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Abstract

Simpson’s Paradox has received a lot of attention in the contemporary literature. Typically, these

presentations focus only on the qualitative structure of the phenomenon, and various explanations

of its “paradoxicality” [1, 2]. In this paper, we discuss quantitative aspects of Simpson’s Paradox, via

the use of various Bayesian measures of degree of confirmation. This leads to some interesting new

results, both for the general phenomenon of Simpson’s Paradox and for Bayesian confirmation theory.

1 Simpson’s Paradox & Bayesian Confirmation (Qualitative)

Simpson’s Paradox (in its usual, qualitative form) can be stated purely in Bayesian confirmation-theoretic

terms [2]. Let H, E, and K be propositions, and let Pr(·) be some (“prior”) probability function that is

being used to assess relations of evidential support involving these three propositions (e.g., Pr(·) might

reflect statistical probabilities in some experimental setup). We can define the usual, qualitative, Bayesian

confirmation relation as follows.

Confirmation (qualitative). E confirms H, given K iff Pr(H | E &K) > Pr(H |K).1

If Pr(H | E &K) < Pr(H | K), then we say E disconfirms H, given K. And, if Pr(H | E &K) = Pr(H | K), then

we say that E is confirmationally irrelevant to H, given K. If K is tautological (i.e., if K = ⊤), then we will

drop the “given K” and say simply that “E confirms (or disconfirms or is irrelevant to) H, unconditionally.”

With these concepts in hand, we can now define (qualitative) Simpson’s Paradox, as follows.

Simpson’s Paradox (qualitative). Any example in which the following three (qualitative) confirmation

relations obtain is an example of (qualitative) Simpson’s Paradox.2

1. E confirms H, given K.

2. E confirms H, given ¬K.

3. E disconfirms H, unconditionally (i.e., E disconfirms H, given ⊤).

Here is a toy example of a qualitative Simpson’s Paradox.3 Suppose a graduate school has two departments:

K (history) and ¬K (physics) and two genders of applicants: E (female) and ¬E (male). And, let H (¬H)

express the proposition than an applicant is accepted (not accepted) to the graduate school. Table 1 gives

all the relevant acceptance rates — encoded by the probability function Pr(·) — regarding the admissions

process for the graduate school in question for a given year (which involves a total of 260 applicants, 130

of which applied to history, and 130 of which applied to physics).

1Strictly speaking, the confirmation relation is a four-place relation, also involving the probability function Pr(·). For

simplicity, we will suppress this relativity to Pr(·). Since most of our theoretical results will apply to any probability

function, this simplification will be mostly harmless.
2Simpson’s Paradox (in its most general sense) can also involve cases in which we go from disconfirmation — given

each of K and ¬K — to confirmation, unconditionally; or, cases in which we go from irrelevance — given each of K and

¬K — to relevance, unconditionally; or, cases in which we go from confirmation (or disconfirmation) — given each of K

and ¬K — to irrelevance, unconditionally. In this paper, we will focus on Simpson reversals that go from confirmation

(conditionally) to disconfirmation (unconditionally). Similar things can be said for these other kinds of “Simpson reversal”

(broadly construed). Moreover, Simpson’s paradox need not be limited to dichotomous random variables. Our results can be

generalized to discrete random variables with any finite number of values. For simplicity, we’ll focus on the 2× 2 case.
3This example is based loosely on an example involving the Berkeley graduate school, which was made famous by Nancy

Cartwright [3]. That example involved 6 departments instead of 2. Since we are focusing here on the 2 × 2 case, we have

simplified the case considerably.



E ¬E Overall

K 40/50 = Pr(H | E &K) 60/80 = Pr(H | ¬E &K) 100/130 = Pr(H |K)

¬K 20/80 = Pr(H | E &¬K) 10/50 = Pr(H | ¬E &¬K) 30/130 = Pr(H | ¬K)

Overall 60/130 = Pr(H | E) 70/130 = Pr(H | ¬E) 130/260 = Pr(H)

Table 1: Probabilistic structure of a toy, qualitative Simpson’s Paradox

These acceptance rates are to be understood as follows. For instance, Pr(H | E & K) = 40/50 means

that the probability of acceptance for female applicants to the history department is 40/50 — i.e., 40/50 of

the female history applicants were accepted. The crucial thing to notice here is that the following three

conditions (constitutive of a qualitative Simpson’s Paradox) obtain.

1. E confirms H, given K. That is: Pr(H | E &K) = 40/50 > 100/130 = Pr(H |K).

2. E confirms H, given ¬K. That is: Pr(H | E &¬K) = 20/80 > 30/130 = Pr(H | ¬K).

3. E disconfirms H, unconditionally. That is: Pr(H | E) = 60/130 < 130/260 = Pr(H).

In words: being female was positively correlated with acceptance in each department, but negatively

correlated with acceptance in the overall population of applicants. The standard explanation of how such

a case might arise is that (in the year in question) there happens to be a correlation (but not any causal

connection) between being female (E) and applying to the department (physics) with the lower acceptance

rate (¬K). Before turning to quantitative generalizations of Simpson’s Paradox, it is useful to look at one

real-world example of the phenomenon.

Our real-world example comes from a medical study comparing success rates of two treatments for

kidney stones [4]. Table 2 shows the success rates and numbers of treatments for cases involving both

small (K) and large kidney (¬K) stones, where treatment E includes open surgical procedures and treat-

ment ¬E includes closed surgical procedures. That is, e.g., Pr(H |E&K) = 81/87 means 81 out of 87 patients

who received open surgical procedures for small kidney stones had successful procedures.

E ¬E Overall

K 81/87 = Pr(H | E &K) 234/270 = Pr(H | ¬E &K) 315/357 = Pr(H |K)

¬K 192/263 = Pr(H | E &¬K) 55/80 = Pr(H | ¬E &¬K) 247/343 = Pr(H | ¬K)

Overall 273/350 = Pr(H | E) 289/350 = Pr(H | ¬E) 562/700 = Pr(H)

Table 2: Probabilistic structure of a real-world, qualitative Simpson’s Paradox

In this real-world example, we have the following three facts:

1. E confirms H, given K. That is: Pr(H | E &K) = 81/87 > 315/357 = Pr(H |K).

2. E confirms H, given ¬K. That is: Pr(H | E &¬K) = 192/263 > 247/343 = Pr(H | ¬K).

3. E disconfirms H, unconditionally. That is: Pr(H | E) = 273/350 < 562/700 = Pr(H).

In words: open surgical procedures were more effective among both small stone and large stone patients,

but closed surgical procedures were more effective in the overall population of patients. The standard

explanation of how this actually happened is that the less effective treatment (¬E) is applied more fre-

quently to small stone cases, which makes it appear to be a more effective treatment (i.e., what we have

here is suppression of the causal effect of the size of the stones on successful treatment). Presently, we

are not concerned with analyses of (qualitative) Simpson’s Paradox. Rather, our discussion will focus on

quantitative generalizations of Simpson’s Paradox, to which we now turn.



2 Simpson’s Paradox & Bayesian Confirmation (Quantitative)

Bayesian confirmation theory allows not only for qualitative judgments regarding confirmation, disconfir-

mation, and irrelevance, but also for quantitative assessments of degree of confirmation. This is achieved

via the use of Bayesian measures c(H, E | K) of the degree to which E confirms H, given K. Following [5],

we will be comparing Bayesian confirmation measures that are defined on a [−1,1] scale. More precisely,

all the Bayesian measures of confirmation we discuss here will satisfy the following desideratum.

Confirmation (quantitative). All Bayesian measures c(H, E | K) of the degree to which E confirms H,

given K should be such that

c(H, E |K) is
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= +1 if E maximally confirms H, given K, according to c.

> 0 (confirmation) if E confirms H, given K.

= 0 (irrelevance) if E is confirmationally irrelevant to H, given K.

< 0 (disconfirmation) if E disconfirms H, given K.

= −1 if E maximally disconfirms H, given K, according to c.

Specifically, we will be comparing and contrasting the following five well-known measures [5, p. 233].

d(H,E |K) ≝ Pr(H | E &K)− Pr(H | K)

r(H, E |K) ≝
Pr(H | E &K)− Pr(H | K)

Pr(H | E &K)+ Pr(H | K)

l(H, E |K) ≝
Pr(E |H &K)− Pr(E | ¬H &K)

Pr(E |H &K)+ Pr(E | ¬H &K)

s(H, E |K) ≝ Pr(H | E &K)− Pr(H | ¬E &K)

z(H, E |K) ≝
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Pr(H | E &K)− Pr(H |K)

1− Pr(H |K)
if Pr(H | E &K) ≥ Pr(H |K)

Pr(H | E &K)− Pr(H |K)

Pr(H |K)
if Pr(H | E &K) < Pr(H |K)

With this confirmation-theoretic background in place, we can now define a quantitative generalization of

Simpson’s Paradox. Here is our proposed generalization.

Simpson’s Paradox (quantitative). Any example in which the following three (quantitative) confirma-

tion relations obtain is a Quantitative Simpson’s Paradox of strength t > 0 for measure c (QSPt
c
).

1. c(H, E |K) ≥ t.

2. c(H, E | ¬K) ≥ t.

3. c(H, E | ⊤) ≤ −t.

The basic idea behind (QSPt
c
) is that it involves case in which we have not only a qualitative reversal

(from conditional confirmation to unconditional disconfirmation), but also a quantitative reversal — of a

particular strength t > 0 — according to a confirmation measure c.

In order to illustrate how (QSPt
c
) works, we may return to our toy (admissions) example, above. The

following three quantitative facts obtain in our toy example — for the d-measure.



1. d(H,E |K) = Pr(H | E &K)− Pr(H | K) = 40/50− 100/130 = 2/65 ≈ 0.031.

2. d(H,E | ¬K) = Pr(H | E &¬K)− Pr(H | ¬K) = 20/80− 30/130 = 1/52 ≈ 0.019.

3. d(H,E | ⊤) = Pr(H | E)− Pr(H) = 60/130− 130/260 = −1/26 ≈ −0.038.

Thus, our toy example constitutes an instance of (QSP0.019
d ). Similar calculations reveal that our toy example

constitutes instances of (QSP0.019
r ), (QSP0.052

l ), (QSP0.05
s ), and (QSP0.025

z ), respectively. That is, the reversal in

our toy example is rather small (from a quantitative point of view), according to all five of our measures.

Something similar happens in our real-world example. There, we have:

1. d(H,E |K) = Pr(H | E &K)− Pr(H | K) = 81/87− 315/357 = 24/393 ≈ 0.049.

2. d(H,E | ¬K) = Pr(H | E &¬K)− Pr(H | ¬K) = 192/263− 247/343 = 895/90209 ≈ 0.009.

3. d(H,E | ⊤) = Pr(H | E)− Pr(H) = 273/350− 562/700 = −4/175 ≈ −0.023.

Thus, our real-world example constitutes an instance of (QSP0.009
d ). Similar calculations reveal that our

real-world example constitutes instances of (QSP0.0068
r ), (QSP0.024

l ), (QSP0.042
s ), and (QSP0.028

z ), respectively.

Interestingly, all of the concrete numerical examples of Simpson’s Paradox that we have seen in the litera-

ture involve weak/small quantitative reversals (according to each of our five measures).

This raises an interesting theoretical question. Is there an upper-bound on how strong a quantitative

Simpson reversal can be — in principle — according to each of our measures? More precisely, for each

measure c, we may ask whether there exists a τ ∈ (0,1] such that no cases of (QSPt
c
) are possible, for any

t > τ . Trivially, τ = 1 will be one such value (since that’s the maximum value possible for each of our

measures). If τ = 1 is the smallest such upper bound for a measure c, then we will say that c permits

quantitative Simpson’s Paradoxes of arbitrary strength. Interestingly, while some of our five measures

permit QSP’s of arbitrary strength, some do not. Specifically, we have the following main result.4.

Theorem. Regarding maximum possible strength of (QSPt
c
) for each of our five measures, we have:

(1) Measures l and r permit quantitative Simpson’s Paradoxes of arbitrary strength (viz., we have

τ = 1 for measures l and r ). That is, t can be made arbitrarily close to 1 (but must remain less

than 1) in cases of (QSPtl ) and (QSPtr ).

(2) Measures d, s, and z do not permit quantitative Simpson’s Paradoxes of arbitrary strength.

More precisely, we have the following upper-bounds t = τ for (QSPtd), (QSPts), and (QSPtz).

(2.1) For z, we have τ = 1/2. That is, t can be made arbitrarily close to 1/2 (but must remain less

than 1/2) in cases of (QSPtz).

(2.2) For d and s, we have τ = 1/3. That is, t can be made arbitrarily close to 1/3 (but must remain

less than 1/3) in cases of (QSPtd) and (QSPts).

Proof. To establish (1), it suffices to specify (1l) a family of probability models such that t can be

made arbitrarily close to 1, while maintaining (QSPtl ); and, (1r ) a family of probability models such

that t can be made arbitrarily close to 1, while maintaining (QSPtr ). See the companion Mathematica

notebook for this paper (fn. 4), which explains how to to use PrSAT to construct (1l) and (1r ).

To establish (2.1), we must show two things. First, we must show that (2.1.1) whenever z(H, E |K) ≥
1/2 and z(H, E | ¬K) ≥ 1/2, it follows that z(H, E | ⊤) > −1/2. Second, we must specify (2.1.2) a family

4We have created a companion Mathematica notebook for this paper, which uses the PrSAT package [6] to verify all of the

technical claims in this paper (including the claims about examples, the theoretical results, and the computer simulations).

That notebook can be downloaded from the following URL: http://fitelson.org/qasp.nb.

http://fitelson.org/qasp.nb


of probability models such that t can be made arbitrarily close to 1/2, while maintaining (QSPtz). See

the companion Mathematica notebook, which explains how to to use PrSAT to construct (2.1.2).

To establish (2.2) for measure d, we must show two things. First, we must show that (2.2.1d) when-

ever d(H, E | K) ≥ 1/3 and d(H,E | ¬K) ≥ 1/3, it follows that d(H, E | ⊤) > −1/3. Second, we must

specify (2.2.2d) a family of probability models such that t can be made arbitrarily close to 1/3, while

maintaining (QSPtd). See the companion Mathematica notebook, which explains how to to use PrSAT

to construct (2.2.2d).

To establish (2.2) for measure s, we must show two things. First, we must show that (2.2.1s ) when-

ever s(H, E | K) ≥ 1/3 and s(H, E | ¬K) ≥ 1/3, it follows that s(H, E | ⊤) > −1/3. Second, we must

specify (2.2.2s ) a family of probability models such that t can be made arbitrarily close to 1/3, while

maintaining (QSPts). See the companion Mathematica notebook, which explains how to to use PrSAT

to construct (2.2.2s ).

Our proofs of the three remaining parts of our Theorem: (2.1.1), (2.2.1d), and (2.2.1s ) rely on the

following Lemma.

Lemma. Measures c ∈ {d, s, z} are such that if (a) c(x,y |u) ≥ 0, then (b) Pr(x |y &u) ≥ c(x,y |u).

Proof. (d) Suppose, for reductio, that (b) Pr(x |y &u) < d(x,y |u). Then

Pr(x |y &u) < Pr(x |y &u)− Pr(x |u)

∴ 0 < −Pr(x |u)

which is impossible since Pr(x |u) ∈ [0,1].

(s) Suppose, for reductio, that (b) Pr(x |y &u) < s(x,y |u). Then

Pr(x | y &u) < Pr(x |y &u)− Pr(x | ¬y &u)

∴ 0 < −Pr(x | ¬y &u)

which is impossible since Pr(x | ¬y &u) ∈ [0,1].

(z) Suppose, for reductio, that (a) z(x,y |u) ≥ 0; and, (b) Pr(x | y &u) < z(x,y |u). Then

Pr(x |y &u) <
Pr(x |y &u)− Pr(x |u)

1− Pr(x |u)

∴ Pr(x |y &u)− Pr(x |y &u) · Pr(x |u) < Pr(x |y &u)− Pr(x |u)

∴ Pr(x |y &u) < Pr(x |u) ·
[

Pr(x |y &u)− 1
]

+ Pr(x |y &u)

∴ 0 < Pr(x |u) ·
[

Pr(x |y &u)− 1
]

which is impossible since Pr(x |y &u),Pr(x |u) ∈ [0,1]. ✦

With our Lemma in hand, we may now prove (2.1.1), (2.2.1d), and (2.2.1s ).

(2.1.1) Suppose that (i) z(H, E |K) ≥ 1/2 and (ii) z(H, E |¬K) ≥ 1/2. Then, by our Lemma, Pr(H |E&K) ≥
1/2 and Pr(H | E & ¬K) ≥ 1/2. If Pr(H | E & K) = Pr(H | E & K) = 1/2, then Pr(H | E) = 1/2, which

also implies Pr(H) < 1. So in this case either Pr(H | E) ≥ Pr(H) and thus z(H, E) ≥ 0 > −1/2, or

1 > Pr(H|E)
Pr(H)

> 1/2 and z(H, E) = Pr(H|E)
Pr(H)

−1 > 1/2−1, thus z(H, E) ≥ 0 > −1/2 once again. Otherwise, we

have Pr(H |E&K) ≥ 1/2 and Pr(H |E&¬K) ≥ 1/2 with at least one inequality strict. For Pr(·|E&K) and

Pr(· |E) to be defined, however, we must also have Pr(E &K) > 0 and Pr(E) > 0, so that Pr(K |E) > 0,

and Pr(H | E) must lie strictly between Pr(H | E &K) and Pr(H | E &¬K) by the probability calculus.

As a consequence, Pr(H |E) > 1/2 and Pr(¬H | E) < 1/2. In this case, too, either Pr(H |E) ≥ Pr(H) and



thus z(H, E) ≥ 0 > −1/2, or z(¬H,E) > 0 but z(¬H,E) ≤ Pr(¬H | E) < 1/2, as implied by our Lemma,

so that z(H, E) = −z(¬H,E) > −1/2 once again.

(2.2.1d) Suppose that (i) d(H,E |K) = Pr(H |E &K)− Pr(H |K) ≥ 1/3 and (ii) d(H,E | ¬K) = Pr(H |E &

¬K)−Pr(H |¬K) ≥ 1/3. If Pr(H |E&K) = Pr(H |E&¬K) = 1, then Pr(H |E) = 1 too, so d(H,E) ≥ 0 and,

trivially, d(H,E) > −1/3. If on the other hand either Pr(H | E &K) < 1 or Pr(H | E &¬K) < 1, then (i)

and (ii) imply that Pr(H |K) ≤ 2/3 and Pr(H |¬K) ≤ 2/3 with at least one inequality strict. For Pr(· |K)

to be defined, moreover, we must have Pr(K) > 0, and so Pr(H) must lie strictly between Pr(H | K)

and Pr(H | ¬K) by the probability calculus. As a consequence, Pr(H) < 2/3. Also, Pr(H | E & K) ≥ 1/3

and Pr(H | E & ¬K) ≥ 1/3, again from (i) and (ii) via our Lemma, so that Pr(H | E) ≥ 1/3 too, by the

probability calculus. But then d(H, E) = Pr(H | E)− Pr(H) > 1/3− 2/3 = −1/3.

(2.2.1s ) Suppose that (i) s(H, E | K) = Pr(H | E & K) − Pr(H | ¬E & K) ≥ 1/3 and (ii) s(H, E | ¬K) =

Pr(H | E & ¬K) − Pr(H | ¬E & ¬K) ≥ 1/3. If Pr(H | E & K) = Pr(H | E & ¬K) = 1, then Pr(H | E) = 1

too, so s(H, E) ≥ 0 and, trivially, s(H, E) > −1/3. If on the other hand either Pr(H | E & K) < 1 or

Pr(H | E &¬K) < 1, then (i) and (ii) imply that Pr(H | ¬E &K) ≤ 2/3 and Pr(H | ¬E &¬K) ≤ 2/3 with at

least one inequality strict. For Pr(· | ¬E & K) and Pr(· | ¬E) to be defined, moreover, we must have

Pr(¬E & K) > 0 and Pr(¬E) > 0, so that Pr(K | ¬E) > 0 and Pr(H | ¬E) must lie strictly between

Pr(H | ¬E &K) and Pr(H | ¬E &¬K) by the probability calculus. As a consequence, Pr(H | ¬E) < 2/3.

Also, Pr(H | E & K) ≥ 1/3 and Pr(H | E & ¬K) ≥ 1/3, again from (i) and (ii) via our Lemma, so that

Pr(H | E) ≥ 1/3 too, by the probability calculus. But then s(H, E) = Pr(H |E)− Pr(H | ¬E) > 1/3− 2/3 =

−1/3. ✦

3 Estimating the Prevalence and Strength of Simpson’s Paradoxes

Although some measures theoretically allow for arbitrarily strong quantitative Simpson’s Paradoxes (while

others have strong theoretical upper-bounds on possible reversal strength), actual cases of Simpson’s Para-

dox that are observed “in the wild” tend to be very weak, according to each of our measures. This raises

questions about the prevalence and strength distribution of Simpson’s Paradoxes. We have performed

computer simulations that shed light on both of these questions.

We sampled 10 million probability distributions over H,E,K at random (i.e., assuming a uniform distri-

bution over possible probability distributions). Our simulations revealed some very interesting patterns.

First, we approximated the probability of obtaining a qualitative Simpson’s Paradox (assuming a uni-

form distribution over possible distributions). It turns out that this probability is approximately 0.0083

(approximately 83,000 out of our 10 million sampled distributions exhibited Simpson’s Paradox). That is,

approximately 1 out of every 125 probability distributions can be expected to exhibit a qualitative Simp-

son’s Paradox. This suggests that Simpson’s Paradox is somewhat rare, but not astronomically so (which

partly explains why so many empirical cases have been observed, historically).

Second, we computed the average strength of the Simpson reversals, according to each of the five

measures. These averages were approximately 0.013 for d, 0.04 for l, 0.019 for r , 0.035 for s, and 0.025

for z. Note that the none of the measures records an average strength of Simpson reversal exceeding 0.04.

Finally, we computed strength histograms for each of our five measures. That is, we calculated the

distribution of strengths t, for each of the (approximately 83,000) cases of Simpson’s Paradox (QSPt
c
) that

were observed in our 10 million randomly sampled distributions. It is clear from these histograms that

the distribution of strengths t in cases of (QSPt
c
) is (roughly) exponential in nature — for each of our five

measures. The Figure below shows these t-histograms for each of our five measures. It reveals that —

even for measures (l and r ) that theoretically allow for arbitrarily strong Simpson reversals — very strong

reversals are exceedingly rare (“tail events”). We think this goes some way toward explaining why strong

Simpson reversals are almost never observed in nature.
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Figure: Histograms of (QSPt
c
) counts (from our ≈83,000 randomly sampled Simpson’s Paradoxes)
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