- Gibbard [5] argues that if the indicative conditional (ma) satisfies import-export (and a few other assumptions), then it is logically equivalent to the material conditional (\supset).
- I will begin by rehearsing Gibbard's informal argument. Then, I will provide a rigorous, axiomatic proof of a more general "collapse theorem" for the indicative.
- Suppose the indicative satisfies import-export.
(IE) $A \leadsto(B \sim C)$ is logically equivalent to $(A \& B) \leadsto C$.
- If m satisfies (IE), then (i) is equivalent to (ii).
(i) $(A \supset C) \sim(A \leadsto C)$.
(ii) $((A \supset C) \& A) \backsim C$.
- Substitutivity of logical equivalents (in antecedents of indicatives) implies that (ii) [and \therefore (i)] is equivalent to (iii).
(iii) $(A \& C) \leadsto C$.
- Here's our weak background theory (independent axioms).
(1) $\vdash(p \& q) \rightarrow p$.
(2) $\vdash(p \& q) \backsim q$.
(3) If $p \Vdash q$ and $p \Vdash r$, then $p \Vdash q \& r$.
(4) If $p \Vdash q$ and $q \Vdash p$, then $\vdash p \leadsto r$ if and only if $\vdash q \leadsto r$.
(5) If $\vdash p \rightarrow q$, then $p \Vdash q$.
(6) If $\vdash p \sim q$, then $\vdash p \rightarrow q$.
(7) $\vdash p \rightarrow(q \rightarrow r)$ if and only if $\vdash(p \& q) \rightarrow r$.
- The n fragment of this background theory is very weak. (1)-(7) do not imply any of the following three principles.
- If $\vdash p$ and $\vdash p \leadsto q$, then $\vdash q$.
- $\vdash p$ no (q ~ \sim p).
- $\vdash(p m(q u r r)) m((p m q) m(p m r))$.
nge Modus ponens for \rightarrow does not follow from (1)-(7) either! So, modus ponens is irrelevant to Gibbardian collapse!
- So, if (iii) is a logical truth (as Gibbard supposes), then (i) and (ii) are too. Finally, suppose the indicative is at least as strong as the material conditional. That is, suppose (generally) that $p \leadsto q$ entails $p \supset q$. Then, (i) entails (iv).
(iv) $(A \supset C) \supset(A \leadsto C)$.
- Hence, (iv) is (also) a logical truth. So, $A \supset C$ entails $A \leadsto C$. Therefore, in general, $p \leadsto q$ entails $p \supset q$ and $p \supset q$ entails $p \leadsto q$. That is, in general, $n \sim$ and \supset are logically equivalent.
- Let \mathscr{L} be a sentential (object) language containing atoms ' A ', ' B ', \ldots, and two logical connectives ' $\$$ ' and ' \rightarrow '.
- \mathscr{L} also contains another binary connective ' m ', which is meant to be interpreted as the English indicative.
- \mathscr{L} 's metalanguage contains metavariables p, q, \ldots and two meta-linguistic relations: \Vdash and \vdash. ' \Vdash ' is interpreted as single premise deducibility (or entailment). ' \vdash ’ is interpreted as the property of theoremhood (or logical truth).

Gibbard	Lewis	Extras	Refs
OOO	000000000	00	

- Finally, consider this ns-import-export axiom schema.
(8) $\vdash p \leadsto(q \leadsto r)$ if and only if $\vdash(p \& q) \leadsto r$.

Theorem 1. The schemata (1)-(8) are independent; and, given the background theory (1)-(7), (8) holds if and only if
(9) $p \rightarrow q \Vdash p \leadsto q$ and $p \leadsto q \Vdash p \rightarrow q$.

Theorem 2. Axioms (1)-(8) do not entail collapse of $\leadsto \rightarrow$ to \supset. Even if we add modus ponens (MP) to (1)-(8), we do not get
(10) $\vdash((p \leadsto q) \leadsto p) \leadsto p$.

That is, Peirce's Law is not implied by (1)-(8) + (MP). So, classicality is inessential to Gibbardian collapse.
Theorem 3. (1)-(8) + (MP) do imply that the indicative conditional collapses to a conditional that is at least as strong as the intuitionistic conditional: (1)-(8) + (MP) imply
(MP) If $\vdash p$ and $\vdash p \leadsto q$, then $\vdash q$.
(11) $\vdash p \leadsto(q \leadsto p)$.
(12) $\vdash(p \leadsto(q \leadsto r)) \leadsto((p \leadsto q) \leadsto(p \leadsto r))$.

- While Gibbard's [5] argument was logical in nature, Lewis's triviality arguments [9, 8] were probabilistic in nature.
- I will derive these Lewisian results in a novel way. Normally, these results are derived axiomatically and in a way that obscures the crucial role of (probabilistic) import-export.
- I will adopt an algebraic approach. This will also allow us to derive the strongest possible Lewisian triviality result.
- Moreover, I will explain why these Lewisian triviality results all depend (implicitly) on (probabilistic) import-export.
- My presentation will mirror the way in which I presented my generalization of Gibbard's "collapse theorem."
- I will begin with a very weak probabilistic background theory for m. Then, I will show that, relative to this background theory, probabilistic import-export is equivalent to the condition that leads to Lewisian triviality.

Gibbard	Lewis	Extras	Refs
oooo	00000000	00	

- Lewis's original triviality results [9, 8] and all subsequent results of this kind $[6,10]$ are derived via x-instances of (III).
- Lewis used the instances $x:=q$ and $x:=\neg q$ of (III) to derive his original triviality result [9]. Milne [10] used the instance $x:=p \supset q$. More on these below. And, see [6] for a survey.
- A natural question is: What is the strongest triviality result that can be derived from (III), via instantiations of x ?
- Using my decision procedure for Pr-calculus [4], I was able to determine the algebraic content of the conjunction of all (in a sense to be made precise shortly) x-instances of (III).
- Then, I was able to show that one only needs three x-instances of (III) to derive this strongest triviality result.
- Let's get more precise. Without loss of generality, consider the algebra \mathcal{B} generated by the three ("atomic") statements $\{P, Q, P \leadsto Q\}$. We can visualize the family of probability functions $\operatorname{Pr}(\cdot)$ over \mathcal{B} via a stochastic truth-table (STT).
- It helps to re-state (III), so that it involves the "atomic" propositions $\{P, Q, P \leadsto Q\}$ from our algebra \mathcal{B}, above.
(III $\left.{ }^{\mathcal{B}}\right) \operatorname{Pr}(P \leadsto Q \mid x)=\operatorname{Pr}(Q \mid P \& x)$, provided $\operatorname{Pr}(P \& x)>0$.
- This rendition (III $^{\mathcal{B}}$) makes it clear that (the universally quantified) x ranges over the 256 propositions in \mathcal{B}. As it happens, there are 191 instances of $\left(\right.$ III $\left.^{\mathcal{B}}\right)$ which do not (by probability theory alone) violate $\operatorname{Pr}(P \& x)>0$.
- The following theorem was verified $[2,4]$ by determining necessary and sufficient algebraic conditions for the joint satisfaction of all 191 of these equational constraints $\left(\right.$ III $\left.^{\mathcal{B}}\right)$.

$$
\begin{aligned}
& \text { Theorem } 4([2]) \text {. Provided that } \operatorname{Pr}(P \& Q)>0 \text { and } \\
& \operatorname{Pr}(P \& \neg Q)>0,\left(I I I^{\mathcal{B}}\right) \Leftrightarrow \operatorname{Pr}(P \&(Q \equiv(P \sim Q)))=1 .
\end{aligned}
$$

- Luckily, the same result can be reached using only three of the 191 instances of (III $^{\mathcal{B}}$). I will now go through that simpler proof of Theorem $4(\Rightarrow)$. We proceed in three stages.
- Stage 2. The $P \supset Q$-instance of $\left(\right.$ III $\left.^{\mathcal{B}}\right)$.
$\left(\right.$ III $\left.P_{P \supset Q}^{\mathcal{B}}\right) \operatorname{Pr}(P \leadsto Q \mid P \supset Q)=\operatorname{Pr}(Q \mid P \&(P \supset Q))$, if $\operatorname{Pr}(P \& Q)>0$.
- Algebraically, $\left(\right.$ III $\left._{P \supset Q}^{\mathcal{B}}\right)$ is equivalent to
$\operatorname{Pr}(P \leadsto Q \mid P \supset Q)=\frac{\operatorname{Pr}((P \leadsto Q) \&(P \supset Q))}{\operatorname{Pr}(P \supset Q)}=\frac{a+e}{a+b+e+f+h}=1=\operatorname{Pr}(Q \mid P \&(P \supset Q))$
- Assuming $\operatorname{Pr}(P \& Q)>0$, this equation will be true iff $b+f+h=0$. So, $b=f=h=0$, and our STT becomes:

P	Q	$P \leadsto Q$	$\operatorname{Pr}(\cdot)$
\mathbf{T}	\mathbf{T}	\mathbf{T}	a
\mathbf{T}	\mathbf{T}	\mathbf{F}	0
\mathbf{T}	\mathbf{F}	\mathbf{T}	0
\mathbf{T}	\mathbf{F}	\mathbf{F}	d
\mathbf{F}	\mathbf{T}	\mathbf{T}	e
\mathbf{F}	\mathbf{T}	\mathbf{F}	0
\mathbf{F}	\mathbf{F}	\mathbf{T}	0
\mathbf{F}	\mathbf{F}	\mathbf{F}	0

－So，assuming $\operatorname{Pr}(P \& Q)>0$ and $\operatorname{Pr}(P \& \neg Q)>0$ ，$\left(\mathrm{III}^{\mathcal{B}}\right)$ implies that exactly two states have non－zero probability： $P \& Q \&(P \leadsto Q)$ and $P \& \neg Q \& \neg(P \leadsto Q)$ ．QED．
－No stronger constraint can be derived from（III ${ }^{\mathcal{B}}$ ）；and，at least two instances of $\left(\mathrm{III}{ }^{\mathcal{B}}\right)$ are required for the result［2］．
－Algebraically，it is easy to see exactly how much stronger our result is than previous results．Our result implies that the six probability masses b, c, e, f, g and h are all zero．
－Lewis［9］relies on the two instances（ $\mathrm{III}_{Q}^{\mathcal{R}}$ ）and（ $\mathrm{III}_{{ }^{\mathcal{Q}}}{ }_{Q}$ ），which only imply that the four masses b, c, f and g are zero．As a result，Lewis＇s results do not imply（e．g．）that $\operatorname{Pr}(P)=1$ ．
－Milne［10］relies on the single instance（ $\mathrm{III}_{P \supset Q}^{P}$ ），which only implies that the three masses b, f and h are zero．As a result，he obtains neither $\operatorname{Pr}(P)=1$ nor $\operatorname{Pr}(Q)=\operatorname{Pr}(P \leadsto Q)$ ．
－It＇s hard to think of any models that（generally）satisfy（III）． Here＇s one． $\operatorname{Pr}(\cdot)$ is an indicator function，and $p \leadsto q \stackrel{\text { des }}{=} q$ ．
－Given our background theory（I），（II）\Longleftrightarrow（III）．
－Proof of \Rightarrow ．Assuming（I）and（II），prove（III）．
－Proof of \Leftarrow ．Assuming（III）and（I），prove（II）．［Note：（III）\Rightarrow（I）．］
(II)

$$
\begin{aligned}
\operatorname{Pr}(p \leadsto(q \leadsto r)) & =\operatorname{Pr}(q \leadsto r \mid p) \text {, if } \operatorname{Pr}(p \& q)>0 \\
\operatorname{Pr}(q \leadsto r \mid p) & =\operatorname{Pr}(r \mid p \& q) \text {, if } \operatorname{Pr}(p \& q)>0 \\
\operatorname{Pr}(r \mid p \& q) & =\operatorname{Pr}((p \& q) \rightsquigarrow r) \text {, if } \operatorname{Pr}(p \& q)>0 \\
\operatorname{Pr}(p \leadsto(q \leadsto r)) & =\operatorname{Pr}((p \& q) \rightsquigarrow r) \text {, if } \operatorname{Pr}(p \& q)>0
\end{aligned}
$$

$$
\begin{align*}
& \text { (1) } \quad \operatorname{Pr}(x \leadsto(p \leadsto q))=\operatorname{Pr}(p \leadsto q \mid x) \text {, if } \operatorname{Pr}(p \& x)>0 \tag{I}\\
& \text { (2) } \quad \operatorname{Pr}(x \leadsto(p \leadsto q))=\operatorname{Pr}((p \& x) \leadsto q) \text {, if } \operatorname{Pr}(p \& x)>0 \tag{II}\\
& \operatorname{Pr}((p \& x) \leadsto q)=\operatorname{Pr}(q \mid p \& x) \text {, if } \operatorname{Pr}(p \& x)>0 \\
& \text { (I) } \\
& \text { (III) } \quad \therefore \operatorname{Pr}(p \leadsto q \mid x)=\operatorname{Pr}(q \mid p \& x) \text {, if } \operatorname{Pr}(p \& x)>0 \\
& \text { (1), (2), (3) }
\end{align*}
$$

－The triviality results of Gibbard and Lewis seem to suggest that import－export is problematic．But，it is difficult to come up with intuitive counterexamples to either（8）or（II）．
－Stephan Kaufmann［7］describes a possible counterexample to both（8）and（II）．Here is（my rendition of）his example．

Suppose that the probability that a given match ignites if struck is low，and consider a situation in which it is very likely that the match is not struck but instead is tossed into a camp fire，where it ignites without being struck．Now， consider the following two indicative conditionals．
（a）If the match will ignite，then it＇ll ignite if struck．
（b）If the match is struck and it＇ll ignite，then it＇ll ignite．
－According to Kaufmann，while（b）is clearly necessarily （even logically）true，（a）is not．Indeed，Kaufmann even claims that the probability of（a）should be less than 1.
－If he is right，we have a counterexample to both（8）and（II）．

Gibbard	Lewis	Extras	Refs
OOOO	00000000	oo	

［1］E．Adams，The logic of conditionals， 1965.
［2］B．Fitelson，The Strongest Possible Lewisian Triviality Result， 2014.〈http：／／fitelson．org／triviality．pdf〉
［3］ \qquad ，Gibbard＇s Collapse Theorem for the Indicative Conditional：An Axiomatic Approach，2013．〈http：／／fitelson．org／gibbard．pdf）
［4］＿，A decision procedure for probability calculus with applications， 2008．〈http：／／fitelson．org／pm．pdf〉
［5］A．Gibbard，Two Recent Theories of Conditionals， 1981.
［6］A．Hájek and N．Hall，The hypothesis of the conditional construal of conditional probability， 1994.
［7］S．Kaufmann，Conditional Predictions：A Probabilistic Account， 2005.
［8］D．Lewis，Probabilities of Conditionals \＆Conditional Probabilities II， 1986.
［9］＿Probabilities of Conditionals \＆Conditional Probabilities， 1976.
［10］P．Milne，The simplest Lewis－style triviality proof yet？， 2003.
［11］B．Skyrms，Resiliency，Propensities，and Causal Necessity， 1977.
［12］R．Stalnaker，A Theory of Conditionals， 1968.
Branden Fitelson Two New（ish）Triviality Results for Indicatives

