which is equivalent to an arbitrary classical contradiction)?

 (Q_3) Are Meredith's [10] two 19-symbol single axioms

(M₃) CCCpqCorCsCCrpCtCup

for classical sentential logic the shortest possible (where *o* is the constant *verum* operator, which is equivalent to an arbitrary classical tautology)?

In the next section, we report affirmative answers to each of these three questions, and we also report several new single axioms (of shortest length) for each of these three systems of classical sentential logic (thus answering three open questions posed by Meredith himself). Along the way, we will also pose several new open questions pertaining to these axiomatic systems.

⁽M₂) CCCpqCrCosCCspCrCtp

[†]This paper is dedicated to the memory of Ted Ulrich (1940–2020) and Larry Wos (1930–2020). We thank Steve Kuhn for helpful comments on an earlier version of this paper.

2 Answering the Open Questions

2.1 Definitive Affirmative Answer to Open Question Q₁

The answer to Q_1 is: Yes, M_1 is among the shortest possible single axioms for the C/N fragment of classical sentential logic (assuming condensed detachment as the sole rule of inference).

Meredith [9] showed that M_1 is a single axiom for classical sentential logic, by deriving the following three axioms of Łukasiewicz (which are a well-known C/N basis).

(Ł₁) *CCpqCCqrCpr*

(L_2) *CpCNpq*

(Ł₃) CCNppp

We have shown (by exhaustive search and elimination — see APPENDIX A for details) that no C/N-tautology shorter than 21-symbols can derive L_1 - L_3 using only condensed detachment.

Moreover, we have identified the following six (hitherto unknown) additional 21-symbol single axioms (thus answering a related open question due to Meredith himself).¹

(A₁) CCpCCNpqrCsCCNtCrtCpt

(A₂) CpCCqCprCCNrCCNstqCsr

(A₃) CpCCNqCCNrsCptCCtqCrq

(A₄) CpCCNqCCNrsCtqCCrtCrq

 $(A_5) \ CCpqCCCrCstCqCNsNpCps$

(A₆) CCCpqCCCNrNsrtCCtpCsp

We include a proof of L_1 - L_3 from A_1 in APPENDIX B (proofs for other new axioms omitted).²

2.2 Definitive Affirmative Answer to Open Question Q₂

The answer to Q_2 is: Yes, M_4 and M_5 are among the shortest possible single axioms for the C/f fragment of *classical sentential logic* (assuming condensed detachment as the sole rule of inference).

Meredith [9] showed that M_4 is a single axiom for classical sentential logic, by deriving the following four axioms of Tarski-Bernays (which are a well-known C/f basis).

- $(T_1) CCpqCCqrCpr$
- $(T_2) CpCqp$
- (T_3) CCCpqpp
- $(T_4) Cfp$

(*O*₁) *CCCpqCCrNsCtNtCCtpCrp*

But, based on extensive proof searches, we are confident that O_1 is not a single axiom.

²We were able to find condensed detachment proofs for all of these axioms, except for axiom A_2 . We used binary resolution (rather than hyper-resolution) to verify that A_2 is a single axiom. The problem of finding a condensed detachment (*viz.*, hyper-resolution) proof of L_1 - L_3 from A_2 remains as an open challenge problem for automated reasoning.

¹These six 21-symbol C/N-formulas are the only ones we've been able to formally rule-in as (new) single axioms. Some other 21-symbol C/N-formulas may yet turn out to be single axioms (*i.e.*, there are some remaining 21-symbol C/N-formulas that we have not been able to definitively rule-in our rule-out). For instance, *strictly speaking*, it remains an open question whether the following 21-symbol C/N-formula is a single axiom.

We have shown (by exhaustive search and elimination — see APPENDIX A for details) that no C/f-tautology shorter than 19-symbols can derive T_1 - T_4 using only condensed detachment. Moreover, we have identified the following six (hitherto unknown) additional 19-symbol single axioms (thus answering a related open question due to Meredith himself).³

(A₇) CCCCpCCqrfstCCtqCpq

(A₈) CCCCpfqrCCCrsCtpCtr

(A₉) CCCpqCrsCCsCCftpCrp

(A₁₀) CCCpqCrsCCsCrCrfCrp

(A₁₁) CCpqCCCrCstCqCpfCps

 (A_{12}) CCpqCCCCqrfsCtpCtq

We include a proof of T_1 - T_4 from A_7 in APPENDIX C (proofs for other new axioms omitted).⁴

2.3 Confident Affirmative Answer to Open Question Q₃

The answer to Q_3 probably⁵ is: Yes, M_4 and M_5 are among the shortest possible single axioms for the C/o fragment of classical sentential logic (assuming condensed detachment as the sole rule of inference).

Meredith [10] showed that M_2 is a single axiom for classical sentential logic, by deriving the following two axioms of Łukasiewicz (which are a well-known C/o basis).

(Ł₄) CCCpqrCCrpCsp

 $(L_5) o$

We have obtained strong evidence (by exhaustive search and nearly exhaustive elimination — see AP-PENDIX A for details) that no C/o-tautology shorter than 19-symbols can derive L_4 - L_5 using only condensed deatchment.

Moreover, we have identified the following seven (hitherto unknown) additional 19-symbol single axioms (thus answering a related open question due to Meredith himself).⁶

(A₁₃) CCpqCCCrCstCqCosCps

(A₁₄) CCCCCpqCorrsCCspCtp

(A₁₅) CCCpqCrsCCsCopCtCrp

But, based on extensive proof searches, we are confident that O_2 is not a single axiom.

⁴We were able to find condensed detachment proofs for all of these axioms, except for axiom A_{12} . We used binary resolution (rather than hyper-resolution) to verify that A_{12} is a single axiom. The problem of finding a condensed detachment (*viz.*, hyper-resolution) proof of T_1 - T_4 from A_{12} remains as an open challenge problem for automated reasoning.

⁵As we explain in Appendix A, we have definitively ruled out all but three 17-symbol C/o single axiom candidates. And, we are confident (based on extensive searches) that none of these three remaining candidates is a single axiom.

⁶These six 19-symbol C/o-formulas are the only ones we've been able to formally rule-in as (new) single axioms. Some other 19-symbol C/o-formulas may yet turn out to be single axioms (*i.e.*, there are some remaining 19-symbol C/o-formulas that we have not been able to definitively rule-in our rule-out). For instance, *strictly speaking*, it remains an open question whether the following 19-symbol C/o-formula is a single axiom.

(O₃) CCpCqrCCCrsCoqCtCpr

But, based on extensive proof searches, we are confident that O_3 is not a single axiom.

³These six 19-symbol C/f-formulas are the only ones we've been able to formally rule-in as (new) single axioms. Some other 19-symbol C/f-formulas may yet turn out to be single axioms (*i.e.*, there are some remaining 19-symbol C/f-formulas that we have not been able to definitively rule-in our rule-out). For instance, *strictly speaking*, it remains an open question whether the following 19-symbol C/f-formula is a single axiom.

⁽O₂) CCCpqrCCCcsftCrpCsp

(A₁₆) CCCpqrCCCCrspCosCts

(A₁₇) CCpCCqrCosCCsqCtCpq

 $(A_{18}) \ CCpqCCCcoqrCCstpCtq$

 $(A_{19}) \ CCpqCCCoprCCstpCtq$

We include a proof of L_4 - L_5 from A_{13} in APPENDIX D (proofs for other new axioms omitted).⁷

APPENDIX

A Methodology

Our methodology for solving these open questions can be broken down to the following five steps.⁸

- 1. Generate the set S_0 of all well-formed formulas (*viz.*, all the wffs in the relevant language, depending on the open question at hand) that are *just shorter than* the shortest known single axiom. In the case of Q_1 , this involves generating all the 19-symbol and 20-symbol wffs in the *C*/*N* language. In the case of Q_2 , this involves generating all the 17-symbol wffs in the *C*/*f* language. And, in the case of Q_3 , this involves generating all the 17-symbol wffs in the *C*/*o* language.
 - The reason why we only need to check the 19- & 20-symbol C/N formulas, and the 17-symbol C/f and C/o formulas is explained by the following simple result of Łukasiewicz [4].

Theorem. If there is a single axiom for classical logic that contains n symbols, then there is also a single axiom for classical logic that contains n + 2 symbols.

Proof. Suppose α is a single axiom for classical logic containing *n* symbols. Then, the sentence $Cz\alpha$ (where the variable *z* does not occur in α) is also a single axiom for classical logic. To see why, substitute ' $Cz\alpha$ ' for *z* in $Cz\alpha$, which yields the sentence $CCz\alpha\alpha$. Since α is a tautology, so are both $Cz\alpha$ and $CCz\alpha\alpha$, which means we can apply condensed detachment to $CCz\alpha\alpha$ and $Cz\alpha$ yielding α , which is a single axiom by assumption.

Thus, by checking the 20-symbol C/N formulas, we are also implicitly checking all the C/N formulas of even length which are shorter than the shortest known single axioms. And, by checking the 19-symbol C/N formulas, we are also implicitly checking all the C/N formulas of odd length which are shorter than the shortest known single axioms. Because the C/f and C/o formulas can only be of odd length, we only need to check the 17-symbol formulas in those languages.

Finally, it is worth noting that, in order to efficiently generate S_0 , we used *resonator templates* [13], which capture the structure of a class of formulas (where variables are treated indistinguishably).

2. Filter the set S_0 down to the set S_1 of *strongest tautological wffs* of the relevant length. At this stage, we converted each template to conjunctive normal form [1], which greatly sped-up the tautological filtering. We also applied subsumption as we went along, so as to only keep the strongest/most general tautological instances of each template.

⁷We were able to find condensed detachment proofs for all of these axioms, except for axiom A_{14} . We used binary resolution (rather than hyper-resolution) to verify that A_{14} is a single axiom. The problem of finding a condensed detachment (*viz.*, hyper-resolution) proof of L_4 - L_5 from A_{14} remains as an open challenge problem for automated reasoning.

⁸All of the (python) code that we used to generate and filter the sets of formulas discussed below can be downloaded from http://fitelson.org/walsh/code/. The subfolder http://fitelson.org/walsh/code/Results/ includes complete outputs for each of the three problems. To be more specific, for each of the candidates that was eliminated *via* a VAMPIRE counter-model, we include that counter-model as a witness to the insufficiency of the candidate in question. A total of around 300 distinct counter-models were needed to rule-out all of the non-axioms.

- 3. Filter S_1 down to the set S_2 of formulas that survive a short satisfiability test for insufficiency of the candidate axiom (using VAMPIRE, version 4.5.1 [3]). Here, we use VAMPIRE to search (for a short period of time) for models in which *modus ponens* (*viz.*, condensed detachment) and the candidate are both satisfied, but a known single axiom fails to be satisfied. If such a counter-model is found, then the candidate is not included in S_2 , since the model in question shows that the candidate in question is insufficient to derive all theorems in the relevant language (*via* condensed detachment).
 - For questions, Q_1 and Q_2 , *no formulas survived* this final filter (*viz.*, for those two questions, $\mathbf{S}_2 = \emptyset$). That is, for questions Q_1 and Q_2 Vampire was able to *definitively eliminate all* of the candidates that were just shorter than the shortest known single axiom. This settles those questions definitively.
- 4. In the case of Q_3 , a fourth step was required. We needed to look more closely at the formulas remaining in S_2 . Specifically, *exactly three* 17-symbol *C*/*o*-formulas survived to S_2 . To wit:
 - (*O*₄) *CCCpqCorCsCCrpCtp*
 - (O₅) CCCpqrCCrCoCrpCsp
 - (O₆) CCpqCrCCCqsCopCtq

Here, we used a combination of PROVER9 [6], VAMPIRE, and OTTER to try to find (condensed detachment) proofs of sufficiency (or models showing insufficiency) for each of the remaining candidates (using our reference basis L_4 - L_5 as target). After extensive proof (and model) searches (and careful studying of the kinds of formulas that can be generated using condensed detachment from these candidates), we are very confident that none of these three remaining candidates (O_4)–(O_6) are single axioms.⁹ But, strictly speaking, their status remains open.

5. After convincing ourselves that no single axioms shorter than the shortest known single axioms exist (for any of the three languages in question), we then turned to the question of whether *other* (hitherto unknown) shortest single axioms exist. We applied the same four steps above to formulas of the shortest known length. This led to relatively small sets S_2 of remaining candidates (at step 3) for each of the three languages. And, after studying the remaining candidates more carefully using PROVER9, VAMPIRE, and OTTER, we were able to find eight new single axioms for each of the three languages (as well as several other candidates which could not be settled one way or the other — see footnotes 1, 2, and 4 for examples). We report condensed detachment proofs for three of these new shortest single axioms in the remaining sections of the APPENDIX (one for each of the three languages).

⁹Of these three remaining 17-symbol C/o-candidates, only O_4 seems to be able to prove anything remotely interesting *via* condensed detachment (*e.g.*, O_4 *is* able to prove that the *verum* constant *o* is a theorem). O_5 and O_6 , on the other hand, seem only to generate (increasingly) complex formulas *via* condensed detachment.

B Proof that *A*₁ **is a Single Axiom**

The following 45-step condensed detachment proof was discovered using OTTER.¹⁰ For a description of some the techniques we used to discover the most elegant condensed detachment proofs we could find, see [12, 5].

1	CCpCCpNqrCsCCtNCrtCpt	A_1
2	CpCCNqCCCNrCsrCtrqCCtCCNtusq	1,1
3	CpCCNqCCCrCCNrstuqCuq	3,1
4	CpCCNqCCrsqCsq	3,1
5	CCNpCCqrpCrp	4,4
6	CCCpqrCqr	4,5
7	CCCCNpCqpCrpsCCrCCNrtqs	3,5
8	CpCqp	6,6
9	CCCNpqrCsCCNtCrtCpt	1,6
10	CCpCCNpqrCCrsCps	6,7
11	CpCCNqCrqCrq	8,1
12	CpCCNqCCrCNstqCsq	8,9
13	CpCqCCNrCprCsr	9,6
14	CCCNpqrCCrsCps	10,6
15	CCNpCqpCqp	11,11
16	CCCpCNqrsCqs	12,5
17	CCCCNpCqpCrpsCqs	13,10
18	CpCCpqCrq	14,6
*19	CpCNpq	15,16
20	CpCNCqpr	19,6
21	CCCpCNCqprsCts	20,18
22	CNCpNqCrCsq	21,17
23	CCCpqrCNCsNqr	22,10
24	CNCpNqCCqrCsr	14,23
25	CCpNpCqNp	24,15
26	CCNpqCCpNpq	25,10
27	CCCCpNpqrCpr	26,14
28	CCpNpCpq	27,27
29	CNpCpq	28,6
30	CCCNpCpqrCsr	29,18
31	CCpCCNpqrCsCpr	30,7
32	CpCqCCNrCprr	31,17
33	CpCqCCNrCqrr	32,31
34	CCCCNpCqpprCqr	32,10
35	CpCCNqCpqq	33,33
36	CpCCpqq	6,34
*37	CCNppp	35,5
38	CpCqCCqrr	36,8
39	CCCpCqCCqrrss	38,36
40	CpCqCCprr	39,17
41	CCCCpqqrCpr	40,10
42	CCNpCqpCqCrp	17,41
43	CCpqCpCrq	42,6

¹⁰For the purposes of presentation, we use the standard notational conventions of (a) labeling the line number of each of the three goals L_1-L_3 with a star (*e.g.*, line *19 is L_2), and (b) stating the major and minor premises of each condensed deatchment inference in the right hand column (*e.g.*, line *19 is derived *via* condensed deatchment with line 15 as major premise and line 16 as minor premise). One can use OTTER to explicitly generate all the relevant substitution instances for each step; and, one can use IVY to verify the correctness of OTTER proofs [7, 8]. An OTTER input file which allows for the generation and verification of this proof can be downloaded from the following URL: http://fitelson.org/walsh/A1_proof.in.

44	CCpqCrCpCsq	43,43
45	CCCpCqrsCCprs	44,10
*46	CCpqCCqrCpr	10,45

C Proof that *A*₇ **is a Single Axiom**

The following 24-step condensed detachment proof was discovered using OTTER.¹¹

1	CCCCpCCqrfstCCtqCpq	A_7
2	CCCCpqCrqsCCrCCqtfs	1,1
3	CCpCCqrfCCCpqsCts	1,2
4	CCCCCpqCCfrfspCCtfp	2,1
5	CCCCCCpqCrqfrsCts	2,3
6	CCCCpfqrCCCqsCCftfr	4,1
7	CCpCCqrfCsCpq	5,2
8	CCCpqCCfrfCsp	5,6
9	CCCpqCCfrfCCpsCts	1,6
10	CCCpCCqCCrsftrCqr	7,1
11	CpCfq	8,8
12	CCCpqrCqr	8,1
13	CCCCpqCrqsCps	9,1
14	CCCpqpCrp	10,1
*15	Cfp	11,11
*16	CpCqp	12,12
17	CpCCCCCqrsCtsfq	13,7
18	CCCCCpqrCsrfp	17,17
19	CCpqCCCprfq	18,1
20	CCCCpqrfCCCpsfq	19,19
21	CCCCCpqprfCsp	14,19
22	CCCCCpqfrsCCprs	20,1
23	CpCCCqrqq	21,14
*24	CCpqCCqrCpr	1,22
*25	СССрарр	23,23

D Proof that A_{13} **is a Single Axiom**

The following 21-step condensed detachment proof was discovered using OTTER.¹²

1	CCpqCCCrCstCqCosCps	A_{13}
2	CCCpCqrCCCcsCtuCvCotCwtCoqCCwvq	1,1
3	CCCpqpp	1,2
4	CCCpCqrCCCstuCoqCCCvCuwCCCCxCyzCtCoyCsyCouq	2,1
5	CCCpCCCqrCoqsCCCCtCuvCCqwCouCxuCoCCqrCoqq	1,4
6	CCCCCpCqrCsCoqCtquCCtsu	4,2
*7	0	4,5

¹¹An OTTER input file which allows for the generation and verification of this proof can be downloaded from the following URL: http://fitelson.org/walsh/A7_proof.in.

 $^{^{12}}$ An OTTER input file which allows for the generation and verification of this proof can be downloaded from the following URL: http://fitelson.org/walsh/A13_proof.in.

CCpqCCqrCpr	6,6
CCCCpqCrqsCCrps	8,8
CCCpCqrCCCstCutCoqCCusq	8,1
CCCCpqrsCCCCqtCptrs	9,8
CCCCCpqrCsrCCCtuCvuCopCCvtp	10,11
CCCCCpqrCCsqrtCCpst	9,11
CCCpqpCCpqq	9,12
CCCCpqrqCpq	12,3
CCCpqpCCrsp	12,15
CCCCpqrsCCCrtrs	16,8
CCCpqpCrp	15,17
CCCpqpCCprr	14,17
CpCCpqq	19,15
CCCCCpqpCrpss	18,20
CCCpqrCCrpCsp	21,13
	CCpqCCqrCpr CCCCpqCrqsCCrps CCCpqrCCstCutCoqCCusq CCCCpqrSCCCqtCptrs CCCCCpqrCsrCCtuCvuCopCCvtp CCCCCpqrCcsqrtCCpst CCCpqpCCpqq CCCpqpCCrpq CCCpqpCrrp CCCCpqrSCCrtrs CCCpqpCprr CCCpqpCprr CCCpqpCrpss CCCCpqpCrpss CCCCpqpCrpss CCCCpqpCrpsp

References

- [1] T.B. de la Tour. "An optimality result for clause form translation." *Journal of Symbolic Computation* 14.4 (1992): 283-301.
- [2] J.A. Kalman. "Condensed detachment as a rule of inference." Studia Logica 42.4 (1983): 443-451.
- [3] L. Kovács, and A. Voronkov. "First-order theorem proving and Vampire." International Conference on Computer Aided Verification. Springer, Berlin, Heidelberg, 2013. Version 4.5.1 of VAMPIRE can be downloaded from the following URL: https://vprover.github.io/index.html.
- [4] J. Łukasiewicz. "The shortest axiom of the implicational calculus of propositions." *Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences.* Vol. 52. Royal Irish Academy, 1948.
- [5] W. McCune, and L. Wos. "Experiments in automated deduction with condensed detachment." *International Conference on Automated Deduction* (*pp.* 209–223). Springer, Berlin, Heidelberg, 1992.
- [6] W. McCune, "Prover9 and Mace4." Available at the following URL: https://www.cs.unm.edu/~mccune/ prover9/, 2009.
- [7] _____. "Otter 3.3 reference manual." arXiv preprint cs/0310056, 2003.
- [8] W. McCune, and O. Shumsky. "IVY: A preprocessor and proof checker for first-order logic." In *Computer-Aided Reasoning* (*pp.* 265-281). Springer, Boston, MA.
- [9] C. Meredith. "Single axioms for the systems (*C*, *N*), (*C*, *O*) and (*A*, *N*) of the two-valued propositional calculus." *Journal of Computing Systems* 1 (1953), 155–164.
- [10] C. Meredith, and A.N. Prior. "Notes on the axiomatics of the propositional calculus." *Notre Dame Journal of Formal Logic* 4.3 (1963): 171–187.
- [11] D. Ulrich. "A legacy recalled and a tradition continued." *Journal of Automated Reasoning* 27.2 (2001): 97–122.
- [12] L. Wos. "Automating the search for elegant proofs." *Journal of Automated Reasoning* 21.2 (1998): 135–175.
- [13] _____. "The resonance strategy." *Computers & Mathematics with Applications* 29.2 (1995): 133-178.