
Branden Fitelson

Larry Wos

Finding Missing Proofs with

Automated Reasoning�

Abstract. This article features long-sought proofs with intriguing properties (such as

the absence of double negation and the avoidance of lemmas that appeared to be indis-

pensable), and it features the automated methods for �nding them. The theorems of

concern are taken from various areas of logic that include two-valued sentential (or propo-

sitional) calculus and in�nite-valued sentential calculus. Many of the proofs (in e�ect)

answer questions that had remained open for decades, questions focusing on axiomatic

proofs. The approaches we take are of added interest in that all rely heavily on the use

of a single program that o�ers logical reasoning, William McCune's automated reasoning

program OTTER. The nature of the successes and approaches suggests that this program

o�ers researchers a valuable automated assistant. This article has three main components.

First, in view of the interdisciplinary nature of the audience, we discuss the means for using

the program in question (OTTER), which ags, parameters, and lists have which e�ects,

and how the proofs it �nds are easily read. Second, because of the variety of proofs that

we have found and their signi�cance, we discuss them in a manner that permits compar-

ison with the literature. Among those proofs, we o�er a proof shorter than that given

by Meredith and Prior in their treatment of �ukasiewicz's shortest single axiom for the

implicational fragment of two-valued sentential calculus, and we o�er a proof for the �u-

kasiewicz 23-letter single axiom for the full calculus. Third, with the intent of producing

a fruitful dialogue, we pose questions concerning the properties of proofs and, even more

pressing, invite questions similar to those this article answers.

Keywords: missing proofs, axiomatic proofs, logic calculi, condensed detachment, term-

avoidance proofs, automated reasoning.

1. Basic tenets, some background, and an illustration

Consistent with the emphasis of the great researchers that include Hilbert,

�ukasiewicz, Meredith, Prior, and Wajsberg, this article focuses on ax-

iomatic proofs. However, in contrast to their work that yielded one signi�-

cant proof after another purely through the exercise of the mind, the proofs

we feature are obtained with indispensable assistance from a computer pro-

gram that applies logical reasoning, William McCune's program OTTER

[McCune1994]. As evidence of the value of reliance on this program, we

� This work was supported by the Mathematical, Information, and Computational

Sciences Division subprogram of the OÆce of Advanced Scienti�c Computing Research,

U.S. Department of Energy, under Contract W-31-109-Eng-38.

Presented by Jacek Malinowski; June March 17, 2000

Studia Logica 68: 1{28, 2001.

c 2001 Kluwer Academic Publishers. Printed in the Netherlands.

2 B. Fitelson, L. Wos

note that many of the proofs we have found were missing from the extensive

literature of logic. An excellent example of such a missing proof concerns the

�ukasiewicz 23-letter single axiom for two-valued (or propositional) calculus.

In addition to �nding missing proofs | in the tradition of Meredith and

Prior, Thomas, Ulrich, and others | OTTER has proved invaluable in �nd-

ing shorter proofs. Our success in �nding a proof (shorter than that of

Meredith and Prior) for the �ukasiewicz shortest single axiom for the im-

plicational fragment of two-valued sentential calculus illustrates the value of

reliance on an automated reasoning program.

In this article, in addition to the focus on various proofs, we discuss both

the manner in which OTTER was used and the arsenal of weapons it o�ers.

In that regard, as a brief preview, we provide (prior to Section 2) a taste of

how one can proceed.

1.1. Basic tenets

One of the basic tenets on which this article rests asserts that axiomatic

proofs are preferable to other types, such as those based on metatheory or

on the presence of the property of validity (a model-theoretic argument).

In our view, access to an axiomatic proof (compared with some other type

of proof) is more likely to lead both to the discovery of proofs that have

been missing from the literature and to the formulation of some new useful

approach. In general, we �nd axiomatic proofs to be more instructive.

That type of proof also o�ers an appeal not directly germane to logic or

mathematics, namely, that such proofs are at least theoretically well within

reach of a general-purpose automated reasoning program. As evidence of the

truth of this observation, this article features not only proofs absent from

the literature, but proofs that answer questions that had remained open for

decades, questions focusing on axiomatics. Especially from the perspective

of the logician or mathematician who is primarily interested in new results,

these proofs (presented in Section 4) are the meat of this article.

For a preview of what is to come in this regard, we note that in 1936 �uka-

siewicz o�ered the following 23-letter single axiom for two-valued sentential

(or propositional) calculus [�ukasiewicz1970, page 225, footnote 10], where

the function i denotes logical implication and the function n denotes logical

negation.

i(i(i(x,y),i(i(i(n(z),n(u)),v),z)),i(w,i(i(z,x),i(u,x))))

What made this announcement particularly intriguing to researchers was the

absence both of a proof and of any hint as to its nature. Further, from what

Finding Missing Proofs with Automated Reasoning 3

we know, the literature o�ers no aid to �nding such a proof. Our goal was

that of �nding an axiomatic proof, one relying on the often-used inference

rule condensed detachment (discussed in Section 2).

This article o�ers the desired proof (in Section 4.2), presents a new

methodology that yielded the proof through heavy use of OTTER, and fo-

cuses on the presence of a property that is indeed intriguing and perhaps

seldom studied, namely, the absence of any term of the form n(n(t)) for any

term t. This double-negation-free property is the focus in Section 5 of a

question whose answer is currently unknown.

This article also o�ers a proof that addresses a di�erent aspect, namely,

that of proof improvement. Speci�cally, Meredith and Prior [Meredith1963,

page 171] present a \very slight abridgement" of �ukasiewicz's proof [�u-

kasiewicz1970, pages 299{300] of the suÆciency of his shortest single axiom

for the implicational fragment of two-valued sentential (or propositional)

calculus. We give in Section 4.2 a further abridgement.

In addition to the cited tenet, we take the position that the combina-

tion of researcher and reasoning program o�ers far more than the sum of its

parts. Indeed, a means exists for the researcher to impart knowledge, ex-

perience, and intuition to the program, and the program in turn can apply

techniques (featuring generality of deduction) that are at least most uncom-

fortable for the researcher. The program's emphasis on generality will be

nicely illustrated (in Section 2) when this article focuses on a four-step proof

that (some logicians have said) would never have been discovered by an un-

aided researcher. The interplay of the researcher's skills with the assets of a

powerful reasoning program yields far more than either alone can yield.

One additional tenet completes the foundation for this presentation.

Speci�cally, we hold that the answering of one open question is likely to

lead to the answering of other open questions. In that regard, we pose ques-

tions whose answers have eluded us and, perhaps more important, invite

the submission of questions similar to those featured here. For evidence of

the asserted cascading of the answering of open questions, this article lists

successes that are not all closely related nor all from the same area of logic

but that were connected in time and in methodology.

1.2. Some background

For the background that addresses the interests of a diverse audience, that

concerns the automation of logical reasoning, and that focuses on a use-

ful program for research, (at the general level) we recommend two books

[Wos1999,Wos2000b]. The topics covered in the �rst of the two books in-

4 B. Fitelson, L. Wos

clude a full treatment of the basic elements of automated reasoning, the

formal foundations, various applications, and an o�ering of open questions.

That book serves well as a text and also as a source for research topics. The

second (two-volume) book is a compendium of research papers published

between 1958 and 1998 inclusive. The majority of these papers focus on the

developments of automated reasoning that include the introduction of new

inference rules, new strategies for controlling the application of the inference

rules, and the answering of various open questions.

Regarding speci�c background aspects, one can gain easy access to the

program OTTER, which played such a key role in the successes featured in

this article, by consulting the CD-ROM included in the �rst of the two cited

books. On that CD-ROM, one also �nds the information (in the form of

a manual) for using OTTER, appropriate input �les, and other pertinent

items (some taken from relevant books). In this article, we devote Section 3

to the nature and use of various lists, ags, and parameters that a�ect the

actions of OTTER. By doing so, we hope to provide insight into the reasons

OTTER has proved so valuable and also enable the researcher to assess its

value as an aid to �nding proofs. As for the proofs OTTER �nds, a neat

proof (given in Section 2) will be used to illustrate how one reads them.

1.3. An illustration of interplay

For a preview of the interplay between researcher and reasoning program

and the type of signi�cant contribution to logic that can result, we focus (in

Section 4.1) on an important theorem from in�nite-valued sentential calcu-

lus. The theorem asserts that logical or is associative, where the or of x and

y in terms of implication is i(i(x; y); y). Rather than asking the program to

attempt to prove the corresponding equality, the assignment consisted of at-

tempting to prove the two appropriate implications. (We note that OTTER

is well equipped to cope with the equality relation directly, far more capable

than many reasoning programs. However, because of historical precedent

concerning the use of condensed detachment, because of our formulation of

powerful relevant methodologies, and because we were certain that the avoid-

ance of the equality relation would, in this case and others like it, contribute

markedly to e�ectiveness, we chose the cited approach.)

The most obvious role played by the researcher is that of choosing the

theorem to attempt to prove and conveying that assignment to the program.

Indeed, the program \knows" almost nothing and, if left on its own, is

unable to recognize the importance of one conclusion when compared with

another. To enable the program to detect and then signal that a proof

Finding Missing Proofs with Automated Reasoning 5

has been completed, the researcher includes in the problem description the

assumption that the conclusion does not hold, that the theorem is false.

The program has the means to compare conclusions pairwise and recognize,

if such is the case, that a contradiction has been found.

A proof already existed in the literature establishing logical or to be

associative in many-valued sentential calculus. However, as far as we knew

when we studied that theorem, no purely axiomatic proof was available.

Further, we were unable to provide any suggestions about the actual proof

steps (that might be present in an axiomatic proof) when we commenced our

attack with OTTER. Two formulas were to be deduced, whose respective

negations are given with the following two clauses, where \-" denotes logical

not and where the predicate P denotes \provable".

-P(i(i(i(a,i(i(b,c),c)),i(i(b,c),c)),i(i(i(i(a,b),b),c),c))).

-P(i(i(i(i(i(a,b),b),c),c),i(i(a,i(i(b,c),c)),i(i(b,c),c)))).

With the details left to later, we note that OTTER quickly proved one

of the two desired implications (the second), but it appeared to make no

progress with the other. (The program on its own is unable to measure its

progress, its closeness to reaching the objective.) For the �rst implication, in

contrast to our attack on the second, we chose to include suggestions regard-

ing a possible proof. We (in e�ect) instructed the program to emphasize the

role of any new conclusion it retained that was similar (where all variables

are treated as indistinguishable) to one of the proof steps found in its proof

of the second implication. That apparently naive instruction was just what

was needed. Indeed, the program quickly found the desired proof.

One more aspect of the research in focus merits mention. As is so typical

of our studies, we then sought proofs of the two implications shorter than

those we had in hand. That e�ort not only succeeded but, and here is

where the generality property of the program's reasoning came into play with

a rather startling result, two implications were proved, each more general

than its counterpart corresponding to the original goal. Whether the added

generality of the theorem that was proved is of much interest is left to the

audience to assess. Independent of the verdict, in place of the metatheoretic

proof, we now have an axiomatic proof of the associativity of or in in�nite-

valued sentential calculus, which was our goal, and an axiomatic proof of a

more general theorem. We shall give in Section 4.1 the proofs of the more

general implications.

6 B. Fitelson, L. Wos

2. Reading automated proofs

A few items regarding notation, conventions, and inference rules set the

stage for reading the proofs produced by a program such as OTTER.

The type of proof yielded by a program such as OTTER has one singular

advantage over most proofs found in the literature. Speci�cally, this type of

proof explicitly gives, for each deduced step, the precise history concerning

which hypotheses were used and what inference rule was employed. Other

than when canonicalization and simpli�cation are in use, no steps are present

implicitly, as is often the case in the literature. However, even with the pre-

cise derivation information in hand, more than occasionally one encounters

a proof step that produces puzzlement. As will be illustrated, the cause for

the occasional obscurity rests with the program's insistence on generality of

reasoning. In addition to the cited possible obstacle to proof reading, as

expected, a notational problem may be a bit annoying.

In that regard, the following small number of notational conventions

merit mention. For example, if one wishes OTTER to study the earlier-

cited �ukasiewicz 23-letter formula, the following clause is included in the

input to the program.

P(i(i(i(x,y),i(i(i(n(z),n(u)),v),z)),i(w,i(i(z,x),i(u,x))))).

The predicate P (in the given clause) can be interpreted as \is provable"

or as \is true". The clause language, which is a dialect of �rst-order predi-

cate calculus, is that which is used to present a question or problem to the

program.

Regarding the remaining notation (needed for this article), logical or is

denoted by \j" and logical not by \-". Logical and is present implicitly

between each pair of clauses. No other logical connectives are permitted

in the clause language. The scope of a variable is limited to the clause

in which it occurs, and all variables are implicitly universally quanti�ed.

For OTTER, a variable is denoted by an expression beginning with a letter

between lower-case u and z inclusive.

To further illustrate the use of the clause language, we focus on the

inference rule condensed detachment employed in the proofs given in this

article. Condensed detachment is frequently used in the literature of logic

and is quite reminiscent of modus ponens. Condensed detachment considers

two formulas, i(a; b) (the major premiss) and c (the minor premiss), and,

if c uni�es with a, yields the formula d, where d is obtained by applying

to b the most general uni�er of c and a. In other words, to apply the rule

successfully, a and c must unify | a substitution must exist that, when

Finding Missing Proofs with Automated Reasoning 7

applied, causes a and c to become identical. The program always seeks the

most general uni�cation. For the program to apply condensed detachment,

one includes the following clause and chooses as the inference rule that called

hyperresolution.

-P(i(x,y)) | -P(x) | P(y).

For example, if condensed detachment is applied to the �rst two of the

following three clauses, the third is yielded, where the second clause is play-

ing the role of c (the minor premiss).

P(i(x,i(x,i(y,y)))).

P(i(z,z)).

P(i(i(z,z),i(y,y))).

If the roles of the two formulas (expressed as clauses) are reversed and con-

densed detachment is applied, a copy of the �rst formula (expressed as a

clause) is obtained.

We now turn to a proof of some substance; indeed, it establishes the de-

ducibility of one three-axiom system of two-valued sentential calculus from

another three-axiom system. In the following proof, the �rst clause is that for

condensed detachment, and the next three are the respective clause equiva-

lents of one of the two axiom systems, that due to Wos. The �fth clause is

the negation of a member of the second axiom system; the two systems share

in common two elements, theses 19 and 37. Therefore, all that is needed is

a deduction of thesis 59 from the members of the �rst system, theses 19, 37,

and 60. As for the four deduced steps, each is numbered according to its

place among the deduced conclusions. The triple that appears after \hyper"

follows the order �rst, the condensed detachment clause, second, the clause

that plays the role of major premiss, and third, the clause that plays the

role of the minor premiss. After giving the proof, we shall discuss in detail

its least obvious step, the last. Such steps can indeed present a problem

because of relying on a type of reasoning more suited to a computer than to

a researcher.

A Neat Proof Focusing on the Wos Axiom System for

Two-Valued Sentential Calculus

5 [] -P(i(x,y)) | -P(x) | P(y).

6 [] -P(i(i(n(p),r),i(i(q,r),i(i(p,q),r)))) | $ANS(negation_thesis_59).

7 [] P(i(i(i(x,y),z),i(y,z))) # label(thesis_19).

8 [] P(i(i(i(x,y),z),i(n(x),z))) # label(thesis_37).

8 B. Fitelson, L. Wos

9 [] P(i(i(u,i(n(x),z)),i(u,i(i(y,z),i(i(x,y),z))))) # label(thesis_60).

16 [hyper,5,9,8] P(i(i(i(x,y),z),i(i(u,z),i(i(x,u),z)))).

23 [hyper,5,16,7] P(i(i(x,i(y,z)),i(i(i(u,y),x),i(y,z)))).

30 [hyper,5,23,7] P(i(i(i(x,y),i(i(z,y),u)),i(y,u))).

34 [hyper,5,30,9] P(i(i(n(x),y),i(i(z,y),i(i(x,z),y)))) # label(thesis_59).

Clause (34) contradicts clause (6), and the proof is complete.

Fortunately, if a proof step is obscure or its soundness is doubted,

OTTER o�ers what is needed. Indeed, the use of the option

set(build proof object) produces a �le that presents all of the substitutions

for all of the variables on which each condensed detachment step rests.

Let us examine the last step of the four-step proof, detailing the

substitutions of terms for variables that one learns of with the use of

build proof object. We choose that step because it is the least obvious.

More generally, with condensed detachment, when a deduction relies upon

a nontrivial substitution of terms for variables in both premisses, the corre-

sponding step can even cause one to doubt its soundness. Technically, that

type of nontrivial substitution is called a two-way uni�cation, in contrast to

a one-way uni�cation. The �rst three steps of the four-step proof require

only a one-way uni�cation, merely a substitution of terms for variables in

but one of the two premisses. Two examples nicely set the stage for the

discussion of the fourth step of the four-step proof.

If one is told that Plato likes everybody and also told that Plato does not

like Ari, then one has been presented with a pair of contradictory statements.

The following two clauses capture the example.

LIKES(Plato,x)

-LIKES(Plato,Ari).

A program such as OTTER immediately detects the contradiction by noting

that a one-way uni�cation exists, the substitution of Ari for x in the �rst

clause, without actually producing the corresponding instantiated clause for

retention.

A bit more interesting is the second case in which one is told that Plato

likes everybody and also told that nobody likes Plato. Again, two clauses

suÆce.

LIKES(Plato,x)

-LIKES(y,Plato).

For the program to detect the contradiction (in the second case), a two-way

uni�cation is required, a substitution of Plato for x in the �rst clause together

Finding Missing Proofs with Automated Reasoning 9

with a substitution of Plato for y in the second. In contrast to the simplicity

of the given two-way uni�cation, as the following shows, the substitution

required to deduce the fourth step of the four-step proof is rather complex.

Note that the substitutions found by the program when trying to unify two

expressions are the most general that it can �nd that identify a common

domain, that make the two expressions being uni�ed identical.

The fourth step, numbered 34, is obtained by applying condensed detach-

ment to the step numbered 30 as major premiss and 9 as minor premiss. To

make the uni�cation more transparent, rename the variables in 30, respec-

tively, to x1, y1, z1, and u1, with the variables in 9 remaining u, x, z, and

y. The desired substitution of terms for variables in both clauses is the fol-

lowing (applied simultaneously to the listed variables): in 30, i(x,i(n(y),z))

for x1, i(n(y),z) for y1, x for z1, and i(i(u,z),i(i(y,u),z)) for u1; and in 9,

i(x,i(n(y),z)) for u, y for x, z for z, and u for y.

Such complex substitutions often occur in a proof completed by a reason-

ing program, which explains in part why that type of program �nds proofs

that have been missing for decades and (perhaps) why unassisted researchers

did not �nd them. Some of the new proofs (as we discuss in Section 4) have

no counterpart in the literature, as in the case of the �ukasiewicz 23-letter

single axiom. Of a di�erent cast, some of the proofs we have found do have

a correspondent in the literature, but the new proof we o�er is more elegant

in one or more senses that include proof length and term structure. The

�nding of these new proofs (in part because of the emphasis on generality

of reasoning by the program) nicely demonstrates the value of combining

the expertise of a researcher with the approach taken by a program such as

OTTER. To further illustrate how such combinations take place, we turn to

various aspects of OTTER.

3. Lists, ags, and parameters

We conjecture that the results pertinent to areas of logic and that are fea-

tured later in this article would not have been obtained without access to

OTTER's impressive arsenal of weapons. Also, we conjecture openly that

the researcher adding the use of this program in the attack on an open ques-

tion will greatly increase the likelihood of �nding the answer. Because of

these two factors, in this section we focus on what OTTER o�ers, rather

than discussing some generic automated reasoning program. Of prime con-

cern here is the interplay between researcher and program.

An e�ective interplay of researcher and reasoning program begins with a

judicious use of lists. The placement in the various lists of the clauses that

10 B. Fitelson, L. Wos

present the question or problem to the program inuences the program's per-

formance sharply and, equally important, often more than compensates for

the program's lack of knowledge, experience, and intuition. Indeed, just as a

researcher restricts the reasoning applied in the attempt to reach an objec-

tive, the program can do the same. The set of support list is the list in which

the researcher is well advised to place the clauses that are conjectured to be

used for inference rule initiation at the beginning of the program's attack.

For example, reminiscent of what a person might do when seeking a

proof of the theorem that asserts that rings in which the cube of x is x are

commutative, a good move is to place the clause equivalent of xxx = x in

the set of support list and place the axioms in a list called usable. This move

nicely prepares the way for the program to make e�ective use of the pow-

erful restriction strategy known as the set of support strategy. The strategy

prevents the program from applying an inference rule to a set of hypotheses

all of which are input clauses in the usable list, drawing conclusions only if

recursively traceable to the input set of support. The program is thus pre-

vented from exploring the entire underlying theory from which the speci�c

theorem of concern is taken, which in turn markedly reduces the size of the

search space of conclusions to consider. In contrast, a researcher often does

apply an inference rule to sets of axioms without the worry of getting lost

or producing too much new information.

As for the assumption that the conclusion is false (that such a ring is not

commutative), which prepares the way for seeking a proof by contradiction,

its clause equivalent can be placed in the set of support list or in the usable

list or, if one wishes this clause to participate only for determining that

the proof has been found, in the passive list. Members of the passive list

are used either to detect proof completion or to purge a type of redundant

information. For a second example of the use of the set of support strategy,

a good move for studying the type of theorem featured in this article has

one place the axioms (say, for in�nite-valued sentential calculus) in the set

of support list, the clause for condensed detachment in the usable list, and

the denial of the theorem either in the passive list or in the usable list.

Although essentially no restriction of the reasoning results in this case,

other actions with another list can be taken to restrict it. In particular,

one of the weight lists can be used to prevent the program from retaining

information deemed unnecessarily complex, the means being to assign to the

appropriate parameter a value that the program treats as an upper bound

on complexity.

Further interplay between researcher and program is enabled by use of

the demodulator list. This list contains the equalities that the program uses

Finding Missing Proofs with Automated Reasoning 11

for simpli�cation and canonicalization. Such equalities can be chosen by the

researcher, adjoined by the program during a run, or both.

In addition to restricting the program's reasoning, directing it is often

crucial. Again, a weight list can be of assistance. Indeed, as a �ne illustration

of much interplay between researcher and program, one can use such a list

in conjunction with the resonance strategy to instruct the program to key

on formulas or equations that are similar to, but frequently not identical

to, ones conjectured by the researcher to merit emphasis. Such formulas or

equations are called resonators, and to each the researcher can assign a value

to reect its conjectured relative signi�cance for directing the program's

reasoning. The resonators that are chosen enable the program to bene�t

from the researcher's knowledge, experience, and even intuition. The choice

of resonators often is the key to �nding a missing proof.

For a �ne example, the resonance strategy played a vital role in the

�nding by OTTER of the �rst known (to us) proof establishing the �u-

kasiewicz 23-letter formula to be a single axiom for two-valued sentential

calculus. Some small expansion of this fact is in order to illustrate how

the combination of researcher and program can be e�ective, even when the

relevant researchers were far from expert.

From what we know, the literature o�ers nothing that sheds any light

on the nature of the proof �ukasiewicz had in mind. Quite likely (al-

though not necessarily), the proof known to him relied mainly or exclusively

on condensed detachment. This inference rule is known to be suÆcient

[Kalman1983]. As for the target of OTTER's attack, we included various

axiom systems for this area of logic, conjecturing that the �ukasiewicz three-

axiom system was the most easily reached and (perhaps) the one he used to

complete his proof. Not because of any deep insight, but rather because of

earlier successes, we included sixty-eight resonators, each corresponding to a

theorem proved by �ukasiewicz, theorems he denotes as theses 4 through 71.

In one afternoon, a few hours of computer time spread over four runs suf-

�ced to produce a 200-step proof, completing with the deduction of the cited

three-axiom system. Of the deduced 200 steps, 8 are among the sixty-eight

cited theses, and 22 match (where all variables are treated as indistinguish-

able) one of the included resonators. Although one can hardly claim that

the number | just 22 | of steps matching a resonator is large among the

200 steps of the proof under discussion, we nevertheless conjecture that the

program's keying on them was indispensable to the success.

Still in the context of the successful completion of the 200-step proof,

one of OTTER's options demands mention because, without reliance on it,

(we assert) the cited proof would have quite likely remained out of reach.

12 B. Fitelson, L. Wos

The option in question focuses on the type of term (found in deduced-and-

retained conclusions) to be encouraged or discouraged. Speci�cally | and

most intriguing to us | the deduced steps of the cited 200-step proof are free

of double-negation terms, terms of the form n(n(t)) for some term t where

the function n denotes negation. This aspect was by design: Indeed, we

instructed OTTER to discard any deduced conclusion containing a double-

negation term. This decision was based on prior successes in obtaining proofs

of deep theorems in various areas of logic, proofs in which we required that

double-negation terms be absent.

Again, the contrast (as well as the interplay) between researcher and

program comes into play. In particular, blocking the use of such terms

is apparently counterintuitive, if one bases an opinion on the literature.

On the other hand, avoidance of conclusions containing such terms appears

to sharply increase the density of useful information within that which is

retained. In the context of interplay, other types of term can be easily

avoided, if that is the wish of the researcher, whether prompted by eÆciency

considerations or prompted by the goal of completing a proof satisfying the

corresponding constraint.

The aid that OTTER can provide is by no means limited to the preceding

items. Among the other options the program o�ers (each governed by some

ag or parameter) are the following. Indeed, various ags (if set or cleared)

determine which inference rules are to be used, among which is one that

treats equality as if it is \understood". One ag a�ects the type of search

to be used, breadth �rst (�rst come �rst served) if set, and otherwise based

on conclusion complexity. If the latter, the complexity can be measured

purely in terms of symbol count, or it can be determined by user-supplied

templates. One of OTTER's parameters can be used to assign an upper

bound to the complexity of newly retained conclusions; deduced conclusions

whose complexity exceeds the assigned value are purged. If the choice is to

blend (to some extend) a breadth-�rst search with one based on conclusion

complexity, the needed parameter is o�ered.

OTTER can be of even greater service. In particular, the reading of

a proof in the literature more than occasionally leaves one with questions

regarding the precise details concerning one or more proof steps. If the

researcher so desires, for each completed proof, the setting of the appropri-

ate ag instructs the program to provide all of the corresponding details,

a proof object. If, for example, OTTER produces a proof totally free of

double negation, one might wish to know whether any of the intermediate

substitutions (of terms for variables) relied upon in any of the condensed-

detachment steps required the use of double negation. Yet another ag that

Finding Missing Proofs with Automated Reasoning 13

serves well in the context of condensed detachment is that which instructs

the program to list the history of each deduced step in a manner that en-

ables one to know which hypothesis was used as major premiss and which

as minor.

The program OTTER can also be of assistance in the context of the qual-

ity of the proof it �nds. Indeed | quite relevant to much of our research |

some ags and parameters are directly pertinent to having OTTER search

for proofs that are elegant in one or more aspects. In particular, regarding

di�erent paths to the same deduced conclusion, one ag has the program

give preference to shorter deduction paths over longer. This option provides

a fair amount of assistance when the goal is to �nd a proof shorter than that

in hand. If the aspect of elegance of interest concerns the maximum number

of distinct variables permitted in deduced proof steps, the program o�ers the

appropriate parameter. The aspects of elegance focusing on the complexity

of deduced steps and on term structure have already been discussed.

4. Beautiful old theorems and intriguing new proofs

By an \old theorem", we mean a result that has been known to hold for at

least a decade. With that de�nition, the theorems featured here are very

old, but very signi�cant. Of a complementary nature, some proofs are so

young that they have not yet been born or have only recently been born. In

this article, we focus on recently born proofs, young proofs of very old and

signi�cant theorems.

Hilbert (whom some label as Mr. Axiom) might �nd our proofs (which we

have found through the use of automated reasoning) most satisfying, for they

are axiomatic in the strictest sense, with no steps left to the imagination.

Also satisfying is that the proofs rely solely on the inference rule condensed

detachment, with no recourse to instantiation or equality-oriented reasoning.

In the given senses, the proofs are indeed pure, nicely in the strict spirit of

the logic calculi of concern.

From another perspective, the proofs we have found with OTTER �ll

in gaps in the literature. For but one example, highly unsatisfying is the

case in which a result is known to hold because of the proven fact that it is

valid, but no axiomatic proof is o�ered in print. We feature such a case, as

well as other types that lacked an axiomatic proof. We include a few proofs

and list a number of our successes. For a more complete set of proofs, we

recommend the forthcoming book Automated Reasoning and the Finding of

Missing and Elegant Proofs in Formal Logic.

14 B. Fitelson, L. Wos

4.1. In�nite-valued sentential calculus

The area of logic of concern in this section is in�nite-valued sentential calcu-

lus, sometimes called many-valued sentential calculus. �ukasiewicz provided

the following axiom system (consisting of �ve formulas) for this �eld, ex-

pressed in clause notation.

% The following four formulas are, respectively,

% MV1 through MV4.

P(i(x,i(y,x))).

P(i(i(x,y),i(i(y,z),i(x,z)))).

P(i(i(i(x,y),y),i(i(y,x),x))).

P(i(i(n(x),n(y)),i(y,x))).

% The following formula is MV5.

P(i(i(i(x,y),i(y,x)),i(y,x))).

Some years later Meredith [Meredith1958] proved that the �fth of the �ve

formulas is dependent on the �rst four (a far-from-obvious fact). In this

article, we give a more elegant proof found by OTTER, a proof that is

shorter than Meredith's and that has the intriguing property that no terms

of the form n(n(t)) are present for any term t, where the function n denotes

negation.

The �rst theorem whose proof we give asserts that logical or is associa-

tive, where the or of x and y in terms of implication is i(i(x; y); y). However,

rather than proving the theorem as stated, we prove a generalization of it,

which then leads to one of the promised questions we have for logicians.

Speci�cally, rather than proving

P(i(i(i(x,i(i(y,z),z)),i(i(y,z),z)),i(i(i(i(x,y),y),z),z))),

we prove the more general formula

P(i(i(i(x,i(i(y,z),z)),i(i(y,z),u)),i(i(i(i(x,y),y),z),u))),

and, rather than proving

P(i(i(i(i(i(x,y),y),z),z),i(i(x,i(i(y,z),z)),i(i(y,z),z)))),

we prove the more general formula

P(i(i(i(i(i(x,y),y),z),u),i(i(x,i(i(y,z),z)),i(i(y,z),u)))).

� Question. Are the more general implications of logical signi�cance

compared with the two that capture associativity?

Before we give the two proofs respectively of the more general formulas,

a few remarks are in order. First, we know of no shorter proofs than the

two we give. Second, both proofs avoid double negation. In fact, the second

Finding Missing Proofs with Automated Reasoning 15

proof avoids negation entirely, but the �rst requires the use of the fourth

axiom of �ukasiewicz given earlier. Third, one can �nd a proof of the so-

called �rst associative formula in which the variable u is absent by relying

solely on the �rst three �ukasiewicz axioms. Fourth, in the context of the

preceding bulleted question, we have no estimate of the signi�cance of the

two generalizations.

The triple that appears after the word \hyper" follows the order �rst,

the condensed detachment clause, second, the clause that plays the role of

major premiss, and third, the clause that plays the role of the minor premiss.

The �rst number, j, that appears in a proof step gives the corresponding

position of the clause within those retained by OTTER. In particular, the

number of the last clause listed denotes the number of clauses that were

retained when the proof was completed. For example, the designation 13466

of the last step in the following proof denotes that 13466 clauses were re-

tained when the proof was completed. Next, when OTTER is instructed to

use a strategy known as the hot list strategy, one may �nd an input clause

appearing more than once in the input of a proof. In that regard, the des-

ignation, for example, heat=1 means that the clause that follows relies on

hypotheses some of which are members of the hot list. The use of the hot

list strategy often signi�cantly enhances the power of a reasoning program.

Finally, the ANSWER literal serves various purposes including tracking (by

the researcher) the progress of the program's attack, containing upon com-

pletion of a constructive proof the object that is found; it plays no direct

role in the program's reasoning.

Proof 1 of the Generalization of the Associativity of Logical or

----> UNIT CONFLICT at 134.15 sec ----> 13467 [binary,13466.1,6.1]

$ANS(lemma_gen2_21a).

Length of proof is 43. Level of proof is 27.

---------------- PROOF ----------------

1 [] -P(i(x,y)) | -P(x) | P(y).

3 [] P(i(i(x,y),i(i(y,z),i(x,z)))).

5 [] P(i(i(n(x),n(y)),i(y,x))).

6 [] -P(i(i(i(a,i(i(b,c),c)),i(i(b,c),d)),i(i(i(i(a,b),b),c),d))) |

$ANS(lemma_gen2_21a).

65 [] -P(i(x,y)) | -P(x) | P(y).

66 [] P(i(x,i(y,x))).

67 [] P(i(i(x,y),i(i(y,z),i(x,z)))).

68 [] P(i(i(i(x,y),y),i(i(y,x),x))).

69 [] P(i(i(n(x),n(y)),i(y,x))).

16 B. Fitelson, L. Wos

83 [hyper,1,3,3] P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))).

86 (heat=1) [hyper,65,67,83] P(i(i(i(i(x,y),z),u),

i(i(i(i(y,v),i(x,v)),z),u))).

87 (heat=1) [hyper,65,83,67] P(i(i(x,y),i(i(i(x,z),u),i(i(y,z),u)))).

92 (heat=2) [hyper,65,87,66] P(i(i(i(x,y),z),i(i(i(u,x),y),z))).

121 [hyper,1,83,83] P(i(i(x,i(y,z)),i(i(u,y),i(x,i(u,z))))).

150 [hyper,1,92,3] P(i(i(i(x,y),z),i(i(z,u),i(y,u)))).

165 (heat=1) [hyper,65,150,69] P(i(i(i(x,y),z),i(n(x),z))).

166 (heat=1) [hyper,65,150,68] P(i(i(i(i(x,y),y),z),i(x,z))).

202 (heat=2) [hyper,65,67,165] P(i(i(i(n(x),y),z),i(i(i(x,u),y),z))).

207 (heat=2) [hyper,65,67,166] P(i(i(i(x,y),z),i(i(i(i(x,u),u),y),z))).

314 [hyper,1,83,166] P(i(i(x,i(y,z)),i(y,i(x,z)))).

321 [hyper,1,166,83] P(i(i(x,y),i(i(z,x),i(z,y)))).

329 (heat=1) [hyper,65,67,314] P(i(i(i(x,i(y,z)),u),i(i(y,i(x,z)),u))).

404 [hyper,1,202,5] P(i(i(i(x,y),n(z)),i(z,x))).

428 [hyper,1,207,166] P(i(i(i(i(i(i(x,y),y),z),z),u),i(x,u))).

445 [hyper,1,314,314] P(i(x,i(i(y,i(x,z)),i(y,z)))).

460 (heat=1) [hyper,65,445,66] P(i(i(x,i(i(y,i(z,y)),u)),i(x,u))).

525 [hyper,1,121,321] P(i(i(x,i(y,z)),i(i(z,u),i(x,i(y,u))))).

590 [hyper,1,329,121] P(i(i(x,i(y,z)),i(i(u,x),i(y,i(u,z))))).

601 (heat=1) [hyper,65,590,68] P(i(i(x,i(i(y,z),z)),i(i(z,y),i(x,y)))).

648 [hyper,1,87,428] P(i(i(i(i(i(i(i(i(x,y),y),z),z),u),v),w),

i(i(i(x,u),v),w))).

668 [hyper,1,83,525] P(i(i(x,y),i(i(z,u),i(i(y,z),i(x,u))))).

680 (heat=1) [hyper,65,668,69] P(i(i(x,y),i(i(i(z,u),x),

i(i(n(u),n(z)),y)))).

745 [hyper,1,525,601] P(i(i(i(x,y),z),i(i(x,i(i(y,u),u)),i(i(u,y),z)))).

746 [hyper,1,329,601] P(i(i(i(x,y),i(z,y)),i(i(y,x),i(z,x)))).

768 [hyper,1,745,404] P(i(i(i(x,y),i(i(n(z),u),u)),i(i(u,n(z)),i(z,x)))).

769 (heat=1) [hyper,65,768,69] P(i(i(x,n(y)),i(y,n(x)))).

804 [hyper,1,590,769] P(i(i(x,i(y,n(z))),i(z,i(x,n(y))))).

872 [hyper,1,202,804] P(i(i(i(x,y),i(z,n(u))),i(u,i(n(x),n(z))))).

933 [hyper,1,83,872] P(i(i(x,y),i(z,i(n(y),n(x))))).

13120 [hyper,1,460,933] P(i(i(x,y),i(n(y),n(x)))).

13131 [hyper,1,680,13120] P(i(i(i(x,y),i(z,u)),i(i(n(y),n(x)),

i(n(u),n(z))))).

13132 [hyper,1,668,13120] P(i(i(x,y),i(i(i(n(z),n(u)),x),i(i(u,z),y)))).

13221 (heat=1) [hyper,65,13132,69] P(i(i(i(n(x),n(y)),i(n(z),n(u))),

i(i(y,x),i(u,z)))).

13324 [hyper,1,321,13221] P(i(i(x,i(i(n(y),n(z)),i(n(u),n(v)))),

i(x,i(i(z,y),i(v,u))))).

13398 [hyper,1,13324,746] P(i(i(i(n(x),n(y)),i(n(z),n(y))),i(i(x,y),

i(x,z)))).

13399 [hyper,1,321,13398] P(i(i(x,i(i(n(y),n(z)),i(n(u),n(z)))),

i(x,i(i(y,z),i(y,u))))).

13400 [hyper,1,13399,13131] P(i(i(i(x,y),i(x,z)),i(i(y,x),i(y,z)))).

13401 (heat=1) [hyper,65,67,13400] P(i(i(i(i(x,y),i(x,z)),u),

i(i(i(y,x),i(y,z)),u))).

Finding Missing Proofs with Automated Reasoning 17

13460 [hyper,1,13401,83] P(i(i(i(i(x,y),i(z,y)),i(i(x,y),u)),

i(i(x,z),i(i(z,y),u)))).

13461 [hyper,1,86,13460] P(i(i(i(i(i(x,y),z),i(i(u,y),z)),i(i(u,y),v)),

i(i(u,x),i(i(x,y),v)))).

13464 [hyper,1,460,13461] P(i(i(i(i(i(i(x,y),z),u),i(i(y,z),u)),

i(i(y,z),v)),i(i(i(x,y),z),v))).

13466 [hyper,1,648,13464] P(i(i(i(x,i(i(y,z),z)),i(i(y,z),u)),

i(i(i(i(x,y),y),z),u))).

Proof 2 of the Generalization of the Associativity of Logical or

----> UNIT CONFLICT at 0.68 sec ----> 1131 [binary,1130.1,9.1]

$ANS(lemma_gen2_21b).

Length of proof is 12. Level of proof is 10.

---------------- PROOF ----------------

1 [] -P(i(x,y)) | -P(x) | P(y).

2 [] P(i(x,i(y,x))).

3 [] P(i(i(x,y),i(i(y,z),i(x,z)))).

9 [] -P(i(i(i(i(i(a,b),b),c),d),i(i(a,i(i(b,c),c)),i(i(b,c),d)))) |

$ANS(lemma_gen2_21b).

25 [] -P(i(x,y)) | -P(x) | P(y).

27 [] P(i(i(x,y),i(i(y,z),i(x,z)))).

28 [] P(i(i(i(x,y),y),i(i(y,x),x))).

34 [hyper,1,3,3] P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))).

36 [hyper,1,3,2] P(i(i(i(x,y),z),i(y,z))).

47 (heat=1) [hyper,25,36,28] P(i(x,i(i(x,y),y))).

70 [hyper,1,34,34] P(i(i(x,i(y,z)),i(i(u,y),i(x,i(u,z))))).

108 [hyper,1,70,47] P(i(i(x,i(y,z)),i(y,i(x,z)))).

125 (heat=1) [hyper,25,27,108] P(i(i(i(x,i(y,z)),u),i(i(y,i(x,z)),u))).

209 [hyper,1,125,70] P(i(i(x,i(y,z)),i(i(u,x),i(y,i(u,z))))).

235 (heat=1) [hyper,25,209,28] P(i(i(x,i(i(y,z),z)),i(i(z,y),i(x,y)))).

396 [hyper,1,3,235] P(i(i(i(i(x,y),i(z,y)),u),i(i(z,i(i(y,x),x)),u))).

441 (heat=1) [hyper,25,396,27] P(i(i(x,i(i(y,z),z)),

i(i(i(x,y),u),i(i(z,y),u)))).

737 [hyper,1,209,441] P(i(i(x,i(y,i(i(z,u),u))),i(i(i(y,z),v),

i(x,i(i(u,z),v))))).

1130 [hyper,1,737,441] P(i(i(i(i(i(x,y),y),z),u),i(i(x,i(i(y,z),z)),

i(i(y,z),u)))).

We now turn to the promised elegant proof of the dependence of the

�fth of the �ukasiewicz axioms on the �rst four. That proof is also free of

double negation, which brings us to yet another question of possible interest

to logicians.

18 B. Fitelson, L. Wos

� Question. Where P and Q may each be collections of formulas, if T

is a theorem asserting the deducibility of Q from P such that Q is free

of double negation, what conditions guarantee that there exists a proof

relying solely on condensed detachment all of whose deduced steps are

free of double negation?

Proof of the Dependence of MV5 on MV1 through MV4

----> UNIT CONFLICT at 4.59 sec ----> 5152 [binary,5151.1,20.1]

$ANS(MV_5).

Length of proof is 32. Level of proof is 20.

---------------- PROOF ----------------

1 [] -P(i(x,y)) | -P(x) | P(y).

2 [] P(i(x,i(y,x))).

3 [] P(i(i(x,y),i(i(y,z),i(x,z)))).

5 [] P(i(i(n(x),n(y)),i(y,x))).

20 [] -P(i(i(i(a,b),i(b,a)),i(b,a))) | $ANS(MV_5).

26 [] -P(i(x,y)) | -P(x) | P(y).

28 [] P(i(i(x,y),i(i(y,z),i(x,z)))).

29 [] P(i(i(i(x,y),y),i(i(y,x),x))).

30 [] P(i(i(n(x),n(y)),i(y,x))).

40 [hyper,1,3,3] P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))).

42 [hyper,1,3,2] P(i(i(i(x,y),z),i(y,z))).

48 (heat=1) [hyper,26,42,30] P(i(n(x),i(x,y))).

49 (heat=1) [hyper,26,42,29] P(i(x,i(i(x,y),y))).

61 (heat=2) [hyper,26,28,48] P(i(i(i(x,y),z),i(n(x),z))).

97 [hyper,1,3,5] P(i(i(i(x,y),z),i(i(n(y),n(x)),z))).

127 [hyper,1,40,40] P(i(i(x,i(y,z)),i(i(u,y),i(x,i(u,z))))).

183 [hyper,1,97,42] P(i(i(n(x),n(i(y,z))),i(z,x))).

185 (heat=1) [hyper,26,28,183] P(i(i(i(x,y),z),i(i(n(y),n(i(u,x))),z))).

259 [hyper,1,3,61] P(i(i(i(n(x),y),z),i(i(i(x,u),y),z))).

278 (heat=1) [hyper,26,259,30] P(i(i(i(x,y),n(z)),i(z,x))).

348 [hyper,1,127,49] P(i(i(x,i(y,z)),i(y,i(x,z)))).

357 (heat=1) [hyper,26,28,348] P(i(i(i(x,i(y,z)),u),i(i(y,i(x,z)),u))).

587 [hyper,1,357,127] P(i(i(x,i(y,z)),i(i(u,x),i(y,i(u,z))))).

600 (heat=1) [hyper,26,587,29] P(i(i(x,i(i(y,z),z)),i(i(z,y),i(x,y)))).

626 (heat=2) [hyper,26,600,30] P(i(i(x,y),i(i(n(x),n(i(y,x))),y))).

904 [hyper,1,587,278] P(i(i(x,i(i(y,z),n(u))),i(u,i(x,y)))).

974 [hyper,1,357,600] P(i(i(i(x,y),i(z,y)),i(i(y,x),i(z,x)))).

1942 [hyper,1,904,626] P(i(x,i(i(y,n(x)),n(y)))).

2311 [hyper,1,127,1942] P(i(i(x,i(y,n(z))),i(z,i(x,n(y))))).

2546 [hyper,1,259,2311] P(i(i(i(x,y),i(z,n(u))),i(u,i(n(x),n(z))))).

3139 [hyper,1,40,2546] P(i(i(x,y),i(z,i(n(y),n(x))))).

3303 [hyper,1,600,3139] P(i(i(i(n(x),n(y)),z),i(i(y,x),z))).

Finding Missing Proofs with Automated Reasoning 19

3304 [hyper,1,587,3139] P(i(i(x,i(y,z)),i(u,i(x,i(n(z),n(y)))))).

3672 [hyper,1,3304,49] P(i(x,i(y,i(n(z),n(i(y,z)))))).

3723 (heat=1) [hyper,26,3672,30] P(i(x,i(n(y),n(i(x,y))))).

4209 [hyper,1,185,3723] P(i(i(n(x),n(i(y,z))),i(n(u),n(i(i(z,x),u))))).

4622 [hyper,1,974,4209] P(i(i(n(i(i(x,y),x)),n(y)),i(n(x),n(y)))).

4843 [hyper,1,3303,4622] P(i(i(x,i(i(y,x),y)),i(n(y),n(x)))).

5027 [hyper,1,357,4843] P(i(i(i(x,y),i(y,x)),i(n(x),n(y)))).

5068 (heat=1) [hyper,26,28,5027] P(i(i(i(n(x),n(y)),z),

i(i(i(x,y),i(y,x)),z))).

5151 (heat=2) [hyper,26,5068,30] P(i(i(i(x,y),i(y,x)),i(y,x))).

The given proof o�ers added interest in that, in contrast to, say, the

proof found in Rose and Rosser, it does not rely on the use of frequently

cited lemmas. For example, in the notation of Rose and Rosser, Lemmas 3.5

and 3.51 are not used. Whether Lemma 2.22 is indispensable for a proof of

MV 5 from MV 1 through MV 4 is currently unknown to us; it may indeed

be an open question.

In addition to the generalizations of associativity reported earlier, an-

other notable success in the area of in�nite-valued sentential calculus merits

mention. Rose and Rosser [Rose1958, page 12] note that they are unable to

prove several distributivity laws from the axioms of �ukasiewicz's intinite-

valued sentential logic. It is easy to show that these distributivity laws are

valid in the semantics of in�nite-valued logic. And, since Rose and Rosser

were able to prove the completeness of the axioms of in�nite-valued logic,

they knew that these distributive laws must be provable from the axioms.

However, condensed detachment proofs of these laws from the axioms of

in�nite-valued logic eluded Rose and Rosser. Recently, Harris and Fitel-

son [Harris2000] have used OTTER to �nd condensed detachment proofs of

these elusive distributivity laws.

4.2. Two-valued sentential calculus

The focus in this section is on two-valued sentential (or propositional) cal-

culus, for which many axiom systems exist. This area of logic is stronger

than is in�nite-valued sentential calculus in the sense that the axioms for the

latter are deducible from an axiom set of the former. �ukasiewicz [�ukasie-

wicz1963] provided the following axiom system, expressed in clause notation.

% Lukasiewicz 1 2 3.

P(i(i(x,y),i(i(y,z),i(x,z)))).

P(i(i(n(x),x),x)).

P(i(x,i(n(x),y))).

20 B. Fitelson, L. Wos

�ukasiewicz also provided a single axiom for this area of logic, the fol-

lowing expressed in clause notation.

% Following is Lukasiewicz's 23-letter single axiom.

P(i(i(i(x,y),i(i(i(n(z),n(u)),v),z)),i(w,i(i(z,x),i(u,x))))).

However, in the paper in which he o�ered this �ne axiom he did not include

a proof. Nor, from what we know, does the literature of logic o�er a proof,

which (in e�ect) leads to an open question. Speci�cally, �nd a proof showing

that the given formula axiomatizes two-valued sentential calculus.

With our emphasis on axiomatic proofs, our objective was to �nd a proof

that relies solely on condensed detachment, that begins with the single 23-

letter formula, and that deduces some known axiom system. For our study,

we added an additional constraint, one that is pertinent to a question we

posed earlier for logicians. In particular, we sought a proof free of double

negation | and we succeeded. Our proof completes by deducing the earlier-

given three-axiom system of �ukasiewicz.

A Proof of the 23-Letter �ukasiewicz Single Axiom

-----> EMPTY CLAUSE at 2.02 sec ----> 123 [hyper,7,122,106,57]

$ANS(step_allLuka_1_2_3).

Length of proof is 56. Level of proof is 43.

---------------- PROOF ----------------

1 [] -P(i(x,y)) | -P(x) | P(y).

7 [] -P(i(i(p,q),i(i(q,r),i(p,r)))) | -P(i(i(n(p),p),p))

| -P(i(p,i(n(p),q))) |

$ANS(step_allLuka_1_2_3).

8 [] P(i(i(i(x,y),i(i(i(n(z),n(u)),v),z)),i(w,i(i(z,x),i(u,x))))).

18 [hyper,1,8,8] P(i(x,i(i(i(i(y,z),i(u,z)),i(z,v)),i(w,i(z,v))))).

19 [hyper,1,18,18] P(i(i(i(i(x,y),i(z,y)),i(y,u)),i(v,i(y,u)))).

20 [hyper,1,8,19] P(i(x,i(i(i(y,z),i(i(u,y),i(v,y))),

i(w,i(i(u,y),i(v,y)))))).

21 [hyper,1,19,8] P(i(x,i(y,i(i(y,z),i(u,z))))).

22 [hyper,1,20,20] P(i(i(i(x,y),i(i(z,x),i(u,x))),i(v,i(i(z,x),i(u,x))))).

23 [hyper,1,21,21] P(i(x,i(i(x,y),i(z,y)))).

24 [hyper,1,22,23] P(i(x,i(i(i(y,z),y),i(u,y)))).

25 [hyper,1,24,24] P(i(i(i(x,y),x),i(z,x))).

28 [hyper,1,8,25] P(i(x,i(i(y,i(y,z)),i(u,i(y,z))))).

33 [hyper,1,28,28] P(i(i(x,i(x,y)),i(z,i(x,y)))).

38 [hyper,1,33,33] P(i(x,i(i(y,i(y,z)),i(y,z)))).

40 [hyper,1,38,38] P(i(i(x,i(x,y)),i(x,y))).

Finding Missing Proofs with Automated Reasoning 21

42 [hyper,1,40,8] P(i(i(i(x,y),i(i(i(n(z),n(u)),v),z)),i(i(z,x),i(u,x)))).

43 [hyper,1,42,42] P(i(i(i(x,y),i(y,z)),i(u,i(y,z)))).

44 [hyper,1,42,40] P(i(i(x,i(i(n(x),n(y)),z)),i(y,i(i(n(x),n(y)),z)))).

46 [hyper,1,42,43] P(i(i(i(x,y),i(z,x)),i(u,i(z,x)))).

47 [hyper,1,40,43] P(i(i(i(x,y),i(y,z)),i(y,z))).

49 [hyper,1,40,46] P(i(i(i(x,y),i(z,x)),i(z,x))).

50 [hyper,1,47,8] P(i(i(i(i(n(x),n(y)),z),x),i(i(x,u),i(y,u)))).

51 [hyper,1,49,23] P(i(i(i(i(x,y),z),y),i(x,y))).

52 [hyper,1,50,47] P(i(i(i(n(x),y),z),i(x,z))).

54 [hyper,1,51,46] P(i(x,i(y,i(z,x)))).

57 [hyper,1,52,40] P(i(x,i(n(x),y))).

58 [hyper,1,52,54] P(i(x,i(y,i(z,i(n(x),u))))).

61 [hyper,1,47,58] P(i(x,i(y,i(n(i(z,x)),u)))).

64 [hyper,1,44,61] P(i(x,i(i(n(y),n(x)),i(n(i(z,y)),u)))).

66 [hyper,1,64,44] P(i(i(n(x),n(i(i(y,i(i(n(y),n(z)),u)),

i(z,i(i(n(y),n(z)),u))))),i(n(i(v,x)),w))).

67 [hyper,1,49,66] P(i(n(i(x,y)),n(y))).

68 [hyper,1,23,67] P(i(i(i(n(i(x,y)),n(y)),z),i(u,z))).

70 [hyper,1,50,68] P(i(i(i(x,y),z),i(y,z))).

73 [hyper,1,70,8] P(i(i(i(i(n(x),n(y)),z),x),i(u,i(i(x,v),i(y,v))))).

76 [hyper,1,51,73] P(i(i(n(x),n(y)),i(z,i(i(x,u),i(y,u))))).

77 [hyper,1,42,73] P(i(i(i(i(x,y),i(z,y)),i(i(n(x),n(z)),u)),

i(v,i(i(n(x),n(z)),u)))).

79 [hyper,1,42,76] P(i(i(i(i(x,y),i(z,y)),n(x)),i(u,n(x)))).

81 [hyper,1,77,33] P(i(x,i(i(n(y),n(i(y,z))),i(i(y,z),z)))).

83 [hyper,1,42,79] P(i(i(n(x),i(i(x,y),i(z,y))),i(u,i(i(x,y),i(z,y))))).

86 [hyper,1,81,81] P(i(i(n(x),n(i(x,y))),i(i(x,y),y))).

87 [hyper,1,40,83] P(i(i(n(x),i(i(x,y),i(z,y))),i(i(x,y),i(z,y)))).

88 [hyper,1,52,86] P(i(x,i(i(x,y),y))).

91 [hyper,1,23,88] P(i(i(i(x,i(i(x,y),y)),z),i(u,z))).

92 [hyper,1,77,91] P(i(x,i(i(n(y),n(z)),i(z,i(i(y,u),u))))).

97 [hyper,1,92,92] P(i(i(n(x),n(y)),i(y,i(i(x,z),z)))).

99 [hyper,1,52,97] P(i(x,i(y,i(i(x,z),z)))).

100 [hyper,1,87,99] P(i(i(x,y),i(i(n(x),y),y))).

102 [hyper,1,70,99] P(i(x,i(y,i(i(i(z,x),u),u)))).

103 [hyper,1,87,102] P(i(i(x,y),i(i(i(z,n(x)),y),y))).

105 [hyper,1,91,103] P(i(x,i(i(i(y,n(z)),i(i(z,u),u)),i(i(z,u),u)))).

106 [hyper,1,49,100] P(i(i(n(x),x),x)).

107 [hyper,1,42,105] P(i(i(i(i(x,y),y),z),i(x,z))).

108 [hyper,1,107,103] P(i(x,i(i(i(y,n(i(x,z))),z),z))).

109 [hyper,1,70,108] P(i(x,i(i(i(y,n(i(i(z,x),u))),u),u))).

113 [hyper,1,46,109] P(i(x,i(i(i(y,n(i(i(z,i(u,v)),u))),u),u))).

116 [hyper,1,42,113] P(i(i(x,y),i(i(i(z,i(x,u)),x),y))).

118 [hyper,1,116,108] P(i(i(i(x,i(y,z)),y),i(i(i(u,n(i(y,v))),v),v))).

120 [hyper,1,42,118] P(i(i(x,i(y,i(z,u))),i(i(z,x),i(y,i(z,u))))).

122 [hyper,1,120,23] P(i(i(x,y),i(i(y,z),i(x,z)))).

123 [hyper,7,122,106,57] $ANS(step_allLuka_1_2_3).

22 B. Fitelson, L. Wos

The original approach we took (detailed in [Wos2000a]) also yielded de-

ductions of Hilbert's and Church's axiom systems. At this point, we do not

know whether a shorter proof (than 56 applications of condensed detach-

ment) exists with the given constraints. Nor do we know whether a shorter

proof exists if one removes the requirement of avoiding double negation. For

the researcher who might �nd either question intriguing enough to merit

study, we note that our �rst proof for the 23-letter single axiom has length

200. In view of this fact, one might (in an attempt to answer either question)

be forced to formulate an attack that (in its �rst stages) yields a proof far

longer than desired.

Regarding the concern for proof length and the desire for �nding proofs

shorter than that in hand, one need only turn to the work of Meredith

and Prior, Thomas, Ulrich, and others. Indeed, Meredith and Prior [Mered-

ith1963, page 171] present a \very slight abridgement" of �ukasiewicz's proof

[�ukasiewicz1970, pages 299{300] of the suÆciency of his shortest single ax-

iom for the implicational fragment of two-valued sentential (or propositional)

calculus. �ukasiewicz's proof (when reasonably reconstructed from his de-

tachment and substitution proof) requires 34 condensed detachment steps.

Meredith and Prior were able to eliminate one step of �ukasiewicz's proof,

yielding a 33-step condensed detachment proof, four of whose steps are not

present in the reconstructed �ukasiewicz proof. Using OTTER, we have

been able to �nd a 32-step proof (the following), two of whose steps are

not present in the 33-step proof of Meredith and Prior, and four of whose

steps are not present in the �ukasiewicz 34-step proof. One of the two just-

mentioned steps is also absent from the Lukaseiwicz proof, and two of the

four just-mentioned steps are among the four present in the 33-step proof

but not in the 34-step proof.

A Proof of the �ukasiewicz Shortest Single Axiom

-----> EMPTY CLAUSE at 0.23 sec ----> 82 [hyper,34,53,77,79]

$ANS(TARSKI_BERNAYS).

Length of proof is 32. Level of proof is 29.

---------------- PROOF ----------------

33 [] -P(i(x,y)) | -P(x) | P(y).

34 [] -P(i(p,i(q,p))) | -P(i(i(i(p,q),p),p))

| -P(i(i(p,q),i(i(q,r),i(p,r)))) |

$ANS(TARSKI_BERNAYS).

35 [] P(i(i(i(x,y),z),i(i(z,x),i(u,x)))).

Finding Missing Proofs with Automated Reasoning 23

44 [hyper,33,35,35] P(i(i(i(i(x,y),i(z,y)),i(y,u)),i(v,i(y,u)))).

45 [hyper,33,35,44] P(i(i(i(x,i(y,z)),i(i(u,y),i(v,y))),

i(w,i(i(u,y),i(v,y))))).

46 [hyper,33,45,35] P(i(x,i(i(i(y,z),y),i(u,y)))).

47 [hyper,33,46,46] P(i(i(i(x,y),x),i(z,x))).

48 [hyper,33,35,47] P(i(i(i(x,y),i(y,z)),i(u,i(y,z)))).

49 [hyper,33,35,48] P(i(i(i(x,i(y,z)),i(u,y)),i(v,i(u,y)))).

50 [hyper,33,35,49] P(i(i(i(x,i(y,z)),i(u,i(z,v))),i(w,i(u,i(z,v))))).

51 [hyper,33,50,35] P(i(x,i(i(i(y,z),u),i(z,u)))).

52 [hyper,33,51,51] P(i(i(i(x,y),z),i(y,z))).

53 [hyper,33,52,52] P(i(x,i(y,x))).

55 [hyper,33,52,35] P(i(x,i(i(x,y),i(z,y)))).

56 [hyper,33,35,55] P(i(i(i(i(i(x,y),z),i(u,z)),x),i(v,x))).

57 [hyper,33,35,56] P(i(i(i(x,y),i(i(i(y,z),u),i(v,u))), i(w,i(i(i(y,z),u),

i(v,u))))).

58 [hyper,33,35,57] P(i(i(i(x,i(i(i(y,z),u),i(v,u))),i(w,y)),i(v6,i(w,y)))).

59 [hyper,33,35,58] P(i(i(i(x,i(y,z)),i(u,i(i(i(z,v),w),i(v6,w)))),

i(v7,i(u,i(i(i(z,v),w),i(v6,w)))))).

60 [hyper,33,59,35] P(i(x,i(i(i(y,z),i(u,v)),i(i(i(z,w),v),i(u,v))))).

61 [hyper,33,60,60] P(i(i(i(x,y),i(z,u)),i(i(i(y,v),u),i(z,u)))).

62 [hyper,33,61,35] P(i(i(i(x,y),i(z,u)),i(i(x,u),i(z,u)))).

63 [hyper,33,62,55] P(i(i(x,i(y,z)),i(i(i(x,u),z),i(y,z)))).

64 [hyper,33,63,35] P(i(i(i(i(i(x,y),z),u),i(v,x)),i(i(z,x),i(v,x)))).

65 [hyper,33,35,64] P(i(i(i(i(x,y),i(z,y)),i(i(i(y,u),x),v)),

i(w,i(i(i(y,u),x),v)))).

66 [hyper,33,65,65] P(i(x,i(i(i(i(y,z),u),i(v,z)),i(i(i(z,w),v),i(y,z))))).

67 [hyper,33,66,66] P(i(i(i(i(x,y),z),i(u,y)),i(i(i(y,v),u),i(x,y)))).

68 [hyper,33,61,67] P(i(i(i(i(x,y),z),i(u,y)),i(i(i(y,v),x),i(u,y)))).

69 [hyper,33,67,68] P(i(i(i(i(x,y),z),i(i(y,u),v)),i(i(v,y),i(x,y)))).

70 [hyper,33,68,62] P(i(i(i(i(x,y),z),u),i(i(u,y),i(x,y)))).

71 [hyper,33,69,64] P(i(i(i(x,y),z),i(i(i(y,u),z),z))).

73 [hyper,33,64,71] P(i(i(x,y),i(i(i(x,z),y),y))).

75 [hyper,33,73,73] P(i(i(i(i(x,y),z),i(i(i(x,u),y),y)),i(i(i(x,u),y),y))).

76 [hyper,33,70,75] P(i(i(i(i(i(x,y),z),z),u),i(i(x,z),u))).

77 [hyper,33,75,71] P(i(i(i(x,y),x),x)).

79 [hyper,33,76,70] P(i(i(x,y),i(i(y,z),i(x,z)))).

4.3. Additional successes

Wajsberg [Wajsberg1977, Theorem 37, page 209] gives a generalization of the

Tarski-Bernays axiomatization of the implicational fragment of two-valued

sentential logic. Wajsberg's proof relies on mathematical induction. Using

OTTER, we have found the following 17-step, pure condensed detachment

proof of Wajsberg's theorem.

24 B. Fitelson, L. Wos

A Proof of Wajsberg's Theorem 37

-----> EMPTY CLAUSE at 0.05 sec ----> 148 [hyper,24,146,27,28]

$ANS(TARSKI_BERNAYS).

Length of proof is 17. Level of proof is 9.

---------------- PROOF ----------------

23 [] -P(i(x,y)) | -P(x) | P(y).

24 [] -P(i(p,i(q,p))) | -P(i(i(i(p,q),p),p))

| -P(i(i(p,q),i(i(q,r),i(p,r)))) |

$ANS(TARSKI_BERNAYS).

25 [] P(c1).

26 [] P(i(x,i(c1,x))).

27 [] P(i(i(i(x,y),x),x)).

28 [] P(i(i(x,y),i(i(y,z),i(x,z)))).

32 [hyper,23,28,28] P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))).

34 [hyper,23,28,27] P(i(i(x,y),i(i(i(x,z),x),y))).

35 [hyper,23,28,26] P(i(i(i(c1,x),y),i(x,y))).

40 [hyper,23,32,27] P(i(i(x,i(x,y)),i(x,y))).

50 [hyper,23,32,35] P(i(i(x,c1),i(y,i(x,y)))).

53 [hyper,23,35,34] P(i(x,i(i(i(c1,y),c1),x))).

58 [hyper,23,32,40] P(i(i(i(x,y),x),i(i(x,y),y))).

70 [hyper,23,28,53] P(i(i(i(i(i(c1,x),c1),y),z),i(y,z))).

85 [hyper,23,32,70] P(i(i(x,i(i(c1,y),c1)),i(z,i(x,z)))).

89 [hyper,23,70,58] P(i(i(c1,x),i(i(i(c1,x),c1),c1))).

98 [hyper,23,32,85] P(i(i(i(c1,x),y),i(z,i(i(y,c1),z)))).

105 [hyper,23,35,89] P(i(x,i(i(i(c1,x),c1),c1))).

115 [hyper,23,27,98] P(i(c1,i(i(x,c1),c1))).

125 [hyper,23,28,105] P(i(i(i(i(i(c1,x),c1),c1),y),i(x,y))).

131 [hyper,23,115,25] P(i(i(x,c1),c1)).

141 [hyper,23,125,131] P(i(x,c1)).

146 [hyper,23,50,141] P(i(x,i(y,x))).

148 [hyper,24,146,27,28] $ANS(TARSKI_BERNAYS).

Meredith [Meredith1953] gives two 19-letter single axioms for the system

hC,Oi of two-valued propositional calculus. Meredith [Meredith1953, pages

160{163] reports a 31-step detachment plus substitution suÆciency proof for

the �rst of these axioms. His proof is not a condensed detachment proof,

relying on unneeded identi�cations of variables in several steps. Using OT-

TER, we have determined that the shortest condensed detachment proof

that contains Meredith's 31 reported steps is in fact a 37-step, 8-variable

condensed detachment proof. Using OTTER, we have found a 26-step, 6-

variable condensed detachment proof. Our OTTER proof is signi�cantly

Finding Missing Proofs with Automated Reasoning 25

more elegant than Meredith's, in terms of its length, and in terms of the

complexity of the formulas that appear in the proof.

As for the second hC,Oi single axiom, Meredith later reports a proof in

[Meredith1963, pages 183{184]. This proof requires 60 condensed detach-

ment steps. Using OTTER, we have found a 54-step condensed detachment

proof.
Meredith and Prior [Meredith1963, page 182] report a single axiom for

the two formulas P(i(i(i(x,x),y),y)) and P(i(i(x,y),i(i(y,z),i(x,z)))) (known

in the modern literature as \specialized assertion" and \suÆxing", respec-

tively). Meredith gives a proof of the two desired formulas from his single

axiom. But, Meredith's proof uses combinators and lambda conversion,

not condensed detachment on propositional formulas. As such, an explicit

condensed detachment proof was missing. Using OTTER, we have found a

7-step condensed detachment proof. Since we found this proof using exhaus-

tive (breadth-�rst) search, it is likely that no shorter condensed detachment

proof exists. We have also used OTTER to prove the other direction of the

equivalence. We have a 6-step condensed detachment proof of Meredith's

axiom from specialized assertion and suÆxing.

Meredith [Meredith1953, pages 157{160] gives a 41-step condensed de-

tachment proof of the suÆciency of his 21-letter single axiom for the hC,Ni

system of two-valued sentential logic. Meredith's proof uses 7 distinct vari-

ables and relies heavily upon the use of double-negation terms. Using

OTTER, Deepak Kapur found a 6-variable, 63-step condensed detachment

proof. We now have a 50-step, 6-variable proof (containing double-negation

terms). We have also used OTTER to �nd a 51-step, 7-variable proof that

is free of double negation terms. It remains open whether there exists a

6-variable proof that is also free of double-negation terms.

Meredith [Meredith1963, page 172] reports two 19-letter single axioms for

the hC,Ii system of the implicational fragment of two-valued sentential logic.

He proves the suÆciency of the �rst of these, using 38 condensed detachment

steps. Using OTTER, we have found a 31-step condensed detachment proof.

Meredith reports no proof of the suÆciency of his second hC,Ii single axiom.

Using OTTER, we have found a 61-step condensed detachment suÆciency

proof of this second hC,Ii single axiom.

In contrast to the other calculi on which we have focused, equivalen-

tial calculus is not concerned with implication. Also of note, that area of

logic does admit shortest single axioms. The suÆciency of the single ax-

ioms XHN [e(x,e(e(y,z),e(e(z,x),y)))] and XHK [e(x,e(e(y,z),e(e(x,z),y)))]

for equivalential calculus, �rst proved by S. Winker in the early 1980s by in

part relying on one of Argonne's automated reasoning programs, has also

26 B. Fitelson, L. Wos

been proved more recently using OTTER. Indeed, OTTER furnished very el-

egant proofs of the suÆciency of these two single axioms, a 19-step condensed

detachment proof for XHN when compared with the Winker original 15-step

proof, and a 23-step condensed detachment proof for XHK when compared

with the Winker original 84-step proof. When XHN and XHK were dis-

patched, only one of the possible 630 formulas of length eleven (measured in

symbol count) remained in doubt regarding its status in the context of being

a shortest single axiom, namely, the formula XCB [e(x,e(e(e(x,y),e(z,y)),z))].

In that its status is still in doubt, we o�er the following as a possible begin-

ning. We have used OTTER to show that XCB implies reexivity [e(x,x)],

and that XCB plus symmetry [e(e(x,y),e(y,x))] is suÆcient for equivalential

calculus. The preceding reduces the open question to determining whether

symmetry is deducible from XCB.

5. Summary and conclusions

Throughout many decades and in various areas of logic, axiomatic proofs

of key theorems have continued to elude some of the �nest minds. These

missing proofs come in many forms. One class consists of results that are

known to hold because of being valid, but no proof of any type is o�ered

by the literature, much less an axiomatic proof. A second type consists of

theorems whose only known proof is metatheoretic. A third type consists of

announced results without proof (as in the case of the �ukasiewicz 23-letter

single axiom). Various other types exist [Fitelson2000].

Then there are those proofs that are partially missing proofs because of

being incomplete, not strictly missing, with steps left for the imagination.

Closely related are those proofs that, although giving the impression that

the standard inference rule (for example, condensed detachment) is used

and no other, in fact contain steps not obtainable from that rule. These two

classes of partially missing proofs, as well as those that are clearly types of

(fully) missing proof, warrant e�ort aimed at producing the ideal proof, an

axiomatic proof with all of the pertinent details.

For the spectrum of proofs to be found (including the cited �ve classes),

OTTER has proved to be invaluable as an assistant. Not surprising are the

successes at that end of the spectrum where a large fraction of the desired

axiomatic proof is o�ered by the literature. However, where no clue exists

concerning how to proceed or which target merits emphasis (as was the case

with the �ukasiewicz 23-letter single axiom), successes indeed produce great

satisfaction. Our successes with proof �nding o�er an additional (to us)

startling property. In almost all cases, contrary to intuition, the proofs we

Finding Missing Proofs with Automated Reasoning 27

have found avoid reliance on double negation | absent are terms of the form

n(n(t)) for any term t, where n denotes negation.

Motivated by the desire to produce a fruitful dialogue, we raise two

questions. First, what conditions guarantee that there exists a proof relying

solely on condensed detachment all of whose deduced steps are free of double

negation? Second (and less precise), what is implied about the (apparently)

implicitly held view concerning the necessity (in various areas of logic) of

requiring the use of double negation? In addition to answers to the two

posed questions, we ask for open questions to study, questions of the type

featured in this article. For those with added curiosity in the context of

automated reasoning, two books [Wos1999,Wos2000b] may serve one well;

see Section 1.2 for information on the nature of the two cited books.

References

[Fitelson2000] Fitelson, B., and L. Wos, `Missing proofs found', preprint ANL/MCS-

P816-0500, Mathematics and Computer Science Division, Argonne National Labo-

ratory, May 2000.

[Harris2000] Harris, K., and B. Fitelson, `Distributivity in Lw and other sentential

logics', preprint, 2000.

[Kalman1983] Kalman, J., `Condensed detachment as a rule of inference', Studia Logica

42 (1983), 443{451.

[�ukasiewicz1963] �ukasiewicz, J., Elements of Mathematical Logic, Macmillan, New

York, 1963.

[�ukasiewicz1970] �ukasiewicz, J., Selected Works, edited by L. Borkowski, North Hol-

land, Amsterdam, 1970.

[McCune1994] McCune, W., OTTER 3.0 Reference Manual and Guide, Tech. Report

ANL-94/6, Argonne National Laboratory, Argonne, IL, January 1994.

[Meredith1953] Meredith, C. A., `Single axioms for the systems hC,Ni, hC,Oi, and hA,Ni

of the two-valued propositional calculus', J. Computing Systems 1, no. 3 (1953),

155{164.

[Meredith1958] Meredith, C. A., `The dependence of an axiom of �ukasiewicz', Trans.

AMS 87, no. 1 (1958), 54.

[Meredith1963] Meredith, C. A., and A. Prior, `Notes on the axiomatics of the propo-

sitional calculus', Notre Dame J. Formal Logic 4, no. 3 (1963), 171{187.

[Rose1958] Rose, A., and J. B. Rosser, `Fragments of many-valued statement calculi',

Trans. AMS 87 (1958), 1{53.

28 B. Fitelson, L. Wos

[Wajsberg1977] Wajsberg, M., Logical Works, Polish Academy of Sciences, Warsaw,

1977.

[Wos1999] Wos, L., and G,W. Pieper, A Fascinating Country in the World of Comput-

ing: Your Guide to Automated Reasoning, Singapore, World Scienti�c, 1999.

[Wos2000a] Wos, L., `Conquering the Meredith single axiom', preprint ANL/MCS-P815-

0500, Mathematics and Computer Science Division, Argonne National Laboratory,

May 2000.

[Wos2000b] Wos, L., and G,W. Pieper, The Collected Works of Larry Wos, Singapore,

World Scienti�c, 2000.

Branden Fitelson

University of Wisconsin

Department of Philosophy

Madison, WI 53706

and
Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL 60439-4801

�telson@facsta�.wisc.edu

Larry Wos

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL 60439-4801

wos@mcs.anl.gov

