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Abstract. Urquhart [8] and Méndez & Salto [5, 6] claim to establish completeness
theorems for the system C and two of its negation extensions. In this note, we do the
following three things: (1) provide a counterexample to all of these alleged complete-
ness theorems, (2) attempt to diagnose the mistakes in the reported completeness
proofs, and (3) provide complete axiomatizations of the desired systems.
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1. Introduction

In [8], Urquhart presents an axiomatization of a positive logic C and
claims that this system is complete with respect to the class of model
structures over an ordered commutative monoid [8, Theorem 3.3, p. 103].
This claim is false. More recently, Méndez & Salto [5, 6] introduce two
negation extensions of C, and claim that these extensions are complete
with respect to certain relational semantics. These, too, are false claims.
Below, we provide a counterexample to all of these claims. In closing,
we will diagnose the mistakes in the reported completeness proofs and
provide complete axiomatizations of the desired systems.

2. The Axiomatic System C and Two Negation Extensions

The positive logicC is given (in [8]) by the following ten axiom schemata:

φ→ (ψ → φ) (1)

(φ→ ψ) → ((θ → φ) → (θ → ψ)) (2)

(φ→ (θ → ψ)) → (θ → (φ→ ψ)) (3)

(φ ∧ ψ) → φ (4)

(φ ∧ ψ) → ψ (5)

∗ Thanks to Louis Goble, for his review in Zantralblatt Math (0993.03027), which
notes two typos in the published (2001) version of this paper. These typos have been
corrected in the present (2003) version of the paper.
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φ→ (ψ → (φ ∧ ψ)) (6)

φ→ (φ ∨ ψ) (7)

ψ → (φ ∨ ψ) (8)

((φ→ ψ) ∧ (θ → ψ)) → ((φ ∨ θ) → ψ) (9)

(φ→ ψ) ∨ (ψ → φ) (10)

together with the rule of modus ponens.1

Méndez & Salto [5, 6] consider two negation extensions of C. The
first such extension is CI′, which is obtained by adding the following
two negation axioms to C:

(φ→ ¬ψ) → (ψ → ¬φ) (11)

¬φ→ (φ→ ψ) (12)

The second negation extension discussed by Méndez & Salto is CIr,
which is obtained by adding the following negation axiom to C:

(φ→ ¬φ) → ¬φ (13)

3. Counterexample to the Completeness of C, CI′, and CIr

The following formula is valid in Urquhart’s class of model structures
over ordered commutative monoids, and in each of the relational se-
mantical systems considered by Méndez & Salto:

((ψ → φ) ∧ (ψ → θ)) → (ψ → (φ ∧ θ)) (14)

However, (14) is not derivable in any of C, CI′, or CIr. Using John
Slaney’s powerful computer program MaGIC [7], we found the follow-
ing four-valued matrices (in which the only designated value is 3, which
is indicated by ∗) that establish the independence of (14) from each of
the systems C, CI′, and CIr, simultaneously.2

1 Axiom (1) is dependent. We note the strong resemblance of Urquhart’s C with
Dummett’s system LC [2]. Dummett’s LC is obtained by adding (10) to the axioms
of intuitionistic logic. C can be obtained from LC by dropping the two LC negation
axioms, and replacing (φ → ψ) → ((φ → (ψ → θ)) → (φ → θ)) in LC by (2) and
(3). In LC (unlike C), (1) is not dependent, and (14) is derivable.

2 All matrices reported have been verified mechanically using Bill McCune’s
computer program Mace [4]. It is interesting to note that these are the smallest
possible matrices which satisfy (1)–(13), but which violate (14). We know this
because MaGIC performed an exhaustive search of all matrices up to this size.
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→ 0 1 2 3

0 3 3 3 3

1 0 3 3 3

2 0 2 3 3
∗3 0 1 2 3

∧ 0 1 2 3

0 0 0 0 0

1 0 1 1 1

2 0 1 1 2
∗3 0 1 2 3

∨ 0 1 2 3

0 0 1 2 3

1 1 1 2 3

2 2 2 2 3
∗3 3 3 3 3

φ 0 1 2 ∗3

¬φ 3 0 0 0

To see why (14) fails in the above matrices, note that:

((2 → 2) ∧ (2 → 2)) = 3 ∧ 3 = 3,

but

2 → (2 ∧ 2) = 2 → 1 = 2.

Therefore,

((2 → 2) ∧ (2 → 2)) → (2 → (2 ∧ 2)) = 3 → 2 = 2 6= 3.

4. Diagnoses and Fixes of Reported Completeness Proofs

4.1. Diagnosis and Fix of Méndez & Salto’s Proof(s)

All of the completeness proofs of Méndez & Salto make use of the fact
that ∧ distributes over ∨ in C. That is, their proofs presuppose that
the following formula is a theorem of their negation extensions of C:

(φ ∧ (ψ ∨ θ)) → ((φ ∧ ψ) ∨ (φ ∧ θ)) (15)

In lemmas 2, 3, and 4 of [6], Méndez & Salto appeal to distributivity to
establish the existence of prime consistent theories.3 Unfortunately, as
the following (MaGICally discovered) matrices show, the distributive
law (15) does not follow from (1)–(13).

→ 0 1 2 3 4 5 6

0 6 6 6 6 6 6 6

1 0 6 6 6 6 6 6

2 0 5 6 5 6 6 6

3 0 4 4 6 4 6 6

4 0 3 5 3 6 5 6

5 0 2 4 5 4 6 6
∗6 0 1 2 3 4 5 6

∧ 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1

2 0 1 1 1 2 2 2

3 0 1 1 3 1 3 3

4 0 1 2 1 4 2 4

5 0 1 1 3 2 3 5
∗6 0 1 2 3 4 5 6

∨ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 1 2 3 4 5 6

2 2 2 2 5 4 5 6

3 3 3 5 3 6 5 6

4 4 4 4 6 4 6 6

5 5 5 5 5 6 5 6
∗6 6 6 6 6 6 6 6

3 Compare with the Pair Extension Lemma in [1, page 124].
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φ 0 1 2 3 4 5 ∗6

¬φ 6 0 0 0 0 0 0

To see why (15) fails in the above matrices, note that:

2 ∧ (3 ∨ 2) = 2 ∧ 5 = 2,

but

(2 ∧ 3) ∨ (2 ∧ 2) = 1 ∨ 1 = 1.

Therefore,

(2 ∧ (3 ∨ 2)) → ((2 ∧ 3) ∨ (2 ∧ 2)) = 2 → 1 = 5 6= 6.

Happily, (15) does follow from (1)–(14).4 In fact, if (14) is added as
an axiom to any of Méndez & Salto’s systems, then their reported com-
pleteness proofs go through, as stated. So, complete axiomatizations are
obtained for their systems, simply by adding (14) as an axiom.

4.2. Diagnosis and Fix of Urquhart’s Proof

The diagnosis of Urquhart’s proof is a bit more subtle. Like the proofs
of Méndez & Salto, Urquhart’s proof in [8] makes implicit use of (14)
in order to establish the existence of prime theories with certain req-
uisite properties.5 Unlike Méndez & Salto’s proofs, Urquhart’s proof
[8, Lemma 3.1] also appeals to the following axiom scheme, which is a
generalization of axiom (9):

((φk → ψ) ∧ (θk → ψ)) → ((φ ∨ θ)k → ψ) (16)

We have been unable to verify Urquhart’s claim in [8, Lemma 3.1] that
all instances of (16) follow from his axioms (1)–(10).6 So, following the
suggestion of an anonymous referee, we suggest that both (14) and (16)

4 In [3], we report an axiomatic proof of (15) in a system closely related to C +
(14). Our proof is easily modified to produce the desired distributivity result.

5 The property θ, π ∈ Σ ⇒ θ ∧ π ∈ Σ of prime theories Σ presupposes (14).
Urquhart makes this clear in a more recent completeness proof [9, Theorem 1.3 (d)].

6 Thanks to an anonymous referee for pointing us to this scheme in Urquhart’s
[8] proof, and for giving us a more recent manuscript of Urquhart’s [9] in which
the problems reported here have been fixed. Although we have not been able to
find a concrete counterexample to the claim that (for all k) (16) is derivable from
Urquhart’s [8] axioms (1)–(10), we doubt that (16) follows. This is why we suggest
(along the lines of [9]) that both (14) and (16) be added to urquhart’s original
axiomatization of C. It is interesting to note that some instances of (16) are provable
from (1)–(10). In particular, we have been able to prove the k = 2 instance of (16)
from (1)–(10). However, the status of the k > 2 instances of (16) remains open.
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be added to Urquhart’s original axiomatization of C, in order to ensure
that his published completeness proof is repaired. Indeed, this is what
Urquhart has done in a more recent (unpublished) manuscript [9].
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