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For Tina

The only good is knowledge and
the only evil is ignorance.

— Socrates
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Abstract

According to Bayesian confirmation theory, evidence E (incrementally) confirms

(or supports) a hypothesis H (roughly) just in case E and H are positively prob-

abilistically correlated (under an appropriate probability function Pr). There are

many logically equivalent ways of saying that E and H are correlated under Pr.

Surprisingly, this leads to a plethora of non-equivalent quantitative measures of the

degree to which E confirms H (under Pr). In fact, many non-equivalent Bayesian

measures of the degree to which E confirms (or supports) H have been proposed

and defended in the literature on inductive logic. I provide a thorough histori-

cal survey of the various proposals, and a detailed discussion of the philosophical

ramifications of the differences between them. I argue that the set of candidate

measures can be narrowed drastically by just a few intuitive and simple desiderata.

In the end, I provide some novel and compelling reasons to think that the correct

measure of degree of evidential support (within a Bayesian framework) is the (log)

likelihood ratio. The central analyses of this research have had some useful and in-

teresting byproducts, including: (i) a new Bayesian account of (confirmationally)

independent evidence, which has applications to several important problems in con-

firmation theory, including the problem of the (confirmational) value of evidential

diversity, and (ii) novel resolutions of several problems in Bayesian confirmation

theory, motivated by the use of the (log) likelihood ratio measure, including a reply

to the Popper-Miller critique of probabilistic induction, and a new analysis and

resolution of the problem of irrelevant conjunction (a.k.a., the tacking problem).
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Chapter 1

Introduction
A good notation has a subtlety and suggestiveness

which at times make it almost seem like a live teacher.

— Bertrand Russell

1.1 Notation

Before we get started, some explanation of our basic notation is required. Table 1,

below, should do the trick, for now (some special, additional notation will be

introduced, as the monograph unfolds). With these basic notational conventions

out of the way, we’re ready for a brief introduction to Bayesian confirmation theory.

1.2 Background on Bayesian Confirmation

1.2.1 Probability Theory I: Kolmogorov’s Axioms

The basic conceptual building block underlying Bayesian confirmation theory is

the mathematical theory of probability. For our purposes, we won’t need all of

probability theory, just (a simple fragment of) the probability calculus. I will

assume, throughout, that Pr is a Kolmogorov probability function. That is, I

will assume that Pr (taken to be defined over a Boolean algebra of propositions)

satisfies (for all propositions X and Y ) the following axioms [Kolmogorov (1956)]:

Pr(X) ≥ 0.

Pr(�) = 1.

If X & Y � ⊥, then Pr(X ∨ Y ) = Pr(X) + Pr(Y ).1
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X, Y , H1, E
′, . . . propositions

(∀x) universal quantifier

(∃x) existential quantifier

& conjunction (object language), X & Y (X and Y )

∨ disjunction (object language), X ∨ Y (X or Y )

X̄ negation (object language), X̄ (not X)

� the necessary proposition

⊥ the impossible proposition

=df definition (metalanguage)

iff, ⇐⇒ if and only if (metalanguage)

=⇒ only if (metalanguage)

� X (or X = �) X is logically true (i.e., X is true in every
possible world or model)

X � Y X entails Y (i.e., Y is true in every possible
world or model in which X is true)

log(x) the logarithm (base > 1) of (a real number) x

Pr(X) the (unconditional) probability of X, under Pr

Pr(X |Y ) the probability of X, conditional on Y , under Pr

Table 1: The basic notation used in this monograph.

Moreover, following Kolmogorov, we will take the conditional probability Pr(· | ·)

to be defined in terms of the unconditional probability Pr(·), as follows.2

Pr(X |Y ) =df
Pr(X & Y )

Pr(Y )
[where Pr(Y ) �= 0]

1Sometimes, Kolmogorov’s third axiom is strengthened to require additivity over countably
infinite sets of mutually exclusive propositions. This stronger assumption (called countable ad-
ditivity) will not be made here. Typically, my discussion will require only finite spaces.

2Some have argued [most forcefully, Hájek (2001)] that we should, instead, take conditional
probabilities as primitive, and then define unconditional probabilities in terms of conditional
probabilities [as Popper (1980, Appendix *iv) and others have]. While I am somewhat sympa-
thetic to this suggestion (in some contexts), I have chosen not to make this move here. Doing
so would require making the arguments below far more complicated, and far less intuitive (see
footnote 10). As far as I know, only one philosopher of science has commented (in print) on the
ramifications of such a move for Bayesian confirmation theory [see Festa (1999)].
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1.2.2 Probability Theory II: Interpretation(s)

Happily, almost all of the arguments and analyses below will not trade on the

interpretation of the probability function Pr. This is good news, since there is

great and well-known controversy over the interpretation, origin, and status of

unconditional (or “a priori”) probabilities Pr(·). As I mentioned above, all of the

probabilities in this monograph are defined in terms of unconditional probabilities.

So, if these cannot be well understood or well grounded in a Bayesian framework,

then it’s hard to see how Bayesian confirmation could even get off the ground.3 The

issues raised and the arguments constructed below will retain their interestingness

and legitimacy under objective, logical, or epistemic interpretations of probability.4

So, I will not argue for the existence of a ‘rational’ (or ‘objective’) probability

function Pr of the kind required to give Bayesian confirmation theory its (objective)

normative teeth.5 Hereafter, I will simply assume that the problems of identifying

and interpreting a suitable Pr have been solved. I will argue below that even

if (per impossible?) all of these foundational problems involving the status and

interpretation of Pr in the Bayesian framework were solved, interesting problems

would remain in Bayesian confirmation theory. Now, we’re ready to introduce the

basic concepts to be investigated for the remainder of the monograph.6

3See Earman (1992) for a thorough discussion (including many historical references) of the
problem of priors and other foundational controversies in Bayesian philosophy of science.

4See Fine (1973) and Gillies (2000) for nice surveys of the wide variety of interpretations of
probability (both subjective and objective) that have been propounded over the years.

5Maher (1996) discusses the subjective versus the objective in Bayesian confirmation theory.
6The following books and articles on various issues surrounding the role of probability in

philosophy, science, and statistics (though not explicitly cited elsewhere in this monograph)
have had a significant influence on my views: Adams (1998), Carnap (1971), Dale (1999), Deák
(1990), de Finetti (1990), Eells (1983, 1985), Efron (1978, 1986), Feller (1968), Forster (1994,
2000), Forster and Kieseppä (2001), Forster and Sober (1994), Glymour (1980), Hacking (1975),
Hailperin (1996), Hempel (1945, 1983), Jeffreys (1998), Levi (1967), Maher (1993, 2000, 2001),
Măıstrov (1974), Paris (1994), Ramsey (1990), Reichenbach (1971), Robert (1994), Rosenkrantz
(1977), Royall (1997), Savage (1972), Schervish (1995), Seidenfeld (1979), Skyrms (1984), Sober
(1994a, 1994c), Stigler (1990), Swinburne (1973), Székely (1986), van Fraassen (1982, and 1989).
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1.2.3 Qualitative Bayesian Confirmation

As Carnap (1962, new preface) was one of the first to make clear, there are two

distinct kinds of Bayesian confirmation. That is to say, there are two ways of

understanding the relation “E confirms H, relative to background knowledge7 K”

within a Bayesian framework. Bayesians might use either of the following:

• E confirms H relative to K iff Pr(H |E &K) > k [for some k ∈ (0, 1)].

• E confirms H relative to K iff Pr(H |E &K) > Pr(H |K).

The first of these is what Carnap calls “confirmation as firmness” and the second

is what Carnap calls “confirmation as increase in firmness.” This monograph is

concerned only with the latter Bayesian notion of confirmation. In the contem-

porary literature, this is known as incremental (Bayesian) confirmation.8 This

leads us to our first definition: that of the of the qualitative, ternary relation “E

(incrementally) confirms H relative to background K.”

Definition. E confirms H relative toK iff Pr(H |E&K) > Pr(H |K).

If Pr(H |E & K) < Pr(H |K), then we say that E disconfirms H

relative to K. And if Pr(H |E &K) = Pr(H |K), then we say that E

is confirmationally irrelevant to H relative to K.

The remainder of our discussion will be concerned with various quantitative gen-

eralizations of this qualitative, incremental variety of Bayesian confirmation.

7The word “knowledge” prejudices us here toward an epistemic reading of Pr. If you prefer,
you may think of K (instead) simply as a set of background propositions, which may or may
not be known by any agent. As I mentioned above, none of my arguments will trade on this
distinction between objective and subjective probability (or confirmation). I prefer to talk in
terms of epistemic probabilities in this context, but the reader may have a different preference.

8The terms “absolute” and “incremental” are used nowadays to denote the two varieties
of Bayesian confirmation discussed in Carnap (1962, new preface). It seems that incremental
confirmation is used almost exclusively by contemporary Bayesians. See Earman (1992).
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1.2.4 Quantitative Confirmation I: The Basic Concepts

If one adopts Kolmogorov’s theory of probability, then there are many different

(but logically equivalent) ways of saying that E confirms H relative to K. This is

because, according to our definition, E confirms H relative to K iff E and H are

positively correlated under Pr(· |K).9 It is well known that the following are four

(logically equivalent) ways of saying that E and H are positively correlated under

Pr(· |K), provided that Pr(· |K) is a Kolmogorov probability function.10

• Pr(H |E &K) > Pr(H |K)

• Pr(H |E &K) > Pr(H | Ē &K)

• Pr(E |H &K) > Pr(E | H̄ &K)

• Pr(H & E |K) > Pr(H |K) · Pr(E |K)

Intuitively, one might propose to define various quantitative measures of the

degree to which E confirms H relative to K, using the inequalities above (or any

other equivalent inequality). For instance, by taking the difference between the left

and right hand side of any of these inequalities, one may construct a (intuitively

plausible) measure c(H,E |K) of the degree to which E confirms H relative to K.

Any such measure is bound to satisfy the following qualitative constraint, in cases

where E confirms, disconfirms, or is confirmationally irrelevant to H, given K:

9Correlation and dependence of random variables do not coincide — in general. However, in
the special case (at hand) of dichotomous random variables (i.e., propositions), correlation and
dependence are synonymous. See Ross (1994, pages 320–331) for discussion.

10Interestingly (because of the fundamentally different way in which such theories handle condi-
tional probabilities with impossible antecedents), this claim is not true for theories of probability
that take conditional probabilities as primitive [e.g., those of Popper (1980, Appendix *iv), Car-
nap (1962, §53), and others]. This explains why the arguments below would require serious
revision if these alternative ways of axiomatizing Pr were used. See Roeper and Leblanc (1999)
and Goosens (1979) for discussions of the various alternative ways of defining probabilities by
taking conditional probabilities as primitive. And, see Festa (1999) for a taste of the disunifying
effects this would have on both qualitative and quantitative Bayesian confirmation theory.
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(R) c(H,E |K)




> 0 if Pr(H |E &K) > Pr(H |K),

< 0 if Pr(H |E &K) < Pr(H |K),

= 0 if Pr(H |E &K) = Pr(H |K).

Any measure c(H,E |K) that satisfies R will be called a relevance measure.11 One

can also form relevance measures by taking logarithms of ratios of the left and right

hand sides of any of the inequalities above. Because any two relevance measures

must be qualitatively equivalent (viz.,R), one might suspect that it really shouldn’t

matter too much which relevance measure one uses. While different relevance

measures will assign different numerical values, one might expect them to impose

the same ordering over H’s, E’s and K’s. In other words, one might expect all

relevance measures to be ordinally equivalent in the following precise sense.12

Definition. Two measures c1(H,E |K) and c2(H,E |K) of the degree

to which E confirms H relative to K are said to be ordinally equivalent

just in case, for all H, E, K, H ′, E ′, and K ′:

c1(H,E |K) ≥ c1(H ′, E ′ |K ′) iff c2(H,E |K) ≥ c2(H ′, E ′ |K ′).

The surprising thing (and the central fact in this monograph) is that this intuition

couldn’t be farther from the truth. It is rather surprising (and it has not been

widely noticed or discussed), but most proposed relevance measures — although

stemming from the very same qualitative notion — give rise to (radically) non-

equivalent quantitative gauges of the degree to which E confirms H relative to K.

This radical, ordinal disagreement between the many proposed relevance measures

of degree of confirmation is the main issue that I will address below.

11Measures that violate R (i.e., non-relevance-measures) will not be considered measures of
confirmation in the sense defined above. That is, R will be taken as a minimal desideratum for
any adequate measure c(H, E |K) of the degree to which E confirms H relative to K.

12See Krantz, Luce, Suppes, and Tversky (1971, Ch. 1) for a theoretical treatment of the
ordinal equivalence of abstract quantitative measures.
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1.2.5 Quantitative Confirmation II: The Many Measures

As I mentioned above, taking differences or logarithms of ratios of the left and

right hand sides of the relevant inequalities is an easy way to generate relevance

measures. There are also lots of other, more complicated ways of generating rele-

vance measures. In the history of inductive logic, a great many such measures have

been proposed and defended.13 Rather than give an exhaustive list of all of these

measures (there are dozens), I will only discuss the following five relevance mea-

sures, which are representative of the kinds of measures that have been proposed

and defended (especially, in recent years), and which cover much of the space of

possible ordinal structures imposable by (simple) relevance measures.14

d(H,E |K) =df Pr(H |E &K)− Pr(H |K)

r(H,E |K) =df log

[
Pr(H |E &K)

Pr(H |K)

]

l(H,E |K) =df log

[
Pr(E |H &K)

Pr(E | H̄ &K)

]

= log

[
Pr(H |E &K) · [1− Pr(H |K)]

[1− Pr(H |E &K)] · Pr(H |K)

]
.15

13For a nice survey, see Kyburg (1983).
14Advocates of d include Earman (1992), Eells (1982), Gillies (1986), Jeffrey (1992), and

Rosenkrantz (1994). Advocates of r (or measures ordinally equivalent to r) include Horwich
(1982), Keynes (1921), Mackie (1969), Milne (1996), Schlesinger (1995), and Pollard (1999).
Advocates of l (or measures ordinally equivalent to l) include Kemeny and Oppenheim (1952),
Good (1983), Heckerman (1988), Horvitz and Heckerman (1986), Pearl (1988), and Schum (1994).
Recent proponents of s include Christensen (1999) as well as Joyce (1999). r is Carnap’s (1962,
§67) relevance measure. Logarithms (base > ) of the ratios Pr(H |E & K)/Pr(H |K) and
Pr(E |H &K)/Pr(E | H̄ &K) are taken to insure that (i) r and l satisfy R, and (ii) r and l are
additive in various ways. Not all advocates of r or l adopt this convention (e.g., Horwich (1982)).
But, because logarithms are isotone, defining r and l in this way will not effect their ordinal
structure. Hence, using logarithms will not effect the generality of our subsequent arguments.
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s(H,E | K) =df Pr(H |E &K)− Pr(H | Ē &K)

=
1

Pr(Ē |K)
· d(H,E |K).16

r(H,E | K) =df Pr(H & E &K) · Pr(K)− Pr(H &K) · Pr(E &K)

= Pr(K) · Pr(E &K) · d(H,E |K).17

In the remaining chapters, I will (aim to): (i) show that these five popular

relevance measures disagree in some very important ways, (ii) discuss how these

disagreements effect many existing philosophical arguments, and (iii) explain how

the field of competing measures can be drastically narrowed using just a few simple,

intuitive principles. Along the way, I will also provide some new analyses (and

resolutions) of some old problems in Bayesian confirmation theory.

15Expressing l(H, E |K) in this way makes it clear that, like d(H, E |K) and r(H, E |K),
l(H, E |K) is a function of the posterior Pr(H |E & K) and prior Pr(H |K) of H (given K).

16This equality holds provided, of course, that Pr(Ē |K) �= 0. See Christensen (1999) for
further discussion about the relationship between d and s.

17It is perhaps easiest to think of Carnap’s r as a kind of covariance measure. Indeed, when
K is tautologous, we have: r(H, E | K) = Pr(H & E & K) · Pr(K) − Pr(H & K) · Pr(E & K) =
Pr(H &E) − Pr(H) · Pr(E) = Cov(H, E). In general, r(H, E | K) = Pr(K)2 · Cov(H, E |K).
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Chapter 2

The Plurality of Bayesian

Measures of Confirmation and the

Problem of Measure Sensitivity18

Measure what is measurable, and
make measurable what is not so.

— Galileo

2.1 A General Overview of the Problem

Many arguments surrounding quantitative Bayesian confirmation theory presup-

pose that the degree to which E incrementally confirms H, given K should be

measured using some relevance measure (or, class of relevance measures) c, where

c is taken to have a certain (ordinal) structure. We say that an argument A of

this kind is sensitive to choice of measure if A’s validity varies (ceteris paribus),

depending on which of the five relevance measures d, r, l, s, or r is used in A. If

A is valid regardless of which of the five relevance measures d, r, l, s, or r is used

in A, then A is said to be insensitive to choice of measure (or, simply, robust).19

Below, I will show that eight well-known and central arguments surrounding

18Much of the material in this chapter appears in Fitelson (1999).
19One can invent more or less stringent varieties of measure sensitivity. For instance, one could

call an argument “measure sensitive” (in a very strict sense) if A is valid with respect to some
conceivable relevance measure c1, but invalid with respect to some other conceivable relevance
measure c2. Of course, such a strict notion of sensitivity would probably not be very interesting,
since highly gerrymandered relevance measures can undoubtedly be concocted to suit arbitrary
purposes. I am employing a much less strict notion of measure sensitivity which appeals only to
measures that have actually been used and defended in the philosophical literature.
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contemporary Bayesian confirmation theory are sensitive to choice of measure. I

will argue that this exposes a weakness in the theoretical foundation of Bayesian

confirmation theory which must be shored-up. I call this problem the problem of

measure sensitivity. After presenting a survey of measure sensitive arguments, I

will examine some recent attempts to resolve the measure sensitivity problem. I

will argue that, while some progress has been made toward this end, we still do

not have an adequate or a complete resolution of the measure sensitivity problem.

Specifically, I will show that the many defenders of the difference measure d have

failed to provide compelling reasons to prefer d over the alternative measures l,

s, and r. Thus, a pervasive problem of measure sensitivity still remains for many

modern advocates and practitioners of Bayesian confirmation theory.

2.2 Contemporary Examples of the Problem

It is not difficult to show that no pair of the five measures d, r, l, s, and r is

ordinally equivalent. That is, each of these five measures can impose distinct or-

derings over sets of hypotheses and collections of evidence.20 I have not seen many

discussions concerning the measure sensitivity of concrete arguments surrounding

Bayesian confirmation theory.21 In this section, I will show that a wide variety

of well-known arguments surrounding Bayesian confirmation theory are sensitive

to choice of measure. Indeed, almost every argument I have seen surrounding

Bayesian confirmation theory (that is, every Bayesian argument involving quanti-

tative confirmational comparisons) turns-out to be sensitive to choice of measure!

20Rosenkrantz (1981, Exercise 3.6) discusses the ordinal non-equivalence of d, r, and l. Carnap
(1962, §67) talks about some important ordinal differences between r, d, and r (Carnap does not
compare r with l or s). Joyce (1999) and Christensen (1999) discuss some of the ordinal differences
among s, d, r, and l. And, Good (1985) mentions some differences among l, d, and r. As far as
I know, notwithstanding these piecemeal discussions (and a few others like them), there has not
been a thorough treatment of the ordinal disagreements between relevance measures.

21Two notable exceptions are Redhead (1985) and Mortimer (1988, §11.1).
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2.2.1 Gillies’s Rendition of the Popper-Miller Argument

Gillies (1986) reconstructs the infamous argument of Popper and Miller (1983) for

the “impossibility of inductive probability” in such a way that it trades essentially

on the following additivity property of the difference measure d:

d(H,E |K) = d(H ∨E,E |K) + d(H ∨ Ē, E |K).(1)

The details of the Popper-Miller argument need not concern us. All that matters

for our purposes is that Gillies’s rendition of the Popper-Miller argument against

Bayesianism presupposes that any adequate Bayesian measure of inductive support

(or confirmation) will satisfy the additivity property depicted in (1).

Redhead (1985) points out that not all Bayesian relevance measures have this

requisite additivity property. Specifically, Redhead (1985) notes that the log-ratio

measure r does not satisfy (1). It follows that the Popper-Miller argument is sen-

sitive to choice of measure. Gillies (1986) responds to Redhead’s point by showing

that the measure r is not an adequate Bayesian relevance measure of confirmation.

Gillies argues that the ratio measure r is inferior to the difference measure d be-

cause r fails to cope properly with cases of deductive evidence (see §2.3.1 for more

on this argument against r). Unfortunately, Gillies fails to recognize that Red-

head’s criticism of the Popper-Miller argument can be significantly strengthened

via the following theorem (see the Appendix for proofs of all Theorems).22

Theorem 1. l does not have the additivity property expressed in (1).23

Moreover, as we will see below in §2.3.1, the log-likelihood ratio measure l is

immune to Gillies’s criticism of r. So, pending some good reason to prefer d over

22This point was made, independently, by Good (1987).
23Carnap’s relevance measure r does satisfy (1). This follows easily from (1), and the fact that
r(H, E | K) = Pr(K) · Pr(E & K) · d(H, E |K). Christensen’s measure s also satisfies (1). This

is an easy consequence of (1) and the fact that s(H, E | K) =
d(H, E |K)
Pr(Ē |K)

(proofs omitted).
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l, Gillies’s reconstruction of the Popper-Miller argument does not seem to pose a

serious threat to Bayesian confirmation theory (charitably reconstructed). What

makes this first example so interesting is that it illustrates that the problem of

measure sensitivity effects not only arguments within the Bayesian framework,

but also arguments that are critical of Bayesianism.

2.2.2 Rosenkrantz & Earman on “Irrelevant Conjunction”

Rosenkrantz (1994) offers a Bayesian resolution of “the problem of irrelevant con-

junction” (a.k.a. “the tacking problem”) which trades on the following property of

the difference measure d:

If H � E, then d(H &X,E |K) = Pr(X |H &K) · d(H,E |K).(2)

I won’t bother to get into the details of Rosenkrantz’s argument here (see §2.2.2.1

below for a detailed analysis). It suffices, for my present purposes, to note that

it depends sensitively on property (2). As a result, Rosenkrantz’s argument does

not go through if one uses r or l, instead of d, to measure degree of confirmation.

The proof of the following theorem demonstrates this strong measure sensitivity

of Rosenkrantz’s approach:

Theorem 2. Neither r nor l has the property expressed in (2).29

Consequently, Rosenkrantz’s account of “irrelevant conjunction” is adequate

only if the difference measure d is to be preferred over the two alternative relevance

measures r and l. Like Gillies, Rosenkrantz (1981, Exercise 3.6) does provide some

good reasons to prefer d over r (see §2.3.1). However, he explicitly admits that

he knows of “no compelling considerations that adjudicate between” the difference

measure d and the log-likelihood ratio measure l. This leaves Rosenkrantz in a

rather uncomfortable position. As I will discuss below, Rosenkrantz is not alone
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in this respect. I know of no arguments (much less, compelling ones) that have

been proposed to demonstrate that d should be preferred over l.

Earman (1992) offers a similar approach to “irrelevant conjunction” which is

less sensitive to choice of measure. Earman’s approach relies only on the following

logically weaker fact about d:

If H � E, then d(H &X,E |K) < d(H,E |K).(2′)

The log-likelihood ratio measure l, Carnap’s measure r, and Christensen’s measure

s all satisfy (2′) (proofs omitted); but, the log-ratio measure r does not satisfy (2′)

(see §2.3.1). So, while still sensitive to choice of measure, Earman’s “irrelevant

conjunction” argument is less sensitive to choice of measure than Rosenkrantz’s.

2.2.2.1 A New Analysis of “Irrelevant Conjunction”24

The problem of irrelevant conjunction (a.k.a., the tacking problem) was originally

raised as a problem for the hypothetico-deductive (H–D) account of confirmation.25

According to the H–D account of confirmation, E confirms H relative to K if

(roughly) H & K � E. Therefore, owing to the monotonicity of �, we have the

following fact about H–D-confirmation:

If E H–D-confirms H relative to K, then E also H–D-confirms H&X

relative to K, for any X.

(3)

The problem with (3) is supposed to be that conjoining X’s that are utterly irrel-

evant to H and E seems (intuitively) to undermine the confirmation E provides

24The material for this section [not appearing in Fitelson (1999)] is taken from Fitelson (2001b).
25See Hempel (1945) for the original (classic) presentation of H-D confirmation, and some of its

shortcomings (including the problem of irrelevant conjunction). See Skyrms (1992) for an incisive
and illuminating critical survey of some recent papers on deductive accounts of confirmation and
the problem of irrelevant conjunction. And, see Earman (1992, pp. 63–65) for a typical Bayesian
discussion of the problem of irrelevant conjunction.



14

for the resulting (conjunctive) hypothesis H & X. For instance, intuitively, the

return of Halley’s comet in 1758 (E) confirmed Newton’s theory (H) of univer-

sal gravitation (relative to the background evidence (K) available at the time).

But, according to the H–D account of confirmation, this implies that the return of

Halley’s comet also confirms the conjunction of H and (say) Coulomb’s Law (or

any other proposition(s) one would like to conjoin to H). And, no matter how

many irrelevancies are conjoined to H, E will continue to confirm the conjunction,

according to the H–D account of confirmation.

Because probabilistic correlation is not monotonic, Bayesian confirmation does

not have the property expressed in (3). That is, according to Bayesianism, it does

not follow from E’s confirming H that E must also confirm H & X, for any X.

So, Bayesianism is immune from the original problem of irrelevant conjunction.

However, Bayesian confirmation does still suffer from this problem in the case of

deductive evidence (i.e., in the H–D case in which H &K � E). That is, Bayesian

confirmation and H–D confirmation both satisfy the following special case of (3):

If H &K � E, then E confirms H &X relative to K, for any X.(3′)

Bayesians (e.g., Rosenkrantz and Earman, as discussed above) have tried to resolve

this new problem of irrelevant conjunction by proving various quantitative results

about the degree to which E confirms H versus H & X in the case of deductive

evidence. As I have discussed above, theorems like Earman’s (2′) are typically

called into action in this context. Bayesians will explain that, whileE does continue

to confirm H&X in the case of deductive evidence, the degree to which E confirms

H&X will be less than the degree to which E confirms H. And, as more and more

irrelevant conjuncts are added, the degree to which E confirms the conjunction

will tend to decrease. I have already shown that this claim is sensitive to choice

of measure (since it is not true for measure r). But, there is an even more serious



15

philosophical flaw in the standard Bayesian analyses of this problem.

A closer look at (2′) reveals that the irrelevance of X has disappeared from the

Bayesian resolution of the problem of irrelevant conjunction. What (2′) says is

that, as conjuncts X (simpliciter) are added to H, the degree to which E confirms

H & X will tend to decrease. As far as (2′) is concerned, a conjunct X could

be (intuitively) relevant to H and E, but this would not prevent the conjunction

H&X from being less strongly confirmed thanH by E. This is unfortunate, for two

reasons. First, it was supposed to be the irrelevant X’s that made (3) and (3′) seem

so unattractive. It’s not so obvious that either (3) or (3′) is incorrect in the case of

highly positively relevant X’s. Moreover, Bayesian confirmation theory is founded

on a perfectly precise and intuitive kind of relevance (viz., correlation), which is not

mentioned anywhere in either the (“Bayesian”) statement(s) or resolution(s) of the

problem of irrelevant conjunction. So, Bayesians who endorse Earman’s resolution

[grounded in (2′)] have apparently both (i) lost track of which X’s were supposed

to make (3) and (3′) seem so unintuitive; and, in the process, (ii) forsaken the very

notion of relevance that undergirds their own theory. Rosenkrantz (1994, pp. 470–

471) does seem somewhat sensitive to these points. He motivates his resolution

(viz., (2)) of the problem of irrelevant conjunction, as follows.26

On H–D accounts, H is confirmed by a verified prediction, E, but E

is equally a prediction of H & X, where the ‘tacked on’ X may be a

quite extraneous hypothesis. . . . There are those who think that this

sin of ‘irrelevant conjunction’ vitiates Bayesian confirmation theory as

well. . . . I hope you will agree that the two extreme positions on this

issue are equally unpalatable, (i) that a consequence E of H confirms

H not at all, and (ii) that E confirms H & X just as strongly as it

confirmsH alone. . . . In general, intuition expects intermediate degrees

26I have translated Rosenkrantz’s (1994, pp. 470–471) passage into our notation.
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of confirmation that depend on the degree of compatibility of H with

X. Measuring degree of confirmation by . . . [d] . . . yields . . . [(2)].

Rosenkrantz deserves credit here for trying to bring the irrelevance back into the

Bayesian resolution of this problem. However, his account has two serious flaws.

First, as I have already shown, his account is more sensitive to choice of measure

of confirmation than the generic Bayesian resolutions (e.g., Earman’s (2′)-based

account): it only works if we adopt d, s, or r as our measure of confirmation.

In addition, Rosenkrantz’s account makes use of a strange — and decidedly non-

Bayesian — notion of “relevance.” Rosenkrantz seems to be suggesting that a

conjunct X should be considered “irrelevant” to H (relative to background K)

if Pr(X |H & K) < 1.27 This suggestion is inadequate for two reasons. First,

since when do Bayesians think that the degree to which X is relevant to H can

be measured using only the conditional probability Pr(X |H &K)? Secondly, the

inequality Pr(X |H &K) < 1 can, at best, only tell us when X is “irrelevant” to

H — it can say nothing about whether X is “irrelevant” to E, or to various logical

combinations of H and E. It seems to me that the cases in which (3) and (3′) are

least intuitive are cases in which X is (intuitively) irrelevant to both H and E,

and to all logical combinations of H and E. We need a different approach here.

I suggest that we go about this in an entirely different way. Let’s start by

saying what it means (in a Bayesian framework) to say that X is confirmationally

irrelevant to H, E, and all logical combinations H and E. Then, once we have this

precisely defined, let’s see if (and under what auxiliary assumptions) we can show

that such irrelevant conjuncts lead to decreased confirmational power. The first of

these tasks is already done. Bayesians already have a perfectly precise definition

of confirmational irrelevance: probabilistic independence. Therefore, we already

know what it means (in a Bayesian confirmation-theoretic framework) to say that

27This is the (necessary and sufficient) condition under which Rosenkrantz’s (2) entails a
decrease in the degree of confirmation E provides for H & X versus H (relative to K).
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X is confirmationally irrelevant to H, E, and all logical combinations H and E.

Finally, our story has a happy ending, in the form of the following general and

robust theorem (here, “confirms” is used in the Bayesian, relevance sense):

Theorem 3. If E confirms H, and X is confirmationally irrelevant to H, E, and

H & E (relative to background K), then c(H,E |K) > c(H & X,E |K), where c

may be any of our five relevance measures, except r.28

Our Bayesian resolution of the (new) problem of irrelevant conjunction has the

following advantages over its existing rivals:

• Our resolution makes use of the irrelevance of X. Moreover, our notion of

confirmational irrelevance is not some peculiar one (like Rosenkrantz’s), but

just the standard Bayesian concept, based on probabilistic independence.

• Our resolution is not restricted to the (not very inductively interesting) spe-

cial case of deductive evidence; it explains why irrelevant conjuncts are con-

firmationally disadvantageous, in all contexts (deductive or otherwise).

• Our resolution is as robust as any other existing resolution (e.g., Earman’s),

and more robust than any other existing account that tries to be sensitive to

“irrelevance” of the conjunct X in some sense or other (e.g., Rosenkrantz’s).

2.2.3 Eells & Sober on the Grue Paradox

Eells (1982) offers a resolution of the Grue Paradox which trades on the following

property of the difference measure d [where β =df Pr(H1 &E |K)−Pr(H2 &E |K),

28Apparently, r cannot be used to resolve the problem of irrelevant conjunction — even in
cases that do not involve deductive evidence. This shows an even deeper problem with r than
the (mere) “deductive insensitivity,” which prevents r from satisfying Earman’s (2′) (see §2.3.1).
Defenders of r [e.g., Milne (1996)] are quick to point out that r’s (mis)handling of the traditional,
deductive problem of irrelevant conjunction is not such a serious weakness of r. Indeed, Milne
(1996) characterizes the traditional problem of irrelevant conjunction as a “wretched shibboleth.”
I am somewhat sympathetic to this point of view. Deductive cases are not terribly interesting
from an inductive-logical point of view. However, I think that r’s mishandling of irrelevant
conjuncts in the inductive case (as in Theorem 3) ought to be taken seriously. See footnote 36.
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and δ =df Pr(H1 & Ē |K)− Pr(H2 & Ē |K)]:

If β · Pr(Ē |K)
Pr(E |K)

> δ and Pr(E |K) <
1
2
, then d(H1, E |K) > d(H2, E |K).(4)

As usual, I will skip over the details of Eells’s proposed resolution of Goodman’s

“new riddle of induction.” What is important for our purposes is that (4) is not a

property of either the log-likelihood ratio measure l or the log-ratio measure r, as

is illustrated by the proof of the following theorem:

Theorem 4. Neither r nor l has the property expressed in (4).29

As a result, Eells’s resolution of the Grue Paradox only works if one assumes

that the difference measure d is to be preferred over the log-likelihood ratio measure

l and the log-ratio measure r. Eells (personal communication) has described a

possible reason to prefer d over r (this argument is discussed in §2.3.2). As far as

I know, Eells has offered no argument to the effect that d should be preferred to l.

Sober (1994b) offers a similar approach to “Grue” which is less sensitive to

choice of measure. Sober’s approach relies only on the following logically weaker

property of d:

If H1 � E, H2 � E, and Pr(H1 |K) > Pr(H2 |K), then d(H1, E |K) > d(H2, E |K).(4′)

The log-likelihood ratio measure l, Carnap’s relevance measure r, and Christensen’s

measure s all satisfy (4′) (proofs omitted); but, the log-ratio measure r does not

satisfy (4′) (see §2.3.1). So, while still sensitive to choice of measure, Sober’s

“Grue” argument is less sensitive to choice of measure than Eells’s.

29 It is not difficult to show that (2) and (4) do hold for both r and s (proofs omitted).
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2.2.4 Horwich et al. on Ravens and Variety

A great many contemporary Bayesian confirmation theorists (including Horwich

(1982)) have offered quantitative resolutions of the Ravens paradox and/or the

problem of varied (or diverse) evidence which trade on the following relationship

between conditional probabilities and relevance measures of confirmation.30

If Pr(H |E1 &K) > Pr(H |E2 &K), then c(H,E1 |K) > c(H,E2 |K).(5)

As it turns out (fortuitously), all three of the most popular contemporary relevance

measures d, r, and l share property (5) (proofs omitted). But, neither Carnap’s r

nor Christensen’s s satisfies (5), as the proof of Theorem 5 shows.

Theorem 5. Neither r nor s has the property expressed in (5).31

Until we are given some compelling reason to prefer d, r, and l to Carnap’s r

and Christensen’s s (and, to any other relevance measures which violate (5) — see

footnote 31 and Appendix §A.5 for further discussion), we should be wary about

accepting the popular quantitative resolutions of the Ravens Paradox, or the recent

Bayesian accounts of the confirmational significance of evidential diversity.32

30An early quantitative resolution of the Ravens Paradox was given by Hosiasson-Lindenbaum
(1940). Hosiasson-Lindenbaum was not working within a relevance framework. So, for her, it
was sufficient to establish that Pr(H |E1 &K) > Pr(H |E2 &K), where E1 is a black-raven, E2

is a non-black non-raven, H is the hypothesis that all ravens are black, and K is our background
knowledge. Contemporary Bayesian relevance theorists have presupposed that this inequality is
sufficient to establish that a black raven incrementally confirms that all ravens are black more
strongly than a non-black non-raven does. As Theorem 5 shows, this is true for only some
relevance measures. This same presupposition is also made by Bayesians who argue that (ceteris
paribus) more varied sets of evidence (E1) confirm hypotheses (H) more strongly than less varied
sets of evidence (E2) do. See Earman (1992, 69–79) for a survey of recent Bayesian resolutions
of the Ravens Paradox, and Wayne (1995) for a survey of recent Bayesian resolutions of the
problem of evidential diversity. As far as I know, all of these popular contemporary approaches
are measure sensitive in the sense described here.

31There are other relevance measures which violate (5). Mortimer (1988, §11.1) shows that
the measure Pr(E |H & K) − Pr(E |K) violates (5). It also turns out that Nozick’s (1981, 252)
measure Pr(E |H &K) − Pr(E | H̄ &K) violates (5). See Appendix §A.5 for proofs.

32See Fitelson (1996) (and §3.3.2 below) and Wayne (1995) for independent reasons to be wary



20

2.2.5 An Important Theme in Our Examples

As our examples illustrate, several recent Bayesian confirmation theorists have

presupposed the superiority of the difference measure d over one or more of the

four alternative relevance measures r, l, s, and r. Moreover, we have seen that many

well-known arguments in Bayesian confirmation theory depend sensitively on this

assumption of d’s superiority. To be sure, there are other arguments that fit this

mold.33 While there are some (published) arguments in favor of d as opposed to r,

there seem to be no arguments in the literature which favor d over the alternatives

l, r, or s.34 Moreover, as I will show in the next section, only one of the two popular

arguments in favor of d as opposed to r is at all compelling. In contrast, several

general arguments in favor of r, l, and r have appeared in the literature.35 It is

precisely this kind of general argument that is needed to undergird the use of one

particular relevance measure rather than any other.

In the next section, I will examine two recent arguments in favor of the differ-

ence measure d as opposed to the log-ratio measure r. While one of these arguments

holds some promise of adjudicating between d and r (in favor of d), I will argue

that neither of them will help to adjudicate between d and l, or between d and r,

or d and s. As a result, defenders of the difference measure will need to do further

logical work to complete their enthymematic confirmation-theoretic arguments.

of Horwich’s (1982) account of the confirmational significance of evidential diversity. In §3.3.2
below, I present a more charitable alternative reconstruction of Horwich’s account of CSED [one
not reliant on (5)], which is not sensitive to choice of measure.

33Kaplan (1996) offers several criticisms of Bayesian confirmation theory which presuppose the
adequacy of the difference measure d. He then suggests (76, footnote 73) that all of his criticisms
will also go through for all other relevance measures that have been proposed in the literature.
But, one of his criticisms (84, footnote 86) does not apply to measure r.

34See Eells and Fitelson (2000, 2001) for some good reasons to prefer d (and l) over s (and r).
35Milne (1996) argues that r is “the one true measure of confirmation.” Good (1984), Hecker-

man (1988), and Schum (1994) all give general arguments in favor of l. And, Carnap (1962, §67)
gives a general argument in favor of r. In §3.1 below, I briefly discuss the arguments of Milne
(1996), Good (1984), and Carnap (1962, §67), and in §3.2, I provide my own argument for l.
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2.3 Two Arguments Against r

2.3.1 “Deductive Insensitivity” Argument Against r

Rosenkrantz (1981) and Gillies (1986) point out the following fact about r:

If H � E, then r(H,E |K) = r(H &X,E |K), for any X.(6)

Informally, (6) says that, in the case of deductive evidence, r(H,E |K) does not

depend on the logical strength of H. Gillies (1986) uses (6) as an argument against

r, and in favor of the difference measure d. Rosenkrantz (1981) uses (6) as an

argument against r, but he cautiously notes that neither d nor l satisfies (6). It

is easy to show that neither r nor s has property (6) either (proofs omitted).

I think Gillies (1986, page 112) pinpoints rather well what is so peculiar and

undesirable about (6) when he explains that:

On the Bayesian, or, indeed, on any inductivist position, the more a hy-

pothesis H goes beyond [deductive] evidence E, the less H is supported by

E. We have seen [in (6)] that r lacks this property that is essential for a

Bayesian measure of support.

I agree with Gillies and Rosenkrantz that this argument provides a somewhat

compelling reason to abandon r in favor of either d, l, s, or r.36 But, it says

36Milne (1996) argues that, in the case of deductive evidence, r’s (alleged) mishandling of the
problem of irrelevant conjunction [which stems from r’s violation of (6)] is not a reason to reject
r. Indeed, Milne (1996) characterizes the traditional, deductive problem of irrelevant conjunction
as a “wretched shibboleth.” I am somewhat sympathetic to Milne here. Like Milne, I think one
should probably not place too much emphasis on deductive cases (after all, what we’re after here
is a measure of inductive support). And, like Milne, I also think that the standard Bayesian
accounts of the traditional, deductive problem of irrelevant conjunction are wrongheaded. See
§2.2.2.1 (and footnote 28) for my analysis of the problem of irrelevant conjunction. There, I show
that the inductive version of this problem (when properly analyzed) does expose a more serious
weakness of the measure r. Pace Milne (1996), I think there are lots of compelling reasons to
reject r. See §3.1.2, §3.2.2, and Eells and Fitelson (2001) for just of few of these. And, see §3.1.1
for my analysis (and critique) of Milne’s (1996) desideratum/explicatum argument in favor of r.
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nothing about which of d, l, s, or r should be adopted. So, this argument does not

suffice to shore-up all of the measure sensitive arguments we have seen. Hence, it

does not constitute a complete resolution of the problem of measure sensitivity.

2.3.2 “Unintuitive Confirmation” Argument Against r

Several recent authors, including Sober (1994b) and Schum (1994), have criticized r

on the grounds that r sanctions “unintuitive” quantitative judgments about degree

of confirmation in various (hypothetical) numerical examples.37 For instance, Sober

(1994b) asks us to consider a hypothetical case involving a single collection of

evidence E, and two hypotheses H1 and H2 (where, K is taken to be tautologous,

and is thus suppressed) such that:

Pr(H1 |E) = 0.9 Pr(H1) = 0.09

Pr(H2 |E) = 0.0009 Pr(H2) = 0.00009

In such a case, we have the following pair of probabilistic facts:

d(H1, E) = 0.81 � d(H2, E) = 0.00081

r(H1, E) = log(10) = r(H2, E)
(†)

It is then argued, by proponents of d, that (†) exposes a highly “unintuitive”

feature of r, since this is case in which — “intuitively” — E confirms H1 to a

greater degree than E confirms H2. But, according to r, E confirms both H1 and

H2 to exactly the same degree. Therefore, this example is purported to rule out r

(but not d, since d gets the “intuitively correct” answer here).

I am not too worried about (†), for two reasons. First, (†) can be only a reason

to favor the difference measure over the ratio measure (or vice versa38); it has

37Sober (1994b) borrows this line of criticism from Ellery Eells. Eells (personal communication)
has voiced numerical examples of various kinds to illustrate the “unintuitive” consequences of r.

38It has been argued by Schlesinger (1995) [and Pollard (1999)] that parallel arguments can
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little or no bearing on the relative adequacy of either l, s, or r. It is clear from

the definitions of the measures that Carnap’s r and Christensen’s s are bound

to agree with d’s “intuitive” answer in such cases. Hence, r and s are immune

from the “unintuitive confirmation” criticism. Moreover, the log-likelihood ratio

measure l certainly could agree with the “intuitively” correct judgments in such

cases (depending on how the details needed to fix the likelihoods get filled-in).

Indeed, Schum (1994, Ch. 5) argues nicely that the log-likelihood ratio measure

l is largely immune to the kinds of “scaling effects” exhibited by r and d in (†).

Unfortunately, neither Eells nor Sober (1994b) nor Schlesinger (1995) considers

how the measures l, s, and r might cope with their alleged counter-examples.

Second, there seems to be little or no independent support offered for the crucial

premise of this argument. The argument is persuasive only if it is granted that

the intuitive degree to which E confirms H1 is greater than the intuitive degree

to which E confirms H2. The only reason that I have seen offered in support of

this claim (e.g., Sober (1994b)) is that d(H1, E) � d(H2, E). But, this just seems

to beg the question; it simply presupposes that the intuitive amount to which

E confirms H is accurately gauged by the difference measure, and not by the

ratio measure (or, by some other measure altogether). What we need here are

independent reasons for believing precisely this!

2.4 Summary of Results So Far

We have discussed three measure sensitive arguments which are aimed at showing

that certain relevance measures are inadequate, and we have seen five measure

sensitive arguments which presuppose the superiority of certain relevance measures

be run “backward” against d and in favor of r. Schlesinger (1995) describes a class of examples
in which the difference measure seems to give the “unintuitive” answer (and, where the key
probabilistic facts are analogous to (†)). Schlesinger’s examples drive home the point that the
philosophical conclusions one draws from hypothetical, numerical examples of these kinds will
depend crucially on what one takes the “intuitive” answers to be in the first place. See below.
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over others. Table 2 summarizes the arguments which presuppose that certain

relevance measures are superior to others, and Table 3 summarizes the arguments

against various relevance measures. These tables serve as a handy reference on the

measure sensitivity problem in Bayesian confirmation theory.

Is A valid wrt the measure:

Name and Section of Argument A d? r? l? r? s?
Rosenkrantz on “Irrelevant Conjunction”
(See §2.2.2 and Appendix §A.2 for discussion) Yes No No Yes Yes

Earman on “Irrelevant Conjunction”
(See §2.2.2 for discussion) Yes No Yes Yes Yes

Eells on the Grue Paradox
(See §2.2.3 and Appendix §A.4 for discussion) Yes No No Yes Yes

Sober on the Grue Paradox
(See §2.2.3 for discussion) Yes No Yes Yes Yes

Horwich et al. on Ravens & Variety
(See §2.2.4 and Appendix §A.5 for discussion) Yes Yes Yes No No

Table 2: Five arguments which presuppose the superiority of certain measures.

Is A valid wrt the measure:

Name and Section of Argument A d? r? l? r? s?
Gillies’s Popper-Miller Argument
(See §2.2.1 and Appendix §A.1 for discussion) Yes No No Yes Yes

“Deductive Insensitivity” Argument
(See §2.3.1 for discussion) No Yes No No No

“Unintuitive Confirmation” Argument
(See §2.3.2 for discussion) No Yes39 No No No

Table 3: Three arguments designed to show the inadequacy of certain measures.

39As I explain in § 2.3.2, I do not think this argument is compelling, even when aimed against
r. But, to be charitable, I will grant that it is, at least, valid when aimed against r.
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2.5 Where Do We Go From Here?

In this chapter, I have shown that many well-known arguments in quantitative

Bayesian confirmation theory are valid only if the difference measure d is to be

preferred over other relevance measures (at least, in the confirmational contexts

in question). I have also shown that there are some good reasons to prefer d over

the log-ratio measure r. Unfortunately, like Rosenkrantz (1981), I have found

no compelling reasons offered in the literature to prefer d over the log-likelihood

ratio measure l (or Carnap’s relevance measure r, or Christensen’s measure s).

As a result, philosophers like Gillies, Rosenkrantz, and Eells, whose arguments

presuppose that d is preferable to l, s, and r seem compelled to produce some

justification for using d, rather than l, s, or r, to measure degree of confirmation.

In general, there seem to be two viable strategies for coping with the problem of

measure sensitivity. The first strategy is to simply avoid the problem entirely, by

making sure that one’s quantitative confirmation-theoretic arguments are robust

(i.e., insensitive to choice of measure of confirmation).40 On the other hand, if

plausible robust arguments can not be found in some context, then one should feel

compelled to give reasons why one’s chosen relevance measure (or class of relevance

measures) c∗ should be preferred over other relevance measures, the use of which

would render one’s argument invalid.

Ideally, it would be nice to see general, desideratum/explicatum arguments

which rule out all but a relatively small class of ordinally equivalent measures

of confirmation [i.e., arguments like those given by Carnap (1962, §67), Good

(1984), Heckerman (1988), and Milne (1996)]. Such arguments would also have

the virtue of contributing in a substantive way to the theoretical underpinning of

40This can be done in some contexts. For instance, in Fitelson (2001a) (and in the next
chapter), I outline a new, robust Bayesian resolution of the problem of evidential diversity. And,
Maher (1999) gives a new, robust Bayesian resolution of the Ravens Paradox, based on Carnapian
inductive logic. I doubt, however, that plausible, robust Bayesian accounts can always be found.
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quantitative Bayesian confirmation theory. In the next chapter, I briefly discuss

a few such arguments that have appeared in the literature, and I describe several

(novel) independent ways of narrowing the field of measures. Ultimately, this will

lead to an almost unique solution of the problem of measure sensitivity.
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Chapter 3

Independent Evidence, Measures

of Confirmation, and The Value

of Evidential Diversity41

He who has heard the same thing told by 12,000 eye-witnesses
has only 12,000 probabilities, which are equal to one strong

probability, which is far from certain.

— Voltaire

In this chapter, I will (i) survey and critique a few existing attempts to resolve

the problem of measure sensitivity, and (ii) describe several simple and novel ways

(of my own) of narrowing the field of relevance measures. Along the way, I will (iii)

outline a new Bayesian account of independent evidence, which will be applied to

both the problem of measure sensitivity and the problem of evidential diversity.

Finally, I will (iv) compare my account of evidential diversity with several other

Bayesian approaches that have appeared in the literature.

3.1 Three Existing Attempts to Solve the Prob-

lem of Measure Sensitivity

In this section, I will briefly discuss arguments of Milne (1996), Carnap (1962), and

Good (1984), which, if cogent, would resolve the problem of measure sensitivity

once and for all, by establishing one relevance measure as “the one true Bayesian

41Much of the material in this chapter appears in Fitelson (1996) and Fitelson (2001a).
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measure of confirmation.” Unfortunately, none of these existing arguments proves

to be persuasive. In subsequent sections, I will describe some (novel) simple and

intuitive ways of drastically narrowing the field of competing measures.

3.1.1 Milne’s Reductionistic Argument for r

Milne (1996) shows that the only measure (up to ordinal equivalence) which sat-

isfies all five of the following desiderata is the log-ratio measure r.42

c(H, E |K) > 0 when Pr(H |E & K) > Pr(H |K); c(H, E |K) < 0 when

Pr(H |E & K) < Pr(H |K); c(H, E |K) = 0 when Pr(H |E & K) =

Pr(H |K). [In other words, c(H, E |K) must satisfy R.]

(7)

c(H, E |K) is some function of the values Pr(· |K) and Pr(· | ·&K) assumed

on the at most sixteen truth-functional combinations of E and H .

(8)

If Pr(E |H & K) < Pr(E ′ |H & K) and Pr(E |K) = Pr(E ′ |K) then

c(H, E |K) ≤ c(H, E ′ |K); if Pr(E |H & K) = Pr(E ′ |H & K) and

Pr(E |K) < Pr(E ′ |K) then c(H, E |K) ≥ c(H, E ′ |K).

(9)

c(H, E1 & E2 |K)− c(H, E1 & E3 |K) is fully determined by c(H, E1 |K)

and c(H, E2 |K & E1) − c(H, E3 |K & E1); if c(H, E1 & E2 |K) = 0 then

c(H, E1 |K) + c(H, E2 |K & E1) = 0.

(10)

If Pr(E |H & K) = Pr(E |H ′& K) then c(H, E |K) = c(H ′, E |K).(11)

Milne’s argument has several flaws. First, in addition to (7)–(11), Milne’s argument

implicitly requires that the probability function Pr (and, hence, the “explicatum”

c) satisfy some rather strong, unmotivated, and unintuitive constraints.43

42I have taken the liberty of translating Milne’s desiderata into our notation.
43Like similar arguments of Cox (1961), Good (1984), and Heckerman (1988), Milne’s argument

makes use of certain theorems in the theory of functional equations, which force the probability
function Pr (and, hence, the spaces over which the measure c is defined) to satisfy various kinds
of continuity conditions (and other constraints which force the underlying function spaces in
question to be infinite in various ways). These assumptions are discussed in detail (and shown to
be implausible, at least on an epistemic reading of Pr) by Halpern (1999a, 1999b). I won’t bother
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Second, and more importantly, not all of Milne’s “desiderata” (7)–(11) are

philosophically well motivated. Milne’s (7)–(9) are rather uncontroversial; they are

satisfied by almost every relevance measure that’s been proposed in the literature

(including our five: d, r, l, s, and r; see §A.10 for proofs). However, (10) and (11)

are far more controversial (and far less intuitive) than Milne would have us believe.

For one thing, Milne (1996, p. 22) seems unaware that there are several proposed

relevance measures which violate his desideratum (10), when he says:

We may note that, like (9), desideratum (10) is a consequence of the

most commonly used measure of confirmation d(H,E |K) = Pr(H |E&

K)−Pr(H |K). Any substantive reason for rejecting either (9) or (10)

cuts a swath through the literature on probabilistic confirmation theory.

This quote suggests that Milne views the competition among relevance measures

to be only between d and r.44 As we know, many other relevance measures have

been proposed and defended. Indeed, Christensen (1999) has argued in favor of s,

as opposed to d, r, and l. And, Carnap (1962) explicitly provides reasons to favor

r over r. Unfortunately, both s and r violate (10) (see §A.10), and Milne provides

no argument for (10). In the absence of such an argument, Milne has given us no

reason to favor r over s or r [or any other measure which violates (10)].

Finally, there is Milne’s desideratum (11). Strangely, this desideratum alone

is enough to single r out of the five competing relevance measures we have been

to discuss these technical shortcomings in Milne’s argument in detail, since this would require
a rather extensive mathematical digression (which Halpern handles beautifully), and because
the philosophical problems with Milne’s argument are, I think, more interesting. However, I
will say that it is somewhat misleading for Milne to claim that the only measure which satisfies
(7)–(11) is r, when, in fact, Milne’s argument requires many more mathematical “desiderata”
than just these five. Strictly speaking, all Milne has really shown is that the only measure (up
to ordinal equivalence) that satisfies (7)–(11) — assuming that the underlying probability spaces
and function spaces satisfy lots of other strong (and implausible) mathematical constraints — is
r. This seems a far cry from showing that r is “the one true measure of confirmation.”

44To be fair to Milne, the log-likelihood ratio measure l also satisfies (10) (proof omitted). He
does not mention this, and, even on this more charitable reading, this quote seems to indicate that
Milne is only taking seriously d, r, and l as candidates for “the one true measure of confirmation.”
He seems unaware that measures like s and r, which violate (10), need to be taken seriously.
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talking about. That is, of the five measures d, r, l, s, and r, only r satisfies (11).45

So, it is clearly (11) that is the most controversial of Milne’s five desiderata. The

good news is that Milne is well aware of this, and he spends some time trying to

philosophically motivate (11). The bad news is that Milne’s argument for (11)

rests on a conflation of relational and non-relational notions of evidential support,

and is consequently unsound. Milne (1996, p. 22) seems to think that (11) is a

consequence of the following, which he calls the Likelihood Principle (LP):

In comparing the evidential bearing (relative to background knowledge

K) of E on the hypotheses H and H ′ we need consider only Pr(E |H&

K) and Pr(E |H ′ &K).

Unfortunately, there is an implicit (and spurious) assumption in Milne’s argument

from (LP) to (11). The likelihood principle is intended to tell us when evidence E

favors one hypothesis H over another hypothesis H ′. According to the likelihood

principle, E favors H over H ′ relative to K iff Pr(E |H &K) > Pr(E |H ′ &K).

Notice that “E favors H over H ′ relative to K” is a four -place relation. It is far

from obvious that the four-place favoring relation can (or should) be reduced to

the three-place confirmation relation. That is, the following reductionistic presup-

position in Milne’s reasoning from (LP) to (11) is far from obvious:

E favors H over H ′ relative to K iff c(H,E |K) > c(H ′, E |K).(11′)

Likelihoodists [e.g., Royall (1997)] would certainly reject (11′), and with it the

move from (LP) to (11). After all, one of the main reasons for making the move

from “confirmation” to “favoring” is that doing so allows us to avoid having to

45Indeed, as far as I know, r is the only measure that has been proposed or defended in the
literature on confirmation theory which satisfies (11). Given this fact, one wonders why Milne
bothers with (10) in the first place. I suppose he thought he “needed” (10), in the context of
the particular mathematical proof strategy he happened to choose. This is yet another reason to
abandon his rather complex and subtle mathematical argument in favor of a much simpler argu-
ment which is sufficient to rule-out all measures that have actually been proposed and defended.
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worry about prior probabilities (i.e., Pr(H |K)) and/or likelihoods of “catch all”

logical negations (i.e., Pr(E | H̄ & K), where H̄ is the logical negation of some

concrete hypothesis with a well understood and precise likelihood). Likelihoodists

are notorious for being quite skeptical about the objectivity or meaningfulness of

claims about confirmation. Many of the proponents of (LP) think that, in the vast

majority of cases, c(H,E |K) is either utterly subjective or ill-defined (or both),

since it will (generally) depend on prior probabilities and/or likelihoods of “catch

all” logical negations.46 So, it seems quite odd that Milne would try to use (LP)

in an argument for a measure of (non-relational) confirmation.

The problem here can be understood as a difficulty that arises from trying

to reduce an inherently relational notion to a non-relational notion. Consider

the following analogy with physics. One might claim (as Newton did) that relative

velocities can be reduced to (or defined in terms of) absolute velocities with respect

to the æther. Of course, someone who does not believe in the existence of the æther

will simply reject such a reductive definition of relational velocity. Analogously,

Milne seems to be claiming that the relational evidential notion of favoring can be

reduced to (or defined in terms of) the non-relational notion of confirmation (with

respect, if you like, to the “logical æther”). Likelihoodists, of course, reject the

existence (at least, the objective existence) of the kind of “logical æther” (viz., a

priori probabilities) needed for such a reduction to go through.

There is one special case in which Milne’s reductionistic principle (and his move

from (LP) to (11) to r) makes sense. That is the case in which H ′ = H̄ (i.e., when

H ′ is identical to the logical negation of H). In this case, it is true that E favors H

over H ′ relative to K iff r(H,E |K) > r(H ′, E |K). But, this cannot be used as a

reason to favor r over any other relevance measure, since in this case, we will have

46Most notably, Royall (1997, §1.5) provides a general argument against thinking of evidential
support in a non-relational way. In particular, Royall (1997, pp. 9–11) gives an argument against
Milne’s measure r(H, E |K)! This is ironic, since Milne would have us believe that advocates of
(LP), like Royall, are (somehow) committed to accepting r as a measure of support.
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E favors H over H ′ relative to K iff c(H,E |K) > 0, for any relevance measure

c. That is, in this special case, favoring and confirmation do amount to the same

thing. The problem arises when H ′ is not identical to the logical negation of H

(i.e., when H ′ is a concrete alternative hypothesis with a well-defined likelihood

on E). It is precisely those cases in which the Likelihoodist and the Bayesian will

disagree about how the problem should be analyzed.47 Table 4 summarizes the

main results from this section (see §A.10 for selected proofs):

Is D satisfied by the measure:

Milne’s Desideratum D d? r? l? r? s?

(7) Yes Yes Yes Yes Yes

(8) Yes Yes Yes Yes Yes

(9) Yes Yes Yes Yes Yes

(10) Yes Yes Yes No No

(11) No Yes No No No

Table 4: Summary of results concerning Milne’s argument for r.

47Ironically, Milne comes very close to adopting the likelihood-ratio measure here. Essentially,
Milne is recommending the likelihood ratio as an adequate measure of degree of favoring, but
not as an adequate measure of degree of confirmation. I will argue below that likelihood ratios
should be used both to measure degree of favoring [as suggested in Royall (1997)] and to measure
degree of confirmation. I.J. Good has been making the same suggestion (for various reasons) for
many years. Moreover, Good (1983, pp. 36–37) is very careful to distinguish the cases in which
H and H ′ form a logical partition, and the cases in which they do not. This is the key to seeing
why (and how) the likelihood ratio gives the right answer in both kinds of cases.
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3.1.2 Carnap’s Symmetry Argument for r

Carnap (1962, §67) shows that r exhibits all four of the following symmetries.

c(H,E |K) = c(E,H |K)(12)

c(H,E |K) = −c(H, Ē |K)(13)

c(H,E |K) = −c(H̄, E |K)(14)

c(H,E |K) = c(H̄, Ē |K)(15)

Carnap seems aware that neither d nor r satisfies all four of these constraints. And,

as Eells and Fitelson (2001) show, it turns out that neither s nor l satisfies all of

these symmetries either. So, Carnap has provided, essentially, a list of symmetry

desiderata that rule-out all of our five relevance measures, except his r. If Carnap

had provided good reasons for thinking that c should satisfy all of (12)–(15), then

he would have a had a pretty compelling argument in favor of r.48

Table 5 — reproduced from Eells and Fitelson (2001) — shows which measures

satisfy which of Carnap’s symmetry properties (12)–(15) [all proofs have been

omitted here, but they can be found in Eells and Fitelson (2001)].

Is D satisfied by the measure:

Carnap’s Desideratum D d? r? l? r? s?

(12) No Yes No Yes No

(13) No No No Yes Yes

(14) Yes No Yes Yes Yes

(15) No No No Yes Yes

Table 5: Summary of results concerning Carnap’s argument for r.

48It’s not entirely clear why Carnap thinks it is a good thing for a relevance measure c to satisfy
(12)–(15). At times, it seems he’s thinking about pragmatic factors like mathematical elegance,
beauty, or ease of computation. But, as Eells and Fitelson (2001) argue, this does not seem to
jibe with firm intuitions about how measures of degree of evidential support ought to behave.
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As we have explained in Eells and Fitelson (2001), we think that symmetry

considerations can be relevant and useful in this context. However, we think that

too much symmetry (as exhibited especially by r) is a bad thing for a measure of

degree of confirmation or support. Consider the following example [again, taken

from Eells and Fitelson (2001)]:

A card is randomly drawn from a standard deck. Let E be the evidence

that the card is the seven of spades, and let H be the hypothesis that

the card is black. We take it to be intuitively clear that E is not only

conclusive, but also strong, evidence in favor of H, whereas: Ē (that

the card drawn is not the seven of spades) is close to useless, or close

to “informationless,” with regard to the color of the card. . . . With

initial uncertainty about the value of the card, we consider the seven of

spades, as evidence, to be more highly informative and confirmatory of

the blackness of the card, as hypothesis, than the blackness of the card,

as evidence, is for the card’s being the seven of spades in particular.

In other words, this simple example shows clearly that the symmetry conditions

(12) and (13) are not generally satisfied by an adequate measure c of degree of

support.49 This gives us a simple and intuitive way of ruling-out Carnap’s r as well

as Milne’s r and Christensen’s s. That is, two simple considerations of symmetry

allow us to narrow the field to d and l. Later in this chapter, another, independent

way of narrowing the field to d and l will be reported. Then, a final adjudication

between d and l (in favor of l) will be presented. But, first, we’ll take a quick look

at Good’s “best explicatum” argument for the log-likelihood-ratio measure l.

49The conclusiveness feature of the examples (that E logically implies H) is not what is at the
heart of the counterexample. To see this, simply consider a modification of the examples where
E is a report of suit/rank, respectively, of very reliable, but fallible, assistant.
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3.1.3 Good’s “Best Explicatum” Argument for l

Good (1984) claims to show that l is the best explicatum for “weight of evidence.”

He seems, specifically, to be interested in showing that l is a better measure of

degree of confirmation than either d or r, when he reports that (in our notation):

. . . One reason for writing the present note is that the demonstration

in Good (1968) has been overlooked by several philosophers of science.

For example, Rosenkrantz (1981) says “I know of no compelling consid-

erations that adjudicate between the difference measure d and Good’s

weight of evidence l.” Also, Horwich (1982) mentions only r and d as

potential explicata . . .

Good goes on to provide the following two ‘compelling’ desiderata for an adequate

measure c of degree of confirmation.

c(H, E |K) must be a function f only of Pr(E |H&K) and Pr(E | H̄&K).(16)

This function f [Pr(E |H & K),Pr(E | H̄ & K)], together with Pr(H |K),

must mathematically determine Pr(H |E &K).

(17)

Like Milne’s argument for r, Good’s argument (if cogent) would establish l as “the

one true measure of confirmation” (up to ordinal equivalence). And, like Milne’s

argument, Good’s argument has two main problems. First, it makes use of the

same kinds of functional equational analyses that require far stronger mathemat-

ical assumptions about Pr [and, hence, the explicatum c satisfying (16) and (17)]

than Good would have us believe [see footnote 43 and Halpern (1999a, 1999b)].

Moreover, Good provides far too little argumentation in support of his desiderata

(16) and (17). For instance, consider what Good has to say in support of (16):

. . . Note that the first desideratum (16) implies that the weight of

evidence in favor of H provided by E does not depend on the prior
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probability of H. This prior probability might be large or small de-

pending on previous or other evidence, not of course on E.

This is highly misleading, to say the least. To see why, note that l can be rewritten

in the following (numerically equivalent) way, which (in a näive, syntactical sense)

seems to suggest that l “depends only on Pr(H |E &K) and Pr(H |K).”

l(H,E |K) = log

[
Pr(H |E &K) · [1− Pr(H |K)]

[1− Pr(H |E &K)] · Pr(H |K)

]

On this way of writing l, it appears that l does “depend on the prior probability of

H [i.e., Pr(H |K)].” Moreover, the measure r can be rewritten as follows, which

seems to suggest that r does not “depend on the prior probability of H.”

r(H,E |K) = log

[
Pr(E |H &K)

Pr(E |K)

]

What, then, are we to make of Good’s talk of “dependence” on the prior proba-

bility of H? I’m not really sure. It seems that Good is simply imposing question-

begging, syntactical requirements on the functional form of c. After all, no rele-

vance measure can be semantically (or algebraically) generally independent of the

prior probability of H. This kind of general invariance under perturbations of

Pr(H |K) would force c(H,E |K) to violate R. So, I’m afraid that Good’s argu-

ment for l is even weaker than Milne’s argument for r. In the next section, I will

develop a Bayesian account of confirmationally independent evidence regarding a

hypothesis. As we’ll see, this semantical notion of independence can be used to

provide a compelling argument for l as “the one true measure of confirmation.”
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3.2 A Bayesian Account of Independent Evidence

If c(H,E |K) is an adequate measure of the degree to which E confirms H relative

to K, then c(H,E |K) will in general vary depending on what the background

evidence K is. For example, let H be the hypothesis that something is wrong with

a computer and let E be the evidence that nothing happens when the computer is

turned on. If the background evidence K includes facts such as that the computer

is plugged in, then E will confirm H relative to K; on the other hand, if K specifies

that the computer is not plugged in and that it needs to be plugged in to work,

then E will not confirm H relative to K.

When we want to consider how degree of confirmation varies with changing

background evidence, we will use the conditional notation c(H,E1 |E2) to denote

the degree to which E1 confirms H (according to c), given that E2 is part of our

background evidence.50 And, we will use the unconditional notation c(H,E1) to

denote the degree to which E1 confirms H (according to c), not conditional on E2

being part of our background evidence. The point of the preceding paragraph

is that, for any adequate measure of confirmation c, there are cases in which

c(H,E1 |E2) �= c(H,E1). When this happens, we say that E1 is confirmationally

dependent on E2 regardingH according to c. Conversely, if c(H,E1 |E2) = c(H,E1)

then we say that E1 is confirmationally independent of E2 regarding H according to

c. If both c(H,E1 |E2) = c(H,E1), and c(H,E2 |E1) = c(H,E2), then we say that

E1 and E2 are mutually confirmationally independent (or, simply, independent)

regarding H according to c. As it turns out, C.S. Peirce (1878) had some interesting

things to say about confirmational independence. In the next section, we will use

Peirce’s early intuitions about independent evidence to lay the groundwork for our

50There may be other background evidence besides E2 in a confirmational context. However,
this additional background evidence will be held fixed in the confirmational comparisons we do
to determine whether E1 and E2 are dependent or independent regarding H in that context. So,
there is no need to indicate this additional background evidence explicitly. As such, I will, for
simplicity, hereafter suppress the (full) background evidence K from my notation.
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own, Bayesian account.

3.2.1 The Fundamental Peirceian Desiderata

In his essay “The Probability of Induction,” C.S. Peirce articulates several funda-

mental intuitions concerning the nature of independent inductive support. Con-

sider the following important excerpt from Peirce (1878, my brackets):

. . . two arguments which are entirely independent, neither weakening nor

strengthening the other, ought, when they concur, to produce a[n intensity

of] belief equal to the sum of the intensities of belief which either would

produce separately.

Two crucial intuitions about independent inductive support are contained in this

quote. First, there is the intuition that two pieces of evidence E1 and E2 provide

independent inductive support for a hypothesis H if the degree to which E1 sup-

ports H does not depend on whether E2 is part of our background evidence (and

vice versa). In our confirmation-theoretic framework, we will take this intuition

(already discussed briefly in the previous section) onboard as our official definition

of (mutual) confirmational independence regarding a hypothesis:

Definition. E1 and E2 are confirmationally independent regarding H

according to c iff c(H,E1 |E2) = c(H,E1) and c(H,E2 |E1) = c(H,E2).
51

51James Joyce and Patrick Maher (private communications) have both voiced concerns about
whether this is an accurate reading of Peirce. They worry that Peirce is talking in this passage
not about the degree of incremental confirmation c(H, E), but about the posterior probability
Pr(H |E). While this may be true [as a psychological fact about Peirce — although Good
(1983) and Schum (1994) seem to think otherwise], this would not undermine the cogency of
my subsequent arguments. For, I intend only to take Peirce’s somewhat vague statements as a
historical inspiration for my own account. However, it is interesting to note that, if Peirce is
talking about the posterior probability here, then his requirement of additivity in cases where
Pr(H |E1&E2) = Pr(H |E1) = Pr(H |E2) makes no sense, since in such cases: Pr(H |E1&E2) =
Pr(H |E1) = Pr(H |E2) �= Pr(H |E1) + Pr(H |E2). So, I consider my reading of this passage
to be a rather charitable one. Moreover, the definition of confirmational independence I am
adopting is a natural and (pre-theoretically) intuitive one. Interestingly, many researchers in
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The second intuition expressed by Peirce in this passage is that the joint sup-

port provided by two pieces of independent evidence should be additive. In our

confirmation theoretic framework, this gets unpacked as follows:

(A′) If E1 and E2 are confirmationally independent regarding H ac-

cording to c, then c(H,E1 & E2) = c(H,E1) + c(H,E2).

Strictly speaking, we should weaken A′ to require only that c(H,E1 & E2) be

some (symmetric) isotone function f of c(H,E1) and c(H,E2), where f is additive

in some (isotonically) transformed space.52 The point is that, if E1 and E2 are

confirmationally independent regardingH according to c, then c(H,E1&E2) should

depend only (and, in some isotonically transformed space, linearly) on c(H,E1)

and c(H,E2), without any extra “interaction terms.” This leads to the following

refinement of the second basic Peirceian intuition:

(A) There exists some (symmetric) isotone function f such that, for all

E1, E2, and H, if E1 and E2 are confirmationally independent re-

gardingH according to c, then c(H,E1&E2) = f [c(H,E1), c(H,E2)],

where f is additive in some (isotonically) transformed space.

The following theorem states that each of our five Bayesian relevance measures

— except r and s — satisfies A (see the Appendix for proofs of all theorems).

Theorem 6. Each of the measures d, r, and l satisfies A, but s and r violate A.

So, at this most basic level, the three most popular varieties of quantitative

Bayesian confirmation theory are in agreement about the nature of independent

artificial intelligence have adopted the very same definition. They call it ‘modularity’ — see,
e.g., Horvitz and Heckerman (1986) and Heckerman (1988).

52As Peirce did, I prefer to have f be +. So, I have defined r and l using logarithms (see
footnote 14). If we were to drop the logarithms in our definitions of r and l, then we would have
f = · for the ratio measures r and l, but f = + for the difference measure d. See Heckerman
(1988) for more on the kind of linear decomposability that is at the heart of desideratum A.
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evidence. All three measures d, r, and l satisfy the fundamental Peirceian desider-

atum A (and A′). However, measures s and r would seem to be inadequate in

their handling of independent evidence, even at this most basic level.

Unfortunately, the agreement between d, r, and l ends here. In the next section,

I will describe a symmetry desideratum which is satisfied by d and l (and s and

r), but violated by r. This will narrow down the field further to two measures

(d and l) which seem to cope adequately (at a very basic level) with independent

evidence. Later, I will propose additional, probabilistic constraints on accounts of

independent evidence that narrow the field even more.

3.2.2 A Negation Symmetry Desideratum

If two pieces of evidence are confirmationally independent regarding H, then they

should also be confirmationally independent regarding H̄. Negation symmetry in

the confirmational independence relation seems highly intuitive.53 After all, if the

degree to which E1 confirms H doesn’t depend on whether E2 is already known,

then why should the degree to which E1 confirms H̄ depend on whether E2 is

already known? In our confirmation theoretic framework, this intuitive negation

symmetry principle gets formalized as follows:

(S) If c(H,E1 |E2) = c(H,E1) and c(H,E2 |E1) = c(H,E2), then

c(H̄, E1 |E2) = c(H̄, E1) and c(H̄, E2 |E1) = c(H̄, E2).

The following theorem states that each of our five Bayesian relevance measures —

except r — satisfies S.

Theorem 7. Each of the measures d, l, s, and r satisfies S, but r violates S.54

53Many varieties of independence satisfy this kind of negation symmetry requirement (e.g.,
both logical independence and probabilistic independence are negation-symmetric).
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The two high-level55 desiderata A and S narrow the field of four relevance

measures down to two (d and l) which seem — so far — to explicate the concept of

independent evidence.56 Below, I will propose a low-level, probabilistic constraint

that rules out the difference measure d and all other relevance measures, except

those ordinally equivalent to the log-likelihood ratio measure l. But, before we get

to that, I’d like to consider an interesting (albeit special) class of cases in which

the log-likelihood-ratio measure l seems to give more intuitive results than the

difference measure d. This should help pave the way for subsequent arguments.

3.2.3 Conclusive Evidence and Measures of Confirmation

So far, we have seen two sets of simple and intuitive, high-level desiderata each

of which narrows the field of five candidate measures down to two: d and l. In

the sections below, I will describe a set of low-level, probabilistic constraints that

provide an ultimate adjudication between d and l (in favor of l). But, before I

present that material, I’d like to talk briefly about cases in which E is conclusive

for H (relative to K). I think that by looking at this special case, one can begin

to see some advantages l has over d. Moreover, I think that this class of cases is

one in which Good’s requirement of “independence of the prior probability of H”

makes sense (and can be made precise and non-superficial).

We say that E provides conclusive support or confirmation forH (relative toK)

54This theorem is closely related to a result reported in Eells and Fitelson (2001) which says
that each of our five Bayesian relevance measures — except r — satisfies the following hypothesis
symmetry condition: (HS) c(H, E |K) = −c(H̄ , E |K). Note that (HS) is Carnap’s (14) [§3.1.2].
See, Eells and Fitelson (2001) for some reasons to think that an adequate measure of support c
should satisfy (HS). It is interesting to note that (HS) entails our negation symmetry desideratum
S, but not conversely (proof omitted). So, S is a strictly weaker desideratum than (HS).

55When I call a set of constraints “high-level desiderata,” I mean that the constraints can be
stated entirely at the level of the measure c — without having to appeal to any properties of the
underlying (low-level) probability function Pr in terms of which the measures c are defined.

56See Eells and Fitelson (2001) for an independent set of high-level desiderata which also
narrow the field to the two measures d and l. Pace Milne (1996), d and l seem, in many ways,
to be the two most serious candidates for “the one true measure of confirmation.”
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just in case E&K � H. I take it as intuitively clear that the strength of the support

E provides for H in this case should not depend on how probable H is (a priori).

Just think about deductively valid arguments for a moment. Do we want to say

that the strength of a valid argument should depend on how confident we were in

the conclusion of the argument before we thought about the premises? Clearly,

the answer to this question is “no.” After all, evidential support is supposed to

be a measure of how strong the evidential relationship between E and H is, and

deductive entailment is the strongest that such a relationship can possibly get. If E

is conclusive for H, then H’s a priori probability should, intuitively, be irrelevant

to how strong the (maximal, deductive) evidential relationship between E and

H is. It seems to me that this simple idea can be translated into the following

intuitive desideratum for adequate measures of degree of support c(H,E |K):

(K) If E provides conclusive support or confirmation for H (relative

to K), then c(H,E |K) should be maximal (viz., constant), and

should not depend on the prior probability of H [Pr(H |K)].

Interestingly, the only measure (among our five candidates) that satisfies K is l. To

see why l satisfies K, it is easier to work with the following, ordinally equivalent57

measure l∗, which was proposed and defended by Kemeny and Oppenheim (1952).58

l∗(H,E |K) =
Pr(E |H &K)− Pr(E | H̄ &K)

Pr(E |H &K) + Pr(E | H̄ &K)

It is easy to show that l∗ has the following property (proof omitted), which explains

why l∗ satisfies our conclusive evidence desideratum K.59

57Measures l and l∗ are ordinally equivalent since l∗ is an isotone function of l [l∗ = sinh(l/2)].
58Kemeny and Oppenheim (1952) provide an interesting (and deep) desideratum/explicatum

argument for l∗. I am currently working on an analysis of their argument in favor of l∗.
59Strictly speaking, E & K � H and E & K � H̄ imply that l∗(H, E |K) ∈ (−1, 1) only if

it assumed that the probability spaces are finite, or if Pr is assumed to be regular (a regular
probability function assigns probability zero only to ⊥ and probability one only to �).
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(K′) l∗(H,E |K)




= 1 if E &K � H,

∈ (−1, 1) if E &K � H and E &K � H̄,

= −1 if E &K � H̄.

Intuitively, K′ is exactly the kind of property a measure of support should have.

Any measure satisfying K′ will take on its maximal (and constant) value when E

is conclusive for H, its minimal (and constant) value when E is conclusive for the

denial of H, and an intermediate value when E is deductively independent of H.

Perhaps this is the class of examples Good (1984) had in mind when he insisted

that c(H,E |K) should not “depend on the prior probability of H.” In this class

of cases, it is both true and intuitive that l∗ (hence, by ordinal equivalence, l) does

not depend on the prior probability of H. In any case, we should probably not

put too much stock on deductive cases of the kind discussed in this section. This

section was mainly intended as an “intuition pump” to prime the reader for the

sections below. Below, I will describe a much more interesting, inductive variety

of independence which will also single out l as a superior measure of confirmation.

3.2.4 Screening-Off and Confirmational Independence

3.2.4.1 Wittgenstein’s Example and Sober’s Probabilistic Analysis

Wittgenstein (1953) alludes to a man who is doubtful about the reliability of a

story he reads in the newspaper, so he buys another copy of the same issue of the

same newspaper to “double check.” This does not seem to be an effective strategy

for corroboration. To fix our ideas, let’s assume that a story in the New York

Times (NYT) reports that (H) the Yankees won the world series. Let En be the

evidence obtained by reading the nth copy of the (same story in the) same issue of

the NYT. Intuitively, the degree to which the conjunction E1 & E2 confirms H is

no greater than the degree to which E1 alone confirms H. Also, it seems intuitive
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that an independent report E ′ (say, one heard on a NPR broadcast) would serve to

corroborate the NYT story. How can we explain the epistemic difference between

these two cases? Intuitively, a NYT report (Ei) and a NPR report (E ′) provide

independent support for H in a way that two NYT reports (E1, E2) do not.

Sober (1989) offers an illuminating and suggestive probabilistic analysis of this

problem. Sober explains that the probabilistic structure of this example is a con-

junctive fork, in which Ei and E ′ are joint effects of a common cause H. Sober

also points out [as Reichenbach (1956, page 159) first did] that Ei and E ′ will not

be unconditionally probabilistically independent in such a case. So, it can’t be

probabilistic independence of the evidence simpliciter which is responsible for our

intuitive judgment that Ei and E ′ are confirmationally independent regarding H in

this example. Is there some probabilistic feature of this example which undergirds

our intuition? It seems to me (as it did to Sober) that the relevant point is that

[in the terminology of Reichenbach (1956, page 189)] H screens-off Ei from E ′.

That is, it is the fact that Ei and E ′ are probabilistically independent conditional

on the hypothesis H (and its denial) that explains our intuition that Ei and E ′ are

confirmationally independent regarding H. To appreciate Sober’s explanation, it

helps to picture the probabilistic (causal) structure of the example, as in Figure 1:

H

E′

E1 E2

NYT NPR

Figure 1: Picturing the structure of the Wittgenstein/Sober example
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As the picture makes clear, H does not screen-off E1 from E2 (although, perhaps

the state of the NYT printing press prior to printing does screen them off). On the

other hand (provided that there was no communication between NYT and NPR,

etc.), H does screen-off Ei from E ′. This is the sense in which E1 and E2 do not

provide independent support for H (although, perhaps they provide independent

evidence about the state of the NYT printing press), while Ei and E ′ do.

Sober’s analysis of Wittgenstein’s example provides informal motivation for the

following two central points concerning the nature of confirmational independence

and its intuitive relation to probabilistic screening-off:

• Confirmational independence is inherently a three-place relation. That is,

when we say E1 and E2 are confirmationally independent regarding H, we

are not saying that E1 and E2 are unconditionally independent of each other.

We are talking about a kind of (ternary) independence relation that depends

crucially on the hypothesis H.

• Screening-off of E1 from E2 by H is (intuitively) intimately connected with

confirmational independence of E1 and E2 regarding H.

In the next section, I will describe a more general and formal probabilistic model

that is intended to make the connection between screening-off and confirmational

independence more precise. This formal model will also allow us to generate con-

crete, numerical examples which will, ultimately, be used to show that only the

log-likelihood ratio measure l properly handles the (general) relationship between

probabilistic screening-off and confirmational independence.

3.2.4.2 A Formal Model

To formally motivate the general connection between probabilistic screening-off

and confirmational independence, I will use a simple, abstract model. I will call
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this model the urn model.60 The background evidence K for the urn model is

assumed at the outset to consist of the following information:

An urn has been selected at random from a collection of urns. Each

urn contains some balls. In some of the urns the proportion of white

balls to other balls is x and in all the other urns the proportion of white

balls is y, 0 < x, y < 1. The proportion of urns of the first type is z,

0 < z < 1. Balls are to be drawn randomly from the selected urn, with

replacement.

Let H be the hypothesis that the proportion of white balls in the urn is x.

Let Wi state that the ball drawn on the ith draw (i ≥ 1) is white. I take it

as intuitively clear that W1 and W2 are mutually confirmationally independent

regarding H, regardless of the values of x, y, and z. Hence, I propose the following

adequacy condition for measures of degree of confirmation:

(UC) If c is an adequate measure of degree of confirmation then, both

c(H,W1 |W2) = c(H,W1), and c(H,W2 |W1) = c(H,W2) for all urn exam-

ples, regardless of the values of x, y, and z.61

What probabilistic feature of the urn model could be responsible for the (pre-

sumed) fact that W1 and W2 are confirmationally independent regarding H? The

feature cannot depend on the values of the probabilities involved, since we did not

specify what these are except to say that they are not zero or one (a requirement

60The urn model is due to Patrick Maher.
61Ellery Eells (private communication) worries that for extreme (or near extreme) values of x,

y, or z, this intuition might break down. He may be right about this (although, as a defender of l,
I will insist that any such breakdown can be explained away, and is probably just a psychological
“edge effect,” owing to the extremity of the values of x, y or z, and not to considerations relevant
to their confirmational independence per se). However, in the Appendix (Theorem 8), I show
that the measures d, r, s, and r fail to obey this intuition, even in cases where the values of x,
y, and z are all arbitrarily far from extreme. As a result, d, r, s, and r will not even judge E1

and E2 as confirmationally independent regarding H in Sober’s example. This seems unintuitive,
and should cast doubt on the adequacy of d, r, s, and r.
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imposed to ensure that the relevant conditional probabilities are all defined). More-

over, as we saw in Sober’s example, the feature cannot depend on the unconditional

probabilistic independence of W1 and W2, since W1 and W2 will not, in general, be

independent of each other (e.g., if each of W1 and W2 individually confirms H).

This does not leave much. Two considerations that remain are that the following

two identities hold in all urn examples:

Pr(W1 &W2 |H) = Pr(W1 |H) · Pr(W2 |H)(18)

Pr(W1 &W2 | H̄) = Pr(W1 | H̄) · Pr(W2 | H̄)(19)

Identities (18) and (19) state that H screens-off W1 from W2 (or, equivalently,W2

from W1). What I am suggesting, then, is that screening-off by H of W1 from W2 is

a sufficient condition for W1 and W2 to be mutually confirmationally independent

regarding H. This suggests that (UC) might be strengthened to the following

screening-off adequacy condition for measures of confirmation:

(SC) If c is an adequate measure of confirmation, and if H screens-off E1 from E2,

then c(H,E1 |E2) = c(H,E1) and c(H,E2 |E1) = c(H,E2).

I find (SC) an attractive principle; but, for the purposes of this paper, I will

use only the weaker (and perhaps more intuitive) adequacy condition (UC).62 The

following theorem states that the only measure among our four measures d, r, l,

and s that satisfies (UC) is the log-likelihood ratio measure l:

Theorem 8. The measures d, r, s, and r violate (UC), but l satisfies (UC).63

62Heckerman (1988, page 19) has suggested an adequacy condition that is equivalent to (SC).
He gives no justification for this principle. I take the urn model to be a partial justification of
(SC). However, I prefer the present approach since it makes use only of the weaker (and, I think,
more intuitive) (UC). Incidentally, I do not think that screening-off by H is a necessary condition
for mutual confirmational independence regarding H (neither does Heckerman). I discuss this
issue further in the Appendix, when I prove Theorem 8 (see §A.8 for a counterexample).
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Thus, only the log-likelihood ratio l satisfies the low-level, probabilistic screening-

off desideratum. I think this is a compelling reason to favor the log-likelihood ratio

measure over the other measures currently defended in the philosophical literature

(at least, when it comes to judgments of confirmational independence regarding a

hypothesis).64 As such, this provides a possible (at least, partial) solution to the

problem of the plurality of Bayesian measures of confirmation described in Fitelson

(1999). In the next section, I will discuss another application of my account of

independent evidence.

3.3 An Application to Evidential Diversity

Philosophers of science dating back at least to Carnap (1945) have shared the

intuition that collections of evidence that are ‘diverse’ or ‘varied’ should (ceteris

paribus65) confirm more strongly than collections of evidence that are ‘narrow’ or

‘homogeneous’. I have elsewhere [see Fitelson (1996)] called this the confirmational

significance of evidential diversity (CSED). I suspect that the notion of indepen-

dent evidence can undergird, at least partially, (some of) our intuitions about the

63Heckerman (1988) claims to prove a much more ambitious, and closely-related result. He
claims to show that only measures that are ordinally equivalent to l satisfy (SC). Unfortunately,
his argument is fallacious for subtle mathematical reasons — see Halpern (1999a, 1999b). In
particular, like the arguments of Milne (1996) and Good (1984), Heckerman’s argument presup-
poses that an agent’s probability space is infinite, and satisfies some rather strong (unmotivated)
mathematical constraints [see Halpern (1999a, 1999b)]. Unlike Heckerman’s argument, my argu-
ment makes use only of the finitistic adequacy condition (UC), and requires no additional, strong
mathematical presuppositions.

64The intimate connection between probabilistic screening-off of the kind described here and
our intuitive judgments of independent inductive support has been pointed out by several re-
cent authors (and used by some a reason to favor likelihood-ratio based measures of support),
including: Good (1983), Pearl (1988), Heckerman (1988), and Schum (1994).

65See Fitelson (1996) and §3.3.2 below for an elaboration of the ceteris paribus conditions that
are tacitly presupposed in the Bayesian explication of CSED offered by Horwich (1982). I will
later discuss the ceteris paribus clauses implicit in Howson and Urbach’s (1993) ‘correlation’
approach to CSED. Carnap’s original (1945, page 94) explication of CSED also requires some
rather sophisticated ceteris paribus conditions. But, since Carnap’s original account of CSED
does not make explicit use of d, r, l, s, or r, it is beyond the scope of this monograph.
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significance of diverse evidence. At least one recent philosopher of science seems

to share this suspicion. Sober (1989) shows (essentially66) that the log-likelihood

ratio measure l satisfies the following high-level diversity desideratum:

(D) If each of E1 and E2 individually confirms H, and if E1 and E2 are confir-

mationally independent regarding H according to c, then c(H |E1 & E2) >

c(H |E1) and c(H |E1 & E2) > c(H |E2).
67

It is a direct corollary of Theorem 6 that — according to all three measures

of confirmation d, r, and l — two pieces of independent confirmatory evidence

will always provide stronger confirmation that either one of them provides indi-

vidually. In other words, we have already shown that the three most popular

measures of confirmation d, r, and l all satisfy D.68 It seems to me that D could

be used to provide a rather simple and elegant (partial69) Bayesian account of

CSED. The basic idea behind such an approach would be that it is not evidence

of different ‘kinds’ per se that will boost confirmational power. Rather, it is data

66Strictly speaking, Sober proves something weaker than this. He proves that l satisfies the
consequent of D under the stronger (wrt l) assumption that H screens-off E1 from E2. Our
result is also more general than Sober’s in the sense that it applies not only to l but to d and r
as well (i.e., our result D is not as sensitive to the choice of measure of confirmation).

67The following, low-level diversity desideratum is also of interest:

(D′) If each of E1 and E2 individually confirms H , and if H screens-off E1 from E2,
then c(H, E1 &E2) > c(H, E1) and c(H, E1 & E2) > c(H, E2).

We know from Theorems 6 and 8 that l satisfies D′. And, we have recently discovered that
measures s and r violate D′ (countermodels omitted). It remains open whether d or r satisfy D′

(computer searches indicate that they “probably” do, but no proofs have been found). See §4.1.
68Although s and r violate A, it remains open whether s or r violates D. If s and r satisfy D,

then this would make D totally insensitive to choice of measure (at least, among d, r, l, s, and
r). See §4.1 for further discussion of the remaining open questions concerning D and D′.

69I do not mean to suggest that confirmational independence can be used to undergird all of our
intuitions about the value of diverse evidence. But, I do think that there are many important
scientific cases that fit this mold. For instance, the intuition that evidence from independent
domains of application (e.g., celestial vs terrestrial domains) of a theory often confirm more
strongly than the same amount of evidence from domains of application that are not independent
is a canonical example of the kind of intuition I have in mind here. Moreover, Sober (1989, page
124) explains how the notion of independent evidence regarding a hypothesis can be useful in the
context of phylogenetic inference (e.g., the problem of inferring the character states of ancestors
from the observed character states of their descendants).
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whose confirmational power is maximal, given the evidence we already have that

are confirmationally advantageous. And, D provides a robust, general sufficient70

condition for this sort of confirmational boost.

It is not generally the case (as was pointed out by Carnap (1962)) that two

pieces of confirmatory evidence simpliciter will always provide stronger confirma-

tion than just one. With D, we have identified a very general sufficient condition

for increased confirmational power. The slogan behind D might be “Two pieces of

independent evidence are better than one.” One nice thing about D is that it does

not depend sensitively on one’s choice of measure of confirmation. Below, I com-

pare the present approach to CSED with a recent Bayesian alternative proposed

by Howson and Urbach (1993).

3.3.1 Comparison with the ‘Correlation’ Approach

Howson and Urbach (1993) propose a different way to account for our intuitions

about CSED.71 This approach asks us to consider not whether E1 and E2 are

confirmationally independent regarding H. Rather, Howson and Urbach (1993)

suggest that the important thing is whether or not E1 and E2 are unconditionally

stochastically independent. Howson and Urbach (1993, pages 113–114, my italics)

summarize the their ‘correlation’ account as follows:

Evidence that is varied is often regarded as offering better support to a

hypothesis than an equally extensive volume of homogeneous evidence . . .

According to the Bayesian, if two data sets are entailed by a hypothesis (or

70As was the case with (UC) and (SC), I am not claiming that D is a necessary condition for
increased confirmational power in this sense (indeed, I suspect it is not — see §A.8).

71Earman (1992) discusses a similar approach. Basically, many of the same criticisms will apply
to his account. I will focus on the account of Howson and Urbach, since their characterization
of the ‘correlation’ approach is closer in spirit to my presentation. See Forster (1995) for some
independent criticisms of Earman’s particular ‘correlation’ explication of CSED.
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have similar probabilities relative to it72), and one of them confirms more

strongly than the other, this must be due to a corresponding difference

between the data in their probabilities . . . The idea of similarity between

items of evidence is expressed naturally in probabilistic terms by saying

that e1 and e2 are similar if P (e2 | e1) is higher than P (e2), and one might

add that the more the first probability exceeds the second, the greater the

similarity. This means that e2 would provide less support if e1 had already

been cited as evidence than if it was cited by itself.

The most charitable interpretation of the above proposal of Howson and Urbach

would seem to be the following rather complicated nested conditional:

(H) If the following probabilistic ‘ceteris paribus clause’ is satisfied:

(CP ) Pr(E1 |H) = Pr(E2 |H) = Pr(E1 & E2 |H) = 1,

then if Pr(E2 |E1) > Pr(E2), then c(H,E2 |E1) < c(H,E2).
73

In other words, Howson and Urbach are claiming that (ceteris paribus74) pieces

of evidence E1 and E2 that are unconditionally positively correlated will not be

confirmationally independent regarding a hypothesis H (and, that E1 and E2 will

tend to cancel each other’s support for H in such cases). I see several serious

problems with Howson and Urbach’s proposal H.75

As we have already seen in Sober’s conjunctive fork example, pieces of confir-

mationally independent evidence will often be unconditionally positively correlated

72Howson and Urbach’s parenthetical remark that their ‘ceteris paribus condition’ (CP ) can
be weakened to (CP ′) Pr(E1 |H) = Pr(E2 |H) — while preserving the general truth of the main
tenet (H) of their account of CSED — is false. See footnote 108 in the Appendix (in the proof
of Theorem 9) for a proof that this parenthetical remark is incorrect.

73In fact, Howson and Urbach seem to be making an even stronger, quantitative claim. They
seem to be saying that if (CP ) is satisfied, then the greater Pr(E2 |E1) is than Pr(E2), the
lesser c(H, E2 |E1) will be than c(H, E2). I have chosen to criticize the (weaker) qualitative
interpretation H, since H’s falsity entails the falsity of the stronger, quantitative claim.

74Howson and Urbach’s (CP ) is slightly stronger than the probabilistic ceteris paribus clause
that is needed to shore-up Horwich’s (1982) account of CSED [see Fitelson (1996) and §3.3.2].

75Note that Howson and Urbach’sH only purports to explain why a lack of evidential ‘diversity’
can be bad. H cannot tell us why or how evidential ‘diversity’ can be good.
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(and often strongly so). Newspaper reports (E1) and radio reports (E2) about the

outcome (H) of a baseball game often fail to be unconditionally independent. This

(in and of itself) does nothing to undermine our intuition that E1 and E2 are con-

firmationally independent regarding H. Moreover, this example is representative

of a wide range of cases. The conjunctive fork structure is common in (intuitive)

examples of confirmational independence. For example, consider what doctors do

when they seek independent confirmation of a diagnosis. They look for confir-

mationally independent corroborating symptoms. Such symptoms will typically

be unconditionally correlated with already observed symptoms. But, conditional

on the relevant diagnostic hypothesis, confirmationally independent symptoms will

tend to be stochastically independent. It is conditional independence that is rele-

vant here, not unconditional independence.

At best, Howson and Urbach have shown (via H) that confirmational indepen-

dence and unconditional stochastic dependence cannot co-occur in the extreme,

deductive cases in which (CP ) holds.76 If H were true for an interesting class

of Bayesian confirmation measures c, then Howson and Urbach’s account would,

at least, provide some useful information about the relationship between confir-

mational independence and unconditional stochastic independence in the case of

deductive evidence. Unfortunately, as the following theorem states, among the

five measures we have considered, Howson and Urbach’s H is satisfied only by the

log-ratio measure r and Carnap’s measure r, both of which we have already shown

to be inadequate in several important respects.77

Theorem 9. H is true if c = r or c = r, but H is false if c = d, c = l, or c = s.

76The fact that odd things can happen in such extreme cases was pointed out by Sober (1989,
page 279). There, Sober explains that many of the salient epistemological differences between
independent and dependent evidence collapse in the extreme (deterministic) case.

77Myrvold (1996) has independently articulated some of these same criticisms of Howson and
Urbach’s account. Moreover, Myrvold nicely shows how to remedy many of these problems, by
being sensitive to conditional independence (as well as unconditional independence). While this
is certainly a step in the right direction, the new ‘correlation’ account presented in Myrvold (1996)
is strongly sensitive to an inadequate choice (r) of measure of confirmation (proof omitted).
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Howson and Urbach must either embrace the unattractive option of defending their

chosen measure r, or they must defend some other measure of confirmation which

satisfies H (e.g., Carnap’s measure r, which we have also shown to be inadequate

in several ways). In either case, Howson and Urbach must reject the general

connection (SC) between screening-off and confirmational independence, since (SC)

and H are logically incompatible. That is, in the case of deterministic conjunctive

forks, (SC) and H cannot both be true.78

3.3.2 Comparison with Wayne and Horwich on CSED79

Wayne (1995) gives one reconstruction of Horwich’s (1982) Bayesian account of

the value of evidential diversity. He then shows that there are counterexamples

to this reconstruction of Horwich’s explication of CSED. Such counterexamples

would undermine Horwich’s account of CSED, if Wayne’s reconstruction were a

charitable one. Presently, I argue that Wayne’s reconstruction of Horwich’s account

of CSED is uncharitable. As a result, his criticisms are not genuine problems for

Horwich. This does not mean that Horwich’s explication of CSED — charitably

reconstructed — is unproblematic. On the contrary, after my analysis of Wayne’s

critique, I discuss several remaining problems for Horwich’s account. In the end, I

conclude that Horwich’s Bayesian explication of CSED is inadequate.

3.3.2.1 Wayne’s Reconstruction of Horwich’s Account

In a typical confirmation theoretic context C, we have a hypothesis under test

H1 and n − 1 competing hypotheses H2, . . . , Hn, where the n hypotheses are as-

sumed to be mutually exclusive and exhaustive. Wayne’s (1995) reconstruction

78This is easily proved. Assume that (CP ) obtains (which implies that H screens-off E1 from
E2). In such a case, H , E1, and E2 will form a (deterministic) conjunctive fork. Now, ifH is true,
then c(H, E2 |E1) < c(H, E2). But, if (SC) is true, then c(H, E2 |E1) = c(H, E2). Therefore, in
the case of deterministic conjunctive forks, (SC) and H cannot both be true. ❑

79Much of the material in this section appears in Fitelson (1996).
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of Horwich’s (1982) explication of CSED involves the following three propositions

concerning such contexts:

(H1) One collection of evidence E1 is more confirmationally diverse (c-

diverse) than another collection of evidence E2 in context C iff

(∀i �= 1)[Pr(E1 |Hi &KC) < Pr(E2 |Hi &KC)].80

The intuition behind H1 is that the more c-diverse collection of evidence is sup-

posed to “rule-out most plausible alternatives” to the hypothesis under test. It is

for this reason that Horwich’s account has been called ‘eliminativist’.81

(H2) E1 confirms H more strongly than E2 confirms H if and only if

r(H,E1) > r(H,E2), where the ratio measure of degree of confir-

mation r(H,E) is defined as follows: r(H,E) =df
Pr(H |E)

Pr(H)
.

(H3) For every confirmational context C, if E1 is more c-diverse than

E2 in C, then E1 confirms H1 (i.e., the hypothesis under test in

C) more strongly than E2 confirms H1 in C.

According to Wayne (1995), H3 captures the kernel of Horwich’s account of CSED.

In the next section, we will look at a counterexample to H3 due to Wayne (1995).

3.3.2.2 Wayne’s Counterexample to H3

Wayne (1995, page 119) asks us to:

80Where, the proposition KC encodes the background knowledge in confirmational context C.
Hereafter, I will, for simplicity’s sake, drop explicit reference to KC in probability statements. It
is to be understood, of course, that we are uniformly conditioning Pr on KC , whenever we make
a Bayesian confirmational comparison.

81Notice that H1 is sufficient but not necessary for E1’s “ruling-out” most alternatives to H1

in C. As we’ll see, this added strength is needed to shore-up Horwich’s account of CSED. See
the Appendix §A.11–§A.13 for all technical details pertaining to this section of the monograph.
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. . . consider a simple context Cw in which only three hypotheses have sub-

stantial prior probabilities, Pr(H1) = 0.2, Pr(H2) = 0.2, Pr(H3) = 0.6, and

two data sets E1 and E2 such that:

Pr(E1 |H1) = 0.2 Pr(E2 |H1) = 0.6

Pr(E1 |H2) = 0.4 Pr(E2 |H2) = 0.5

Pr(E1 |H3) = 0.4 Pr(E2 |H3) = 0.6

This is plainly a paradigm case of H1: for all Hi, Pr(E1 |Hi) is significantly

less than Pr(E2 |Hi). Yet, a straightforward substitution shows that H3

is violated! Thus, we obtain the counterintuitive result that the similar

evidence lends a greater boost to the hypothesis under test than does the

diverse evidence . . . Horwich’s account fails to reproduce our most basic

intuition about diverse evidence.82

Wayne is right about Cw in the following two respects.

In Cw, E1 is more c-diverse than E2.(20)

In Cw, E2 confirms H1 more strongly than E1 confirms H1, according

to the ratio measure r.

(21)

Hence, Cw is a legitimate counterexample to H3. In the next section, I will discuss

some aspects of Wayne’s example that he neglects to mention. Then, I will reflect

on what the existence of this counterexample implies — and doesn’t imply — about

Horwich’s account of CSED.

3.3.2.3 Why Wayne’s Counterexample is Not Salient

Here is a fact about Wayne’s counterexample to H3 that he neglects to mention.

In Cw, E2 confirms H1; whereas, E1 disconfirms H1.(22)

82I have taken the liberty of translating this passage from Wayne (1995) into my notation.
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Wayne has certainly described a confirmational context Cw in which a less c-diverse

data set confirms the hypothesis under test more strongly than a more c-diverse

data set does. But, as it turns out, Cw is also a context in which the more c-diverse

evidence disconfirms the hypothesis under test; whereas, the less c-diverse evidence

confirms the hypothesis under test. What does this mean?

3.3.2.4 Charitably Reconstructing Horwich’s Account

As far as I can tell, (22) shows that H3 must not be what Horwich has in mind

in his explication of CSED. Surely, Horwich would not want to say that more c-

diverse disconfirmatory evidence should confirm more strongly than less c-diverse

confirmatory evidence. To say the least, this would not be in the spirit of the

Bayesian definition of confirmation.

A more charitable reconstruction of Horwich’s account of CSED should add

a suitable probabilistic ceteris paribus clause to H3. In such a reconstruction,

Wayne’s H3 might be replaced by:

(H′
3) If CP then H3.

Where CP is an appropriate probabilistic ceteris paribus clause. Wayne’s coun-

terexample teaches us that, at the very least, CP should entail:

(CP1) Both E1 and E2 confirm H1 in C.

Indeed, CP1 would avoid the counterexample raised by Wayne. Moreover, it

would insure that H′
3 does not contradict the Bayesian definition of confirmation

(as Wayne’s H3 does).

Interestingly, CP1 is not a sufficient ceteris paribus clause. For, CP1 does not

entail H3. We will need to make CP substantially stronger than CP1 in order to

make H′
3 a theorem of the mathematical theory of probability. There are many
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ways to define sufficient ceteris paribus clauses in this sense.83 Here is one such

proposal that I think remains faithful to what Horwich has in mind:

(CP∗) CP1, and Pr(E1 |H1) = Pr(E2 |H1) in C.

CP∗ says that E1 and E2 both confirm H1 in C, and that E1 and E2 are ‘C-

commensurate’, in the sense that the hypothesis under test has the same likelihood

(i.e., goodness of fit) with respect to both E1 and E2 in C. This ceteris paribus

clause seems to be implicit in Horwich’s depiction of the kinds of confirmational

contexts he has in mind. Figure 2 shows the kind of confirmational contexts and

comparisons that Horwich (1982, pages 119–120) uses as canonical illustrations of

his account of CSED.

E2

E1 =

=

H1

C

Figure 2: A canonical Horwichian example of CSED

Figure 2 depicts a canonical confirmation theoretic context C in which the

hypothesis under test H1 fits two data sets E1 and E2 equally well, in accordance

83Hellman (1997) proposes the following alternative sufficient ceteris paribus clause:

(CP †) CP1, and Pr(E1 |H1)− Pr(E1) = Pr(E2 |H1)− Pr(E2) in C.
It is true that CP † is sufficient for H3. However, CP † is clearly not the kind of Bayesian
proposal that Horwich (1982) has in mind. In Horwich’s canonical examples, it is typically
assumed that Pr(E1 |H1) = Pr(E2 |H1) (see below for more on this point). Moreover, Horwich
wants sets of evidence with greater c-diversity to have lesser prior probability (e.g., Horwich
wants Pr(E1) < Pr(E2) in his canonical example). These two constraints jointly entail that CP †
does not hold. So, while Hellman’s alternative makes sense from a generic Bayesian point of
view, it is not a faithful reconstruction of Horwich’s Bayesian explication of CSED. See Kruse
(1999) and Maher (1997) for further (and deeper) criticisms of Hellman (1997).
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with CP∗. Moreover, E1 is more intuitively diverse (i-diverse) than E2, since

the abscissa values of E1 are more spread-out than the abscissa values of E2.
84

Horwich (1982) seems only to be claiming that — other things being equal (those

other things being the likelihoods Pr(E1 |H1) and Pr(E2 |H1)) — more diverse85

sets of evidence (e.g., E1) will confirm the hypothesis under test (e.g., H1) more

strongly than less diverse sets of evidence (e.g., E2) will. This is an appropriate

time to state the following theorem:

(H3∗) If CP∗, then H3.
86

Since H3∗ is a theorem of the mathematical theory of probability, this recon-

struction of Horwich’s account is guaranteed to be immune to any formal coun-

terexamples. In this sense, our present reconstruction of Horwich’s account is a

charitable one. However, even this charitable reconstruction of Horwich’s account

of CSED has its problems. In the next section, I will briefly discuss some of my

remaining worries about Horwich’s account of CSED.

3.3.2.5 A Remaining Worry About Horwich’s Account

Horwich’s H1 says that a more c-diverse set of evidence E1 will tend to “rule-out

more of the plausible alternative hypotheses Hj �=1” than a less c-diverse set of

evidence E2 will. But, when Horwich gives his canonical curve-fitting examples,

he appeals to an intuitive sense of diversity (i-diversity) which does not obviously

correspond to the formal, confirmational diversity specified in H1. At this point,

84This notion of the ‘intuitive diversity’ (i-diversity) of a data set is never precisely defined by
Horwich (1982). But, in canonical curve-fitting contexts, the ‘intuitive diversity’ of a data set
should boil down to some measure of the spread (or variance) of its abscissa values.

85I am being intentionally vague here about which kind of diversity Horwich has in mind. I
think Horwich has i-diversity in mind; but, he clearly wants this relationship to obtain also with
respect to c-diversity. I’ll try to resolve this important tension below.

86Indeed, as we will show in §A.12, CP ∗ is sufficient for H3 — no matter which of our five
measures of confirmation is used ! In other words, our charitable reconstruction of Horwich’s
account of CSED is completely insensitive to choice of measure.
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as natural question to ask is: “What is the relationship between i-diversity and

c-diversity, anyway?”

Ideally, we would like the following general correspondence to obtain between

the i-diversity and c-diversity of data sets:

(H4) If E1 is more i-diverse than E2 in C, then E1 is more c-diverse

than E2 in C.

If H4 were generally true (i.e., true for all C), then all of the intuitive examples

of CSED would automatically translate into formal examples of CSED with just

the right mathematical properties. And, Horwich’s formal account of CSED (i.e.,

H1–H′
3) would be vindicated by its ability to match our intuitions about CSED in

all cases. Unfortunately, things don’t work out quite this nicely.

It turns out that H4 is not generally true. To see this, let’s reconsider Horwich’s

canonical example of CSED, depicted in Figure 2. In this example, E1 is more i-

diverse and more c-diverse than E2 in C. It is obvious why E1 is more i-diverse

than E2 in C (just inspect the spread of the abcissa values of E1 vs E2). However,

it is not so obvious why E1 is more c-diverse than E2 in C. Horwich claims that

E1 tends to rule-out more of the plausible alternatives to H1 than E2 does. I

think it is more perspicuous to say instead that E1 tends to rule-out more of the

simple alternatives to H1 than E2 does.87 Horwich doesn’t say exactly how we

should measure the ‘relative simplicity’ of competing hypotheses. We can make

87Horwich (1982, pages 121-122) and Horwich (1993, pages 66–67) explains that his account of
CSED depends on a substantive Bayesian understanding of the simplicity of statistical hypothe-
ses. Given our reconstruction of Horwich’s account of CSED, we can see vividly why this is so.
Horwich seems to be assuming that simple hypotheses have some kind of a priori probabilistic
advantage over complex hypotheses. This kind of assumption is known as a simplicity postulate.
Simplicity postulates are a well-known source of controversy in Bayesian philosophy of science.
I won’t dwell here on the problematical nature of simplicity postulates, since I think they are a
problem for a rather large class of Bayesian accounts of CSED. For an interesting discussion of
simplicity postulates in Bayesian confirmation theory, see Popper (1980, Appendix *viii). See,
especially, Forster (1995) for a detailed critique of the simplicity postulate in the context of curve-
fitting. And, see Kruse (1997) for a refreshing new account of CSED in statistical contexts, which
makes explicit and precise the contributions that i-diversity and simplicity play in CSED.
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some sense out of Horwich’s canonical example, if we make the following plausible

and common assumption about how to measure the simplicity of a polynomial

hypothesis in a curve-fitting context:

(H5) The simplicity of a polynomial hypothesisH is equal to the dimen-

sionality of the smallest (non-trivial) family of polynomial func-

tions of which H is a member.88

If we characterize simplicity in this way, we can explain why E1 tends to rule-

out more of the simple alternatives to H1 than E2 does in the canonical example

depicted in Figure 2. Figure 3 gives us way to picture what’s going on in Horwich’s

canonical example in a rather illuminating and explanatory way.89

C

H1

Figure 3: Why Horwich’s canonical example has the right formal properties

The lightly shaded area in Figure 3 corresponds to the set of linear hypotheses

that are consistent with the data; and, the darkly shaded region corresponds to

88This is a standard way of measuring the simplicity of hypotheses in curve-fitting contexts.
Take, for instance, the curve H : y = x2 + 2x. The smallest (non-trivial) family of polynomials
containing H is family PAR: y = ax2 + bx + c (where a, b, and c are adjustable parameters).
The dimensionality of PAR is 3 (which is also the number of freely adjustable parameters in
PAR). Hence, the ‘simplicity value’ of H is 3. As a rule, then, lower dimensionality families
contain simpler curves. See Forster and Sober (1994) for more on this notion of simplicity and
its important role in modern statistical theory.

89Thanks to Malcolm Forster for generating this informative graphic (using˛ˇ) and
allowing me to use it for this purpose.
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the set of parabolic hypotheses that are consistent with the data. Now, if we were

to ‘spread-out’ the abscissa values of the data set in Figure 3 — while keeping the

likelihood with respect to H1 constant, in accordance with CP∗ — the resulting,

more intuitively diverse, data set would end up ruling-out more of the plausible

(i.e., simpler) alternative hypotheses than the original data set does. This is

because the shaded region (whose area is roughly proportional to the number of

simple alternatives to that are consistent with the data) will shrink as we spread

out the data set along the linear H1. So, in such an example, it is plausible to

expect that the more intuitively diverse data set will also be more confirmationally

diverse in the formal sense of H1. However, this will not generally be the case. In

general, whether or not H4 holds will depend on how complex the hypothesis under

test is. We can imagine situations in which the hypothesis under test is sufficiently

complex relative to its competitors in C. In such situations, increasing the spread

(or i-diversity) of a data set (in accordance with CP∗) may not automatically

increase its confirmational diversity.90

To see this, consider a confirmational context C′ in which the hypothesis under

test H1 is a highly complex curve, and has only one competitor in C′: a linear

hypothesis H2. Now, assume that some data set E2 falls exactly on H1 in such

a way that is inconsistent with H2. If we spread out E2 in just the right way

— in accordance with CP∗ — to form a more intuitively diverse data set E1, we

may end up with a data set that is not more confirmationally diverse than E2.

In fact, depending on how complex H1 is (and how cleverly we choose to spread

out E2 along H1), E1 may turn-out to be less c-diverse than E2. For instance,

E1 might just happen to fall exactly on the linear alternative H2. This kind of

‘non-canonical’ confirmational context — in which a more i-diverse data set turns

out to be less c-diverse — is pictured below in Figure 4.

To sum up: Horwich’s formal sense of confirmational diversity only corresponds

90Thanks to Patrick Maher for getting me to see this point clearly.
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E2

E1 =

=

H1

H2

C ′

Figure 4: Why the truth of H4 depends on the complexity of H1

to his intuitive sense of diversity in contexts where the hypothesis under test is a

relatively simple hypothesis. If the hypothesis under test is sufficiently complex

relative to its competitors, then the connection between Horwich’s formal defini-

tion of diversity (in H1) and the intuitive notion of diversity seen in Horwich’s

canonical curve-fitting contexts breaks down. Because this connection is essential

to the general success of Horwich’s approach to explicate our pre-theoretic intu-

itions about CSED, Horwich’s account would seem — at best — to provide an

incomplete explication of CSED.

3.3.2.6 The Robustness of Our Reconstruction H3∗

Like Howson and Urbach, Horwich presupposes that the quotient measure r is an

adequate Bayesian measure of degree of confirmation. As we have already seen,

this is an unfortunate choice of measure. The good news is that, unlike Howson

and Urbach’s account of CSED, our reconstruction of Horwich’s account of CSED

(based on H3∗) is not sensitive to his choice of measure.91 In this sense, Horwich’s

91I reported in §2.2.4 above (see, also, Appendix §A.5) that Horwich’s account of CSED trades
essentially on (5), and so goes through for d, r, and l (but not for s or r). There is textual
evidence that this is an accurate reading of Horwich [see Horwich (1982, p. 119)]. But, as I show
in §A.12 below, our H3∗-based reconstruction of Horwich’s account is completely robust. In this
sense, our reconstruction based on H3∗ is certainly a more charitable one.
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account is far more robust than Howson and Urbach’s (which, as we show in §A.9,

only goes through for measures r and r), and, perhaps92 even more robust than

our own account, which is based on D. Table 6 summarizes the results reported

in this chapter concerning independent evidence and CSED.

Is C satisfied by the measure:

Name and Section of Condition C d? r? l? s? r?

Peirceian Additivity Condition A
(See §3.2.1 and Appendix §A.6) Yes Yes Yes No No

Negation Symmetry Condition S
(See §3.2.2 and Appendix §A.7) Yes No Yes Yes Yes

Conclusive Evidence Condition K
(See §3.2.3) No No Yes No No

High-Level Diversity Condition D
(See §3.3, §A.6, and §4.1) Yes Yes Yes ?93 ?

Low-Level Diversity Condition D′

(See §3.3 (fn. 67) and §4.1) Yes? Yes? Yes No No

The Urn Condition (UC)
(See §3.2.4.2 and Appendix §A.8) No No Yes No No

Howson and Urbach’s Condition H
(See §3.3.1 and Appendix §A.9) No Yes No No Yes

Horwich’s Condition H3∗
(See §3.3.2.4 and Appendix §A.12) Yes Yes Yes Yes Yes

Table 6: Summary of results concerning independent evidence and CSED.

92Our account may be as robust as our charitable reconstruction of Horwich’s account [based
on H3∗ rather than (5)]. This question remains open. See §4.1 for more on this open question.

93These question-marked answers are either unknown or conjectural. The questions are still
open. Computer searches seem to indicate that the “Yes?” conjectures are “probable,” but no
rigorous proofs have yet been found for any of the “?”s. See §4.1 for discussion.
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Chapter 4

Future Directions
The direction in which education starts a

man will determine his future life.

— Plato

4.1 Some Remaining Open Questions

The following two important questions remain open:

• Is our high-level diversity desideratum D satisfied by measures s or r?

• Which measures satisfy our low-level diversity desideratum D′ (fn. 67)?

(D′) If E1, E2 individually confirm H , and H screens-off E1 from E2,

then c(H, E1 &E2) > c(H, E1) and c(H, E1 &E2) > c(H, E2).

We know that d, r, and l satisfy D (corollary of Theorem 6), and that l satisfies

D′ (corollary of Theorems 6 and 8). Moreover, we have recently discovered that

s and r do not satisfy D′ (countermodels omitted). Computer searches indicate

that measures d and r “probably” both satisfy D′, but I have not been able to

prove either of these conjectures rigorously. Moreover, I have made little progress

on obtaining evidence or proof concerning whether measures s or r satisfy D.

These questions are important because they effect the robustness of our account

of CSED. If D is satisfied by all of our measures (i.e., by s and r), then our

account of CSED is more robust than either Howson and Urbach’s account (H) or

Horwich’s (5)-based account, and at least as robust as our charitable reconstruction

of Horwich’s account (based on H3∗). And, if D′ is satisfied by d and r (as we

suspect), then the relation of screening-off is even more central and important in
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the context of CSED than we have indicated.94

4.2 An Analogous Philosophical Problem

Many non-equivalent measures of “distance” or “divergence” between probability

distributions have been proposed and defended in the probabilistic and statistical

literature.95 Using different measures can lead to different ordinal judgments about

which distributions are “closer” to (or “farther away” from) which. This plurality

of divergence measures is particularly important, philosophically, in contexts where

such divergences are interpreted as verisimilitudes.96 For example, in the statistical

literature on model selection, various criteria have been proposed whose derivations

presuppose certain measures of divergence between approximating probability dis-

tributions (inferred from data) and true probability distributions.97 Unfortunately,

very few arguments have been presented which aim to narrow this plethora of di-

vergence measures.98 It would be nice to see a thorough survey of the ramifications

of using different measures of divergence in various contexts, and an attempt to

provide reasons for favoring one (or few) of these proposals . . .

94Moreover, if d satisfies D′, then the defenders of d would be able to say that their measure is
appropriately sensitive to screening-off — to some extent. While d is not additive in the case of
screening-off, at least d says that “two pieces of independent evidence (in the screening-off sense)
are better than one.” So, defenders of d should be especially interested in this open question.

95For an excellent critical survey of this plethora of divergence measures, see Csiszár (1978).
These measures are sometimes also called (mutual) information measures. As such, they make
contact with a very wide variety of problems in mathematics and science [Guiaşu (1977)].

96For an encyclopedic survey of the vast landscape of proposed quantitative measures of
verisimilitude (both probabilistic and non-probabilistic), see Niiniluoto (1987).

97Linhart and Zucchini (1986) show that the choice of divergence measure has a significant effect
on the process of deriving model selection criteria. If different divergence measures are used, then
different criteria tend to result. Forster and Sober (1994) describe the model selection problem
in a broader, philosophical context. Following Akaike (1973), they assume that the Kullback-
Leibler divergence measure [Kullback and Leibler (1951)] should be used. Unfortunately, they
seem to provide no argument for this foundational assumption about how we should measure the
distance between true probability distributions and approximate, epistemic distributions.

98The only explicit arguments I have seen (both of which are in favor of the Kullback-Leibler
divergence) are presented in Kullback (1997) and Csiszár (1978). And, neither of these arguments
seems terribly compelling (form a metaphysical point of view) to me.
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Appendix A

Technical Details

The trouble about arguments is, they ain’t nothing but
theories, after all, and theories don’t prove nothing.

— Mark Twain

A.1 Proof of Theorem 1

Theorem 1. There exist probability models such that

l(H,E |K) �= l(H ∨E,E |K) + l(H ∨ Ē, E |K).

Proof. For simplicity, and without loss of generality (w.l.o.g.) I will assume that

K = � (and, hence, that K can be suppressed from the notation entirely). Then,

by the definition of l, we have the following:

l(H ∨E, E) + l(H ∨ Ē, E) = log
[
Pr(E |H ∨ E)
Pr(E |H ∨ E)

]
+ log

[
Pr(E |H ∨ Ē)

Pr(E |H ∨ Ē)

]

= log
[
Pr(E |H ∨E)
Pr(E | H̄ & Ē)

]
+ log

[
Pr(E |H ∨ Ē)
Pr(E | H̄ & E)

]

= log
[
Pr(E |H ∨ E)

0

]
+ log

[
Pr(E |H ∨ Ē)

1

]

= +∞

�= l(H, E), provided only that l(H, E) is finite.

There are lots of probability models in which l(H,E) is finite (i.e., models in which

Pr(E | H̄) > 0). Any one of these is sufficient to establish the desired result.99 ❑

99Readers who balk at the zero denominators in this proof might prefer to carry-out the proof
using the (ordinally equivalent) measure l∗ of Kemeny and Oppenheim (1952), defined on page
42. Doing so leads to no loss of generality, and eliminates having to fuss with infinities.
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A.2 Proof of Theorem 2

Theorem 2. There exist probability models in which all three of the following

obtain: (i) H � E, (ii) r(H &X,E |K) �= Pr(X |H &K) · r(H,E |K), and

(iii) l(H &X,E |K) �= Pr(X |H &K) · l(H,E |K).100

Proof. Let K include the information that we are talking about a standard deck

of cards with the usual probability structure. Let E be the proposition that some

card C, drawn at random from the deck, is a black card (i.e., that C is either a ♣

or a ♠). Let H be the hypothesis that C is a ♠. And, let X be the proposition

that C is a . Then, we have the following salient probabilities:

Pr(X |H &K) = 1
13

Pr(H |E &K) = 1
2

Pr(H |K) = 1
4

Pr(E |H &X &K) = 1 Pr(E |H &K) = 1 Pr(E | H̄ &K) = 1
3

Pr(H &X |K) = 1
52

Pr(H &X |E &K) = 1
26

Pr(E |H &X &K) = 25
51

Hence, this probability model is such that all three of the following obtain:

H � E(i)

r(H &X,E |K) = log

[
1/26

1/52

]

= log(2)

�= Pr(X |H &K) · r(H,E |K) =
1

13
· log(2)

(ii)

100 Strictly speaking, this theorem is logically stronger than Theorem 2, which only requires that
there be a probability model in which (i) and (ii) obtain, and a probability model in which (i) and
(iii) obtain (but, not necessarily the same model). Note, also, that the X in my countermodel
is, intuitively, an irrelevant conjunct. I think this is apropos.
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l(H &X,E |K) = log

[
1

25/51

]

= log

[
51

25

]

�= Pr(X |H &K) · l(H,E |K) =
1

13
· log(3)

(iii)

Consequently, this probability model is sufficient to establish Theorem 2. ❑

A.3 Proof of Theorem 3

Theorem 3. If E confirms H, and X is confirmationally irrelevant to H, E, and

H & E (relative to background K), then c(H,E |K) > c(H & X,E |K), where c

may be any of our five relevance measures, except r.

Proof. For the c = d case of the theorem, we (again) assume (w.l.o.g.) that K = �,

and we reason as follows:

d(H &X,E) = Pr(H &X |E)− Pr(H &X) [def. of d]

=
Pr((H & E) &X)

Pr(E)
− Pr(H &X) [def. of Pr(· | ·)]

=
Pr(H & E) · Pr(X)

Pr(E)
− Pr(H) · Pr(X) [irrelevance of X]

= Pr(X) · [Pr(H |E)− Pr(H)] [def. of Pr(· | ·), algebra]

= Pr(X) · d(H,E) [def. of d]

< d(H,E) [Pr(X) < 1, d(H,E) > 0]

The c = s and c = r cases of the theorem follow easily from the above proof for

d and the definitions of s and r, so I will omit the easy proofs in these two cases.

That brings us to the c = r case of the theorem. For this case, we will prove that

r(H,E) = r(H &X,E), when X is an irrelevant conjunct. This will also come in
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handy, below, when we prove the l case of the theorem.

r(H &X,E) =
Pr(H &X |E)

Pr(H &X)
[def. of r]

=
Pr((H & E) &X)

Pr(E) · Pr(H &X)
[def. of Pr(· | ·)]

=
Pr(H & E) · Pr(X)

Pr(E) · Pr(H) · Pr(X)
[irrelevance of X]

=
Pr(H |E)

Pr(H)
[def. of Pr(· | ·), algebra]

= r(H,E) [def. of r]

We are now ready to prove the l case of the theorem (via reductio).

l H X E l H E reductio

E H X

E H X

E H

E H
l

H X E

H X

H X

H X E

H E

H

H

H E

r H X E
H X

& , , [ ]

Pr &

Pr &

Pr

Pr
[ ]

Pr &

Pr &

Pr &

Pr &

Pr

Pr

Pr

Pr

& ,
Pr &

Pr

( ) ≥ ( )

( )
( ) ≥ ( )

( )
( )
( )

⋅
( )

( ) ≥ ( )
( )

⋅ ( )
( )

( ) ⋅
( )

 assumption

def. of 

[Bayes’ Theorem, algebra]

HH X E
r H E

H

H E
r

H X

H X E

H

H E
r H X E r H E

H E H X H H X E

&
,

Pr

Pr
[ ]

Pr &

Pr &

Pr

Pr
& , ,

Pr Pr & Pr Pr & Pr

( ) ≥ ( ) ⋅ ( )
( )

( )
( ) ≥ ( )

( ) ( ) ( )

− ( )( ) ⋅ − ( )( ) ≥ − ( )( ) ⋅ − ( )( )

def. of  

[  =  ,  algebra]

[ (1 1 1 1 XX Y X Y

d H X E d H E H E H X H H X E d

H E H X H H X E d H X E d H E

r H E

/ Pr /

& , , Pr Pr & Pr Pr & [ ]

Pr Pr & Pr Pr & & , ,

,

) =  – ( ),  algebra]

def. of ,  algebra

[  <  ,  algebra]

1

( ) − ( )[ ] + ( ) ⋅ ( ) ≥ ( ) ⋅ ( )

( ) ⋅ ( ) > ( ) ⋅ ( ) ( ) ( )

( )) > ( )

( ) < ( ) ( ) ( )

r H X E r

l H X E l H E r H X E r H E reductio

& , [ ]

& , , & , ,

def. of ,  algebra

[  =  ,  ]

This completes the proof of Theorem 3. ❑
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A.4 Proof of Theorem 4

Theorem 4. There exist probability models in which (i) β · Pr(Ē |K)
Pr(E |K)

> δ,

(ii) Pr(E |K) < 1
2
, and (iii) l(H1, E |K) ≤ l(H2, E |K). And, there exist proba-

bility models in which (i), (ii), and (iv) r(H1, E |K) ≤ r(H2, E |K).101

Proof. For the l case of the theorem, I will describe a class of probability spaces

in which all four of the following obtain.102

E confirms both H1 and H2 (given K)(∗)

β · Pr(Ē |K)

Pr(E |K)
> δ(i)

Pr(E |K) <
1

2
(ii)

l(H1, E |K) < l(H2, E |K)(iii)

To this end, consider the class of probability spaces containing the three events E,

H1, and H2 (again, we take K = �, for simplicity and w.l.o.g.) such that the eight

basic (or, atomic) events in the space have the following probabilities:

Pr(H1 & H̄2 & Ē) = a = 1169
17068

Pr(H1 &H2 & Ē) = d = 1169
17068

Pr(H̄1 &H2 & Ē) = g = 22913
85340

Pr(H1 & H̄2 & E) = b = 3
251

Pr(H1 &H2 & E) = e = 1
17

Pr(H̄1 &H2 & E) = f = 431
15060

Pr(H̄1 & H̄2 & E) = c = 31
51204

Pr(H̄1 & H̄2 & Ē) = h = 42203
85340

Now, we verify that the class of probability spaces described above is such that

(∗), (i), (ii), and (iii) all obtain. To see that (iii) holds, note that we have

101Where β =df Pr(H1 &E |K)− Pr(H2 &E |K), and δ =df Pr(H1 & Ē |K)−Pr(H2 & Ē |K).
102It crucial that our countermodel be such that (∗) obtains. For instance, if we were to allow

E to confirm H2 but disconfirm H1, then “counterexamples” would be easy to find, but they
would not be a problem for Eells’s resolution of the Grue Paradox, since Eells is clearly talking
about cases in which E (the observation of a large number of green emeralds, before t0) confirms
both H1 (that all emeralds are green) and H2 (that all emeralds are grue).
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l(H1, E) < l(H2, E), by the following computation.

l(H1, E) = log
[
(1− a− b− d− e) (b+ e)
(a+ b+ d+ e) (c + f)

]
= log

(
20418220
2210931

)
≈ log(9.24)

l(H2, E) = log
[
(1− d− e− f − g) (e + f)
(d+ e+ f + g) (b+ c)

]
= log

(
3298925933
349345115

)
≈ log(9.44)

To see that (ii) holds, note that Pr(E) < 1
2
.

Pr(E) = b + c + e + f =
1

10
= 0.1

To see that (i) holds, note that β · Pr(Ē)
Pr(E)

> δ.

β · Pr(Ē)

Pr(E)
= (b− f) · 9/10

1/10
= − 1

60
· 9 = − 3

20
= −0.15

δ = a − g = −1

5
= −0.2

Finally, (∗) holds in our example, since l(H1, E) > 0 and l(H2, E) > 0.

For the r case of the theorem, I will describe a class of probability spaces in which

all four of the following obtain.

E confirms both H1 and H2 (given K)(∗)

β · Pr(Ē |K)

Pr(E |K)
> δ(i)

Pr(E |K) <
1

2
(ii)

r(H1, E |K) = r(H2, E |K)(iii)

To this end, consider the class of probability spaces containing the three events

E, H1, and H2 (again assuming K = �, for simplicity and w.l.o.g.) such that the

eight basic (or, atomic) events in the space have the following probabilities:



72

Pr(H1 & H̄2 & Ē) = a = 167
12253020

Pr(H1 &H2 & Ē) = d = 1
2049

Pr(H̄1 &H2 & Ē) = g = 636509
91652589600

Pr(H1 & H̄2 & E) = b = 5
299

Pr(H1 &H2 & E) = e = 1
15

Pr(H̄1 &H2 & E) = f = 4201
269100

Pr(H̄1 & H̄2 & E) = c = 269
269100

Pr(H̄1 & H̄2 & Ē) = h = 82440714571
91652589600

Now, we verify that the class of probability spaces described above is such that

(∗), (i), (ii), and (iii) all obtain. To see that (iii) holds, note that we have

r(H1, E) = r(H2, E), by the following computation.

r(H1, E) = log
[

b+ e
(a+ b+ d+ e) (b+ c+ e+ f)

]
= log

(
2992
301

)

r(H2, E) = log
[

e + f
(b+ c + e+ f) (d+ e+ f + g)

]
= log

(
2292
301

)

To see that (ii) holds, note that Pr(E) < 1
2
.

Pr(E) = b + c + e + f =
1

10
= 0.1

To see that (i) holds, note that β · Pr(Ē)
Pr(E)

> δ.

β · Pr(Ē)

Pr(E)
= (b− f) · 9/10

1/10
=

1

900
· 9 =

1

100
= 0.1

δ = a− g = − 1

149600
≈ 6.68× 10−6

Finally, (∗) holds in our example, since r(H1, E) > 0 and r(H2, E) > 0.

This completes the proof of Theorem 4. ❑

A.5 Proof of Theorem 5

Theorem 5. There exist probability models in which all three of the following

obtain: (i) Pr(H |E1 &K) > Pr(H |E2 &K), (ii) r(H,E1 |K) ≤ r(H,E2 |K), and
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(iii) s(H,E1 |K) ≤ s(H,E2 |K).

Proof. I will prove Theorem 5 by describing a class of probability spaces in which

all four of the following obtain.103

Each of E1 and E2 confirms H (given K)(∗)

Pr(H |E1 &K) > Pr(H |E2 &K)(i)

r(H,E1 |K) < r(H,E2 |K)(ii)

s(H,E1 |K) < s(H,E2 |K)(iii)

To this end, consider the class of probability spaces containing the three events E1,

E2, and H (again letting K = �, for simplicity and w.l.o.g.) such that the eight

basic (or, atomic) events in the space have the following probabilities:

Pr(E1 & Ē2 & H̄) = a = 1
1000

Pr(E1 & E2 & H̄) = b = 1
1000

Pr(Ē1 & E2 & H̄) = c = 1
200

Pr(E1 & Ē2 &H) = d = 1
100

Pr(E1 & E2 &H) = e = 1
100

Pr(Ē1 & E2 &H) = f = 1
25

Pr(Ē1 & Ē2 &H) = g = 1
500

Pr(Ē1 & Ē2 & H̄) = h = 931
1000

Now, we verify that the class of probability spaces described above is such that

(∗), (i), (ii), and (iii) all obtain. To see that (∗) and (i) both hold, note that we

103It is important that our countermodel satisfy (∗). In the ravens paradox, it should be granted
that both a black raven (E1) and a non-black non-raven (E2) may confirm that all ravens are
black (H). Similarly, it should be granted that both a “varied” (or “diverse”) set of evidence
(E1) and a “narrow” set of evidence (E2) can confirm a hypothesis under test (H). Wayne (1995)
presents a “counterexample” to Horwich’s (1982) Bayesian account of evidential diversity which
fails to respect this constraint. See Fitelson (1996) and §3.3.2.2 above for details.
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have Pr(H |E1) > Pr(H), Pr(H |E2) > Pr(H), and Pr(H |E1) > Pr(H |E2):

Pr(H |E1) =
d + e

a + b + d + e
=

10

11
≈ 0.909

Pr(H |E2) =
e + f

b + c + e + f
=

25

28
≈ 0.893

Pr(H) = d + e + f + g =
31

500
= 0.062

To see that (ii) holds, note that r(H,E1) < r(H,E2).

r(H, E1) = (a+ b+ d+ e) ·
[

d+ e
a+ b+ d+ e

− (d+ e + f + g)
]
=

4659
250000

≈ 0.0186

r(H, E2) = (b+ c+ e + f) ·
[

e+ f
b+ c+ e+ f

− (d+ e+ f + g)
]
=

727
15625

≈ 0.0465

Finally, to see that (iii) holds, note that s(H,E1) < s(H,E2).
104

s(H, E1) =
d+ e

a+ b+ d+ e
− f + g
1− a− b− d− e =

1553
1793

≈ 0.866

s(H, E2) =
e + f

b+ c+ e+ f
− d+ g
1− b− c − e− f =

727
826

≈ 0.880

This completes the proof of Theorem 5. ❑

A.6 Proof of Theorem 6

Theorem 6. Each of the measures d, r, and l satisfies A, but s and r violate A.

104This is also a model in which both Pr(E1 |H) − Pr(E1) < Pr(E2 |H) − Pr(E2), and
Pr(E1 |H) − Pr(E1 | H̄) < Pr(E2 |H) − Pr(E2 | H̄) (check this!). So, the relevance measures
of both Mortimer (1988, §11.1) and Nozick (1981, 252), respectively, also violate (5).
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Proof. This proof has five parts.105 The proofs for d and r are easy:

d(H,E1 |E2) = d(H,E1)

∴ Pr(H |E1 & E2)− Pr(H |E2) = Pr(H |E1)− Pr(H)

∴ Pr(H |E1 & E2)− Pr(H) = (Pr(H |E1)− Pr(H))

+ (Pr(H |E2)− Pr(H))

∴ d(H,E1 & E2) = d(H,E1) + d(H,E2)

(d)

r(H, E1 |E2) = r(H, E1)

∴ log[Pr(H |E1 & E2)]− log[Pr(H |E2)] = log[Pr(H |E1)]− log[Pr(H)]

∴ log[Pr(H |E1 &E2)]− log[Pr(H)] = (log[Pr(H |E1)]− log[Pr(H)])

+ (log[Pr(H |E2)]− log[Pr(H)])

∴ r(H, E1 & E2) = r(H, E1) + r(H, E2)

(r)

The proof for l is only slightly more involved. For the l case of the theorem, we

will prove that the likelihood ratio (λ) is multiplicative under the assumption of

confirmational independence. That the logarithm of λ (i.e., l) is additive under

105Throughout this part of the Appendix, we will suppress the contents of the background
evidence K other than E1 and E2. Moreover, we will try to prove the strongest results we know.
Usually, these will be considerably stronger than the theorems that are stated in the main text.
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the assumption of confirmational independence then follows straightaway.

l(H,E1 |E2) = l(H,E1)

∴ λ(H,E1 |E2) = λ(H,E1) [strict monotonicity of log(•)]

∴ Pr(E1 |H & E2)

Pr(E1 | H̄ & E2)
=

Pr(E1 |H)

Pr(E1 | H̄)
[def. of λ]

∴ Pr(E1 |H)

Pr(E1 | H̄)
=

Pr(E1 & E2 |H)

Pr(E1 & E2 | H̄)
· Pr(E2 | H̄)

Pr(E2 |H)
[def. of Pr(• | •)]

∴ Pr(E1 & E2 |H)

Pr(E1 & E2 | H̄)
=

Pr(E1 |H)

Pr(E1 | H̄)
· Pr(E2 |H)

Pr(E2 | H̄)

∴ λ(H,E1 & E2) = λ(H,E1) · λ(H,E2)

∴ l(H,E1 & E2) = l(H,E1) + l(H,E2) [additivity of log(•)]

(l)

The s case of the theorem is far trickier, because it requires us to show that

there is no (symmetric) isotone function f such that, for all E1, E2, and H, if

E1 and E2 are confirmationally independent regarding H according to s, then

s(H,E1 & E2) = f [s(H,E1), s(H,E2)], where f is linear in some (isotonically)

transformed space. Happily, I have proven the following much stronger result:

(∗) There exist probability models M1 and M2 such that:

M1 M2

s(H, E1 |E2) = s(H, E1) = 1
4 s(H, E1 |E2) = s(H, E1) = 1

4

s(H, E2 |E1) = s(H, E2) = 1
4 s(H, E2 |E1) = s(H, E2) = 1

4

s(H, E1 &E2) = 15
44 −

96
4451+3·√1254641

s(H, E1 &E2) = 15
44 +

96
3·√1254641−4451

≈ 0.3286 ≈ 0.2529

Of course, it follows from (∗) that there can be no function f whatsoever such

that for all E1, E2, and H, if E1 and E2 are confirmationally independent regarding

H according to s, then s(H,E1 & E2) = f [s(H,E1), s(H,E2)]. This is because

(i) M1 and M2 are both such that E1 and E2 are confirmationally independent
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regardingH according to s, (ii) InM1 andM2, s(H,E1) and s(H,E2) are constant

at the same value of 1
4
, but (iii) The value of s(H,E1 &E2) in M1 is different from

the value of s(H,E1 &E2) in M2. So, whatever s(H,E1 &E2) is in cases where E1

and E2 are confirmationally independent regarding H according to s, it cannot (in

general) be of the form f [s(H,E1), s(H,E2)] for any f whatsoever, since functions

cannot give different values for identical arguments. I will not display here all the

calculations necessary to show that the models M1 and M2 reported below have

the desired properties.106

M1

Pr(H & Ē1 & Ē2) = 1
100 Pr(H &E1 & Ē2) = 1

1000

Pr(H̄ &E1 & Ē2) = 1
100 Pr(H & Ē1 & E2) = 1

1000

Pr(H & E1 & E2) =
9·(1183−√

1254641)
70400 Pr(H̄ & E1 &E2) =

87·(1183−√
1254641)

352000

Pr(H̄ & Ē1 &E2) = 1
100 Pr(H̄ & Ē1 & Ē2) = 121

125 +
3·(√1254641−1183)

8000

M2

Pr(H & Ē1 & Ē2) = 1
100 Pr(H &E1 & Ē2) = 1

1000

Pr(H̄ &E1 & Ē2) = 1
100 Pr(H & Ē1 & E2) = 1

1000

Pr(H & E1 & E2) =
9·(1183+

√
1254641)

70400 Pr(H̄ & E1 &E2) =
87·(1183+

√
1254641)

352000

Pr(H̄ & Ē1 &E2) = 1
100 Pr(H̄ & Ē1 & Ē2) = 121

125 −
3·(√1254641+1183)

8000

The r case can be established in a similar manner, by showing that there are

probability models M3 and M4 such that:

106The probability models in this Appendix were discovered using ˛ˇ algorithms
written by the author. See section A.14 below for more on these techniques.
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M3 M4

r(H, E1 |E2) = r(H, E1) = 1
4 r(H, E1 |E2) = r(H, E1) = 1

4

r(H, E2 |E1) = r(H, E2) = 1
4 r(H, E2 |E1) = r(H, E2) = 1

4

r(H, E1 &E2) = 627
3128 r(H, E1 &E2) = 3121

15570

I will not display here all the calculations necessary to show that the models M3

and M4 reported below have the desired properties.

M3

Pr(H & Ē1 & Ē2) = 1
768 Pr(H &E1 & Ē2) = 1

192

Pr(H̄ &E1 & Ē2) = 70026913
200066880 Pr(H & Ē1 &E2) = 1

192

Pr(H & E1 &E2) = 2
7 Pr(H̄ &E1 & E2) = 1402

1458821

Pr(H̄ & Ē1 & E2) = 70026913
200066880 Pr(H̄ & Ē1 & Ē2) = 1257121

800267520

M4

Pr(H & Ē1 & Ē2) = 1
768 Pr(H &E1 & Ē2) = 1

256

Pr(H̄ &E1 & Ē2) = 368581709
1052947200 Pr(H & Ē1 & E2) = 1

256

Pr(H & E1 &E2) = 2
7 Pr(H̄ &E1 & E2) = 100378

28791525

Pr(H̄ & Ē1 &E2) = 368581709
1052947200 Pr(H̄ & Ē1 & Ē2) = 557861

350982400

This completes the proof of Theorem 6. ❑

A.7 Proof of Theorem 7

Theorem 7. Each of the measures d, l, s, and r satisfies S, but r violates S.

Proof. This proof has five parts. The d, l, s, and r cases reduce to trivial alge-

braic identities (I won’t include here the easy proofs for these cases). For the
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r case, we need to show that there exists a probability model M such that:

(i) both r(H,E1 |E2) = r(H,E1) and r(H,E2 |E1) = r(H,E2), but (ii) either

r(H̄, E1 |E2) �= r(H̄, E1) or r(H̄, E2 |E1) �= r(H̄, E2). Here is one such model M

(computational details omitted).

M

Pr(H & Ē1 & Ē2) = 1
64

Pr(H & E1 & Ē2) = 1
64

Pr(H̄ & E1 & Ē2) = 1
64

Pr(H & Ē1 & E2) = 87+
√

66265
704

Pr(H & E1 & E2) = 1
4

Pr(H̄ & E1 & E2) = 1
16

Pr(H̄ & Ē1 & E2) = 1
8

Pr(H̄ & Ē1 & Ē2) = 276−√
66265

704

This completes the proof of Theorem 7. ❑

A.8 Proof of Theorem 8

Theorem 8. The measures d, r, s, and r violate (UC), but l satisfies (UC).

Proof. For the d, r, s, and r cases of the theorem, it will suffice to produce an urn

example (i.e., an assignment of values on (0, 1) to the variables x, y, and z) such

that either c(H,W1 |W2) �= c(H,W1) or c(H,W2 |W1) �= c(H,W2), for each of the

four measures d, r, s, and r. The following (far from extreme107) assignment does

the trick: 〈x, y, z〉 = 〈1
2
, 49

100
, 1

2
〉. On this assignment, we have the following salient

107y can be arbitrarily close to 1
2 , while preserving the counterexample. See footnote 61.
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probabilistic facts (computational details omitted):

d(H,W2 |W1) = 2450/485199 < d(H,W2) = 1/198(d)

r(H,W2 |W1) = log (4950/4901) < r(H,W2) = log (100/99)(r)

s(H,W2 |W1) = 245000/24500099 < s(H,W2) = 100/9999(s)

r(H,W2 |W1) = 49/80000 < r(H,W2) = 1/400(r)

For the l case, we will show that l satisfies the stronger condition (SC).

Pr(E1 |H & E2) = Pr(E1 |H) [screening-off assumption]

Pr(E1 | H̄ & E2) = Pr(E1 | H̄) [screening-off assumption]

∴ Pr(E1 |H & E2)

Pr(E1 | H̄ & E2)
=

Pr(E1 |H)

Pr(E1 | H̄)

∴ l(H,E1 |E2) = l(H,E1)

(l)

It is easy to show that, for any of the three measures d, r, or l (but not for s or

r), c(H,E1 |E2) = c(H,E1) iff c(H,E2 |E1) = c(H,E2). That, together with the

reasoning above, completes the l case, and with it the proof of Theorem 8. ❑

Interestingly, l does not satisfy the converse of (SC) [or (UC)]. The following

model is one in which both: (i) E1 and E2 are confirmationally independent re-

garding H according to l (i.e., l(H,Ei |Ej) = l(H,Ei) [i �= j]), but (ii) H does

not screen-off E1 from E2 (i.e., Pr(E1 & E2 |H) �= Pr(E1 |H) · Pr(E2 |H)). This

explains why I choose not to assume screening-off as a necessary condition for

confirmational independence (computational details omitted).
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M

Pr(H & Ē1 & Ē2) = 683
3800

Pr(H & E1 & Ē2) = 1
50

Pr(H̄ & E1 & Ē2) = 1169
1102000

Pr(H & Ē1 & E2) = 1
50

Pr(H & E1 & E2) = 1
456

Pr(H̄ & E1 & E2) = 2
29

Pr(H̄ & Ē1 & E2) = 922
1305

Pr(H̄ & Ē1 & Ē2) = 15179
9918000

A.9 Proof of Theorem 9

Theorem 9. H is true if c = r or c = r, but H is false if c = d, c = l, or c = s.

Proof. For the r case of the theorem, we begin by assuming that the probabilis-

tic ‘ceteris paribus clause’ (CP ) is satisfied. That is, we assume: Pr(E1 |H) =

Pr(E2 |H) = Pr(E1 & E2 |H) = 1. Then, we apply (CP ), the definition of r, and

Bayes’ Theorem to derive the following pair of probabilistic facts:

r(H, E2 |E1) = log
[
Pr(H |E1 &E2)

Pr(H |E1)

]

= log
[
Pr(E1 &E2 |H) · Pr(H) · Pr(E1)
Pr(E1 &E2) · Pr(E1 |H) · Pr(H)

]

= log
[

Pr(E1)
Pr(E1 &E2)

]

= log
[

1
Pr(E2 |E1)

]
(23)

r(H, E2) = log
[
Pr(H |E2)
Pr(H)

]

= log
[
Pr(E2 |H) · Pr(H)
Pr(E2) · Pr(H)

]

= log
[

1
Pr(E2)

](24)
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Finally, we assume that E1 and E2 are positively correlated under Pr. Or, more

formally, we assume that Pr(E2 |E1) > Pr(E2). In conjunction with facts (23) and

(24) above, this yields r(H,E2 |E1) < r(H,E2), as desired.108 ❑

For the r case, we reason as follows:

r(H, E2 |E1) = Pr(H &E1 & E2) · Pr(E1)− Pr(H &E1) · Pr(E1 &E2) [def. r]

= Pr(H) · Pr(E1)− Pr(H) · Pr(E1 & E2) [(CP )]

= Pr(H) · [Pr(E1)− Pr(E1 & E2)] [algebra]

and

r(H,E2) = Pr(H & E2)− Pr(H) · Pr(E2) [def. r]

= Pr(H)− Pr(H) · Pr(E2) [(CP )]

= Pr(H) · [1− Pr(E2)] [algebra]

Some algebra, and another application of (CP ), yield:

Given (CP ), r(H,E2 |E1) < r(H,E2) iff Pr(H) > 0.

But, we can safely assume that Pr(H) > 0 in the cases of interest. So, to be

charitable to Howson and Urbach, we must conclude that (in all interesting cases

in which (CP ) holds), their condition H is satisfied by Carnap’s measure r. ❑

For the d, l, and s cases, it will suffice to produce a probability model in which

(i) Pr(E1 |H) = Pr(E2 |H) = Pr(E1 & E2 |H) = 1, (ii) Pr(E2 |E1) > Pr(E2), but

(iii) c(H,E2 |E1) ≥ c(H,E2), for c = d, c = l, and c = s. The following example

108 Notice that Howson and Urbach’s claim that (CP ) can be weakened even further to (CP ′)
Pr(E1 |H) = Pr(E2 |H) — while still preserving the truth of the c = r case of Theorem 9 — is
false. If we only assume (CP ′), then we will need to establish that Pr(E2 |E1) > Pr(E2)

Pr(E2 |H) , in

order to prove that r(H, E2 |E1) < r(H, E2). Unfortunately, Pr(E2 |E1) > Pr(E2)
Pr(E2 |H) does not

follow from the fact that E1 and E2 are positively correlated under Pr, unless one also assumes
that Pr(E2 |H) = 1, which brings us (essentially) back to (CP ). Explicit countermodels can be
produced (omitted). A similar result can be shown for Carnap’s measure r (proof omitted).
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does the trick. A card is drawn at random from a standard deck. Let H be the

hypothesis that the card is the Q♠, E1 be the proposition that the card is either a

10 or a face card, and E2 be the proposition that the card is either a ♥, or the Q♠,

or the 9♠. I omit the calculations which show that this example has the desired

properties (i)–(iii) listed above. This completes the proof of Theorem 9. ❑

A.10 Proofs for Milne’s Desiderata (7)–(11)

Milne’s (7) is just our R, which is trivially satisfied by all five of our measures d, r,

l, s, and r. Milne’s (8) is almost as trivial, since all five of our measures are defined

using simple arithmetic functions of the left and right sides of the inequalities listed

way back on page 5. This makes it is easy to show that each of our five measures

d, r, l, s, and r is “some function of the values Pr(· |K) and Pr(· | ·&K) assumed

on the at most sixteen truth-functional combinations of E and H,” as (8) requires.

Since (7) and (8) are so obvious and uncontroversial, I won’t bother to prove them.

It is worth proving that Milne’s (9) is satisfied by each of our five measures d,

r, l, s, and r. This is not so obvious, and it will also prove very useful in §A.12

below, when we prove the measure insensitivity of our charitable reconstruction

(H3∗) of Horwich’s account of CSED. I will not prove both clauses of (9), but only

the second clause, which states that:

If Pr(E |H &K) = Pr(E ′ |H &K) and Pr(E |K) < Pr(E ′ |K) then

c(H,E |K) ≥ c(H,E ′ |K).

(9)

The first clause of (9) can be proved in a similar way. I choose to prove the second

clause only, because it is the second clause of (9) that will be the crucial lemma

in our proof of the measure insensitivity of (H3∗) in §A.12, below. We begin by

proving the d case of (9), as follows. For simplicity, and without loss of generality,
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we take K = �, and so suppress K from the notation.

Pr(E |H) = Pr(E ′ |H) [assumption]

Pr(H |E) · Pr(E)

Pr(H)
=

Pr(H |E ′) · Pr(E ′)
Pr(H)

[Bayes’ Theorem]

Pr(H |E) · Pr(E) = Pr(H |E ′) · Pr(E ′) [algebra]

Pr(H |E) > Pr(H |E ′) [Pr(E) < Pr(E ′), algebra]

d(H,E) > d(H,E ′) [def. d, algebra] ❑

Next, we prove the s case of (9). For this proof, we will make use of the fact

(proved during the d case, above), that the assumptions of (9) entail Pr(H |E) >

Pr(H |E ′). Given this lemma, all we need to show for the s case is that the

assumptions of (9) also entail Pr(H | Ē) < Pr(H | Ē ′). From this (together with the

definition of s and simple algebra), it will follow that s(H,E) > s(H,E ′).109 So, we

will now prove that the assumptions of (9) entail Pr(H | Ē) < Pr(H | Ē ′). During

this proof, I will make use of the following (easy) theorem from the probability

calculus: (T ) Pr(X̄ |Y ) = 1− Pr(X |Y ).

Pr(E |H) = Pr(E ′ |H) [assumption]

Pr(Ē |H) = Pr(Ē ′ |H) [T , algebra]

Pr(Ē |H) · Pr(H) = Pr(Ē ′ |H) · Pr(H) [algebra]

Pr(Ē |H) · Pr(H)

Pr(Ē)
<

Pr(Ē ′ |H) · Pr(H)

Pr(Ē ′)
[Pr(E) < Pr(E ′), T , algebra]

Pr(H | Ē) < Pr(H | Ē ′) [Bayes’ Theorem] ❑

109Recall from algebra that, for all x, y, z, u ∈ [0, 1], if x > z and y < u, then x − y > z − u.
Letting x = Pr(H |E), y = Pr(H | Ē), z = Pr(H |E′), and u = Pr(H | Ē′), yields the desired
result that if Pr(H |E) > Pr(H |E′) and Pr(H | Ē) < Pr(H | Ē′), then s(H, E) > s(H, E′).
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Now, we’re ready for the r case of (9). First, recall that (with K = �):

r(H,E) = Pr(H & E)− Pr(H) · Pr(E)

So, we must prove that the assumptions of (9) entail:

Pr(H & E)− Pr(H) · Pr(E) > Pr(H & E ′)− Pr(H) · Pr(E ′)

By simple algebra, this inequality holds iff

Pr(H & E)− Pr(H & E ′) > Pr(H) · [Pr(E)− Pr(E ′)]

Dividing both sides by Pr(H) and applying the definition of conditional probability

yields the following equivalent inequality:

Pr(E |H) − Pr(E ′ |H) > Pr(E)− Pr(E ′)

But, since Pr(E |H) = Pr(E ′ |H) is an assumption of (9), all we need to prove

now is that the assumptions of (9) entail:

0 > Pr(E)− Pr(E ′)

But, by simple algebra, this inequality holds iff

Pr(E) < Pr(E ′)

which is just the other assumption of (9). ❑

The l case of (9) is all that remains. For this case, we must prove that the
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assumptions of (9) entail:

Pr(E |H)

Pr(E | H̄)
>

Pr(E ′ |H)

Pr(E ′ | H̄)

Since Pr(E |H) = Pr(E ′ |H) is an assumption of (9), this means all we have to

show is that the assumptions of (9) entail:

1

Pr(E | H̄)
>

1

Pr(E ′ | H̄)

By simple algebra, this is equivalent to showing that the assumptions of (9) entail:

Pr(E | H̄) < Pr(E ′ | H̄)

This is an easy consequence of the two assumptions of (9). To see this, note that,

by the law of total probability:

Pr(E) = Pr(E |H) · Pr(H) + Pr(E | H̄) · Pr(H̄)

Pr(E ′) = Pr(E ′ |H) · Pr(H) + Pr(E ′ | H̄) · Pr(H̄)

The inequality Pr(E | H̄) < Pr(E ′ | H̄) then follows straightaway from these two

facts, together with the two assumptions of (9). This completes the proof that all

five of our measures d, r, l, s, and r satisfy Milne’s (9). The robustness of (9) will

be used again later to establish the robustness of (H3∗) in §A.12, below. ❑

Next, we need to show that the measures s and r do not satisfy the (second

clause of) Milne’s desideratum (10).110 For this, it will be sufficient (but not

110It is easy to show that d, r, and l do satisfy (10) (proofs omitted).
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necessary) to produce a probability model in which all four of the following obtain:

s(H,E1 & E2) = 0(i)

r(H,E1 & E2) = 0(ii)

s(H,E1) + s(H,E2 |E1) �= 0(iii)

r(H,E1) + r(H,E2 |E1) �= 0(iv)

The following probability model does the trick (computations omitted). ❑

Pr(H & Ē1 & Ē2) = 59617
239263440 Pr(H &E1 & Ē2) = 1

480

Pr(H̄ &E1 & Ē2) = 1
32 Pr(H & Ē1 & E2) = 1

32

Pr(H & E1 & E2) = 1
5552 Pr(H̄ &E1 &E2) = 1

194

Pr(H̄ & Ē1 &E2) = 1
2 Pr(H̄ & Ē1 & Ē2) = 3833159

8917792

Finally, we need to show that the measures d, l, s, and r do not satisfy Milne’s

desideratum (11).111 For this purpose, it will be sufficient (but not necessary) to

produce a probability model in which all five of the following obtain:

Pr(E |H) = Pr(E |H ′)(i)

d(H,E) �= d(H ′, E)(ii)

l(H,E) �= l(H ′, E)(iii)

s(H,E) �= s(H ′, E)(iv)

r(H,E) �= r(H ′, E)(v)

The following probability model does the trick (computations omitted). ❑

111It is easy to show that r does satisfy (11). See Milne (1996).
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Pr(H & H̄ ′ & Ē) = 1
8 Pr(H &H ′ & Ē) = 1

16

Pr(H̄ & H ′ & Ē) = 1
16 Pr(H & H̄ ′ &E) = 11

48

Pr(H & H ′ &E) = 1
12 Pr(H̄ &H ′ & E) = 1

8

Pr(H̄ & H̄ ′ &E) = 1
6 Pr(H̄ & H̄ ′ & Ē) = 7

48

This completes the proofs concerning Milne’s desiderata (9)–(11). ❑

A.11 Proofs of Wayne’s (20), (21), and (22)

A.11.1 Proof of (20)

The task at hand is to prove:

(20) In Cw, E1 is more c-diverse than E2.

Proof. Recall that, in Wayne’s counterexample context Cw, the hypothesis under

testH1 has only two competitors with non-negligible priors: H2 and H3. Moreover,

Wayne stipulates that, in Cw, both:

Pr(E1 |H2) = 0.4

< Pr(E2 |H2) = 0.5, and

Pr(E1 |H3) = 0.4

< Pr(E2 |H3) = 0.6.

In conjunction with the characterization of c-diversity given in H1, these two facts

about Cw yield the desired result. ❑

A.11.2 Proof of (21)

We need to demonstrate that:
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(21) In Cw, E2 confirms H1 more strongly than E1 confirms H1, ac-

cording to the ratio measure r (i.e., r(H1, E2) > r(H1, E1)).

Proof. Wayne’s description of Cw, together with Bayes’s Theorem, and the defini-

tion of r reported in H2 yields:

r(H1, E1) =
Pr(E1 |H1)∑

i Pr(E1 |Hi) · Pr(Hi)

=
0.2

(0.2 · 0.2) + (0.4 · 0.2) + (0.4 · 0.6)

≈ 0.555, and

r(H1, E2) =
Pr(E2 |H1)∑

i Pr(E2 |Hi) · Pr(Hi)

=
0.6

(0.6 · 0.2) + (0.5 · 0.2) + (0.6 · 0.6)

≈ 1.034.

Hence, we have r(H1, E2) > r(H1, E1) in Cw, as desired. ❑

A.11.3 Proof of (22)

Next, we will prove:

(22) In Cw, E2 confirms H1; whereas, E1 disconfirms H1.

Proof. According to Bayesian confirmation theory, E confirms
disconfirms H if and only if

r(H,E) ≷ 1. This fact about Bayesian confirmation theory, in conjunction with

the following two facts about Cw (both of which were proved in the preceding

section of this Appendix):

r(H1, E1) ≈ 0.555 < 1, and r(H1, E2) ≈ 1.034 > 1,

yields the desired result. ❑
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A.12 Proof of the Robustness of H3∗

In this section, we will not only prove H3∗, which presupposes the ratio measure

r of degree of confirmation; we will also show that H3∗ is true for all five of

our measures of confirmation d, r, l, s, and r. In other words, our charitable

reconstruction of Horwich’s account of CSED is completely insensitive to choice of

measure of confirmation. That is, we have the following robust result:

If both E1 is more c-diverse than E2 in C, and Pr(E1 |H1) = Pr(E2 |H1)

in C, then c(H,E1) > c(H,E2) in C, where c may be any of our five

measures of confirmation d, r, l, s, or r.

Proof. It turns out that this is an immediate corollary of the robustness of Milne’s

desideratum (9) (proved in §A.10). We explain why, as follows. From the nature of

confirmational contexts, we know that H̄1 is logically equivalent to
∨
Hi�=1, where

the Hi�=1 are mutually exclusive. Hence, from the probability calculus, we have:

Pr(E1 | H̄1) =

∑
i�=1 Pr(E1 |Hi) · Pr(Hi)∑

i�=1 Pr(Hi)
,

and

Pr(E2 | H̄1) =

∑
i�=1 Pr(E2 |Hi) · Pr(Hi)∑

i�=1 Pr(Hi)
.

From which (with some algebraic manipulation), we may obtain:

(∀i �= 1)[Pr(E1 |Hi) < Pr(E2 |Hi)] =⇒ Pr(E1 | H̄1) < Pr(E2 | H̄1)(∗∗)

But, the antecedent of (∗∗) just says that E1 is more c-diverse than E2. Therefore,

if E1 is more c-diverse than E2, then Pr(E1 | H̄1) < Pr(E2 | H̄1). The other as-

sumption of H3∗ is that Pr(E1 |H1) = Pr(E2 |H1). By the law of total probability,

these two assumptions of H3∗ entail Pr(E1) < Pr(E2). So, the assumptions of H3∗

entail the assumptions of Milne’s (9). Therefore, as an immediate corollary of (9),
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we get c(H,E1) > c(H,E2) — for all five relevance measures d, r, l, s, and r. ❑

A.13 Counterexample to CP1 =⇒H3

In this section, we show (by generating a concrete counterexample) that:

CP1 � H3.

Proof. Consider a simple context112 Cw1 in which only three hypotheses have sub-

stantial prior probabilities, Pr(H1) = 0.2, Pr(H2) = 0.2, Pr(H3) = 0.6, and two

data sets E1 and E2 such that:

Pr(E1 |H1) = 0.41 Pr(E2 |H1) = 0.6

Pr(E1 |H2) = 0.4 Pr(E2 |H2) = 0.5

Pr(E1 |H3) = 0.4 Pr(E2 |H3) = 0.6

This is plainly a case in which E1 is more c-diverse than E2, in the sense of H1:

for all Hi, Pr(E1 |Hi) is significantly less than Pr(E2 |Hi). Moreover, this is also a

case in which the probabilistic ‘ceteris paribus clause’ CP1 holds. As the following

calculations show, both E1 and E2 confirm H1 in Cw1 .

Pr(H1 |E1) =
Pr(E1 |H1) · Pr(H1)∑
i Pr(E1 |Hi) · Pr(Hi)

=
0.41 · 0.2

(0.41 · 0.2) + (0.4 · 0.2) + (0.4 · 0.6)

≈ 0.204

> Pr(H1) = 0.2

112Note: Cw1 is just a slight modification of Wayne’s Cw. I have just changed the value of
Pr(E1 |H1) in Wayne’s Cw from 0.2 to 0.41, while leaving the rest of Cw unchanged.
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and

Pr(H1 |E2) =
Pr(E2 |H1) · Pr(H1)∑
i Pr(E2 |Hi) · Pr(Hi)

=
0.6 · 0.2

(0.6 · 0.2) + (0.5 · 0.2) + (0.6 · 0.6)

≈ 0.207

> Pr(H1) = 0.2.

Finally, Cw1 is such that E2 (the less c-diverse collection of evidence) confirms H1

more strongly than E1 (the more c-diverse collection of evidence), according to

all three Bayesian relevance measures r, d, and l. This follows from the fact that

Pr(H1 |E2) > Pr(H1 |E1) in Cw1 (see above), and the proofs given in the previous

section concerning the sufficiency of Pr(H1 |E2) > Pr(H1 |E1) for c(H1, E2) >

c(H1, E1), where c is any of the three Bayesian relevance measures of confirmation

r, d, or l. Therefore, Cw1 is a counterexample to CP1 =⇒H3. ❑
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A.14 Using ˛ˇ to Reason About the

Probability Calculus113

The Kolmogorov axioms for (finite) probability calculus have some very convenient

properties. One of these is the fact that any set of statements in the Kolmogorov

probability calculus (i.e., any finite set of inequalities involving a Kolmogorov

probability function Pr defined over a finite number n of atomic events) can be

translated into a logically equivalent set of algebraic inequalities involving only the

unconditional probabilities of the 2n logical combinations of the n events in the

space. Moreover, for small probability spaces (e.g., spaces with 3 or fewer atomic

events, which includes all probability spaces needed for almost all examples in

this monograph), this translation is easy to write down and carry out. Once this

translation is carried out, determining whether a set of statements involving Pr

is satisfiable is then just a matter of determining whether a set of inequalities

on the simplex of the corresponding 2n − 1-dimensional Euclidean space has a

solution. Happily, version 4 of ˛ˇ [Wolfram (1999) is the reference on

˛ˇ] has a very powerful built-in inequality solver, which is well suited to

exactly these kinds of problems. This allows us to write ˛ˇ algorithms

which will — in a surprisingly wide variety of cases — verify non-trivial theorems

and find non-trivial counterexamples in (small) Kolmogorov probability spaces.

I will briefly discuss how this can be done in the case of 3-element Kolmogorov

probability spaces.114 First, it helps to picture a typical 3-event probability space

Ω, using a Venn diagram, as in Figure 5 below. The three atomic events are called

X, Y , and Z, and the unconditional probabilities of the 23 = 8 logical combinations

of these events are denoted by a, b, c, d, e, f, g and h. It is easiest to think of the

113The material in this section is taken from Fitelson (2001c).
114I have had limited success at finding models and verifying theorems in spaces up to size 4.
Various ways of optimizing the computations involved here are discussed in Fitelson (2001c).
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a, b, c, d, e, f, g and h as the areas of the 8 logically distinct regions in the Venn

diagram. A probability space is specified simply by assigning real numbers on [0, 1]

to a, b, c, d, e, f, g and h, where the only constraint on these numbers is that they

must sum to 1. Now, the translation from statements in the probability calculus

involving Pr, X, Y , and Z into algebraic inequalities involving a, b, c, d, e, f, g and

h is quite simple. The basic idea is that the unconditional probability of any

event α in the space is just the sum of whichever of the a, b, c, d, e, f, g, and h are

contained in α (i.e., the area of the region corresponding to α in the Venn diagram).

Conditional probabilities are defined in the standard (Kolmogorov) way, in terms

of the unconditional probabilities. In˛ˇ, this is all very easy to encode.

What follows (next page) is the output from a ˛ˇ version 4 session

notebook, which explains how this encoding can be carried out and applied to

non-trivial examples.115

�

X Y

Z

a b c

d

e

f

g

h

Figure 5: Venn diagram visualization of a 3-event probability space Ω

115All relevant˛ˇ notebooks and packages pertaining to this monograph are available
upon request from the author.
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First, we’ll need to load in one ofMathematica’s standard add-on packages, called

Notation. This package will allow us to use traditional and familiar notation and

syntax for our user-defined functions.

In[1]:= Needs�Utilities‘Notation‘��

With theNotation package loaded, the following few simple lines ofMathematica

code suffice to define the unconditional and conditional probability functionsPr[�]

andPr[� � �] for a generic 3-event Kolmogorov probability space. Here, (because

it is easier to implement these functions using set-theoretic rather than propositional

structures) we use� (rather than�) to denote the necessarily true proposition, and we

use “�X” rather than “X” to denote logical negation. Also, we use the set-theoretic

connectives “�” and “�” rather than their propositional counterparts “�” and “&”.

In[2]:= � � ��a�,�b�,�c�,�d�,�e�,�f�,�g�,�h���

X � ��a�,�b�,�d�,�e���

Y � ��b�,�c�,�e�,�f���

Z � ��d�,�e�,�f�,�g���

Notation��Α 
 Complement��,Α ���

Pr�Α � �� Plus@@Flatten�Α � �0��//.h 
 1 � �a � b � c � d � e � f � g��

In[3]:= Notation�Pr�Α � Β � 
 Pr�Α ,Β � �

In[4]:= Pr�Α � Β � ��
Pr�Α � Β�

Pr�Β�
�

Here are a couple of examples to illustrate how effortlessly ourMathematicacode can

translate arbitrary statements or expressions in the probability calculus into their corre-

sponding algebraic equivalents.

In[5]:= Pr���X� � Y�

Out[5]= 1 � a � d

In[6]:= Pr�X � ��Y � Z�� �� Pr�X � Z�

Out[6]=
a � b � d

1 � e � f
��

d � e

d � e � f � g
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We can easily verify thatPr[�] andPr[� � �] satisfy the probability axioms. First,

we should havePr[�] � 1, andPr[��] � 0. This is easily verified, as follows:

In[7]:= Pr��� �� 1

Out[7]= True

In[8]:= Pr���� �� 0

Out[8]= True

The (general) addition law,Pr[X � Y] � Pr[X]� Pr[Y] – Pr[X � Y], is easily

verified as follows:

In[9]:= Pr�X � Y� �� Pr�X� � Pr�Y� � Pr�X � Y�

Out[9]= True

Other simple theorems (involving only equalities) can be verified easily. Here’s a very

easy theorem:

In[10]:= Pr�X� � Pr��X� �� 1

Out[10]= True

And, Bayes’ Theorem is also very easy to verify:

In[11]:= Pr�X�Y� ��
Pr�Y�X� Pr�X�

Pr�Y�

Out[11]= True

The theorem of total probability is also very simple:

In[12]:= Pr�X� �� Pr�X � Y� Pr�Y� � Pr�X � �Y� Pr��Y�

Out[12]= True

Things get more interesting if we want to prove (ordisprove) variousimplicationsin

probability calculus. For instance, what if we want to show thatif Pr[X] � 1, then

Pr[X � Y] � Pr[X]? For this, we will need something a bit more powerful.Mathe-

matica(version 4) has a built-in function (currently, in theDeveloper context) called
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InequalityInstance[] which will, for any set of inequalities (or equations) of

the kind we are investigating (i.e., involving polynomials with real coefficients) try

to find a satisfying assignment of values. Now, this procedure (based on Tarskian

quantifier elimination) will not work for sufficiently complex systems of inequalities.

However, for most problems in small probability spaces such as these, the kinds of

systems of inequalities that are of interest do tend to be tractable forMathematica’s

InequalityInstance function. Of course, ifInequalityInstance finds a

model, then we know the system of inequalities is solvable. Hence, in such a case, we

know that the corresponding set of statements in the probability calculus issatisfiable.

And, in most cases (i.e., unlessMathematicagives us an error), if no model is found by

InequalityInstance, then this means that the set isunsatisfiable. This gives us,

more or less, a decision procedure for (sufficiently simple) sets of statements in proba-

bility calculus. Let’s try our example. We want to show that ifPr[X] � 1, thenPr[X

� Y] � Pr[X]. So, let’s useInequalityInstance to look for a probability model

in which Pr[X] � 1, but Pr[X � Y] � Pr[X]. First, we need to tellMathematica

what makes an assignment to the eight variablesa	 h a probability assignment. This

is easily represented as the following conjunction of inequalities, which says thata	

h are all on [0,1], and that the sum of thea	 h is equal to 1:

In[13]:= prob � 0 � a � 1&&0 � b � 1&&0 � c � 1&&0 � d � 1&&0 � e � 1&&

0 � f � 1&&0 � g � 1&&0 � h � 1&&a � b � c � d � e � f � g � h �� 1�

In[14]:= Developer‘InequalityInstance�

prob&&Pr�X� �� 1&& Pr�X � Y� � Pr�X�,�a,b,c,d,e,f,g,h��
Out[14]= ��

Mathematicaquickly tells us that this is impossible. Therefore,Pr[X] � 1 implies

Pr[X � Y] �Pr[X]. Here’s a slightly more involved example. Let’s show thatPr[X]

� Pr[Y] doesnot imply Pr[X � Z] � Pr[Y � Z].
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In[15]:= Developer‘InequalityInstance�

prob&&Pr�X� �� Pr�Y�&& Pr�X � Z� � Pr�Y � Z�,

�a,b,c,d,e,f,g,h��

Out[15]= �a �
1

2
,b � 0,c � 0,d � 0,e � 0,f �

1

2
,g � 0,h � 0�

That was easy! Here’s a much more difficult example. It is well known that thepairwise

independence of three events doesnot imply their independenceper se. We can try to

prove this in one fell swoop, using:

In[16]:= Developer‘InequalityInstance�

prob&&Pr�X � Y� �� Pr�X� Pr�Y�&& Pr�Y � Z� �� Pr�Y� Pr�Z�&&

Pr�X � Z� �� Pr�X� Pr�Z�&&Pr��X � Y� � Z� � Pr�X� Pr�Y� Pr�Z�,

�a,b,c,d,e,f,g,h��
Out[16]= Abort�	

But, this will take avery longtime (anda lot of memory) to find a model. Here’s a way

to make the computation much easier. First, let’s useMathematica’s Solve function to

find a (generic) solution (in terms ofa	 h) of the three equations which state pairwise

independence. [I have also added in the constraintPr[X] � 1/3, to further simplify

the search space.]

In[17]:= pairwise �

FullSimplify�Solve�Pr�X � Y� �� Pr�X� Pr�Y�&&

Pr�Y � Z� �� Pr�Y� Pr�Z�&&Pr�X � Z� �� Pr�X� Pr�Z�&&Pr�X� ��
1

3
��1��

Out[17]= �c � b 
2 � 9 d � 9 e� � 3 e � 9 e 
d � e�,

g � d 
2 � 9 b � 9 e� � 3 e � 9 e 
b � e�,

a �
1

3
� b � d � e,f � �e � 9 
b � e� 
d � e��

This allows us to reduce the number of variables in the problem from 7 to 4. Under this

assumption, the denial of independence reduces to:

In[18]:= ind � Pr��X � Y� � Z� � Pr�X� Pr�Y� Pr�Z�//.pairwise//FullSimplify

Out[18]= e � 3 
b � e� 
d � e�
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Therefore, all we need is a model in whichprob andind are satisfied, under the

assumption ofpairwise. The following command allows us to find values ofb, d, e,

andh that solve this problem.

In[19]:= m1 �

Developer‘InequalityInstance��prob&&ind�//.pairwise,�b,d,e,h��

Out[19]= �e �
1

258
,d �

3

28
,b �

1

133
,h �

17738141

41314056
�

Putting this together with the assignments to the other 3 variables inpairwise, yields

the following total probability model:

In[20]:= model � Join�pairwise//.m1,m1�

Out[20]= �c �
210429

13771352
,g �

2954345

13771352
,a �

14741

68628
,

f �
310241

41314056
,e �

1

258
,d �

3

28
,b �

1

133
,h �

17738141

41314056
�

We can verify thatmodel has all the right properties, as follows. First, it is aprobability

model:

In[21]:= prob//.model

Out[21]= True

Second, it’s a model on which X, Y, and Z arepairwiseindependent.

In[22]:= �Pr�X � Y� �� Pr�X� Pr�Y�&&

Pr�Y � Z� �� Pr�Y� Pr�Z�&& Pr�X � Z� �� Pr�X� Pr�Z��//.model
Out[22]= True

And, finally, it’s a model on which X, Y, and Z arenot independentper se.

In[23]:= Pr��X � Y� � Z� � Pr�X� Pr�Y� Pr�Z�//.model

Out[23]= True

By using these sorts of techniques, I was able to find all the models reported in pre-

ceding sections of the Appendix, and to verify many of the theorems proved above. As

a finalé, I will now demonstrate how we can easily verify one of the key theorems in
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this monograph usingMathematica. First, we use theNotation package to define the

likelihood ratio measurel in its familiar syntactical form:

In[24]:= Notation�l�x ,y � z � 
 Pr�y ,x � z �/Pr�y ,��x � � z ��

Notation�l�x ,y � 
 Pr�y ,x �/Pr�y ,��x ���

Next we make a slight change of notation, to make the problem look more familiar:

In[25]:= « � X�ƒ1 � Y�ƒ2 � Z�

We will now verify that l satisfies the (SC) condition. First, we askMathematicato

Solve for the (generic) conditionsSO under which screening-off (ofƒ1 fromƒ2 by«)

holds:

In[26]:= SO � FullSimplify�Solve�Pr�ƒ1 � ƒ2 �«� �� Pr�ƒ1 �«� Pr�ƒ2 �«� &&

Pr�ƒ1 �ƒ2 � �«� �� Pr�ƒ1 � �«� Pr�ƒ2 � �«� ��4��

Out[26]= �c � �
f 
d2 � a e � d 
�1 � a � e � f � g��

d 
f � g�
,b �

a e

d
�

Then, we encode the definition of confirmational independenceCI (for l), as follows:

In[27]:= CI � l�«,ƒ1 �ƒ2� �� l�«,ƒ1� �

Finally, we askMathematicato find a probability model in whichSO is true butCI is

false:

In[28]:= Developer‘InequalityInstance�

�prob&&!CI�//.SO,�a,b,c,d,e,f,g,h��
Out[28]= ��

There are none. This verifies thel case of Theorem 8.Mathematicais, indeed, a pow-

erful tool for reasoning about the probability calculus.116

116One can easily automate these techniques. In Fitelson (2001c), I present aMathematicafunction
PrSAT which, for any setSof inequalities, equations and inequations in (3-element) probability calculus,
will determine whetherSis satisfiable. IfS is unsatisfiable, thenPrSAT will say so, and ifSis satisfiable,
thenPrSAT will output a probability model on which all of the statements inSare true.
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