The Strongest Possible Lewisian Triviality Result

Branden Fitelson¹

April 23, 2015

1 Setting The Stage

Once upon a time, various philosophers (*e.g.*, [1, 15]) defended the idea that the probability of an indicative conditional ($P \rightarrow Q$) is the conditional probability of its consequent (Q), given its antecedent (P). More precisely, the following principle has been proposed and defended by various authors.²

The Equation.
$$Pr(P \rightarrow Q) = Pr(Q \mid P)$$
, provided $Pr(P) > 0$.

David Lewis [9, 8] published several triviality results involving **The Equation**. Since then, several other authors have published similar triviality results (see, *e.g.*, [6, 13]). In section two, I will explain the basic ideas behind these Lewisian triviality results. In section three, I will prove a new Lewisian triviality result. In fact, I will prove the *strongest possible* result of its kind. All other (published) Lewisian triviality results are strictly weaker than ours, and there can be no stronger result along these lines (in a sense to be made precise in section four).

2 Given The Equation, Lewisian Triviality is *Equivalent* to Import-Export

There's nothing trivial about **The Equation** *per se.* But, if we combine **The Equation** with another (seemingly plausible) assumption about the probabilities of *nested* conditionals, then Lewisian trivialities ensue. That assumption is the so-called *Import-Export Law*, which (probabilistically) is expressed as follows.

Import-Export.
$$Pr(P \rightarrow (Q \rightarrow R)) = Pr((P \& Q) \rightarrow R)$$
, provided $Pr(P \& Q) > 0$.

In the presence of **The Equation**, **Import-Export** is *equivalent* to the following "resilient" equation.³

The Resilient Equation.
$$Pr(P \rightarrow Q \mid X) = Pr(Q \mid P \& X)$$
, provided $Pr(P \& X) > 0$.

It is actually **The Resilient Equation** that is the true target of Lewisian triviality arguments.⁴ In the next section, I will present a new Lewisian triviality result, which subsumes all existing results of its kind.

3 The Strongest Lewisian Triviality Result

In this section, I will prove the following triviality result.

Triviality. Provided that Pr(P & Q) > 0 and $Pr(P \& \sim Q) > 0$,

The Resilient Equation
$$\iff$$
 Pr $(P \& (Q \equiv (P \rightarrow Q))) = 1$.

 $^{^{1}}$ Thanks to Andrew Bacon, Fabrizio Cariani, Thony Gillies, Simon Goldstein, Alan Hájek, and an anonymous referee for useful feedback on various versions of this paper.

²See [6] for a nice survey article on **The Equation** and its history.

³See the Appendix for a proof of this equivalence. I use the term "resilient" here, because it is reminiscent of the Skyrmsian [14] notion of resiliency. More recently, Hannes Leitgeb has endorsed a resilient version of the Lockean Thesis [7], which also has various unintuitive consequences [11, 2, 10]. I think the ultimate source of Lewisian triviality is this requirement of resiliency (and not **The Equation** *per se*). Moreover, the Import-Export Law is implicated in various other "triviality" results for the indicative conditional [5, 12, 3]. As such, I'd be inclined to reject **Import-Export** here, rather than **The Equation**. But, I'll have to leave the proper treatment of that question for another investigation.

 $^{^4}$ I am describing Lewisian triviality in terms of *resiliency* of **The Equation**, relative to a *single* probability function $Pr(\cdot)$. Lewis's original arguments traded on the assumption that **The Equation** holds *throughout a class* of probability functions (including Pr) that is *closed under conditionalization*. But, from the point of view of classical Bayesianism (which assumes that all updating goes *via* conditionalization), these are (for all intents and purposes) equivalent ways of running Lewisian triviality arguments.

What follows is an algebraic proof of **Triviality**. The generic stochastic truth-table representation of the class of probability functions $Pr(\cdot)$ over the eight states determined by $P, Q, P \rightarrow Q$ is as follows.⁵

_ <i>P</i>	Q	$P \rightarrow Q$	Pr(·)
T	T	T	а
T	T	F	b
T	F	T	С
T	F	F	d
F	T	T	e
F	T	F	f
F	F	T	g
F	F	F	h

It turns out that one does not need the full strength of **The Resilient Equation** in order two show that it implies the right-hand side of **Triviality**. That is, one does not need to conditionalize on *all X*'s such that Pr(P & X) > 0 in order to derive this (strongest) triviality result from **The Resilient Equation**. In fact, all we need are *three instances* of **The Resilient Equation**. I will now work my way up to **Triviality**, in three stages.

3.1 Stage 1: The $\sim Q$ -instance of The Resilient Equation

Consider the following instance of **The Resilient Equation**, where $X := \sim Q.6$

The Resilient Equation $_{\sim Q}$. $\Pr(P \rightarrow Q \mid \sim Q) = \Pr(Q \mid P \& \sim Q)$, provided $\Pr(P \& \sim Q) > 0$.

Algebraically, **The Resilient Equation** $_{\sim Q}$ is equivalent to the following [4], provided $Pr(P \& \sim Q) > 0$.

$$\Pr(P \to Q \mid \sim Q) = \frac{\Pr((P \to Q) \& \sim Q)}{\Pr(\sim Q)} = \frac{c + g}{c + d + g + h} = 0 = \Pr(Q \mid P \& \sim Q)$$

This equation will be true iff c + g = 0, which implies that c and g must both be equal to zero. The effect of **The Resilient Equation** $_{\sim Q}$ is therefore reflected in the following revised stochastic truth-table.

_ <i>P</i>	Q	$P \rightarrow Q$	Pr(·)
T	T	T	а
T	T	F	b
T	F	T	0
T	F	F	d
F	T	T	e
F	T	F	f
F	F	T	0
F	F	F	h

3.2 Stage 2: The $P \supset Q$ -instance of The Resilient Equation

Consider the following instance of **The Resilient Equation**, where $X := P \supset O^{7}$

The Resilient Equation
$$_{P\supset Q}$$
. $\Pr(P\to Q\mid P\supset Q)=\Pr(Q\mid P\&(P\supset Q))$, provided $\Pr(P\&(P\supset Q))>0$.

⁵Here, I'm using the terminology and setup of [4], which provides a general technique for reasoning algebraically about the probability calculus. Moreover, I will be assuming (without loss of generality) that P, Q, and $P \rightarrow Q$ are *logically independent* of each other. If there were logical dependencies between them, then this would only serve to *strengthen* our triviality result.

⁶This was one of the instances used by Lewis [9] to derive his original triviality results. The other instance he used was X := Q. It can be shown that Lewis's pair of constraints is *strictly weaker* than our (maximally strong) set of three constraints. For instance, Lewis's pair of instances do not jointly entail Pr(P) = 1. See the companion *Mathematica* notebook (*fn.* 9) for a proof of this.

⁷This is the instance used by Milne [13] to derive his triviality result. Milne's instance is strictly weaker than our (maximally strong) set of three constraints. For instance, Milne's instance does not entail *either* Pr(P) = 1 *or* $Pr(Q) = Pr(P \rightarrow Q)$. See the companion *Mathematica* notebook (*fn.* 9) for a proof of this.

Algebraically, **The Resilient Equation** $_{P\supset Q}$ is equivalent to the following, provided Pr(P & Q) > 0.

$$\Pr(P \to Q \mid P \supset Q) = \frac{\Pr((P \to Q) \& (P \supset Q))}{\Pr(P \supset Q)} = \frac{a + e}{a + b + e + f + h} = 1 = \Pr(Q \mid P \& (P \supset Q))$$

Cross-multiplying (and expanding and simplifying) this equation yields

$$0 = b + f + h$$

This equation will be true iff b, f and h are all equal to zero. The effects of **The Resilient Equation** $_{\sim Q}$ + **The Resilient Equation** $_{P\supset Q}$ are reflected in the following revised stochastic truth-table.

P	Q	$P \rightarrow Q$	$\Pr(\cdot)$
T	T	T	а
T	T	F	0
T	F	T	0
T	F	F	d
F	T	T	e
F	T	F	0
F	F	T	0
F	F	F	0

3.3 Stage 3: The \top -instance of The Resilient Equation — *i.e.*, The Equation *Itself*

Consider the following instance of **The Resilient Equation**, where $X := \top$.

The Resilient Equation $_{\top}$. $\Pr(P \to Q \mid \top) = \Pr(Q \mid P \& \top)$, provided $\Pr(P \& \top) > 0$.

Of course, The Resilient Equation $_{\top}$ is just The Equation itself. Algebraically, The Equation is now

$$Pr(P \to Q) = a + e = \frac{a}{a+d} = Pr(Q \mid P)$$

Cross-multiplying (and expanding and simplifying) this equation yields the following quadratic equation

$$a^{2} + ad + ae + de - a = 0$$

Recall, we are assuming (from Stage 1) that $Pr(P \& \sim Q) > 0$. That is, we are assuming that d > 0. As it happens, when d > 0 (and the background probabilistic constraints on a, d, e hold [4]), the quadratic equation above is satisfied *iff* e = 0, d = 1 - a, and $a, d \in (0, 1)$.

The effects of **The Resilient Equation** $_{\sim Q}$ + **The Resilient Equation** $_{P\supset Q}$ + **The Equation** are reflected in the following (final) *single-parameter* stochastic truth-table, where $a \in (0,1)$.

P	Q	$P \rightarrow Q$	Pr(·)
T	T	T	а
T	T	F	0
T	F	T	0
T	F	F	1 – a
F	T	T	0
F	T	F	0
F	F	T	0
F	F	F	0

In other words, The Resilient Equation $_{P\supset Q}$ + The Resilient Equation $_{P\supset Q}$ + The Equation jointly entail that the only two states which can be assigned non-zero probability are $P \& Q \& (P \to Q)$ and $P \& \sim Q \& \sim (P \to Q)$. This is equivalent to saying that the proposition $P \& (Q \equiv (P \to Q))$ must receive maximal probability. QED

Triviality is *very* strong.⁸ It implies that, for *every* P and Q that feature as the antecedent and consequent of some indicative conditional $P \to Q$ (and which are such that Pr(P & Q) > 0 and $Pr(P \& \sim Q) > 0$), *both* P *and* the material biconditional $Q \equiv (P \to Q)$ must receive maximal probability (and, as a result, we must also have $Pr(Q) = Pr(P \to Q)$). All of the existing Lewisian triviality results are strictly weaker than this one. In fact, *there can be no stronger* Lewisian triviality result.

⁸Here's one interpretation of \rightarrow and $\Pr(\cdot)$ which satisfies **Triviality**. Let $\Pr(\cdot)$ be an *indicator function*, and let $p \rightarrow q \not \equiv q$.

4 Why Triviality is *The Strongest* (Lewisian) Triviality Result

Triviality is *the strongest* triviality result of its kind. Here's what I mean. If one assumes *all* of the instances of **The Resilient Equation**, then this *still* (*only*) implies **Triviality**. That is, adding further instances of **The Resilient Equation** to the three we used above *does not add any additional constraints to* $Pr(\cdot)$. This can be shown algebraically by proving that the conjunction of *all* instances of **The Resilient Equation** (where *X* ranges over the 256 propositions in the Boolean algebra generated by $P, Q, P \rightarrow Q$) is equivalent to the conjunction of the *three* instances of **The Resilient Equation** that we used above (and this also secures the \leftarrow direction of **Triviality**).

APPENDIX: Proof of the Equivalence of Import-Export and The Resilient Equation, Given The Equation

Theorem. Given The Equation, The Resilient Equation is equivalent to (⇔) Import-Export.

Proof. Here is a proof of the \Rightarrow direction of this theorem.

1.
$$\Pr(P \to (Q \to R)) = \Pr(Q \to R \mid P)$$
, if $\Pr(P \& Q) > 0$ The Equation
2. $\Pr(Q \to R \mid P) = \Pr(R \mid P \& Q)$, if $\Pr(P \& Q) > 0$ The Resilient Equation
3. $\Pr(R \mid P \& Q) = \Pr((P \& Q) \to R)$, if $\Pr(P \& Q) > 0$ The Equation
 $\therefore \Pr(P \to (Q \to R)) = \Pr((P \& Q) \to R)$, if $\Pr(P \& Q) > 0$ (1), (2), (3) \square

Here is a proof of the \Leftarrow direction of this theorem.

1.	$Pr(X \to (P \to Q)) = Pr(P \to Q \mid X), \text{ if } Pr(P \& X) > 0$	The Equation
2.	$Pr(X \to (P \to Q)) = Pr((P \& X) \to Q), \text{ if } Pr(P \& X) > 0$	Import-Export
3.	$Pr((P \& X) \to Q) = Pr(Q \mid P \& X), \text{ if } Pr(P \& X) > 0$	The Equation
	$\therefore \Pr(P \to Q \mid X) = \Pr(Q \mid P \& X), \text{ if } \Pr(P \& X) > 0$	$(1), (2), (3) \square$

References

- [1] E. Adams, The logic of conditionals, Inquiry (1965): 166-197.
- [2] B. Fitelson, Belief and Credence: The View From Naïve Epistemic Utility Theory, manuscript, 2015.
- [3] ______, Gibbard's Collapse Theorem for the Indicative Conditional: An Axiomatic Approach, in M.P. Bonacina and M. Stickel (eds.), Automated Reasoning and Mathematics: Essays in Honor of William McCune, Springer (2013): 181-188.
- [4] ______, A decision procedure for probability calculus with applications, The Review of Symbolic Logic (2008): 111-125.
- [5] A. Gibbard, *Two Recent Theories of Conditionals*, in W. Harper, R. Stalnaker, and G. Pearce, *Ifs*, D. Reidel (1981): 211-247.
- [6] A. Hájek and N. Hall, *The hypothesis of the conditional construal of conditional probability*, in E. Eells, B. Skyrms, and E. Adams, (eds.), *Probability and conditionals: Belief revision and rational decision*, Cambridge University Press, (1994): 75-112.
- [7] H. Leitgeb, The stability theory of belief, Philosophical Review (2014): 131-171.

⁹This can easily be verified using *Mathematica*. I have created a *Mathematica* (version 10) notebook which verifies that **Triviality** is *the strongest* (Lewisian) triviality result for the indicative conditional. It also shows (a) that the results of Lewis and Milne are strictly weaker than ours; and, (b) there are some (very complex) *pairs* of instances of **The Resilient Equation** that suffice to establish **Triviality**. This *Mathematica* notebook can be downloaded from the following URL: http://fitelson.org/triviality.nb.

- [8] D. Lewis, *Probabilities of Conditionals and Conditional Probabilities II, The Philosophical Review* (1986): 581-589.
- [9] ______, *Probabilities of Conditionals and Conditional Probabilities, The Philosophical Review* (1976): 297-315.
- [10] H. Lin and and K. Kelly, Comment on Leitgeb's Stability Theory of Belief, manuscript, 2015.
- [11] D. Makinson, Remarks on the Stability Theory of Belief, manuscript, 2015.
- [12] V. McGee, A counterexample to modus ponens, The Journal of Philosophy (1985): 462-471.
- [13] P. Milne, The simplest Lewis-style triviality proof yet?, Analysis (2003): 300-303.
- [14] B. Skyrms, Resiliency, Propensities, and Causal Necessity, Journal of Philosophy (1977): 704-13.
- [15] R. Stalnaker, *A Theory of Conditionals*, in N. Rescher (ed.), *Studies in Logical Theory*, Blackwell, (1968): 98-112.