

Partial Belief, Full Belief, and Accuracy–Dominance

Kenny Easwaran & Branden Fitelson

Departments of Philosophy
University of Southern California
&
University of California-Berkeley
[...but, soon, Rutgers]

easwaran@usc.edu
branden@fitelson.org

Easwaran & Fitelson

Partial Belief, Full Belief, and Accuracy-Dominance

1

Easwaran & Fitelson

Preliminaries

Partial Belief, Full Belief, and Accuracy-Dominance

2

 Preliminaries
 Example #1
 Bridging I & I
 Example #2
 Generalizations
 Examples 3 & 4
 Discussion

 ○ ● ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○

- In "Accuracy-Dominance Arguments" (ADAs) for probabilism:
 - B is having an "accuracy-dominated" partial belief function
 b. This means one's b is less accurate than some alternative candidate credence function b* come what may.
 - F is *inadmissibility*: the existence of an alternative candidate partial belief function b^* such that b^* s-dominates b, where s is some "good" scoring rule that is adopted by S. (we will adopt the *Brier score* over *an entire algebra* A).
 - We'll give examples, below, to illustrate these concepts.
- We'll focus on the relationship between the *inconsistency* of *S*'s *full* beliefs and the *incoherence* of *S*'s *partial* beliefs.
- The upshot will be that ADAs for probabilistic coherence *break down* (for *certain sorts* of agents), when we think carefully about this connection. First, some set-up.
 - We'll consider *logically omniscient* agents S, with languages \mathcal{L} & *total* credence functions b such that: (i) $b: \mathcal{L} \mapsto [0,1]$, (ii) b(p) = b(q) if $p = \mathcal{L} q$, (iii) $b(\top) = 1$ and $b(\bot) = 0$.

• Arguments for probabilism aim to undergird/motivate a *synchronic probabilistic coherence* norm for partial beliefs.

• Standard arguments for probabilism are all of the form:

• These *arguments* rest on *Theorems* (⇒) and *Converse*

Theorems (\Leftarrow): b is non-Pr \iff b has formal property F.

• An agent *S* has a non-probabilistic partial belief function *b*

iff (\iff) *S* has some "bad" property *B* (in virtue of the fact that their p.b.f. *b* has a certain kind of *formal* property *F*).

• **Dutch Book Arguments**. *B* is susceptibility to sure monetary

loss (in a certain betting set-up), and F is the formal role

played by non-Pr *b*'s in the DBT and the Converse DBT.
• **Representation Theorem Arguments**. *B* is *having*

preferences that violate some of Savage's axioms (and/or being unrepresentable as an expected utility maximizer), and

F is the formal role played by non-Pr *b*'s in the RT.

To the extent that we have reasons to avoid these *B*'s, these arguments provide reasons (not) to have a(n) (in)coherent *b*.
Today, we're talking about *accuracy-dominance* arguments.

- The locution "b is incoherent on the algebra \mathbb{A} of propositions expressible in \mathcal{L} " (or "b is incoherent on \mathbb{A} ", for short) means that b is *not a probability function* on \mathbb{A} .
- A credence function b is said to be *extremal* just in case it assigns either 1 or 0 to each (and every) proposition in A.
- Thus, the *truth-value assignments* on \mathcal{L} correspond (exactly) to the *coherent* extremal credence functions on \mathbb{A} .
- Now, we will be contrasting two kinds of agents:
 - **Extremal agents** are agents whose credence functions are extremal, and for whom non-extremal credence functions aren't even so much as *candidate* alternative credence functions (*i.e.*, extremal *S*'s "*necessarily*" have extremal *b*'s).
 - Non-extremal agents are agents that "*can*" (and *typically do*) have non-extremal credence functions.
- The important contrast here will be between *incoherent* extremal agents and *incoherent* non-extremal agents.
- OK, now we're ready for a concrete example...

Preliminaries 000	Example #1 ●○	Bridging I & I O	Example #2	Generalizations	Examples 3 & 4	Discussion 00
						_

- We begin with a (concrete) *incoherent non*-extremal agent *S*, to vividly illustrate the concepts we've been talking about.
- Consider an agent S with a 2-atomic-sentence (X,Y) \mathcal{L} , and a d.o.b. function b on \mathcal{L} , which satisfies these six constraints:

$b(X \& Y) = \frac{1}{10}$	$b(X \& \sim Y) = \frac{2}{5}$	$b(\sim X \& Y) = \frac{1}{5}$
$b(\sim X \& \sim Y) = \frac{3}{10}$	$b(X) = \frac{1}{2}$	$b(\sim X) = \frac{2}{5}$

- Note: b is coherent on the partition of state descriptions of \mathcal{L} , but b will have to be incoherent on the full algebra \mathbb{A} .
- On the next slide, we will fill-in the values of b on the rest of A, so as to make S (intuitively) "close" to being coherent.
- Accuracy-dominance theorems (going back to de Finetti) will entail the existence of *alternative*, *non-extremal* credence functions b* that will be more accurate than b (in Brier score) — *in all possible worlds* (call this *Brier-dominance*).
- On the next slide, we look at *b* and two "close" (in Euclidean distance) alternative, coherent, non-extremal functions on A.

Easwaran & Fitelson

Partial Belief, Full Belief, and Accuracy-Dominance

xample #1 Bridging I & I Example #2 Generalizations Examples 3 & 4 Discussion O OO OO

- Next, consider an *extremal* agent *S* who assigns credence 1 to propositions he believes and credence 0 to propositions he disbelieves (*i.e.*, *S* is *dogmatic/opinionated* and *extremal*).
- Place *S* in a "*preface context*" where *S* believes each member of a set of propositions, but disbelieves their conjunction.
- Because *S* is dogmatic, extremal, and has inconsistent full beliefs, it follows that *S*'s credence function *b* is *incoherent*.
- This sort of agent allows us to forge an interesting (and theoretically clean and revealing) connection between *inconsistency* of full belief and *incoherence* of partial belief.
 - We will now focus on agents *S* of this sort, with an eye toward investigating the following questions.
 - What do such agents look like, from an ADA point of view?
 - Specifically, can ADAs furnish such agents with reasons to have probabilistically coherent partial beliefs (and, hence, reasons to have logically consistent full beliefs)?
 - I'll hand it off to Kenny now, to deliver the punch-line...

	0					
		р	$b_{\mathbb{A}}(p)$	$b'_{\mathbb{A}}(p)$	$b_{\mathbb{A}}^{\dagger}(p)$	
		~X & ~Y	3/10	3/10	23/80	
		<i>X</i> & ∼ <i>Y</i>	2/5	2/5	33/80	
		X & Y	1/10	1/10	9/80	
		~X & Y	1/5	1/5	3/16	
		~Y	7/10	7/10	7/10	
		$X \equiv Y$	2/5	2/5	2/5	
		~X	2/5	1/2	19/40	
		X	1/2	1/2	21/40	
		\sim (X \equiv Y)	3/5	3/5	3/5	
		Y	3/10	3/10	3/10	
		$X \vee \sim Y$	4/5	4/5	13/16	
		$\sim X \vee \sim Y$	9/10	9/10	71/80	
		$\sim X \vee Y$	3/5	3/5	47/80	
		$X \vee Y$	7/10	7/10	57/80	
		$X \vee \sim X$	1	1	1	
		<i>X</i> & ∼ <i>X</i>	0	0	0	
h	a is a comn	letion of h	that is (i	intuitiv <i>e</i>	elv) "clos	e" t

- b_A is a completion of b that is (intuitively) "close" to coherent.
- $b'_{\mathbb{A}}$ is a Pr-f that's (intuitively) "close" to $b_{\mathbb{A}}$, but does **not** Brier-dominate $b_{\mathbb{A}}$.
- $b_{\mathbb{A}}^{\dagger}$ is the Euclidean-closest Pr-f to $b_{\mathbb{A}}$, and \therefore it Brier-dominates $b_{\mathbb{A}}$.

Easwaran & Fitelson

Partial Belief, Full Belief, and Accuracy-Dominance

6

reliminaries oo	Example #1	Br	ridging I & I	Example #	2 Gen	eralizations)
			р	$\beta(p)$	$\beta'(p)$	$\beta^{\dagger}(p)$
			~X & ~Y	0	0	1/8
			<i>X</i> & ∼ <i>Y</i>	0	0	1/8
			X & Y	0	1	5/8
			~X & Y	0	0	1/8
			~ Y	0	0	1/4
			$X \equiv Y$	1	1	3/4
			$\sim X$	0	0	1/4
			X	1	1	3/4
			\sim (X \equiv Y)	0	0	1/4
			Y	1	1	3/4
			$X \vee \sim Y$	1	1	7/8
			$\sim X \vee \sim Y$	1	0	3/8
			$\sim X \vee Y$	1	1	7/8
			$X \vee Y$	1	1	7/8
			$X \vee \sim X$	1	1	1
			<i>X</i> & ∼ <i>X</i>	0	0	0

- β represents a (toy!) dogmatic, extremal agent in a "preface case".
- β' is the coherent, extremal function that is closest to β .
- No extremal credence function $β^*$ Brier-dominates β.
 - β^{\dagger} is the *Euclidean-closest* Pr-f to β , and \therefore it *Brier-dominates* β .

Easwaran & Fitelson

Generalizations • This (toy) "preface case" can be generalized to larger A's. • The algebra A above had four state descriptions. And, the agent assigned credence 1 to all propositions entailed by a majority of state descriptions, and 0 to all propositions incompatible with a majority of state descriptions. • **Theorem.** β 's assigning 1 to propositions entailed by most state descriptions, and 0 to those incompatible with most. is a *sufficient* condition for β 's being *non*-Brier-dominated. • Calculate the *average* Brier score across states; if β' dominates β , then it must have a lower average score. • But the average Brier score of β is just the sum of the components for each proposition. • The component for a given p is the proportion of states in which p's truth-value is the opposite of that assigned by β . • So to minimize this average, it is sufficient to believe every proposition true in a majority of states and disbelieve every proposition false in a majority of states, QED. [What β does on p's true in exactly half the states is irrelevant!] Partial Belief, Full Belief, and Accuracy-Dominance Easwaran & Fitelson

Preliminaries Example #1 Bridging I & I Example #2 **Generalizations** Examples 3 & 4 Discussion oo oo oo oo oo

- The vast majority (14796/16384 in △) of extremal functions are dominated by some extremal function. Breakdown:
 - Non-Brier-dominated extremal pbf's (1588/16384 in A):
 - Coherent functions (4/16384 in A).
 - "Preface-like" (Theorem) incoherent pbf's (64/16384 in A).
 - Others??? (1520/16384 in A).
 - Brier-Dominated extremal pbf's (14796/16384 in A):
 - Dominated by a *single* coherent extremal β . [284/16384 in A]
 - Dominated by *every* coherent extremal β . [8/16384 in A]
 - Dominated by *no* coherent extremal β . [14504/16384 in A]
- In every state, one coherent function gets every proposition right while all the others get exactly half of them wrong.
- Thus, if a belief set is dominated by two distinct coherent sets, then it must get more than half wrong in every state, and thus be dominated by *all* coherent sets.
- On the next slide, we examine examples of Brier-dominated extremal belief functions of the last two types...

Generalizations • Such β 's are "preface-like", since they commit themselves to many weak propositions, but not their conjunctions. For extremal agents, both "preface-like" belief functions and coherent belief functions are *admissible* (non-dominated). • In this sense, the ADA does not generate a reason for *extremal* incoherent agents to be coherent (per se). • In particular, it even allows for an extremal agent to believe both a proposition and its negation, or to disbelieve both! • But, ADAs *do* motivate *some* wide-scope, "on pain of Brier-domination" norms — even for extremal agents. • **Norm 1.** If A and B are incompatible, then (even an extremal) *S* ought (*either* disbelieve *A*, disbelieve *B* or believe $A \vee B$). • Let β be an extremal belief function with $\beta(A) = \beta(B) = 1$ and $\beta(A \vee B) = 0$ [i.e., S believes A, B; but disbelieves $A \vee B$]. • Let β' have identical values to β on all other propositions, but assign $\beta'(A) = \beta'(B) = 0$ and $\beta'(A \vee B) = 1$. • Then in every case, β' gets two of these beliefs right while β only gets one right, so β' dominates β . Easwaran & Fitelson Partial Belief, Full Belief, and Accuracy-Dominance

 $\delta'(p)$ $\gamma(p) \parallel \delta(p) \mid$ $\sim X \& \sim Y$ $X \& \sim Y$ 1 1 0 0 X & Y1 1 $\sim X \& Y$ 1 0 0 $\sim Y$ 0 $X \equiv Y$ 0 1 0 $\sim X$ 0 0 X 0 1 1 $\sim (X \equiv Y)$ 0 0 0 Y 0 0 0 $X \vee \sim Y$ 0 1 $\sim X \vee \sim Y$ 0 $\sim X \vee Y$ 0 $X \vee Y$ 0 $X \vee \sim X$ 1 1 1 $\overline{X} \& \sim X$ 0 0

• In every state, γ gets 7 p's right, while every coherent extremal β gets exactly 8 p's right in any state other than its own (where it gets 16).

Examples 3 & 4

• \therefore *y* is dominated by *every* coherent extremal β .

• *y* also *violates* Norm 1.

• δ is a belief function that is dominated by *no coherent* extremal β , but δ is dominated by δ' .

• In fact, δ' uniquely dominates δ .

• Interestingly, δ *satisfies* Norm 1. Therefore, Norm 1 is *insufficient* for being *non*-dominated.

• Indeed, δ satisfies this *even stronger norm*:

- Norm 2. If *A* and *B* are incompatible, and $A \lor B \vDash p$, then *S* ought (*either* disbelieve *A* or disbelieve *B* or believe p).
- ullet But, δ *violates* the following additional norm:
 - **Norm 3**. *S* ought not believe any three pairwise incompatible propositions.

Easwaran & Fitelson

Easwaran & Fitelson

- We anticipate the following objection. *Extremal agents are crazy*, so why should an advocate of ADAs care about them?
- Note: *we're not advocating extremality*. There may be some *epistemic* norms that extremal agents are bound to violate.
- That's not the issue. ADAs are supposed to be (aim to be) arguments against *incoherence per se*. And, while extremality may be "bad", it's *not incoherent per se*.

- To sum up: ADAs for probabilism (dating back to de Finetti) all share an important (hitherto unappreciated) *asymmetry*.
- Every *non*-extremal incoherent partial belief function b is Brier-dominated by a *non*-extreme partial belief function b^* . [Indeed, there will always be a *coherent*, dominating b^* .]
- However, some (albeit a minority of) *extremal* incoherent partial belief functions β *fail* to be Brier-dominated by *any extremal* partial belief function β^* *coherent or otherwise*.
- So, while ADAs provide reason for non-extremal agents to be coherent (to the extent that they disvalue Brier-domination), they provide extremal agents with no such reason.
 - Nonetheless, some (wide-scope) coherence norms for the belief functions β of extremal agents *are* appropriately motivated by ADAs. The strongest of these norms is:
 - **Norm**. If there exists a set of propositions **P** such that β is *incorrect on a majority* of $p \in \mathbf{P}$ *in all possible worlds*, then (an extremal) S should not conform their beliefs to β .