• I'll offer a "rationalizing explanation" of *why* such examples

may seem "paradoxical" shortly. First, I'll say some things

about the existing literature on Simpson's Paradox (SP).

• The existing literature on SP tends to be concerned (almost

exclusively) with doing the following two kinds of things.

1. Giving mathematical explanations (or characterizations) of

the (algebraic) *structure* of SP cases. The 2×2 case (as above), has a simple algebraic characterization [10].²

2. Giving causal explanations of the statistical distributions observed in actual SP cases [11]. In GSA, the causal story is simple (and benign). Females tend to apply to the "harder" department, *i.e.*, the department with lower acceptance rate.

 My aim is different — I want a "rationalizing explanation" of why SP may (reasonably) seem paradoxical in the first place.

²The probability calculus (a decidable algebraic theory [8]) can be used to

provide a *general* characterization of the 2×2 case. See Extras slides 11-12.

Graduate School Admissions (GSA). A graduate school became suspicious when it noticed a *negative correlation* between being female and being accepted (across all applicants in a given year). Further investigation revealed that — within each department — there was a positive correlation between being female and being accepted!

• Assume *two* departments: E and \overline{E} (think: E asy & not-E asy). Let $M \stackrel{\text{def}}{=} \text{male}$, $\overline{M} \stackrel{\text{def}}{=} \text{female}$ (gender binary), $A \stackrel{\text{def}}{=} \text{accepted}$, and $\overline{A} \stackrel{\text{def}}{=}$ rejected. Finally, assume these acceptance rates.

	M	\overline{M}	Overall
E	60/80	40/50	100/130
\overline{E}	10/50	20/80	30/130
Overall	70/130	60/130	130/260

¹This is a simplified version [10] of the example originally discussed in [2]. See vudlab.com/simpsons/ for some fun visualizations of this example.

Branden Fitelson

Confirmation, Causation, and Simpson's Paradox

Confirmation-Theoretic "Explanation" of SP

- There are various ways to try to explain (or *explain-away*) "paradoxicality." My approach fits the following mold [5].
 - **Step 1**. Identify the (or *an* explanatorily salient) argument form \mathcal{A} that is *invalidated by* the "paradoxical" cases.
 - **Step 2.** Identify a "similar" or "nearby" (more on this below) form of argument form A^* , which is universally valid.
 - **Step 3**. Argue (or invite the listener to consider) that the (reasonable) appearance of paradoxicality stems (at least, in part) from *conflating* \mathcal{A} and \mathcal{A}^{\star} — that is, from hearing examples of the "paradox" as invalidating argument form \mathcal{A}^* (which would be paradoxical, since \mathcal{A}^* is valid).
- Ideally, the argument forms \mathcal{A} and \mathcal{A}^* should:
 - (a) have sufficiently similar logical forms, and
 - (b) employ sufficiently similar (probabilistic) concepts.
- Moreover, ideally, the "explanation" should (c) be fully general (i.e., be applicable to all instances of the "paradox").

Branden Fitelson

Example of SP

Confirmation-Theoretic "Explanation" of SP

• Carnap [1] distinguished two senses of "confirmation."

Confirmation as firmness. P confirms f(Q), on the (indicative) supposition that *R*, just in case *Q* is (sufficiently) *probable*, conditional upon the conjunction P & R. Formally,

Confirmation, Causation, and Simpson's Paradox

P confirms f Q, on the (indicative) supposition that R $Pr(O | P \& R) > t.^3$

Confirmation as increase in firmness. P confirms_i Q, on the (indicative) supposition that R, just in case P and Q are positively correlated, conditional upon R. Formally,

P confirms_i Q, on the (indicative) supposition that R $Pr(Q \mid P \& R) > Pr(Q \mid \overline{P} \& R).$

• Since our "explanation" of SP will be formal/universal, the *interpretation* of $Pr(\cdot \mid \cdot)$ can be allowed to vary, as needed.

³Here, $t \ge 1/2$ is some (possibly contextually determined) threshold.

 That brings us to Step 1 of our "explanation." Here is the argument form A that is invalidated by instances of SP.⁴ (1) P confirms_i Q, on the supposition that R. (A) (2) P confirms_i Q, on the supposition that \(\overline{R}\). ∴ (3) P confirms_i Q, unconditionally.⁵ In our GSA example, A is instantiated as follows: (1) \(\overline{M}\) confirms_i A, on the supposition that \(\overline{E}\). (2) \(\overline{M}\) confirms_i A, on the supposition that \(\overline{E}\). (3) \(\overline{M}\) confirms_i A unconditionally. 	Example of SF	Confirmation-Theoretic "Explanation" of SP ○○・●○○○○○	Extras 00000	References
(A) (2) P confirms $_i$ Q , on the supposition that \overline{R} . \therefore (3) P confirms $_i$ Q , $unconditionally.^5$ • In our GSA example, \mathcal{A} is instantiated as follows: (1) \overline{M} confirms $_i$ A , on the supposition that E . (2) \overline{M} confirms $_i$ A , on the supposition that \overline{E} .	•	· ·		
(1) \overline{M} confirms _i A , on the supposition that \overline{E} .	(\mathcal{A})	(2) P confirms Q , on the supposition	that \overline{R} .	
$\overline{}$ (3) \overline{M} confirms. A unconditionally	•	(1) \overline{M} confirms _i A , on the supposition	n that <i>E</i> .	
• The Pr-distribution determined by our GSA 2×2 table above constitutes a counterexample to the validity of \mathcal{A} .	•		GSA 2×2 table	
⁴ Strictly speaking, SP is more general than \mathcal{A} , since (i) it can also involve dis confirmation _i and/or $irrelevance$, and (ii) it can involve random variables with $more\ than\ two\ values$. My explanation(s) go through in full generality. ⁵ Note: "unconditionally" just means "on a tautological supposition."	<i>dis</i> co with	onfirmation _i and/or <i>irrelevance</i> , and (ii) it can in more than two values. My explanation(s) go the	involve random variabl rough in full generality	les

So much for Step 1. On to Step 2. I will examine two confirmation-theoretic (and 1 causal) "explanations" of SP.
First Way. This way involves a postulated simple conflation of Carnap's two senses of confirmation (note: this is a well-established human psychological conflation [3]).
(1) P confirms Q, on the supposition that R.
(A₁*) (2) P confirms Q, unconditionally.
A₁* is universally valid. This is easy to show, since it (essentially) boils down to the following "most" validity. (1) Most P & R-worlds are Q-worlds.
(A₁*) (2) Most P & R̄-worlds are Q-worlds.
(A₁*) (3) Most P-worlds are Q-worlds.
(A)* (3) Most P-worlds are Q-worlds.

Example of SP	Confirmation-Theoretic "Explanation" of SP	Extras	References
	0000000000	00000	

• To see this, we can add *probabilistic labels* to our GSA table.

	M	\overline{M}	Overall
E	$60/80 = \Pr(A \mid E \& M)$	$40/50 = \Pr(A \mid E \& \overline{M})$	$100/130 = \Pr(A \mid E)$
\overline{E}	$10/50 = \Pr(A \mid \overline{E} \& M)$	$20/80 = \Pr(A \mid \overline{E} \& \overline{M})$	$30/130 = \Pr(A \mid \overline{E})$
Overall	$70/130 = \Pr(A \mid M)$	$60/130 = \Pr(A \mid \overline{M})$	$130/260 = \Pr(A)$

- With these probabilistic labels in place, we can now see that:
 - (1) $\Pr(A \mid E \& M) < \Pr(A \mid E \& \overline{M})$. That is, \overline{M} confirms A, on the supposition that A. In words: being female is *positively correlated* with acceptance, *in department E*.
 - (2) $\Pr(A \mid \overline{E} \& M) < \Pr(A \mid \overline{E} \& \overline{M})$. That is, \overline{M} confirms i A, on the supposition that \overline{E} . In words: being female is *positively correlated* with acceptance, *in department* \overline{E} .
 - (3) $\Pr(A \mid M) > \Pr(A \mid \overline{M})$. That is, \overline{M} disconfirms_i A, unconditionally. In words: being female is negatively correlated with acceptance, in the general population.
- This explains, purely in confirmation, terms, what SP is.

Branden Fitelson

Confirmation, Causation, and Simpson's Paradox

6

eferences

Confirmation-Theoretic "Explanation" of SP

Extras

References

- **Second Way**. This way does not involve a simple conflation of Carnap's two senses of "confirms." It involves *only* confirmation as increase in firmness (confirms_i).
- This time, the conflation will involve what I will call *suppositional vs conjunctive* confirmation.
- Here's an analogy to help get a grip on the distinction. Consider the following two indicative conditional forms:
 - (I) If R, then if P then Q.
 - (II) If P & R, then Q.
- Many philosophers [9] have claimed that (I) and (II) are (in general) *equivalent*.⁷ As such, many think conflating (I) and (II) is OK. Here's an analogous *confirmational* pair.
 - (S) P confirms Q, on the supposition that R.
 - (\mathbb{C}) P & R confirms Q, unconditionally.

⁷This equivalence is called *import-export*. See [7, 4, 6] for discussion.

- Interestingly, S and C are *equivalent* for confirms f, but *not* for confirms f. To see the former, simply apply the definition of confirms f above (then the equivalence will be obvious).
- The fact that S and C are *not* equivalent for confirms_i is the key to our Second Way. To wit, here's my second A^* form.
 - (1) P & R confirms Q, unconditionally.
- (A_2^*) (2) $P \& \overline{R}$ confirms Q, unconditionally.
 - \therefore (3) *P* confirms *Q*, unconditionally.

 \mathcal{A}_2^{\star} is valid for both confirms_f and confirms_i.⁸

- So, if (3) is false, then at least one of (1) and (2) must also be false. In our GSA example, we have the following contrast:
 - (\$) \overline{M} confirms_i A, on the supposition that \overline{E} .
- $\neg(\mathbb{C})$ \overline{M} & \overline{E} does **not** confirm_i A, unconditionally.

Branden Fitelson

Confirmation, Causation, and Simpson's Paradox

9

Branden Fitelson

Confirmation, Causation, and Simpson's Paradox

10

• The following *stochastic truth table* [8] represents all possible probability distributions over the $\{P,Q,R\}$ language, *via* the 7 real variables $a,b,c,d,e,f,g \in [0,1]$.

P	Q	R	Pr(⋅)
Т	Т	Т	а
Т	Т	Т	b
Т	1	Т	С
Т	1	Т	d
	Т	Т	e
	Т	Т	f
	Τ	Т	g
	1	1	1 - (a + b + c + d + e + f + g)

• *In general*, an SP reversal (like our GSA reversal) occurs when the following three inequalities are satisfied.

$$Pr(Q \mid P \& R) < Pr(Q \mid \overline{P} \& R)$$

$$Pr(Q \mid P \& \overline{R}) < Pr(Q \mid \overline{P} \& \overline{R})$$

$$Pr(Q \mid P) > Pr(Q \mid \overline{P})$$

Example of SI

Confirmation-Theoretic "Explanation" of SP

Confirmation-Theoretic "Explanation" of SP

• How do our Two Ways fare wrt our three *desiderata* (a)-(c)?

confirmational concepts (but those concepts are conflated

only one confirmational concept, and (c) covers all SP cases.

which can be fit into our mold (see Extras slide 15 for details). • Pearl's \mathcal{A}^* (a) has *almost* the same logical form as \mathcal{A} (if you

think of Pearl's A^* as an *enthymeme*), but (b) it involves

concepts, and (c) because it (*sensu strictu*) requires an extra premise (*viz.*, *P* and *R* are "causally independent," in Pearl's

sense), it does not apply to all cases of SP. [Note: I do not

mean to deny that Pearl's story has explanatory value.]

causal and not merely probabilistic/confirmational

• \mathcal{A}_1^{\star} (a) has the same logical form as \mathcal{A} , (b) involves two

in other contexts [3, 4]), and (c) covers all SP cases.

• \mathcal{A}_2^* (a) has a *different* logical form than \mathcal{A} (but the two forms are conflated in other contexts [9, 4]), (b) involves

• Finally, let's consider Pearl's *causal* approach to SP [11],

Extras

Reference

• Algebraically [8], these three SP inequalities become:

$$\frac{a}{a+c} < \frac{e}{e+g}$$

$$\frac{b}{b+d} < \frac{f}{1-(a+b+c+d+e+g)}$$

$$\frac{a+b}{a+b+c+d} > \frac{e+f}{1-(a+b+c+d)}$$

- It is easy to use PrSAT [8] to find *instances* of this pattern (or *any* SP pattern). But, giving a general characterization is quite complex (although, in principle, it is decidable).
- In any case, this does constitute a *general*, algebraic characterization of (dichotomous) SP reversals (which subsumes the case involving statistical frequencies, expressible in terms of 2 × 2 contingency tables).
- The next two slides contain (algebraic) proofs of the validity of \mathcal{A}_1^{\star} and \mathcal{A}_2^{\star} (using this same algebraic setup).

11

⁸See Extras slides 13 and 14 for algebraic proofs of these claims.

(1)
$$Pr(Q \mid P \& R) > t$$
.

$$(\mathcal{A}_{1}^{\star}) \quad (2) \Pr(Q \mid P \& \overline{R}) > t.$$

$$\therefore (3) \Pr(Q \mid P) > t.$$

• *Algebraically* (using the above setup [8]), \mathcal{A}_1^* becomes:

$$(1) \frac{a}{a+c} > t.$$

$$(\mathcal{A}_{1}^{\star}) \quad \frac{(2) \frac{b}{b+d} > t.}{\therefore (3) \frac{a+b}{a+b+c+d} > t.}$$

• Cross-multiplying (1) & (2) yields:

(1)

 $a > (a + c) \cdot t$

(2)

 $b > (b + d) \cdot t$

• Adding the lhs & rhs of these and collecting t yields (3). \Box

$$(3) a+b>(a+b+c+d)\cdot t$$

Branden Fitelson

Confirmation, Causation, and Simpson's Paradox

13

ر-

ample of SP

Confirmation-Theoretic "Explanation" of SP

Extras

Reference

• Here is Pearl's argument form: $\mathcal{A}_{\mathscr{P}}^{\star}$.

(0)
$$Pr(R \mid do(P)) = Pr(R \mid do(\overline{P})) = Pr(R)$$
.

- (1) do(P) confirms_i Q, on the supposition that R.
- $(\mathcal{A}_{\mathscr{P}}^{*})$ (2) do(P) confirms Q, on the supposition that \overline{R} .
 - \therefore (3) do(P) confirms_i Q, unconditionally.
 - If we think of it as an *enthymeme* with premise (0) left unstated then its form is $almost^{10}$ the same as A.
 - ullet Premise (0) asserts that *P* is *casually independent* of *R*.
 - In GSA, premise (0) says that intervening on an applicant's gender would not affect the probability that she applies to department E, as opposed to department \overline{E} .
 - That seems right. But, there are cases in which (0) *fails*, but SP occurs (and can still seem, to some extent, "paradoxical").

10In (1)–(3), do(P) needs to be contrasted with $do(\overline{P})$, not $\overline{do(P)}$, and so the actual form of Pearl's $\mathcal{A}_{\mathscr{P}}^{\star}$ is slightly different than what I've written here.

mple of SP Confirmation-Theoretic "Explanation" of SP

• Probabilistically, A_2^* is equivalent to⁹ the following.

(1)
$$Pr(Q \mid P \& R) > Pr(Q)$$
.

$$(\mathcal{A}_{2}^{\star}) \quad \underline{(2) \operatorname{Pr}(Q \mid P \& \overline{R}) > \operatorname{Pr}(Q).}$$

$$\therefore (3) \operatorname{Pr}(O \mid P) > \operatorname{Pr}(O).$$

• *Algebraically* (using the above setup [8]), \mathcal{A}_{1}^{\star} becomes:

(1)
$$\frac{a}{a+c} > a+b+e+f$$
.

$$(\mathcal{A}_{2}^{\star}) \quad (2) \frac{\frac{b}{b+d} > a+b+e+f.}{\therefore (3) \frac{a+b}{a+b+c+d} > a+b+e+f.}$$

• Cross-multiplying (1) & (2) yields:

$$(1) a > (a+c) \cdot (a+b+e+f)$$

(2)
$$b > (b+d) \cdot (a+b+e+f)$$

• Adding the lhs & rhs of these and collecting t yields (3). \Box

(3)
$$a+b > (a+b+c+d) \cdot (a+b+e+f)$$

⁹This formulation allows us to prove \mathcal{A}_{2}^{\star} in the same way we proved \mathcal{A}_{1}^{\star} .

Branden Fitelson

Confirmation, Causation, and Simpson's Paradox

14

Example of SP

Confirmation-Theoretic "Explanation" of SP

Extras

Extras

References

- [1] R. Carnap, Logical Foundations of Probability, 1962. (http://fitelson.org/carnap/logical_foundations_of_probability.pdf)
- [2] N. Cartwright, "Causal laws and effective strategies," 1979. (http://fitelson.org/Cartwright_CLAES.pdf)
- [3] V. Crupi, B. Fitelson and K. Tentori, "Probability, confirmation, and the conjunction fallacy," 2008. (http://fitelson.org/pccf.pdf)
- [4] I. Douven, *The Epistemology of Indicative Conditionals*, 2016. \http://tiny.cc/mir8cy\
- [5] B. Fitelson and J. Hawthorne, "The Wason Task(s) and the Paradox of Confirmation," 2010. (http://fitelson.org/wason.pdf).
- [6] B. Fitelson, "Comments on Khoo & Mandelkern," 2017. (http://fitelson.org/kmc.pdf)
- [7] _____, "Two New(ish) Triviality Results for the Indicative Conditional," 2016. \(\http://fitelson.org/triviality_handout.pdf\)
- [8] ______, "A decision procedure for probability calculus with applications," 2008. \(\http://fitelson.org/pm.pdf \)
- [10] G. Malinas and J. Bigelow, "Simpson's Paradox," 2016. (http://plato.stanford.edu/archives/sum2016/entries/paradox-simpson/).

15