1 Introduction

The following procedure seems epistemically defective. Suppose I have no reason to think the gas gauge in my car is reliable, and I attempt to establish its reliability as follows. I read the gauge on many occasions, concluding each time that the tank is as the gauge says. When the gauge reads ‘full’, I conclude that the tank is full, similarly for ‘empty’, etc. Eventually I conclude by induction that the gauge is reliable, since it was correct each time.

Even if my beliefs in this chain of reasoning are all true, I have done nothing to establish that the gauge is reliable: I do not know that it is reliable, nor am I justified in believing that it is. Call this sort of defective procedure bootstrapping.¹ Our focus here is: what is defective about this sort of reasoning, and what epistemological lessons can we learn from its defectiveness?

Vogel (2000) argues that bootstrapping presents a problem for reliabilist theories of knowledge. According to Vogel, reliabilism says that I can use the reasoning just outlined to come to know that my gauge is reliable. Cohen (2002; 2005), Van Cleve (2003), and others argue that bootstrapping actually poses a more general problem, afflicting any view that allows for basic knowledge, i.e. any view that allows one to gain knowledge from a source without prior knowledge that the source is reliable.² Thus

¹ This ostensive characterization of bootstrapping is not precise, but will have to serve for now. A clearer characterization will emerge alongside the diagnosis defended below (§3.3).
² Many authors prefer to put things in terms of justification, allowing for immediate justification instead of basic knowledge. These authors allow that some sources can justify beliefs even absent any justification for believing that the source is reliable. (For a recent example of such a view, see (Pryor 2000, 2005).) In the interest of simplicity and continuity with recent discussions of bootstrapping, I will focus on basic knowledge, though much of our discussion will bear on views about immediate justification as well.
bootstrapping is also a problem for foundationalists who allow one to gain knowledge from perception without prior knowledge that perception is reliable.

I will argue that bootstrapping poses an even more general challenge. Versions of the bootstrapping problem can be constructed even on strongly internalist theories of knowledge; even if one must always know that one’s source is reliable to gain knowledge from it, bootstrapping is still possible. I will then consider some solutions the internalist might offer for her bootstrapping problem, and defend the one I find most plausible: that bootstrapping involves an abuse of inductive reasoning akin to generalizing from a small or biased sample. Finally, I will argue that this solution is equally available to the reliabilist. The moral will be that the issues raised by bootstrapping are orthogonal to questions about internalism and basic knowledge, having more to do with the nature of good inductive reasoning.

2 Generalizing the Bootstrapping Problem

I claim that bootstrapping is problematic even for strongly internalist views that reject reliabilism and basic knowledge. To see why, let’s fist see how the problem arises for reliabilism, and consider why internalism is supposed to be immune.

According to reliabilism, a belief is knowledge just in case it is true and was formed by a reliable process, even if one does not know that the process is reliable. According to Vogel, reliabilism says that knowledge of reliability is gained in the following case:

The Gas Gauge. The gas gauge in Roxanne’s car is reliable, though she has no evidence about its reliability. On one occasion the gauge reads F, leading her to believe that the tank is full, which it is. She notes that on this occasion the tank reads F and is full. She then repeats this procedure many times on other occasions, eventually coming to believe that the gauge reliably indicates when the tank is full.

(See, for example, fns. 5 and 7.)

3 This is a crude formulation of one kind of reliabilism, but a more careful discussion would be inappropriate here. Readers who are concerned that salient details are being overlooked are referred to Vogel’s (2000) more careful discussion, especially pp. 602–609 and 611–15.
On each occasion Roxanne knows that the tank is full, according to the reliabilist, because her belief is true and formed by a reliable process, namely trusting the gauge. Her true belief that the gauge reads \(F \) is also reliably formed, being based on perception. Thus she knows in each instance that the gauge reads \(F \), and that the tank is full. She then uses induction to conclude that the gauge reading \(F \) reliably indicates that the tank is full. Since induction is also reliable, she knows that the gauge is reliable. Intuitively, however, she cannot gain this knowledge in this way.

Why doesn’t the internalist face the same problematic result? Because she can place requirements on knowledge that prevent Roxanne from knowing in each instance that the tank is full. The internalist can say that knowledge requires justification, and for a belief based on a source to be justified one must know that the source is reliable.\(^4\)\(^,5\) Since Roxanne does not know that her gauge is reliable by hypothesis, she is not justified in believing that the tank is full, and thus does not know it is full.

The relevant difference between the reliabilist and the internalist appears to be the requirement of antecedent knowledge that one’s source is reliable. If antecedent knowledge of a source’s reliability is not needed to gain knowledge from it, bootstrapping threatens to yield knowledge of reliability in an illicit way. Thus Cohen (2002; 2005) and others argue that basic knowledge is the source of the bootstrapping problem. This makes bootstrapping a more general problem, afflicting even some internalist views, e.g. foundationalist theories that allow one to gain knowledge by perception without antecedently knowing that perception is reliable.\(^6\)\(^,7\)

Of course, one can reason bootstrappishly even when one antecedently knows that one’s source is reliable. Suppose Roxanne had already known her gauge to be reliable.

\(^4\) Not all internalists can impose this requirement, of course, as we’ll note in a moment.
\(^5\) If we frame our discussion in terms of immediate justification rather than basic knowledge (see fn. 2 and 7), the relevant difference is the requirement that one antecedently possess justification for believing that one’s source is reliable.
\(^6\) Suppose one can know that \(P \) on the grounds that it looks as though \(P \), whether or not one knows that the way things look is a reliable indicator of the way they are. Then one can come to know that \(P \) based on visual perception, know that it looked as if \(P \) on that occasion by introspection, and by repeating this procedure on many occasions come to know that the way things look is a reliable indicator of the way things are.
\(^7\) See (White 2006) for the use of bootstrapping as an objection to views that allow immediate perceptual justification.
According to the internalist she could then know on each occasion that the tank is full and that it reads F. Couldn’t she then conclude by induction that her gauge is reliable, and isn’t that a problem for the internalist? Even if it is, the internalist still does not face the problematic result the reliabilist faces, since in this variant, Roxanne does not gain knowledge. She merely concludes what she already knows: that her gauge is reliable. Thus reliabilism appears to face a serious problem that internalism does not, since reliabilism is committed to an intuitively repugnant gain in knowledge, while internalism is not.

So the internalist blocks bootstrapping by driving a wedge between cases. In cases where there is no antecedent knowledge of reliability, there is no knowledge in each instance from which to gain knowledge of reliability by induction, so knowledge of reliability cannot be gained. In cases where there is antecedent knowledge of reliability, there is knowledge in each instance, but induction on those instances yields a conclusion that is already known, so knowledge of reliability still cannot be gained.

Still, I claim that one can threaten to gain knowledge via bootstrapping even when one knows antecedently that one’s source is reliable. The trick is to note that, even if we antecedently know that the gauge is reliable, there is still room to improve our epistemic standing with respect to the gauge’s reliability. For example, one thing we may not know antecedently but might conclude by bootstrapping is that the gauge is super-reliable. That is, we may conclude by bootstrapping that the gauge is not only reliable enough to grant knowledge, but even more reliable than it needs to be. Consider:

The Super-Reliable Gas Gauge. Charlie knows that the gauge in his car is reliable, and it is in fact super-reliable. On one occasion the gauge reads F, leading him to believe that the tank is full, which it is. He notes that on this occasion the tank reads F and is full. He then repeats this procedure many times on other occasions, coming to believe that the gauge is not only reliable, but super-reliable.

Charlie has antecedent knowledge of reliability, so the internalist cannot appeal to
a lack of justification in each instance to block his bootstrapping procedure. Moreover, Charlie concludes something stronger than what he knew antecedently, so the internalist cannot dismiss his case as one where no knowledge is gained. Thus the wedge the internalist drove between cases is not actually sufficient to defuse the threat of bootstrapping. Even in cases where antecedent knowledge of reliability is present, there is room to bootstrap.

There are ways the internalist can try to block Charlie’s bootstrapping. She might say that Charlie’s reasoning is circular, so it does not justify his conclusion. We will consider such responses in the next section. What I want to note now is just that the internalist has to say something to block Charlie’s bootstrapping. This is important because, whatever she does say about Charlie, the reliabilist may be able to say the same thing about Roxanne. For example, another response the internalist might try is that Charlie’s use of inductive reasoning is flawed. And if his inductive reasoning is flawed, Roxanne’s inductive reasoning may be flawed too, letting the reliabilist off the hook. This is roughly the view I will defend below.

3 Internalist Solutions

How might the internalist block Charlie’s bootstrapping? I will survey three options and argue in favor of the third.

3.1 Appealing to Circularity

Vogel (manuscript) offers the following restriction to handle bootstrapping: one cannot justify the belief that a rule is reliable using reasoning in which that same rule is applied. Strictly speaking, Charlie does not violate this restriction, since what he concludes is not that the rule “trust the gauge” is reliable, but that it is super-reliable. So a slight amendment to Vogel’s proposal is in order:

No Rule Circularity (NRC) A belief about the reliability of rule R cannot be justified by the application of R. That is, neither the conclusion itself nor any belief
which supports it may be justified in virtue of the application of \(R. \)

Charlie does violate NRC, so it seems a promising way to handle bootstrapping. The problem is that NRC is both too strong and too weak. There are cases where NRC incorrectly says the subject is not justified, and cases where the subject bootstraps but NRC does not block his justification.

Here is a case where NRC should not block justification but does:

The Times Studies. Eliza knows that the *The New York Times* is reliable. She reads an article on the front page reporting three independent studies of the *Times*’s reliability, all of which found that the *Times* is significantly more reliable than most readers think. She concludes that the *Times* is more reliable than she thought.

Eliza is right to draw this conclusion, but NRC says she is not justified. Her rule is to trust the *Times*, and she applies that rule in the reasoning that leads her to believe the *Times* is more reliable than she thought.

To see that NRC is too weak, notice that bootstrapping can be used to draw conclusions about things besides reliability, but these applications of bootstrapping are not blocked by NRC. Here is a case:

The Sunday Times. Matt knows *The New York Times* to be reliable every day of the week, though less reliable on Sundays than other days. Not knowing the day of the week, he reads the paper front to back and comes to believe of each sentence that the *Times* says it and it is true.

8 Vogel uses ‘NRC’ to label the unamended restriction.

9 In case you are suspicious, notice that we can support this claim probabilistically. When Eliza reads the *Times*’s report, the probability that the *Times* is more reliable than she previously thought goes up. For example, suppose Eliza initially regards the *Times* as 99% reliable, whereas the study reports 99.9% reliability. When she reads the *Times*’s report, there is a 99% chance it is true and a 1% chance it is false. There is thus a 99% chance that the *Times* is actually 99.9% reliable, and only a 1% chance that it is still as reliable as she thought, namely 99%. The new reliability is thus \(.99 \times 99.9\% + .01 \times 99\% = 99.891\% \). Even if Eliza takes the *Times*’s reliability to be reduced to 90% in the event that this one report is false, her estimate should still increase to 99.8%.
He concludes that today is not Sunday, since the *Times* is normally not perfectly accurate on Sundays.

Matt’s rule is to trust the *Times*, but he does not apply the rule to justify a belief about its reliability. Instead his conclusion is about the day of the week, so NRC does not apply.

There is a separate diagnosis of Matt’s case that the internalist might appeal to, consistent with her appeal to NRC in other cases. Matt’s beliefs are reminiscent of the preface-paradox: when Matt reads today’s paper front to back, he is justified in believing each claim individually, but the conjunction of all those claims might be so improbable that he should not believe it. But, the story goes, he must believe that conjunction in order to conclude that today is not Sunday, so his conclusion is not justified.

There are some wrinkles here. We might challenge the assumption that Matt must believe this grand conjunction in order to arrive at his conclusion that today is not Sunday. But if this assumption does no harm, the internalist may help herself to it if it allows her to get the right results. Instead we might question whether the conjunction is too improbable to believe. If we specify the case right, this is not obviously so. Suppose the *Times* is infallible Monday through Saturday, and averages one mistake every other Sunday. The probability of the conjunction is then 13/14 (approximately 93%), arguably high enough for justified belief.\[11\]

These considerations do not decisively show that the preface-paradox-style diagnosis cannot handle Matt’s case. One might insist that a higher probability is necessary for justification in Matt’s case. And to make the conjunction more probable we have to either decrease the prior probability that today is Sunday or increase the reliability of the Sunday paper. If we do the former, Matt may already be justified in believing that today is not Sunday, in which case there may be no harm in his bootstrapping.

10 This calculation assumes that each day of the week is equally probable at first. We could tinker with the probabilities so that this won’t be so, but the considerations to follow will still apply.

11 We do not, by talking about probabilities being “high enough for justified belief”, commit to the threshold view about probabilities and belief that yields the lottery paradox. We merely suppose that, in some cases, passing a (possibly variable) threshold is necessary for justification.
reasoning. If we do the latter, the fact that today’s paper is perfectly accurate does less to discriminate between Sunday and not-Sunday, so Matt’s justification for believing that today is not Sunday may be lost. If the internalist insists that the numbers cannot be balanced so as to escape this dilemma, the debate is likely to stalemate.

But notice, if a preface-paradox-style diagnosis is adequate here, it should also be adequate for the cases that were supposed to be handled by NRC. Charlie’s case has the same character, after all. To conclude that his gauge is super-reliable, he must believe that it read accurately in many instances, more instances than it would if it were merely reliable. Given that Charlie does not know antecedently whether the gauge is reliable or super-reliable, the number of cases needed to support super-reliability will be such that a conjunction across all of them is not probable enough for acceptance. At least, if the probabilities balance out this way in Matt’s case, they should balance the same in Charlie’s case. So if the preface-style treatment is adequate for Matt’s case, it should be adequate for Charlie’s. Why treat them differently then, shouldn’t a unified diagnosis be preferred?

We have seen that NRC blocks justification where intuitively it should not (Eliza’s case), and that there are cases of a bootstrappish character that NRC does not cover (Matt’s case). For the cases not covered, the preface-style diagnosis was offered as a supplement. But given that NRC is too strong anyway, and that the supplement offered was not clearly adequate, we have good reason to abandon the circularity approach. Given also that the preface-style diagnosis would, if adequate, make NRC otiose, the reasons are even weightier.

3.2 Appealing to Improbability

Why not just appeal to the preface-style diagnosis alone then? Because there are bootstrapping cases that do not share the preface-paradox-like quality of our previous cases, which suggests that we have yet to get to the heart of the bootstrapping problem. Consider:

Slight Bootstrapping. Starla knows that the *Times* is reliable. She opens
today’s paper, reads the first sentence, \(P \), and comes to believe that
the *Times* says \(P \) and \(P \) is true. She then ever so slightly increases her
estimate of her epistemic probability \(^{12}\) that the next sentence, \(Q \), is true.

The preface-style diagnosis will not apply to Starla, since she uses only two premises
in her reasoning: that the *Times* says \(P \) and that \(P \) is true. \(^{13}\) Her premises are weaker
than before, so the gain in her epistemic position is weaker too: only a slight increase
in her estimate of an epistemic probability. Nevertheless, she is not entitled to even
this slight gain.

The beginning idea behind Starla’s case is that bootstrapping can be used to make
illicit gains on epistemic fronts besides justified belief and knowledge, like epistemic
probability. So if the internalist handles Matt’s case by appealing to its preface-paradox-
like character, we can avoid preface-type complications by setting all-or-nothing belief
aside and focusing directly on the probabilities. The driving idea then is that the
interesting error in Matt’s case is not his disregard for the significant probability of
error that accrues as his sample grows large. Rather, it his tacit presumption that the
elements of a sample gathered in his way could support his conclusion at all. Starla’s
case brings this point out by looking at a single-element sample, and asking whether it
provides even minimal support for her conclusion. Since the preface-style diagnosis
does not apply to Starla, it seems not to get at the heart of our problem. I’ll now turn
to the diagnosis that I think does.

3.3 Appealing to No Feedback

All our examples of bootstrapping have two distinctive features which together suggest
a diagnosis. First, they are all instances of reasoning via lemmas: preliminary conclu-

\(^{12}\) I intend “estimate of epistemic probability” to be neutral between different views about epistemic
probabilities. For example, we might understand Starla’s estimate of her epistemic probability to be just
her degree of belief. Or, we might understand it as an (outright) belief about her evidential probability.

\(^{13}\) NRC will not apply either, since the epistemic boost Starla gets from her “check” does not bear on a
belief about general reliability. It bears instead on the epistemic probability of a single instance.
sions are drawn from premises, and those preliminary conclusions are then used as lemmas from which an ultimate conclusion is drawn. In the case of the super-reliable gas gauge, for example, Charlie uses the fact that the gauge reads F in one instance to infer that the tank is full in that instance, and he collects many such instances to further infer that the gauge is super-reliable. Second, they are all cases where the premises, lemmas, and conclusions exhibit a distinctive probabilistic pattern: the premises alone do not increase the probability of the conclusion, but with the help of the lemmas they do. The fact that the gauge reads F in a series of instances does not make it any more likely that the gauge is super-reliable. But combined with the lemma that the tank was actually full in those instances, the probability of super-reliability goes up.

These observations suggest that bootstrapping is illegitimate because it violates a probabilistic restriction on the use of lemmas. So let’s conjecture that the lemmistic reasoning in a bootstrapping case is defeated because the premises of the bootstrapping argument do not by themselves provide the probabilistic support the conclusion requires. The lemmas together with the premises may make the conclusion sufficiently probable, but the lemmas came from the premises, so they may not be used to amplify the probabilistic support of the premises. To capture this thought, I’ll postulate the following defeater for inductive reasoning:

No Feedback If (i) C is inferred from $L_1 - L_n$ (and possibly other premises) by an argument whose justificatory power depends on making C at least x probable, (ii) $L_1 - L_n$ are inferred from $P_1 - P_n$, and (iii) $P_1 - P_n$ do not make C at least x probable without the help of $L_1 - L_n$, then the argument for C is defeated.

One way of thinking about what this defeater says is that one cannot amplify the power of evidence by taking the conclusions one draws from the evidence and adding

14 We will have to interpret this picture somewhat liberally if we want to include cases where the “lemmas” are derived from non-doxastic sources, e.g. from perception. I intend my diagnosis to apply to such cases, but I will interpret all our cases as ones where the premise-lemma-conclusion format applies. This allows us to handle all our cases within a traditional probabilistic framework, dodging the thorny problems that arise when considering perception’s influence on epistemic probabilities. See (Jeffrey 1965), (Field 1978), (Garber 1980), (Christensen 1992), and (Weisberg forthcoming) for a partial history of the complications that arise here.
them back in to her evidential corpus. But it is important to note that No Feedback does not depend on an evidentialist picture. All that is required is a distinction between what is inferred and what it is inferred from. The core insight we are trying to capture is just this: if the outputs of ampliative inference are always allowed to serve as further inputs to the ampliative process, the result is feedback, of which bootstrapping is a symptom. But there is no need to divide up the inputs and outputs into evidence and non-evidence.

All our examples of bootstrapping are clear targets of the No Feedback defeater. The fact that Roxanne and Charlie’s gauges say F does not make it any more probable that their gauges are reliable. The fact that Matt and Starla’s newspapers say P does not make it any more probable that it is not Sunday, or that the next claim in the paper is true. Only together with the lemmas drawn from these premises — that the tank is full, that P is true — do the conclusions of the respective bootstrapping arguments become more probable. So, if justifying these conclusions requires making them sufficiently probable, No Feedback prevents them from being justified. The premises alone do not make the conclusions sufficiently probable. The premises and the lemmas together would make these conclusions sufficiently probable, but this use of lemmas is precisely what No Feedback forbids.

The No Feedback defeater also gives the right verdict in the case that showed NRC was too strong. The fact that Eliza’s *Times* reports a study of its own reliability does, by itself, increase the probability that the *Times* is more reliable than she thought. (See fn. 9 for the calculation.)

3.4 Concerns About No Feedback

One might still be leery of No Feedback. Limitations of space prevent a thorough discussion of potential concerns, but I will briefly address three that I have heard in

15 No Feedback might even be able to do some work within holistic views of justification like Bonjour’s coherentism. (Bonjour 1985) On holistic views, a belief’s justification comes from membership in a justified corpus, and a corpus’s justification depends (at least in part) on the inferential connections within it. If those inferential connections are representable as step-by-step arguments, then No Feedback can constrain what inferential connections there are, and thus what corpuses are justified.
response to No Feedback.

1. No Feedback is ad hoc. Even supposing No Feedback gets all of our cases right, does it have any independent plausibility? Or is it just an ad hoc postulate, cooked up to solve our problems here?

Reply. No Feedback does have independent plausibility. Traditional patterns of inductive reasoning are widely acknowledged to have multiple defeaters, and those defeaters are sensitive to probabilistic factors. Take simple induction to a generalization: we observe a sample of Fs that are all Gs and conclude that all Fs are Gs. This inference pattern can be defeated if the sample is not large enough, if it is not diverse enough, or if the sample is biased. These are all factors that rob the sample of its ability to make the generalization probable. So there is precedent for defeaters that prevent inductive inference patterns from drawing improbable conclusions.

Moreover, we can expect there to be defeaters along the lines of No Feedback. If we are going to chain together inductive inferences, as we seem to do (e.g., Times says peace talks broke down → peace talks broke down → there will be renewed violence), then there are bound to be cases where the end point is not made probable by the starting point. This follows from the fact that probabilistic support is intransitive.\(^{16}\) So, if defeaters are generally in the business of keeping step-by-step inductive reasoning on track with probability, and probability is intransitive, there should be defeaters for the general practice of inductive reasoning via lemmas, since the use of lemmas effectively assumes the transitivity of probabilistic support.

2. Doesn’t No Feedback place too much emphasis on probability? No Feedback might appear to grant probability sovereignty over justification. If the probability of the conclusion C isn’t made sufficiently high by the premises \(P_1 - P_n\), then the argument is defeated. Doesn’t that make probability the sole arbiter of justification? Come to think of it, what is the point of step-by-step inductive reasoning if the probability of C given \(P_1 - P_n\) is all that matters in the end?

\(^{16}\) More precisely, the relation \(A \text{ increases the probability of } B\) is intransitive, as is the relation \(A \text{ makes } B\) at least \(x\) probable. These are well-known truisms about the probability calculus, but see (Shogenji 2003) for some formal discussion.
Reply. First, No Feedback does not entail that probability is the sole arbiter of justification. Clause (i) of No Feedback restricts it to cases where probabilistic support is necessary for justification. We thus leave open whether other factors might contribute to justification, and whether probability is sometimes unnecessary for justification.

Second, even if probability were the sole arbiter of justification, step-by-step inductive reasoning might still be indispensable. It could serve to discover the hypotheses that we evaluate the probabilities of, it could be a way of evaluating probabilities that are not epistemically transparent, it could be a shortcut heuristic to be used when probabilistic reasoning is too difficult or time-consuming, etc.17

3. Isn’t No Feedback too strong? Won’t we need to violate No Feedback at least sometimes, for how else could we ever come to know elementary facts about our own reliability? If No Feedback is right, then we could never use the deliverances of our cognitive faculties to establish facts about their reliability. How then do we come to know how reliable our vision, introspection, memory, etc. are?

Reply. No Feedback does not endanger such knowledge; it does not entail, for example, that we cannot use the deliverances of our senses to evaluate their reliability. As long as the facts about what our various senses are saying do, by themselves, make it probable that our senses are reliable, No Feedback will not prevent us from finding out. We are still allowed to reason in ways like, “perceptual faculties 1–4 testify that P, so P. But faculty 5 testifies that $\sim P$, so faculty 5 is not functioning accurately.” No Feedback allows such reasoning, provided the probability of $\sim P$, given that faculties 1–4 testify P and faculty 5 testifies $\sim P$, is high. Similarly, reasoning like, “perceptual faculties 1–5 all testify that P, and P is consonant with other things we already know. So the reliability of faculties 1–5 gains support,” is fine by No Feedback.

17 It may help to compare the role of lemmas in deductive reasoning. Even if logical entailment were the sole arbiter of justification for deductive reasoning, we would still need step-by-step deductive argumentation. We cannot always recognize directly that P entails C, sometimes we have to go via lemma L. The difference between the inductive and deductive cases is just that deductive entailment is transitive, whereas probabilistic support is not. So step-by-step deductive reasoning needs no analogue of No Feedback.
4 Reliabilism Revisited: Cribbing

We’ve seen that bootstrapping is a problem even for the internalist who requires antecedent knowledge of reliability, and that the internalist’s response should be an appeal to No Feedback. I’ll now argue that the reliabilist can crib the internalist’s solution.

The reliabilist can solve her bootstrapping problem if she can argue that Roxanne’s conclusion is not the result of a reliable process.\(^{18}\) This appears impossible at first, since trusting a reliable gauge is reliable and induction is presumably reliable as well. But one moral of our preceding discussion is that induction is \textit{not} reliable, unless one respects the various defeaters for one’s inductive steps. Naive applications of enumerative induction can lead one badly astray if one is not on guard against small samples, biased samples, etc. The obvious strategy for the reliabilist, then, is to argue that she is only committed to the reliable use of induction, which the internalist has acknowledged requires respect for No Feedback. Since Roxanne does not respect No Feedback, her inductive reasoning in the second step of the bootstrapping argument is not reliable.

This defense of reliabilism invites a number of objections. I will very briefly consider two.\(^{19}\)

\textit{First Objection.} This solution only partially blocks bootstrapping. If Roxanne is disposed to respect No Feedback almost all the time, then her use of induction will be reliable, but she might still bootstrap on occasion because she occasionally ignores No Feedback. On the occasions where she does disregard No Feedback, her process might still be called reliable: she deploys the same cognitive process she always does, even if it

\(^{18}\) Vogel (2000: p. 615) anticipates the reliabilist making a similar move, but our reliabilist will make her move in a way Vogel does not anticipate. See fn. 19 for more detail.

\(^{19}\) Vogel (2000: p. 615) anticipates a superficially similar defense of reliabilism. He anticipates the reliabilist responding that Roxanne’s conclusion is the result of a bootstrapping process, but bootstrapping is unreliable, so she does not know her conclusion. The difference between our reliabilist and Vogel’s is this: Vogel’s reliabilist complains that bootstrapping as a whole is an unreliable process, whereas our reliabilist complains more narrowly that the second step in Roxanne’s bootstrapping reasoning — an inductive inference without sensitivity to No Feedback — is unreliable. This difference immunizes our reliabilist against Vogel’s rebuttals, though limitations on space prevent us from seeing how.
behaves unusually in this instance. So she knows the conclusion of her bootstrapping argument.

Reply. Even if this is an embarrassing result for the reliabilist, it is not a new embarrassment. The reliabilist already faces the problem that one can “get lucky”, abusing an ordinarily reliable process to gain knowledge. For example, suppose I am ordinarily careful in my use of inductive reasoning but, on one occasion, I carelessly conclude that all ravens are black from a sample of one black raven. Then I seem to know that all ravens are black according to reliabilism. Whatever the reliabilist says about this case, she will presumably say the same about the rare occasions where Roxanne carelessly overlooks No Feedback. She may bite the bullet, or she may argue that occasional misuses of a reliable method do not count as instances of the method. But whatever her response, bootstrapping adds nothing to her difficulties here.

Second Objection. The reliabilist is hiding behind the ambiguity that creates the generality problem for reliabilism. Whether a token process is reliable depends on what general type it is subsumed under, and we can subsume Roxanne’s final, inductive step in the gas gauge case under different general types, some reliable and some not. If we regard Roxanne’s conclusion that her gauge is reliable as resulting from a process of the general type *an application of enumerative induction to true premises*, then her conclusion results from a reliable process, even if she is not disposed to respect No Feedback. To deem Roxanne’s conclusion the result of an unreliable process, we must view it as the result of a different kind of process, something like *an application of enumerative induction to believed premises*. For applying enumerative induction to believed premises without regard for No Feedback is not reliable. So the reliabilist’s defense depends on her classification of the final, inductive step in Roxanne’s bootstrapping argument.

Reply. There is an obvious reason to prefer the latter classification. Roxanne tracks truth by belief, so her tendency will be to apply enumerative induction to believed premises, and only to true premises insofar as they are believed. Given two natural

20 See (Goldman 1979), (Feldman 1995), and (Conee & Feldman 1998) for background on the generality problem.
classifications of a process, it is more natural to subsume it under the type that better fits the system’s dispositions to undergo similar processes. So it is more natural to describe what Roxanne does as applying enumerative induction to believed premises, in which case her conclusion is not the result of a reliable process (unless she is sensitive to No Feedback).

This response appears to hang on a stipulation about how Roxanne uses induction. Couldn’t we just stipulate that Roxanne is disposed to use enumerative induction on true premises, whether or not she believes them? We could, but then we would have a case that does not pose any novel problem for reliabilism. If Roxanne uses enumerative induction on premises of the form \textit{the gauge reads F and the tank is full}, not because she believes them but because they are true, then she does not bootstrap. She does not use the gauge’s readings, or any conclusions drawn from them, to arrive at the conclusion that the gauge is reliable. What she does is admittedly mysterious without further elaboration; how she manages to dispose herself to use enumerative induction on true premises without using belief as a mark of truth is puzzling. But we have yet to hear any reason to suspect that an agent who is so disposed does anything more distasteful than what Roxanne already does just by trusting the unauthenticated gauge in her car.

5 Conclusion

I have argued for three claims. First I argued that bootstrapping is a problem even for internalists who reject basic knowledge. My argument for this claim proceeded by presenting cases. Second I argued that, of the solutions we considered on the internalist’s behalf, appealing to the No Feedback defeater is the most promising one. There were essentially two threads of argument here: only No Feedback handles all of our cases correctly, and No Feedback is independently motivated by broad considerations to do with induction, justification, and probability. Third and finally, I argued that the No Feedback solution to the bootstrapping problem looks to be available to the reliabilist as well. The moral, I suggest, is that bootstrapping has less to do with internalism and basic knowledge, and more to do with the relationship
between probabilistic support and step-by-step inductive reasoning.

References

Vogel, Jonathan. manuscript. Epistemic bootstrapping.