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Abstract Charles Stein discovered a paradox in 1955 that many statisticians think is of
fundamental importance. Here we explore its philosophical implications. We outline the
nature of Stein’s result and of subsequent work on shrinkage estimators; then we describe
how these results are related to Bayesianism and to model selection criteria like AIC. We
also discuss their bearing on scientific realism and instrumentalism. We argue that results
concerning shrinkage estimators underwrite a surprising form of holistic pragmatism.
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1 Shrinkage is better than straight MLE when k ≥ 31

If you sample at random (with replacement) from a human population and find that the
average height in your sample is 5 ft, what could be more natural than the conclusion
that the average height in the whole population is about 5 ft? The principle underwriting
this inference has gone by different names. Philosophers have called it Bthe principle of
induction.^ Frequentist statisticians say that the inference is justified by a method called
Bmaximum likelihood estimation^ (MLE). Here the word Blikelihood^ is used in its
technical sense. The estimate that the population mean is 5 ft maximizes likelihood, not
in the sense that this is the most probable estimate given the observations, but in the
sense that it makes the observations more probable than other estimates are able to do.
The likelihood of hypothesis H relative to observation O is the quantity Pr(O|H), not the
quantity Pr(H|O). If the population mean were 7 ft, a sample mean of (about) 5 ft would
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be very improbable, Balmost a miracle.^ If the population mean were 5 ft, a sample
mean of approximately 5 ft would be much less surprising.2

Statisticians have done for MLE something that their philosophical predecessors did
not do for the principle of induction. They proved that MLE uniquely possesses various
desirable properties. Gauss showed that if the distribution of heights in the population is
normal, then the ML estimate of the mean height is the sample mean (Edwards 1974, p.
11). Gauss also realized that MLE is unbiased, meaning that repeated ML estimates
based on different samples drawn from the same population will tend to be centered on
the population mean. There are infinitely many unbiased estimators; Gauss (1823)
proved, finally, that ML estimates of normal means have lower expected mean-squared
error than any other unbiased estimator that is a linear function of the observations.

The case for MLE was strengthened in the 1930’s with the development of statistical
decision theory. Suppose estimates are good to the degree that they come close to the
true (but unknown) value of the quantity being estimated. In particular, consider a Bloss
function^ that measures an estimator’s inaccuracy by its squared deviation from the true
value of the target quantity. Figure 1 depicts three estimators that might be used for the
mean height in a population – the sample average, one-half the sample average, and the
sample median (the middle value). Figure 1 tracks how accurate an estimator can be
expected to be as a function of the unknown value of the population’s mean height (θ).
Of course, how well an estimator does may vary from sample to sample; what can be
plotted precisely is the average performance (the mathematical expectation). The
greater the expected squared error, the higher the estimator’s Brisk.^ As Fig. 1 makes
plain, the mean has a lower expected inaccuracy than the median for each possible
value of θ. The mean strongly dominates the median, in the technical sense of that term
used in decision theory. For that reason, the median is deemed an inadmissible
estimator. An admissible estimator isn’t dominated (either strongly or weakly) by any
other estimator.3 Figure 1 does not say whether the sample mean and half-the-sample-
mean are admissible, since the figure leaves open that there might be other estimators
that dominate both. Blyth (1951) and Hodges and Lehmann (1951) settled this ques-
tion; they proved, for data drawn from a normal population, that there is no estimator
that dominates MLE. MLE is admissible. This doesn’t mean that MLE dominates all
other estimators, but only that no estimator dominates MLE.

Stein (1956) surprised the statistics community by showing that MLE has a dark side.
He proved that MLE is inadmissible when the estimation problem concerns three or
more statistically independent measurements of the means of normal distributions with
identical known variances.MLE is admissible if you are estimating average height in the
United States. It also is admissible if you are estimating average height in Norway. And
it is admissible if you are estimating average height in Japan. But if you want to estimate
all three averages at the same time, and your goal is to minimize expected error across
the three estimates, MLE is inadmissible.4 James and Stein (1961) showed that you do

2 Here we assuming the variances are the same in the two cases.
3 X weakly dominates Yprecisely when X’s risk is never higher than Y’s, and for some values of θ, X’s risk is
lower. Inadmissible estimators are weakly dominated; they may or may not be strongly dominated.
4 In the theory of random walks, a similarly interesting transition happens when you move from two to three
dimensions. Random walks in one or two dimensions are recurrent, meaning they have a probability of 1 of
returning to their starting point. Random walks in dimensions greater than two are not recurrent. Brown (1971)
discovered a connection between Stein’s result and this fact about random walks.
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better in expectation if you construct your estimates by shrinking the three observed

frequencies towards zero by multiplying each by c ¼ 1−σ2= ∑
3

i¼1
X 2

i

� �
. Here, Xi is the

ML estimate of the average height of population i, and σ2 is the variance within each
population. Multiplying by c shrinks estimates towards 0 because c will, in general, be
less than 1 and greater than 0.5 Efron and Morris (1973) showed how to generalize
Stein’s result when the variances of the populations are unknown and/or different from
each other, and they also showed that shrinking towards the grand mean of the samples
is better than straight MLE when four or more quantities are estimated.6

When you estimate three or more parameters, you should not expect a shrinkage
estimator to better MLE for each parameter; in fact, for each parameter, there are
parameter values for which shrinkage will do worse than MLE and other values for
which it will do better. However, your total error over the parameters collectively will
be lower in expectation if you shrink.

2 Why this is paradoxical

Stein’s result is bizarre. The three quantities can be entirely unrelated to and
independent of each other and these shrinkage estimators still do better than straight
MLE when judged by the criterion of expected squared error. Efron and Morris (1977)

5 Although it’s unlikely, it’s possible for c to be a negative number.
6 The estimator that shrinks the ML estimates towards the sample mean is now standardly referred to as the
BEfron-Morris estimator,^ and we will follow this practice in our paper; however, it is worth pointing out that
the Efron-Morris estimator was originally suggested by Dennis Lindley in the discussion section of Stein
(1962).

Fig. 1 Risk functions of three estimators. Adapted from Efron and Morris (1977), p. 124
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give the example of estimating the batting abilities of 18 Major League baseball players
from data on their first 45 times at bat in a year. If you estimate each player’s
probability of getting a hit, and use those estimates to predict how well each player
will do at the end of the year, the data from the end of the season reveals that you
do worse if you use MLE than if you shrink those ML estimates towards the
grand sample mean. In this case, real data behave in conformity with Stein’s result.
This may lead you to think that the baseball players are influenced by a common
cause that exerts a Bgravitational attraction^ on batting ability as the season
unfolds. The point of importance is that shrinkage results depend on no such assumption
(Stigler 1990, pp. 147–148).

Efron and Morris (1977) make this point graphic. After describing their baseball
example, they add to it the problem of inferring the percentage of foreign cars in
Chicago. This enlarged problem involves quantities that come in different units −

number of hits
number of times at bat and

number of foreign cars in Chicago
number of cars in Chicago . Shrinkage estimators are better than

straight MLE estimates here, since there are more than three parameters being
estimated. The mathematical results that ground this fact do not turn on whether
hits in baseball and foreign cars in Chicago are causally related to each other.

Which quantity do you want to estimate?

% domestic cars % foreign cars

Your data 60% domestic cars 40% foreign cars

Your shrinkage estimate <60% domestic cars <40% foreign cars

This is weird, but there is more. The additional strangeness is that there are different,
equally correct, ways of coding your data, and your choice of code will affect how
you shrink your estimates away from the MLE estimates. This point is illustrated
in the accompanying table. The average success rate at the start of the season for
the 18 baseball players that Efron and Morris examined was 26.5%. Suppose you
sample the cars in Chicago and find that 40% of the cars in your sample are
foreign. Since there are 18 baseball players and only one Chicago, the grand mean
of these 19 frequencies is close to 27%. So, if you shrink your estimates of those
19 parameters towards that grand mean, you’ll do better in expectation than if you
use straight MLE. Notice that if you shrink, you will shrink your car estimate
towards 27% regardless of whether you estimate the percentage of foreign cars or
the percentage of domestic. If you do both, you’ll have contradictory estimates. So
what should you do? Of course, only one of these shrinkages will move you
closer to the truth, but both in expectation will do so when they are part of the
19-parameter problem. Moreover, what is true in the 19-parameter problem also
holds for the initial problem of the 18 baseball players. The James-Stein theorem
does not require that you code the 18 sample means in terms of each player’s
percentage of hits in their first 45 times at bat. You could code some players in
terms of their success rates and others in terms of their failure rates, and the
theorem would still apply. As Efron and Morris tell the story, Roberto Clemente’s
estimated season-long batting average gets shrunk from his initial success rate of
0.400 towards 0.265, but MLE also will be bettered if you shrink his initial failure
rate of 0.600 towards 0.265. What goes for Chicago also goes for Roberto.

414 Euro Jnl Phil Sci (2017) 7:411–433



3 Stein’s paradox and linguistic invariance

The reader has a right to be shocked by the fact that what you say about Roberto
Clemente’s batting ability depends onwhether you seek to estimate his ability to succeed
or his tendency to fail. The oddity arises if your problem is to estimate Clemente’s ability
and that of 17 other baseball players simultaneously. This finding shows that shrinkage
estimators are not linguistically invariant in the following weak sense:

Linear Invariance: An estimator E of parameter θ is linearly invariant iff, for any
data set D, and any linear function f, f{E[θ | D]} = E[f(θ) | D], where a linear
function is any function of the form f(θ) = aθ+b, for real-valued a and b.

Linear invariance seems like a very reasonable requirement to impose on estimators.
Demanding linear invariance means that if your estimator says that 5 ft is the best estimate
of themean height in a population, it had better say that 60 in. is also the best estimate.MLE
is invariant in this sense, as are the sample mean, the sample median, and the sample mode.

There is another sort of invariance that also seems reasonable to impose on estimators.
Suppose you are estimating themassm of some object and that you end upwith a data set D
ofmeasurements. Now suppose someone adds the number 1 to each of yourmeasurements,
thereby yielding the new data set D’. Intuitively, it seems reasonable in this case to demand
that your estimator should be invariant in the following sense: E(m | D’) = E(m | D) + 1.
This type of invariance is known as translation invariance. Note that whereas Linear
Invariance is invariance under certain transformations of the parameters, translation invari-
ance is invariance under certain transformations of the data. The sample mean, median, and
mode are all clearly translation invariant, andMLE satisfies translation invariance too given
very plausible restrictions on the distribution. Shrinkage estimators, however, are not
translation invariant.

Given weak restrictions on the loss function and the probability distribution, any
translation invariant estimator has a constant risk function (cf. the median and the
average in Fig. 1). Translation invariant estimators are therefore easy to compare with
each other: the best translation invariant estimator is simply the one that has the lowest
(constant) risk. Stein’s result shows that, under quadratic loss, the best translation
invariant estimator of normal means, namely MLE, is dominated by shrinkage estima-
tors that are not translation invariant and not invariant under linear transformations,
when more than two parameters are being estimated.

MLE is the best invariant estimator if you are estimating the mean of a normal
distribution and you are using the squared loss function to measure inaccuracy.
However, if you change your loss function, then MLE might no longer be the best
invariant estimator. For example, if you were to measure inaccuracy by taking the
absolute value of the deviation from the target quantity, rather than the square of this
deviation, then the best invariant estimator would instead be the sample median, while
the ML estimator would still be the sample mean. On the other hand, if you were
measuring the mean of a Laplace distribution rather than a normal distribution, then the
ML and best estimator would be the median.7

7 The Laplace distribution is exponential like the normal distribution. The main difference between the two
distributions is that in the Laplace distribution, the exponent is not squared; instead, its absolute value is taken.
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The reader might naturally wonder whether Stein’s result is a mathematical curiosity
that arises only in estimation problems that involve normal distributions where the loss
function is squared deviation. It is not. Brown (1966) showed that for a very large range
of loss functions and distributions, the best translation invariant estimator is never
admissible. In each of the cases considered by Brown, there is a way of modifying the
James-Stein estimator to yield a non-invariant estimator that dominates the best
invariant estimator.8

Returning to the baseball players, it seems natural to restrict your attention to the
class C of estimation methods that yield the same answer whether you code your data in
terms of failure rates or success rates, and that aren’t affected by uniformly shifting the
data by some constant amount. However, Brown’s result shows that, under widely
applicable conditions, the best estimators in C will be dominated by strange shrinkage
estimators that are sensitive to how you encode your data.

The real Stein paradox is therefore not just that MLE is inadmissible in dimensions
greater than 2. The real paradox is that if total accuracy is your goal, then under widely
applicable conditions, you have to go outside the class of invariant estimators if you
want your estimator to be admissible.9

If you value linguistic invariance above total accuracy, you might choose to use an
invariant estimator even though shrinkage is more accurate.10 However, if you opt for a
shrinkage estimator SE(−), there is a kind of invariance that your estimator will possess,
at least if you use the squared loss function. If SE(θ, data) is more accurate in
expectation than MLE(θ, data), then SE(θ′, data) will also be more accurate in
expectation than MLE(θ′, data), provided that θ′ is a linear transformation of θ. In this
sense, it doesn’t matter whether you score all 18 baseball players by their success rates,
or all by their failure rates, or use success for some and failure for others. Regardless of
coding, shrinkage can be expected to better MLE.

4 Making the shrinkage result intuitive11

Suppose you make independent measurements of three unknown parameters where the
measurement of each parameter is modeled as a normal distribution with variance 1 and
mean θi. That is, you model the measurements Xi by the formula Xi = θi + error, where
the error is Gaussian. For simplicity, suppose you have just three measurements, x1, x2,
and x3, of θ1, θ2, and θ3, respectively. MLE says that you should estimate that θi = xi
for each i. Figure 2 represents this estimate in the <X,θ > plane as a 45 degree straight
line that goes through the origin. Each θ is the MLE estimate for a given observed value
of X. MLE is therefore a linear estimator of θ given X, but is MLE the best linear
estimator?

8 Nor is Stein’s result in the case of the squared loss function attributable to the fact that the squared loss
function is unbounded (James and Stein 1961, p. 367). The result also does not depend on the assumption that
the measurements of the different means are independent of one another (Bock 1975).
9 We thank an anonymous reviewer for pointing this out to us.
10 George Barnard seems to endorse this view (see Stein 1962, p. 288), as do Perlman and Chaudhuri (2012,
p.139n18), who maintain that shrinkage estimation should not be used in the absence of prior information that
non-arbitrarily singles out some point towards which you shrink the ML estimates.
11 Here we are indebted to Stigler (1990).
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To investigate this question, it is useful to indulge in a fiction: suppose you know the
true value for θ that is associated with each of the three observed x values. The three
<x, θ > pairs are represented in Fig. 3. What is the best linear estimator given these
three data points? To answer this question, you need to decide which of two estimation
problems you want to address. These are shown in Figs. 3 and 4.

Suppose your goal is to find the line that minimizes the vertical distances between
points and line. This line is shown in Fig. 3; it obeys the equation θ = aX + b.

Fig. 2 MLE line

Fig. 3 Line minimizing vertical distance
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Unfortunately, you don’t know the values of the θ’s, so you can’t estimate the
coefficients a and b in this equation in the usual way. However, you can try to
approximate them; indeed, all of the different shrinkage estimators, beginning with
the one described by James and Stein (1961), can be regarded as clever methods for
estimating a and b from the data.

Alternatively, your goal might be to minimize the horizontal distances between
points and line. The best line is then the one shown in Fig. 4. It obeys the eq.
X = αθ + β. As Galton (1888) recognized, the lines in Figs. 3 and 4 are different.
You need to decide whether you want a line that, for an observed x value, is close to the
true θ value (Fig. 3), or a line that, for a given θ value, is close to the observed x
value (Fig. 4).

The ML estimate shown in Fig. 2 may be regarded as an approximation of the
least-squares line in Fig. 4. Indeed, the 45 degree ML estimate is equivalent to the
theoretical regression line of X on θ, and therefore may be said to be the best
possible approximation of the least squares line in Fig. 4, given that the θ values
are unknown. However, if you want to minimize error in estimating θ, then the
line in Fig. 4 is not the line you should try to approximate; instead, you should try
to approximate the least squares line in Fig. 3, which is what shrinkage estimators
all attempt to do.

The fact that there are two least-squares lines explains why MLE leaves something
to be desired if your goal is to find a straight line that is close to the true θ value for a
given observed value of X. However, it explains more than that.

First, note that if you were to move the θs in Figs. 3 and 4 further apart from each
other, the two regression lines would then converge toward each other. Shrinkage can
therefore be expected to offer only a minor improvement over MLE if the θs are far
apart from each other (although the improvement will always be greater than 0). On the
other hand, if the θs are very close together, the slopes of the two regression lines will
be very different, and shrinkage estimation can therefore be expected to offer a more
dramatic improvement over MLE.

Fig. 4 Line minimizing horizontal distance
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Second, suppose there are just two parameters (θ1 and θ2) that you want to estimate.
In that circumstance, the two least squares lines collapse into one, as shown in Fig. 5.
Since the ML line is the best approximation of the X = αθ + β least squares line, and
since this line is necessarily identical to the θ = aX + b least squares line, it follows that
the ML line must also be the best possible approximation of the θ = aX + b least
squares line. In other words, the ML estimator is admissible by coincidence (literally)
when you try to estimate fewer than three parameters.

We hope this connection of shrinkage estimators to the two regression problems –
fitting θ to X and fitting X to θ − is instructive. However, it is no substitute for the
detailed mathematics of James and Stein (1961) and of Efron and Morris (1973), where
a particular shrinkage estimator is shown to have lower expected mean squared error
than straight MLE. Our point here is to show why MLE is suboptimal and how
constraining three or more estimates to be connected to each other can provide an
improvement. The assumption that X and θ are related to each other by a straight line is
such a constraint. This is not to say that shrinkage estimators assume linearity. Rather,
the point is that shrinkage towards some single value is a constraint that links distinct
estimation problems to each other; by doing so, shrinkage provides an improvement
over straight MLE. In Section 9, we provide a different perspective on how introducing
a common constraint can improve estimation.

5 Why care about admissibility?

So far we’ve sometimes been a bit careless. We’ve said that Stein’s result asserts that
shrinkage estimators are Bbetter^ than MLE when more than three parameters are
estimated. But, of course, Stein’s result is a mathematical theorem and doesn’t have
any implications regarding what’s better or worse unless additional assumptions are
added. In particular, Stein’s result says that there are shrinkage estimators that dominate

Fig. 5 Line minimizing vertical and horizontal distance
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MLE; this result obviously doesn’t allow you to conclude that shrinkage estimators are
Bbetter^ than MLE unless you add the following normative premise:

(D) If estimator E dominates estimator E’, then E is better than E’.

Not everyone will accept (D). For example, Bayesians might reject (D) because the
more natural Bayesian approach to estimation is to choose the estimator that maximizes
expected utility, and it’s not clear whether (D) is consistent with such an approach. We
postpone a more thorough discussion of the relation between Stein’s paradox and
Bayesianism until Section 8.

Some frequentists will also want to reject (D). For example, Spanos (2016) argues
that the criterion of admissibility and the use of loss functions go against frequentism,
and he consequently (implicitly) rejects (D). Spanos’s main objection to (D) is that it
will sometimes judge a biased or inconsistent estimator to be better than an unbiased or
consistent estimator. In particular, as we shall see in Section 9, all shrinkage estimators
are biased. Hence, according to (D), shrinkage estimators are better than ML estimators
even though shrinkage estimators are biased.

According to Spanos (2016, p. 15), any biased or inconsistent estimator should be
immediately disqualified, because the Bprimary objective^ of estimation is to pinpoint
the true value of θ, and using a biased or inconsistent estimator means abandoning this
goal from the outset.

Of course, unbiased and consistent estimators can also fail to pinpoint the true value
of θ, given the data at hand, but they will tend to converge on the true value as the data
set is enlarged. This asymptotic property is nice for an estimator to have, but is it
necessary? The answer is far from clear since the estimation problems we face always
involve finite data. And for finite data, no estimator is guaranteed or even likely to get
you the true value. We think it is reasonable to prefer one estimator over another when
the first has a lower expected error than the second, even if the first estimator is biased
while the second one isn’t. Of course, this requires that Berror^ be quantified in terms of
some loss function. Spanos asks where the extra Binformation^ is supposed to come
from (p. 17) that allows you to pick a particular loss function. It may be true that the
choice of a particular loss function is to some extent arbitrary, and that several loss
functions may reasonably be said to quantify inaccuracy. However, the fact that the
choice of a particular loss function is to some extent arbitrary does not mean that you
should give up on loss functions altogether.

Estimators can be compared along many dimensions: they can be biased or unbi-
ased, they can be consistent or inconsistent, they can be variant or invariant, they can be
admissible or inadmissible, etc. One of the lessons of Stein’s result is that no estimator
will be superior to all other estimators along all the dimensions that you might care
about. Thus, ultimately, whether one estimator is Bbetter^ than another comes down to
which properties you care about and how you weigh them against each other. (D) is
therefore not an assumption that is unconditionally true; rather, it is a premise that it is
reasonable to accept given that you have certain interests.

In particular, if you care about minimizing your error given finite data – as opposed
to making sure you pinpoint the true value of θ in the infinite long run limit – then (D)
is a reasonable premise for you to accept. But, of course, accepting (D) leads you to
prefer shrinkage estimators over MLE and biased estimators over unbiased ones.
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6 Choosing an estimator

If your goal is to minimize expected squared error, which estimator should you use?
One possible answer is that if you know that estimator E1 weakly dominates estimator
E2, you should not use E2. We endorse this answer, with one small qualification that
we’ll note at the end of this section.12

How can this negative advice be supplemented with something positive? We begin
with two cautions. The first is that admissibility isn’t sufficient for using an estimator.
Indeed, in any realistic estimation problem there are infinitely many admissible esti-
mators. For example, suppose you are estimating a single parameter and your estima-
tion method is to just guess that θ = 0 regardless of what your data are. If θ = 0, your
estimator has zero risk. Hence, always guessing that θ = 0 is an estimator that isn’t
weakly dominated by any other estimator that has positive risk when θ = 0, and any
estimator that is not constant is going to have positive risk. More generally, guessing
that θ = c, regardless of the data, for any constant number c, will be an admissible
estimator.13 Inadmissibility is bad but admissibility isn’t anything special.

The second caution is that admissibility isn’t necessary for using an estimator.
Perhaps you are in a situation of ignorance. You know that estimator E weakly
dominates all the other estimators you have considered, but you don’t know whether
there exists an as yet unknown estimator that dominates E. In this case you are entitled
to use E. That entitlement may lapse if you learn more.14

It turns out that while MLE is dominated by the James-Stein estimator when three or
more parameters are being estimated, James-Stein is itself dominated by other estima-
tors (Baranchik 1964). The same point holds of the Efron-Morris estimator; it isn’t
admissible, either (Brown 1971). Are there any shrinkage estimators that are admissible
and that dominate MLE? The answer (for k ≥ 5) is yes; there are several (Strawderman
1971). The implication of what we’ve just said would therefore seem to be that you
should never use either the James-Stein or the Efron-Morris estimator since they are
both dominated by other known estimators. However, in practice, statisticians care
about computational tractability as well as about minimizing global inaccuracy.
Since James-Stein and Efron-Morris are both very simple estimators, and since
they have risk functions that are numerically close to the known estimators that
they are dominated by (Larry Brown, personal communication), you arguably are
justified in using James-Stein or Efron-Morris although these estimators are known
to be inadmissible.

12 This is not quite to say that inadmissibility suffices for refusing to use an estimator. You may know that E is
inadmissible, but not know the identity of an estimator that weakly dominates E. This may lead you to think
that E is better than nothing. We take no stand on whether you should use E or simply refuse to make an
estimate.
13 The constant estimator E(X) = c has risk 0 for θ = c. Any estimator that weakly dominates E(X) = c must
also have risk 0 for θ = c. But such an estimator will therefore have a variance of 0, which means (given any
reasonable error distribution) that the estimator doesn’t vary given different data, and hence it must also be a
constant estimator. Thus, any estimator that dominates E(X) = c must itself be a constant estimator, but a
constant estimator with E(X) = d ≠ c can’t dominate E(X) = c. So all constant estimators of the form E(X) = c
are admissible.
14 Suppose estimators E1 and E2 each weakly dominate the others you have considered, but neither dominates
the other. You may have reason to prefer one over the other if you have reason to believe that some values of θ
are more probable than others. Consider the relation of the mean and half-the-mean in Figure 1.
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7 Holistic pragmatism

Many epistemologists are evidentialists – they think that what you believe (or your
degree of belief) should be guided by your evidence and by your evidence alone.
Evidentialism has its dissenters. Carnap (1950), for example, argues that some propo-
sitions can be accepted because they represent convenient conventions even though
there is no evidence that they are true. Pascal (1662) anticipated this pragmatic turn by
arguing that belief in God should be influenced by the positive utility of going to
heaven and the negative utility of going to hell. So did James (1896), except that for
him the question need not involve the existence of God or the afterlife. Another
departure from strict evidentialism may be found in Rudner’s (1953) argument that
Bthe scientist qua scientist makes value judgments.^ Rudner maintains that science is
in the business of accepting and rejecting hypotheses and that your standards
concerning how much evidence is required for you to accept or reject should depend
on the ethical consequences of error. None of these pragmatisms covers what Stein
discovered. We call this Steinian pragmatism Holistic Pragmatism (not to be confused
with Morton White’s (2005) pragmatism of the same name). Holistic pragmatism is
the thesis that when an estimation problem has several parts, it’s a pragmatic decision
whether your goal is to minimize error across the whole problem, or to minimize error
within each part.

Of course, considered separately, MLE and shrinkage estimation are each
Bevidentialist^ in the sense that ML estimators and shrinkage estimators are functions of
the evidence and only of the evidence. The reason we think Stein’s result licenses a kind of
pragmatism is that the result tells you that your goals are relevant to deciding whether you
should use MLE or a shrinkage estimator.

Compare Ms. Multi-Tasker and Mr. One-at-a-Timer. Ms. Multi-Tasker takes up
three estimation problems and wants to minimize her expected sum of squared errors
across the three. Mr. One-at-a-Timer takes up the same three problems, and uses the
same evidence and background information that Ms. Multi-Tasker has at hand, but he
cares about each problem for its own sake, wanting to minimize his expected squared
error on each. According to Stein, they should reach different estimates, with Ms.
Multi-Tasker shrinking and Mr. One-at-a-Timer doing straight MLE.

To an evidentialist, whether estimator E is a good estimator of θ given data D is
purely a question of the relation between E, θ and D. Estimation is in other words a
three-place relation. However, according to holistic pragmatism, whether your goal is to
maximize local or global accuracy also matters. Thus, according to holistic pragmatism,
estimation involves a four-place relation between E, θ, D, and the goals of the agent, G.

It is utterly familiar that rational action requires assumptions about utilities. It is
controversial that rational belief must involve such assumptions.15 Some of the utilities
involved in deciding whether to use a shrinkage estimator are epistemic – the goal is to
have one’s estimates be close to the truth (where this is quantified by using the expected
sum of the squared errors). Here we see a departure from Pascal (and from James). But
an additional type of utility is relevant to estimation: should you care about estimation
problems separately or should you seek to minimize the sum of squared errors that
arises in the lot? That is, should you be a lumper or a splitter in your conception of the

15 For example, see the reply to Rudner (1953) by Jeffrey (1956).
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estimation problems you face? The surprise is that answering this question matters. In
Section 11, we investigate whether this question has an objective answer.

8 The relation of shrinkage estimation to Bayesianism

So far our discussion has been in a frequentist framework. However, there is another
prominent statistical framework, decision-theoretic Bayesianism, which conceives of
estimation in a very different way. According to this framework, an agent should
choose the estimate that has the lowest expected loss, where expected loss is calculated
relative to the agent’s posterior probability distribution.16 Is shrinkage estimation and
the holistic pragmatism it underwrites compatible with this Bayesian understanding of
estimation? Our answer to this question is that it all depends on which type of
Bayesianism is at issue.

The most minimal type of Bayesianism says that all it takes for an agent’s proba-
bility distribution to be rational is synchronic coherence. A rational agent can have any
probability distribution at any given time, so long as it obeys the axioms of probability.
There is no further constraint on how prior probability values are assigned to different
propositions, nor is there any diachronic constraint on how the agent’s distributions at
different times must be related. Minimal Bayesians are therefore free to embrace
shrinkage, since they can often engineer their probability distribution in such a way
that a shrinkage estimator will end up having the lowest expected loss.

There are two stronger forms of Bayesianism that we think conflict with shrinkage
estimation. Both embrace synchronic coherence but insist that rationality demands
something more. The first interprets probabilities as rational degrees of belief and
insists that prior probabilities should, in some sense, accurately and reasonably reflect
agents’ background knowledge or their Binitial state^ of information. The second type
of Bayesianism updates probabilities by strict conditionalization or by Jeffrey (1983)
conditionalization. Of course, these two types of Bayesianism are not mutually incom-
patible, and flesh and blood Bayesians often sign up under both banners.

To see the difficulties posed for Bayesians of the first kind, note that, if probabilities
represent the degrees of belief of an agent, then an agent should never lump together
estimation problems that the agent thinks are completely unrelated and independent
of each other, even if the goal is to maximize global accuracy. This is because, for
the kind of Bayesian we now are discussing, the estimate e’ of the parameter θ’
can affect the estimate e of a different parameter θ only if there is some possible
data x such that p(θ | θ’ & x) ≠ p(θ | x) ─ i.e., only if it is possible that θ’ could
provide information about θ over and above the information provided by the data
itself.17

It may be helpful to demonstrate why this is the case, so we illustrate it for the case
of just two parameters, although it holds in general. Suppose your goal is to maximize
global accuracy over θ and θ’ in a Bayesian framework. Hence, you want to choose the
estimates e of θ and e’ of θ’, given data D, that jointly minimize the posterior expected

16 More precisely, the expected loss of estimate e relative to distribution p(θ | x) and loss function L is given by
the formula ∑θ p θjDð ÞL θ; eð Þ, where the sum is over all possible values of the parameter θ.

17 Note that this is a purely synchronic constraint on the conditional probability distribution.
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total loss where this total loss is the sum of the loss on each of the parameters. In other
words you want to pick the e and e’ that jointly minimize:

∑
θ;θ0

p θ; θ0 Djð Þ* L θ; eð Þ þ L
0
θ’; e

0
� �h i

But if p(θ | θ’ & x) = p(θ|x) for all x, then simple algebra and applications of the
probability axioms show that the above formula reduces to:

∑
θ
p θ Djð ÞL θ; eð Þ þ ∑

θ0
p θ0 Djð ÞL0

θ’; e0
� �

Since these two summands have no common variables, minimizing their sum just
reduces to the problem of minimizing each of the summands. Hence, if θ and θ’ are
thought by the Bayesian agent to be completely informationally independent in the
sense that p(θ | θ’ & x) = p(θ|x) for all x, then the problem of minimizing global
accuracy just reduces to the problem of minimizing inaccuracy over each of the
parameters, which means that there is no gain in lumping together estimation problems
that are thought by the agent to be unrelated and independent, even if the goal is maximal
global accuracy.

On the other hand, as we have argued in this paper, the holistic pragmatism
underwritten by Stein’s result sometimes recommends that agents who want to maxi-
mize global accuracy lump together unrelated and independent estimation problems.
Hence, holistic pragmatism is clearly in conflict with a decision theoretic Bayesianism
that interprets prior and posterior probabilities as representing the rational degrees of
belief of some agent. Bayesians who want to embrace shrinkage estimation must
consequently reject the view that the probabilities they use always represent their
rational degrees of belief. This is not to deny that Bayesians can mathematically
accommodate shrinkage estimators by, for example, using so-called Bshrinkage priors,^
which are priors that are explicitly designed to induce Steinian shrinkage, as described
in Efron (2013), pp. 2–6), Efron and Morris (1973), and Lehmann (1983, p.299). But
such Bshrinkage priors^ cannot reasonably be interpreted as representing the rational
degrees of belief of some agent.

We have heard it said that Bayesians automatically incorporate shrinkage and that
Bayesians therefore don’t need to worry about artificially inducing shrinkage in order to
maximize global accuracy. However, this is not correct. It is true that all proper priors –
that is, priors that sum to 1 – impose a kind of shrinkage. In particular, any proper prior
will Bshrink^ the estimate of a parameter towards values of the parameter that have a
high prior probability. However, Stein shrinkage only happens when multiple parame-
ters are shrunk towards a common point. The only way for a Bayesian to induce this
kind of shrinkage is by imposing a common proper prior over all the parameters that are
being estimated that has the effect of shrinking all the parameters towards the same
point. If priors are interpreted as degrees of belief, however, then any such prior will
represent a prior belief that the parameters are actually somewhat close together. Of
course, sometimes such a prior belief is warranted, but our point here is that holistic
pragmatism says that if your goal is to maximize global accuracy, you should always
shrink the parameters towards a common point, regardless of whether you actually
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believe the parameters are close together. Now, as we saw in Section 4, the practical
benefit of shrinkage will not be large unless the parameters are actually close to each
other, but this does not alter the fact that the expected benefit of shrinkage is always
greater than 0, provided that global accuracy is the goal.

Note, however, that if local accuracy rather than global accuracy is your goal, then
Stein’s result does not give Bayesian agents any reason for imposing a common prior
over parameters that they think are independent. Thus, whether you should impose
a common prior over the parameters you are estimating or keep the parameters
separate depends on your goals. This observation brings us to the tension that we
find with the second type of Bayesianism in which there is a commitment to
updating by strict conditionalization or by Jeffrey conditionalization. The impedi-
ment here is that Stein’s results show that you can and should change your
estimates simply because your goals change. To see the problem, consider Ms.
Multi-Tasker and Mr. One-at-a-Time as two stages in a single Jekyll-and-Hyde
personality – namely you. On Monday you want to reduce your risk in estimating
each of three parameters, while on Tuesday you want to reduce your total risk.
MLE is admissible on Monday but not on Tuesday. Your estimates change value
but not because of any new evidence you acquired. Updating by conditionalization
is a way to take new evidence into account. It does not allow your estimates to
change merely because you have changed your goals.

Of course, the Bayesian framework does allow you to change your estimate if your
loss function changes, even if you do not gain any new evidence. But that is not what’s
going on in the above example. Even if your loss function remains the same throughout
the whole week (e.g. you are using squared loss), Stein’s result gives you a reason for
using one estimate on Monday and another estimate on Tuesday. But if your loss
function stays the same and you don’t gain any new evidence, then the only way you
can change your estimate in the Bayesian framework is by changing your probability
distribution in a way that violates conditionalization. That is why shrinkage estimation
and holistic pragmatism are in tension with the second type of Bayesianism.

We think the most plausible Bayesian response to Stein’s results is to either reject
them outright or to adopt an instrumentalist view of personal probabilities. The
instrumentalist response is to abandon the idea that probabilities are rational degrees
of belief. Rather, they are sometimes irrational (or arational), but agents should adopt
them anyhow because they help agents get what they want. The former option, of
outright rejection, has several motivations. The most obvious motive is perhaps that
Stein’s result is fundamentally a frequentist result since it is couched in terms of
expected inaccuracy over all possible data sets. Bayesians might insist that Bayesians
should not care about frequentist risk, but we know of few Bayesians who hold this
view.18

Even if Bayesians grant that frequentist risk is relevant they still might insist that you
shouldn’t use frequentist risk, by itself, to decide which estimator to use. A more fully
Bayesian decision theoretic solution would require that you calculate the expected
utility of choosing each candidate estimator by averaging the frequentist risk of the
various candidate estimators over a prior probability distribution. An estimator that

18 Angers and Berger (1985, p. 5) emphasize that frequentist risk should be important even to pure Bayesians
because frequentist risk gives an indication of the average posterior expected loss.
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maximizes expected utility relative to a particular prior is known as a BBayes rule^
relative to that prior. As it happens, MLE and shrinkage estimation both are Bayes rules
relative to the (improper) prior that is flat over all the parameters you are estimating. In
other words, relative to the flat prior, MLE and shrinkage estimation have the same
expected utility. Consequently, if you come to the table with a flat prior in hand, you
apparently have no reason (from a Bayesian point of view) for preferring shrinkage
estimation to MLE.19

We grant that an expected utility calculation will not tell you that shrinkage is
preferable to MLE, if you use a flat prior in calculating expected utility. However, it’s
also true that such a calculation will not tell you that MLE is preferable to shrinkage,
given that MLE and shrinkage have the same expected utility. If you want a non-
arbitrary way of picking an estimator, you therefore need a tie-breaking criterion aside
from expected utility. A reasonable tie-breaker, we think, is to pick the estimator that
has lower frequentist risk.

The above discussion assumes that you have already adopted a flat prior. But what if
you are trying to decide what prior to adopt in the first place? An expected utility
calculation cannot tell you what prior to adopt since expected utility must be calculated
relative to a prior. If you are unsure of what prior to adopt, but your goal is to minimize
global error, then Stein’s result gives you a reason for preferring a prior that imposes
shrinkage to a prior that does not.

Some Bayesians argue that shrinkage estimators should not be used in the absence of
genuine prior information and in particular that Bshrinkage priors^ of the sort described
in this section should never be used. For example, Angers and Berger (1985) show that
under certain (strong) assumptions, Bayesians who are certain or nearly certain that
several estimation problems are probabilistically independent should not combine the
problems and impose shrinkage because it is possible to obtain more robust estimates
(i.e., estimates that are less sensitive to the choice of prior) by considering the problems
separately. 20 We concede that shrinkage priors do not provide you with robust
individual estimates under the assumptions that Angers and Berger describe. Indeed,
as we discuss further in the next section, what point you shrink towards (or what
shrinkage prior you choose to adopt) can greatly affect which of your individual
estimates end up being more accurate and which ones end up being less accurate when
compared to estimates provided by MLE. Nonetheless, if your main concern is to
maximize global accuracy – as opposed to making sure that you have robust estimates –
then Stein’s result shows that you ought to shrink.

There are two remaining and perhaps more fundamental reasons why Bayesians
might reject the use of shrinkage estimation. One reason is that shrinkage estimation is
a type of estimation, and some Bayesians have claimed that estimation is simply not
that interesting from a Bayesian perspective. Another fundamental reason that
Bayesians might want to reject the use of shrinkage estimation is that they value

19 We thank Teddy Seidenfeld for pressing us on this point. We note that this point only makes sense given
certain presuppositions. In particular, countable additivity must be discarded.
20 Perlman and Chaudhuri (2012) offer a different argument for a similar conclusion. They claim, without
offering any explanation, that agents who use shrinkage estimation in the absence of prior information will
unwittingly end up using a procedure that has the effect of reversing the Stein effect (see n24 for a description
of the procedure).
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language invariance, and shrinkage estimators are not language invariant; we discussed
language invariance in Section 3.

9 Shrinkage estimation, AIC, and the bias/variance tradeoff

Complex models (ones with more adjustable parameters) will in general exhibit less
estimation error or bias than simpler models (ones with fewer parameters) because the
extra flexibility that accompanies complexity enables complex models to accurately fit
real patterns in the data.21 For example, an nth degree polynomial can fit a data set
containing n−1 observations perfectly whereas polynomials with fewer adjustable
parameters will almost never do as well. Unfortunately, complexity comes at a cost;
more complex models are also more likely than simpler ones to be misled by noise.
Hence, more complex models have greater approximation error or variance since a
complex model is likely to Bbounce around^ quite a bit when it is fitted to different data
sets drawn from the same underlying distribution.

The Akaike Information Criterion (AIC) gives advice concerning how bias should
be traded off against variance when the goal is to maximize predictive accuracy.
According to AIC, the predictive inaccuracy of model M given data D can be estimated
by the number of parameters in M minus the log-likelihood of the best-fitting member
of M. AIC tells you that the model that has the lowest AIC score will be the one that is
most predictively accurate; this is the model that achieves the best balance between fit
and complexity, or, in other words, between bias and variance. The reason scientists
often should prefer simple models that they know are false (i.e., ones that are biased
away from the truth) over more complex models that they know to be true is that
simpler models have lower variance and hence often have a higher degree of predictive
accuracy (see Forster and Sober 1994).

Shrinkage estimators rely on a similar kind of bias-variance trade-off. However, in
the context of parameter estimation, the terms Bbias^ and Bvariance^ take on technical
meanings that differ from the meanings of those terms in model selection. For example,
an unbiased estimator is one whose expected value equals the true value of the
estimated parameter. Using these technical concepts makes it possible to decompose
the error of an estimator in a precise way. In particular, if you look at a single estimator,
m, of some quantity θ, you can decompose its mean squared error in the following way
(see e.g., Wasserman 2004, p. 91):

MSE mð Þ ¼ bias mð Þ½ �2 þ variance mð Þ

If m is anML estimator, then [bias(m)]2 = 0 when the distribution of the data is normal,
since MLE is unbiased in this case. Hence, in this case, the MSE of m simply reduces to
the variance of m. If we independently estimate several parameters θ1, θ2, …, θn and

21 In speaking of the Bbias^ and Bvariance^ of models and estimators, we are following the (perhaps
unfortunate) statistical practice of using these terms ambiguously. In the context of parameter estimation,
Bbias^ and Bvariance^ have precise technical meanings, as we also note in the text. In model selection, on the
other hand, Bbias^ just means something like Bthe inability of a model to mimic the true curve, whatever the
true curve happens to be.^ For example, LIN is Bbiased^ in this latter sense because it can adequately mimic
the true curve only if the true curve happens to be roughly linear.
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obtain m1, m2, …, mn as their ML estimates, then the total MSE of all the estimates is
simply the sum of all their variances:

MSE m1;m2;…;mnð Þ ¼ variance m1ð Þ þ variance m2ð Þ þ…þ variance mnð Þ

Since using a shrinkage estimator yields a lower total MSE than MLE, and since
shrinkage estimators are clearly biased (as noted, the ML estimator is unbiased, and
shrinkage means shrinking your estimates away from the ML estimates; note that we
are here using the terms Bbiased^ and Bunbiased^ in the technical sense), it is clear that
shrinkage estimators work because they lead to a reduction in overall variance. By
shrinking all the ML estimates toward some common point, you bias your estimate of
each parameter, but at the same time you reduce the freedom of each estimate to vary in
response to noise; by Btethering^ all the estimates to a single point, shrinkage thereby
reduces the overall variance in your estimates. Just as AIC sometimes prefers simpler
false models because they have lower variance, so shrinkage estimators sacrifice the
unbiasedness of MLE for the sake of obtaining a lower variance.

Trading-off bias against variance arises in many statistical contexts22 − in model
selection, in classification problems (see, e.g. von Luxburg and Schölkopf 2009, pp.
662–664) and – as we have seen – in parameter estimation. What is especially striking
about shrinkage estimators is that there are several conflicting ways of sacrificing bias
to achieve a reduction in variance; recall that the James-Stein estimator shrinks all
estimates towards zero while the Efron-Morris estimator shrinks them towards the
grand sample mean. However, whether you introduce this bias or that bias is less
important than the fact that you introduce some bias or other.23 What bias you introduce
(i.e. what the point is towards which you shrink) will have consequences for which
individual estimates end up being less accurate than they might have been had you used
MLE, but overall the reduction in variance justifies sacrificing accuracy at the level of
estimating individual parameters.

10 Shrinkage, realism, and instrumentalism

Model selection criteria like AIC legitimate a kind of instrumentalism (Sober 2008).
According to this interpretation, the goal of AIC is not to decide which model is true, or
has the highest probability of being true, but rather to determine which model (among
the candidate models considered) will make the most accurate predictions. As noted, a
surprising property of AIC is that it sometimes (correctly) judges that a model known to
be false will be more predictively accurate than a model known to be true. Should

22 An anonymous reviewer pointed out to us that similar trade-offs also arguably occur outside of statistics,
e.g. in the BRunge phenomenon^ in numerical analysis.
23 It is worth noting that how you choose to bias your estimates is important. Perlman and Chaudhuri (2012) show
that there are procedures for picking the point towardswhich you shrink that lead to a Breverse^ Stein effect wherein
the resulting shrinkage estimator does worse than MLE in expectation. In particular, the point you shrink towards
needs to be relatively stable given different data sets; otherwise, your shrinkage estimator is not going to reduce total
variance. Here’s an example: given data (x1, x2,…, xn) about parameters (θ1, θ2,…, θn), consider (x1, x2,…, xn) as
the center of a sphere in n-dimensional space and then randomly pick some point within the sphere towards which
you shrink your data. This procedure gives you an estimator that bounces around given different data sets, and that
therefore doesn’t help you reduce overall variance.
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shrinkage estimators be placed under the same instrumentalist umbrella? According to
this interpretation, the goal is not to discover the true value of a parameter, but to find
the estimate that will most accurately predict new data. The surprise is that achieving
this goal depends on whether you want to predict new observations of one or two
parameters, or of three or more. And if you want to predict three or more, a second
surprise presents itself; it matters whether you want to reduce total expected error or
rather want to minimize expected error on each parameter.

Although this instrumentalist gloss makes sense, shrinkage estimation is something
that realists also need to take on board.24 The realist view of estimation is that the goal
is to get as close as possible to the true value of the quantity being estimated. Shrinkage
estimators achieve that goal better than straight MLE when there are more than three
parameters being estimated and the goal is to minimize total inaccuracy. However,
some realists will be lumpers while others will be splitters, and so they will disagree
about how Stein’s result should bear on their scientific practice.

11 When to lump and when to split?

Can the question of when to lump and when to split be settled in an objective way?
Lumping the success rates of baseball players is a good idea if the goal is to minimize
global inaccuracy. However, as we emphasized earlier, Stein’s result does not guarantee
that shrinkage estimation will do better than MLE when you treat each baseball player
as a separate estimation problem. As noted, MLE is admissible when you estimate the
value of a single parameter. This does not mean that MLE dominates shrinkage
estimators when k < 3; it means only that no shrinkage estimator dominates MLE.
Furthermore, the fact that no shrinkage estimator dominates MLE in single-parameter
estimation just means that there is no shrinkage estimator that does at least as well as
MLE across all possible values that the parameter might have; this leaves open that
there may be estimators that do significantly better than MLE when the parameter
has some particular true value. Indeed, if you return to Fig. 1, you’ll notice that
dividing the sample mean in half actually has lower risk than the sample mean
itself when the true value of the parameter is sufficiently close to 0. BAdmissible^
does not mean Boptimal in all cases.^

We now change our focus to a question that the concept of admissibility cannot
answer: should you be a lumper or a splitter in the way you formulate your estimation
problems? In general, there are two things that can happen when you lump three or
more estimation problems and use shrinkage, rather than split them and use MLE:

(1) The risk of some of the individual estimates increases substantially.
(2) The risk of each of each individual estimate remains about the same or decreases.25

24 The same point holds for AIC – realists can embrace this estimator so long as closeness to the truth is
understood in the right way (Sober 2015).
25 It may seem that (2) contradicts the fact that MLE is admissible when you are estimating a single parameter.
However, the fact that MLE is admissible just means that, given (normally distributed) data D and a single
parameter p, there is no function of D that weakly dominates the ML estimator. This does not exclude the
possibility that you can get a better estimate of p by lumping D with another data set D′ and using a shrinkage
estimator on D&D′.
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If (1) holds, you face a dilemma; shrinkage estimation will decrease your global risk,
but only at the price of increasing the risk of some of the individual estimates. Should
you trade an increase in risk at the individual level for a reduction in risk at the global
level? The answer to this question depends on what your goals are and what kind of
error you prefer to avoid.26

On the other hand, if (2) holds, you objectively ought to use a shrinkage estimator;
by shrinking, you’ll reduce global risk without increasing individual risk, or you’ll
reduce both. In general, (2) holds if and only if the true means and variances of the
different parameters you are estimating are sufficiently close to each other. To see why,
recall that shrinkage estimators work by introducing a bias in order to reduce variance.
If the true means are sufficiently close to each other, then the bias introduced by using a
shrinkage estimator such as the Efron-Morris estimator will be smaller than the
reduction in variance even at the level of individual estimates.

How do you know whether the quantities you are studying have true means and
variances that are Bsufficiently close^ before you have the relevant data? Sometimes
background knowledge can serve as a guide. Suppose, for example, that you wish to
estimate the mean heights in all the northern European countries. Your background
knowledge might lead you to believe that the true mean heights and variances for the
different countries, whatever they are, are close together. If your belief is correct, each
true population mean will be close to the true grand mean, which entails that the bias
introduced by the Efron-Morris estimator will be small for each of the individual
estimates you make. At the same time, combining your samples from several countries
in the way that the Efron-Morris estimator does will reduce the total variance of your
estimates, as we discussed in Section 9. Lumping therefore seems justified in this case;
you have reason to believe that (2) is true.

Background knowledge would also seem to justify lumping together Major League
baseball players. Although the players do vary in ability, there is reason to believe that
their true abilities are sufficiently close so that by lumping the estimation problems
together, you can expect to increase the accuracy in your estimate of almost every
player. Of course, your estimate of players who are truly outstanding (i.e. whose true
batting success probability is far from the grand mean) will suffer, but if you know who
those players are, you can just exclude them from shrinkage.

These examples show how using background knowledge to lump together estimation
problems can be expected to produce better individual estimates if they are done right, but
the examples offer no general guidelines for how to do this. According to Efron,
B[s]cientific guidance would be most welcome at this point…^ (2013 p. 185). Efron
goes on to quote Miller’s (1981) pronouncement (in a slightly different context) that this
is where Bstatistics takes leave of mathematics and must be guided by subjective

26 The measure of global inaccuracy that we have relied on so far in this paper implicitly places an equal weight
on each of the individual estimation problems, since global inaccuracy is simply the unweighted sum of the
inaccuracies in all the individual estimates. It may, however, happen that getting accurate estimates for some of
the parameters is more important than getting accurate estimates for others. Brown (1975) models this by
weighting each inaccuracy term (xi-θi)

2 by a factor ci that measures the importance of getting an accurate estimate
of θi, and he shows that Stein’s result is surprisingly robust across different assignments of weights (although he
does not propose explicit estimators corresponding to the different weightings of the local estimation problems).
In a similar vein, Efron and Morris (1972) introduce Bcompromise estimators^ that aim at lowering total
inaccuracy while at the same time limiting the loss in accuracy at the level of individual estimates.
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judgment.^ Efron explains that subjective judgment is still what dominates statistical
practice, but goes on to offer Bhints … of a more principled approach to separation and
combination… but at this stage they remain just hints^ (p. 186).

The upshot is that lumping together several estimation problems and using a
shrinkage estimator is sometimes objectively better than keeping the problems separate
and using MLE, in the sense that lumping can sometimes yield individual estimates that
are more accurate than the estimates you would get by handling the problems sepa-
rately. This situation arises when the populations under study are Bsimilar enough.^ But
when and how problems should be lumped together or split apart remains an important
open problem in statistics.27

12 Concluding comment

Stein’s result seems paradoxical when estimating a quantity is taken to be closely
connected to assigning a probability to a proposition.28 When propositions A, B, and C
are probabilistically independent of each other, the probability of their conjunction is
determined by the probabilities of the conjuncts:

IfPr Að Þ ¼ x andPr Bð Þ ¼ y; Pr Cð Þ ¼ z; and A;B;C are probabilistically independent of each
other; thenPr A&B&Cð Þ ¼ xyz

This is true by definition. Analogy might suggest that something similar is true of
estimation. One might expect, when the quantities Q, R, and S are probabilistically
independent of each other, that the following principle holds:

If BE Qð Þ ¼ x;BE Rð Þ ¼ y;BE Sð Þ ¼ z and Q;R; S are probabilistically independent of each
other; then BE < Q; R; S >¼< x; y; z >

Here BE(θ) is the best estimate of θ, given the data at hand, and B<…>^ denotes a
vector of variables or values. This principle says that the best estimate for a vector of
quantities is determined by the best estimate for each quantity when the quantities are
probabilistically independent. The principle would be right if the best estimate of a
quantity were the one that has the highest probability (density) of being true. This is an
intuitive interpretation of estimation, but it is not the one that frequentists embrace. Their
interpretation is built on the concept of admissibility. In this paper, we have attempted to
describe the surprising form of holistic pragmatism that issues from that conception.29

27 There is a parallel situation for AIC. Consider NULL and DIFF as claims about how the mean heights in
two (or more) human populations are related. NULL says they have the same mean height; DIFF says that the
heights may differ. Since NULL says there is a single mean height that characterizes each population, it has a
single adjustable parameter. DIFF has one adjustable parameter for each population. AIC tells you to prefer
NULL if the sample means are close together and DIFF when they are very far apart, where the question Bhow
close is close enough?^ is answered by considering how the two models differ in their numbers of adjustable
parameters. NULL lumps whereas DIFF splits.
28 This is not to say that the puzzling quality of Stein’s result derives entirely from the assumption that
estimating a quantity and assigning a probability to a proposition are closely connected projects.
29 In thinking about how assigning a probability to a proposition is related to estimating a quantity, it is
important to note that an estimation problem must involve infinitely many possible values if shrinkage
estimators are to have lower expected error than MLE (Guttmann 1982).
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