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Suppose that a forecaster sequentially assigns probabil
ities to events. He is well calibrated if, for example, of 
those events to which he assigns a probability 30 percent, 
the long-run proportion that actually occurs turns out to 
be 30 percent. We prove a theorem to the effect that a 
coherent Bayesian expects to be well calibrated, and con
sider its destructive implications for the theory of 
coherence. 
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1. INTRODUCTION 

Subjective probability forecasting is now well estab
lished among meteorologists, particularly in the United 
States (Murphy and Winkler 1977). Weather forecasters 
routinely make predictions such as "the precipitation 
probability for Denver today is 30 percent"; they have 
also experimented with credible interval temperature 
forecasts of the form "the probability is 75 percent that 
today's maximum temperature in Denver will be between 
63° and 67°F. " The probabilities quoted refer to the fore
casters' subjective "degree of belief," given their infor
mation at the time of the forecast. This information may 
include the "objective forecast" output from a climato
logical analysis, or a computer forecasting system; how
ever, no explicit modeling process need be involved in 
arriving at forecast probabilities. 

Such probability forecasting fits neatly into the general 
Bayesian world-view as conceived by de Finetti (1975). 
The coherent subjectivist Bayesian can be shown to have 
a joint probability distribution over all conceivably ob
servable quantities. Forecasti11$ then is merely a matter 
of summarizing the conditional distribution of quantities 
still unobserved, given current information. In this article 
we shall, for definiteness, talk mainly in terms of weather 
forecasting, but it should be understood that the scope 
of the discussion is much wider, taking in all applications 
in which a subjectivist makes repeated probability fore
casts. For added definiteness, and with the usual non
sexist understanding, we shall refer to the forecaster in 
the masculine. 

Probability forecasts can be judged by several criteria 
(Murphy and Epstein 1967). In this article we concentrate 
exclusively on the criterion of calibration (sometimes 
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termed reliability). Suppose that, in a long (conceptually 
infinite) sequence of weather forecasts, we look at all 
those days for which the forecast probability of precipi
tation was, say, close to some given value 00 and (assum
ing these form an infinite sequence) determine the long
run proportion p of such days on which the forecast event 
(rain) in fact occurred. The plot of p against 00 is termed 
the forecaster's empirical calibration curve. If the curve 
is the diagonal, p = 00, the forecaster may be termed 
(empirically) well calibrated. A parallel concept holds for 
credible interval forecasts: these are well calibrated if, 
for example, the long-run proportion of forecast 75 per
cent credible intervals that succeed in covering the actual 
value ofthe predicted quantity turns out to be 75 percent. 

The calibration criterion has some similarity with the 
frequency definition of probability, but does not require 
a background of repeated trials under constant condi
tions. In particular, it is rarely appropriate to interpret 
a subjective probability forecast as an estimate of some 
underlying "objective" probability; it is usually better 
considered as an estimate of (the indicator of) the forecast 
event itself. Thus we do not have to concern ourselves 
with the "true ,,' probability of rain on a given day. Rob
erts (1968) has attempted to interpret such a concept by 
supposing that one could select a subset of all days that 
could be regarded, at the time of forecast, as identical 
in all relevant respects, and consider the limiting relative 
frequency of rain on such days as the "true" probability 
for anyone of them. However, it is doubtful whether 
such a selection is practically meaningful, or whether 
different forecasters would agree on it. The calibration 
approach avoids these difficulties. 

Murphy and Winkler (1977) show that experienced 
weather forecasters are, on the whole, well calibrated. 
Although this is not by itself a sufficient condition for 
their forecasts to be "good" (it would hold, for example, 
for a forecaster who invariably gave the long-term relative 
frequency of rain as his precipitation probability), it has 
often been taken to be a minimal desirable property. Fur
ther empirical studies of calibration have been reported 
by Lichtenstein, Fischhoff, and Phillips (1977), who ob
tain some poorly calibrated responses. 

A common suggestion (e.g., in Cox 1958) is that the 
probability statements of a poorly calibrated forecaster 

, should be transformed before use. Thus, if a forecaster's 
empirical calibration curve at a quoted value of 30 percent 
has p = 20 percent, then the consumer of this forecast 
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might perhaps best assume that the "true probability" 
of rain is 20 percent. We shall not consider here the gen
eral problem of how to use someone else's forecasts; for 
this, see for example Morris (1974), and Lindley, Tver
sky, and Brown (1979). 

In this article, we investigate the forecaster's view of 
his own calibration, and show, in particular, that if he is 
coherent then he expects to be well calibrated. We also 
discuss the problems that this creates for the theory of 
coherence. 

2. INDEPENDENCE AND FEEDBACK 

Previous theoretical studies of the calibration property 
(Morris 1977; Harrison 1977) have mostly been concerned 
with the assessment of "seemingly unrelated" uncertain 
events or quantities: for example the height of the Eiffel 
Tower, the freezing point of mercury, the population of 
the USSR, and so on. It appears natural for the forecaster 
to regard such quantities as probabilistically indepen
dent. Supposing this, consider now the dilemma faced by 
such a forecaster who learns that of a very large number 
N of such forecasts that he has made 80 percent (say) 
exceed their assessed medians. This is an event whose 
subjective probability may be calculated from the binom
ial distribution with probability!, and will be vanishingly 
small; yet it occurred. In the light of such a conflict it 
might seem appropriate to borrow from the logic of ;ig
nificance testing and reject the basis for the probability 
assessments. The moral that Harrison (1977) draws is that 
the naive approach, in which "seemingly unrelated" 
quantities were regarded as subjectively independent, is 
unacceptable; assessments for such quantities are, in 
fact, related merely by virtue of the fact that they are 
being made by the same assessor. Defining.a potentially 
miscalibrated individual as one who is not sure whether 
his future subjective probability assignments will agree 
with observed frequency, Harrison goes so far as to con
clude that "such a person will never perceive two events 
as (probabilistically) independent." 

These investigations seem too specialized in contexts 
such as weather forecasting, where, for example, the cri
terion of "seeming unrelatedness" of precipitation for 
different days is clearly inapplicable. We shall follow a 
different path, taking advantage of the sequential nature 
of the weather forecaster's task. The forecaster does not 
op~rat~ by.giving, on 31 December, his individual pre
CIpItatIOn forecasts for every day of the coming year, and 
then retiring: each day he forecasts for tomorrow 
drawing on his accumulated experience of all that ha~ 
passed up to today, including, in particular, the outcomes 
of those oftoday's events for which he supplied forecasts 
yesterday. It is such sequential forecasts with feedback 
that will form our principal subject of study. 

Our mathematical structure is as follows. Forecasts are 
made sequentially on days 0, 1, 2, ... , each referring 
to events or quantities that will become known on the 
following day. We denote by (l}3; the totality of events 
known to the forecaster on day i; thus (l}3o ~ (l}31 ~ .... 
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The forecaster has an arbitrary subjective probability 
distribution IT defined over (l}3"" = Vi~o (l}3;. The proba
bility forecasts he makes on day i are for events or quan
tities in (l}3;+ I, and are calculated from his current con
ditional distribution IT(' I (l}3;). 

With this formulation, the problem of the badly cali
brated forecaster is much more serious. For suppose X; 
is a (l}3;-measurable quantity (i = 1, 2, ... ), for example 
the maximum temperature in Denver on day i, and let m; 
be the median of the forecaster's distribution for Xi, as 
assessed on day i - 1. Let Si denote the event "Xi> 
m;". Then, by definition, IT(Sil(l}3i-l) = !. Since (l}3i-1 
cont~ins (SI, S2, ... ,Si-d, it readily follows that, ac
cordmg to IT, IT(Si) = ! and the (Si) are independent (Pratt 
1962). Once again, we appear to have a conflict if, over 
many days, 80 percent, say, of the (Xi) exceed their as
sessed medians. However, the only assumption made 
above was that IT be coherent, so that IT obeys the laws 
of probability theory. That is, any coherent sequential 
forecaster must completely discount the possibility that 
he might be miscalibrated, however strong the evidence 
against him might be. In other words, in our sequential 
setup, Harrison's potentially miscalibrated individual 
cannot be coherent. We return to this point in Section 6. 

3. A GENERAL CALIBRATION THEOREM 
In this section we present a very general result that 

extends the above connections between coherence and 
calibration. Once again we suppose the forecasts are 
made sequentially according to a fixed probability dis
tribution IT, but make no other assumptions. 

For each day i we have an arbitrary associated event 
Si E (l}3;, for example, the event of precipitation on day 
i. We denote the indicator of Si by Yi , and introduce 1'; 
= IT(Si I (l}3;_ d = E( Yi I (l}3i-I), the probability forecast 
of Si on day (i - 1). 

One way of comparing forecasts with reality is to pick 
out some fairly arbitrary test set of days, and in it compare 
(a) the proportion p of days whose associated events in 
fact occur with (b) the average forecast probability 'IT for 
those days. Formally, we introduce indicator variables 
~), ~2' •.. , at choice, to denote the inclusion of any 
particular day i in the test set: ~i = 1 if day i is included, 
~i = 0 otherwise. 

We might choose the test set in advance, once and for 
all. However, it is a useful extension to allow the (~i) 
themselves to be determined sequentially; thus the de
cision on inclusion or exclusion of day i need only be 
made on day (i - 1), and then in an arbitrary way, in the 
light of knowledge available by day (i - 1). Formally, ~i 
must be (l}3i- I-measurable. Apart from this, no restriction 
whatsoever is placed on the selection of days into the 
test set. We call any such selection process admissible. 

Let 

That is, restricting attention to those days up to day k 
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selected for inclusion in the test set, Vk is the number of 
such days, Pk the proportion for which the associated 
events in fact occur, and 1Tk the average forecast prob
ability. Then we have the following result. 

Theorem. Let the selection process (~j) be admissible. 
With II-probability one, if Vk - 00 then Pk - 1Tk - 0. 

The proof is given, with some extensions, in the Ap
pendix. Note that the result could not be true in general 
if we were to allow ~j to depend on Yj , for then we could 
force Pk = 0, for example. 

4. APPLICATIONS 

4.1. Empirical Calibration 

Fix 00 E(O, 1), 8 > 0, and define ~j = 1 if and only if 
I Yj - 00 I :s 8. That is, our test set of days consists of 
just those for which the assessed prol?ability of the as
sociated event is suitably close to oo. This is admissible, 
since the condition determining ~j can be decided on day 
(i - 1). For this choice, l1Tk - 00 I :s 8. It thus follows 
from the Theorem that, with II-probability one, assuming 
the selection condition is satisfied infinitely often, Pk will 
be close to 00 for all sufficiently large k. That is to say, 
the coherent sequential forecaster believes that he will 
be empirically well calibrated. 

An extension of the preceding result is obtained on 
choosing ~j = 1 when I Yj - 00 I :s 8j , when 8j is possibly 
allowed to depend on information up to day (i - 1), and 
8; - 0. The conclusion then is that, with II-probability 
one, if the sequence of selected days is infinite, P k - OO. 

4.2 Variable Event Calibration 

At first sight, it seems that our Theorem does not cover 
the possibility that the event S; is itself sequentially se
lected by the forecaster. For example, if X; is the maxi
mum temperature in Denver on day i, the forecaster may 
calculate his conditional distribution for X;, given (l}3;_I, 

and from it construct, say, some 75 percent credible in
terval Aj k R, taking S; = "Xj E A;." But of course, 
even with this extension, the constructed S; belongs to 
(l}3j, so that the Theorem applies. In general, the only extra 
condition needed, satisfied in the above example, is that 
the determination of the variable event considered on day 
i shall be effected by day i. 

In this example, Y; == .75 by construction, whence 1T k 

== .75, and the Theorem entails the convergence of Pk to 
.75 with II-probability one for any infinite admissible se
lection, and in particular for the whole sequence (~; == 1). 
(Of course, this conclusion is already implicit in the ar
gument of Section 2, which shows that the (S;) behave, 
under II, as Bernoulli trials with probability .75.) Thus 
the coherent forec(!.ster expects his sequential credible 
interval forecasts to be well calibrated. 

4.3 Model-Based Forecasts 

Consider now the special case in which it can be agreed 
that the data arise from some "objective," unknown 
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probability distribution P. Suppose our forecaster pos
tulates a model "P E C;;," where C;; = {Po}, with 8 E e, 
a subset of Rk. Suppose further that, for this model, 8 is 
consistently estimable. His distribution II is now com
pletely specified by his prior distribution over e; we sup
pose that this is full, in other words has support e. 

Under weak regularity conditions, if indeed P E C;;, say 
P = Pao' his posterior distribution for 8 will (with P-prob
ability one) converge to the one-point distribution at 80 • 

This will be reflected in his probability forecasts, which 
will asymptotically approximate the "objective" proba
bilities under Pao, and so be well calibrated with P-pIob
ability one, by our Theorem. Thus a full prior for a model 
that includes the true distribution P of the data will yield 
forecasts that will in fact, that is, under P, be (almost 
certainly) well calibrated. If the calibration property ap
pears to fail, then the whole model is discredited. 

As an example, suppose the forecaster postulates a 
Bernoulli model C;; = {Po}, where, according to Po, the 
{Yj} are independent with Pa( Y; = 1) = 8. For definite
ness, take his full prior to be uniform on [0, 1]. If (l}3n only 
contains information on (Y1 , ••• , Yn ), his sequential 
probability forecast Yn + I of Yn + I is 

P(Yn + 1 = 1 I YI> ... , Yn ) = (r + 1)/(n + 2), 

where r is the number of 1 's in the first nY's. If now rln 
(and thus Yn ) tends to a limit, A say, as n - 00, then 
the forecasts will be empirically well calibrated (for only 
when 00 ~ A do we get an infinite set of trials for which 
I Yn - 00 I :s 8 on which calibration can be tested and 
could fail; but this set will contain all trials beyond some 
point, and so yield Pk - A ~ (0). But, when P E C;;, rln 
does, indeed, converge (with probability one). 

Now in this case, the preceding simple empirical cal
ibration criterion is a poor test of "P E C;;," for, even if 
P $ C;;, only for pathological P would rln not converge 
almost surely to a limit. One could, instead, use the gen
eral Theorem, selecting say only those trials i for which 
Yj _ 1 = 1. When rln - A, we again get 1Tk - A, so that 
these forecasts are well calibrated if and only if Pk - A, 
that is, the limiting relative frequency of 1 's 'is the same 
following a 1 as overall. This occurs with probability one 
for the Bernoulli model, but would fail, for example, if 
the sequence (YI> Y2 , ••• ) followed a general Markov 
Chain. 

5. RECALIBRATION? 

Suppose that you have made a large number of prob
ability forecasts. 'On examining your empirical calibration 
curve, you find that it departs markedly from the diag
onal. Can you learn about your own inadequacies as a 
forecaster from this, and use this knowledge to improve 
future assessments? 

Various authors, for example Morris (1977) and Har
rison (1977), have attempted to structure this problem 
along the following lines (a related, more complicated 
approach may be found in De Groot 1980). You model 
the various events to which you were initially willing to 
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assign some common probability w (or some appropriate 
subset thereof) as exchangeable. It then appears to follow 
that, after observing a proportion p #- w of many such 
past events in fact occurring, the next such event (to 
which you wanted to give probability w) should in fact 
be assigned a probability near p. That is, your w is re
calibrated to p. 

While this seems very sensible, its coherence is sus
pect. How can you simultaneously assign two different 
probabilities to one event? The obvious answer is that 
they must be conditional on different information: w is 
prior, and p posterior, to the calibration experience. Such 
a response, however, will not do when the initial prob
ability assessments are sequential, since the calibration 
experience is then also prior to w. As we have seen in 
Section 2, in this case all the events under consideration 
are judged independent. This is a degenerate case of ex
changeability and does not allow for accumulated expe
rience to alter probabilities. If you wish to recalibrate 
sequential forecasts, you are being incoherent. 

Even if you do recalibrate, and eventually achieve a 
satisfactory empirical calibration curve, it does not follow 
that the property of the Theorem ('IT k close to p k) will 
hold for arbitrary admissible selections. Similar remarks 
apply to the forecaster who attempts to "cheat," by quot
ing probabilities that differ from his true assessments in 
an attempt to improve his apparent calibration perform
ance (De Groot 1979). While this may be possible to a 
limited extent, it would not guarantee that 'IT k will be close 
to Pk in the general case. 

6. COHERENCE AND CROMWELL'S RULE 

Any application of the Theorem yields a statement of 
the form rI(A) = 1, where A expresses some property of 
perfect calibration for the distribution rI. In practice, 
however, it is rare for probability forecasts to be well 
calibrated (so far as can be judged from finite experience) 
and no realistic forecaster would believe too strongly in 
his own calibration performance. We have a paradox: an 
event can be distinguished (easily, and indeed in many 
ways) that is given subjective probability one and yet is 
not regarded as "morally certain." How can the theory 
of coherence, which is founded on assumptions of ra
tionality, allow such an irrational conclusion? In order 
to answer this question, we must consider more deeply 
the foundations of the theory of coherence, and in par
ticular, the interpretation of zero probabilities. 

One approach to the theory of coherence is as follows 
(de Finetti 1964; Lehman 1955). Let A be an event, iden
tified with its iridicator. Your· subjective probability of A 
is 'IT if you would regard as fair a bet that returned you 
c(A - 'IT). Here c, related to the stake, is at choice, and 
may be positive or negative. (For realism, c should be 
small.) 

If you now attach subjective probabilities ('IT) to various 
events (A), then you should regard as fair a combined bet 
that results from simultaneous fair bets, at arbitrary 
stakes, on a finite collection of these events. The return 
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from such a combined bet would have the form L7= 1 

c;(A; - 'IT;), where the (c;) are arbitrary, and 'IT; = 'IT(Aj). 
The principle of coherence requires that .you do not 

regard as fair a bet whose return is certain to be negative, 
whatever the outcomes of the events involved. 

It follows from this principle that ('IT) must be chosen 
to avoid the possibility that, for some choice of (A;, c;), 
L7= 1 c;(A; - 'IT;) < 0 always. It may then be established, 
for example, that the ('IT) must lie in [0, 1], and obey the 
(finite) addition law of probability. An extension of this 
argument to called-off. bets produces the multiplication 
law. 

The above definition of coherence has been criticized 
as too weak by Shimony (1955) and Kemeny (1955). They 
prefer a principle of strict coherence (see Carnap 1971) 
that refuses to allow as fair a bet whose return is never 
positive, and sometimes negative. This possibility is al
lowed by our ear.lier (weak) principle of coherence, al
though the event of negative return must then be assigned 
zero probability. Strict coherence implies that no possible 
event can have probability zero, a property Carnap (1971) 
calls regularity. Lindley (1982) dubs this regularity re
quirement "Cromwell's rule." 

Clearly, regularity cannot hold in continuous sample 
spaces, and the above principle of strict coherence be
comes unworkable. Nevertheless, the weak principle still 
appears too weak; Buehler (1976), reflecting on his ex
amples, opines "we have yet to arrive at a suitable theory 
of coherence for statistical models having arbitrary pa
rameter spaces." 

One possible position is as follows. In any event-field 
d, there will be a class !J of events that, while they may 
be logically possible, nevertheless can be regarded as 
"morally impossible" or "ignorable" (Dawid 1980): for 
example, the (idealized) event of a dart hitting an exactly 
specified point on the board. If we are prepared to coun
tenance a bet that never wins, and loses sometimes, so 
long as the event of loss is ignorable, then we need only 
ensure that our subjective probability is positive for non
ignorable events. We take this as the generalization of 
Cromwell's rule. I, at any rate, find such a principle 
compelling. 

However, the property discussed at the start of this 
section implies that the typically nonignorable event of 
miscalibration must be assigned probability zero. While 
this does not contradict weak coherence, it is in conflict 
with the above appealing version of Cromwell's rule. 
(Although we have assumed countable, rather than finite, 
additivity in deriving our Theorem, I believe this does 
not alter the general conclusion if suitably interpreted.) 
As I am loth to accept a theory of coherence that does 
not contain some form of Cromwell's rule, my confidence 
in the universal applicability of the theory of coherence 
is shaken. 

7. COHERENCE OR CALIBRATION? 

The dilemma would be harmless if the forecaster were 
not an individual, but a constructed statistical system that 
outputs probabilities on being fed with appropriate data: 
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for example, a system for probabilistic medical diagnosis, 
tuned on a training set of patients, and applied to symp
tom information on new patients (Titterington et al. 1981). 
Any such system is applie.d only tentatively, while it 
seems to be working; as soon as it is clear that there is 
a conflict between its predictions and reality, such as 
clear evidence of miscalibration, the system will be mod
ified .or discarded. Because the system was never re
garded as infallible, this causes no difficulty. 

It seems to me that the subjectivist forecaster is obliged 
to treat his own subjective distribution II in the same 
tentative manner as he would an external statistical fore
casting system. If II attaches probability zero to a non
ignorable event, such as asymptotic miscalibration, and 
if this event happens, then II must be treated with sus
picion, and modified (e.g. by recalibration) or replaced. 
But such a process is intrinsically incoherent. 

In practice, we should deal with an event such as poor 
calibration over a long historical sequence, suitably de
fined, and with its assigned near-zero probability. If the 
event is chosen in advance, at any rate, its occurrence 
must cast doubt on the distribution II. This idea is close 
to classical hypothesis testing, and could have corre
spondingly many variants. Although I cannot perceive 
any clear logical principles that might govern its detailed 
application, I find its general message unavoidable. Box 
(1980) has put forward a similar view of scientific infer
ence as the construction of successive Bayesian models 
of the world, each being subject to empirical test of the 
above kind, and replaced when it no longer seems to 
describe reality. A difficulty with this position is that one 
has no guarantee that the incoherent process suggested 
would perform any better (in calibration, say) than a co
herent one. 

The conflict between calibration and coherence could 
be avoided only by 'a distribution II that was not even 
potentially miscalibrated. Such a distribution would have 
to take account of information in ~i-I about its calibra
tion performance to date when forecasting for day i, as 
well as being fully coherent and representing the ac
ceptable betting behavior of the forecaster. Considering 
the wide variety of admissible selections that may be used 
to test the calibration property, it seems doubtful, al
though not impossible, that such a coherent, self-cali
brating distribution could exist. 

APPENDIX: PROOF OF THEOREM 

The proof is a slight variant of that of Theorem VII. 
9.3. of Feller (1971). Let l3i = Vi -I if Vi > 0, l3i = 0 
otherwise, and let Xi = l3i~i( Yi - Yi). Since l3i' ~i and Yi 
are ~i_l-measurable, and Yio = E(Yi I ~i-I)' it follows 
that E(Xi I ~i-I) = 0, so that, with Uk = L~= 1 Xi, (Uk) 
is a martingale adapted to (~k)' Also, 

E(X?) = E[(l3i~if var (Yi I ~i-d] ::5 !E[(l3i~i)2], 

so 
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Now for any realization of(~I' ~2' ~3' ... ), the successive 
nonzero terms of the sequence (131~d2, (132~2f, ... are 
1, 1/22, 1/32, 1142, .... Thus 

k 

L (l3i~y::5 L n -2 = Tr2/6, 
i= 1 n=1 

and so E(Uk 2 ) is bounded above by Tr2/24. By the mar
tingale convergence theorem, the sequence ( Uk) = 
(L~= 1 l3i . ~i( Yi - Yi » converges with II-probability one. 
From Kronecker's lemma (Lemma VII. 8.1 of Feller 
1971, correcting a misprint), this convergence implies that 

k 

Pk - Trk = 13k L ~i( Yi - Y;) -- 0 
i=1 

so long as (l3d tends monotonically to 0, which will hold 
when Vk __ 00. 

The Theorem and proof continue to hold for arbitrary 
random quantities (Yi ), not necessarily 0 - 1, with Yi 

= E(Yi I ~i-d, so long as var(Yi I ~i-I) is uniformly 
bounded above; no doubt this condition could be relaxed. 
The identical argument in fact yields the more refined 
result that 

k 

g(Vk)-1 L ~i( Yi - Yi ) -- 0 
i=1 

(II - almost surely when Vk -- 00) so long as g(n) is 
eventually nondecreasing with L:= 1 g(n)-2 < 00. In par
ticular, Pk - Trk = O(Vk -at) for any ex < !. 

[Received November 1979. Revised January 1981.] 
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JOSEPH B. KADANE* 

Dawid gives a very interesting theorem to the effect 
that a coherent Bayesian feels almost certain he is well 
calibrated under conditions offeedback. It is an extension 
of Pratt's (1962) unpublished theorem on calibration. I 
have no criticism of the theorem; my comments concern 
Dawid's interpretation of it. 

Coherence is a very mild set of constraints on a per
son's beliefs. It says roughly that those beliefs must be 
internally consistent, in the way described in Section 6 
of Dawid's article. It does not imply that others do or 
should agree with a person who has coherent beliefs, nor 
that those subjective beliefs model well the predicted 
events. The person who is sure it will rain in the future 
on all odd numbered days and sure it will not rain on all 
even numbered days in a particular place is coherent. 
Yet, given my beliefs about the weather, I do not expect 
many days to pass before such a person is confronted 
with an event or subjective probability zero. 

With this as background, let us reconsider the meaning 
of the sentences, "We denote by ~i the totality of events 
known to the forecaster on day i; thus ~o ~ ~l ~ ... 

The forecaster has an arbitrary subjective probability 
distribution 'IT defined over ~QO = U';~o ~i'" In order to 
elicit 'IT, I must first anticipate for each day i in the future 
all the possible events that might occur and might influ
ence my probability for precipitation on day i. This will 
surely include the results for days 1, ... , i-I (and my 
probabilities of precipitation on days 1, ... , i - 1) and 
may include data from other places, and new meterol
ogical theories that may have been made known to me 
on day i, and so on. Merely enumerating the elements of 
~i is a job beyond human capability. 
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Comment 

The assumption ~o ~ ~l ~ ... says essentially that 
my memory is perfect, that I never forget an event that 
might be relevant. While mathematically easy to state, 
this is not trivial to accomplish. 

Having enumerated the elements of ~i and remem
bered all past elements ~i-l so that ~i-l ~ ~i' I must 
now state, for each possibility in the set ~i' what my 
precipitation probability would be were that the event to 
be observed. Furthermore, I must do this in a way that 
respects everything I said about ~i-l' This is again an 
extremely difficult task, and one I am sure to want to 
approximate in practice. Fully to elicit 'IT is to anticipate 
the possibility of all future new data and new discoveries, 
to anticipate when they will be published, and then to 
state how influential such data and discoveries would be 
to me. Such an elicitation is beyond human possibility as 
a practical matter. 

Nonetheless, let us join Dawid in supposing such a 
distribution. In this case Dawid shows that I believe that 
ultimately the ~-weighted proportion of events occurring 
will approach my ~-weighted probability, provided only 
that the sum of the weights go to infinity. I do not find 
this unreasonable. It says that in the infinitely far future 
I believe I will learn everything (down to an irreducible 
stochastic nub) about whether it will rain tomorrow. 

What finite sequence of events should persuade me 
that miscalibration is in fact occurring? Professor Dawid 
is vague on this point. In principle, no finite initial se
quence constrains a limit in any way. Furthermore the 
hypothetical elicitation of 'IT has already required me to 
state how I would respond to each element of~i' So why 
should I change anything now? Only if I have done a 
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