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January 12, 1999, he would have been under seven feet tall. T will say that if a
net force had been applied to my harpsichord, it would have moved. But I will
not say that if this penny had been in Goodman’s pocket on VE day it would
have been silver nor will I say that if Jupiter were made of pure gold it would
have a mass of less than 100,000 kilograms.

Some metaphysicians have held that statements of what might have been
are objective statements about parallel worlds or branches of time. Other
thinkers hold that correct counterfactuals are fables constructed according to
our contingent rules for changing beliefs. Reasoning about what might have
been has value for them only as practice for reasoning about what might be.

It should be now clear that lawlike and accidental conditions are different,
and you have some general indication of how they are different, but the speci-
fication of differences has not been precise. How exactly do laws function as
contingent rules of inference? What are the rules for changing our beliefs
about laws? Just what is needed for a law to support a given counterfactual?
Despite an enormous amount of work there is, as yet, no generally satisfactory
solution to these and related problems. They remain a major area of concern
for the philosophy of science.

Suggested readings

Nelson Goodman, Fact, Fiction and Forecast (4t11 ed.). (Cambridge, MA: Har-
vard University Press, 1983).

Douglas Stalker (ed.), Grue! the new riddle of mductton (Chicago Open Court,
1994). .

VI
The Probability Calculus

VL.1. INTRODUCTION. The theory of probability resulted from
the cooperation of two eminent seventeenth-century mathematicians and a
gambler. The gambler, Chevalier de Méré, had some theoretical problems
with practical consequences at the dice tables. He took his problems to Blaise
Pascal who in turn entered into correspondence with Pierre de Fermat, in
order to discuss them. The mathematical theory of probability was born in the
Pascal-Fermat correspondence.

We have used the word “probability” rather freely in the discussion so far,
with only a rough, intuitive grasp of its meaning. In this chapter we will learn
the mathematical rules that a quantity must satisfy in order to qualify as a
probability.

VI1.2. PROBABILITY, ARGUMENTS, STATEMENTS, AND
PROPERTIES. The word “probability” is used for a number of distinct
concepts. Earlier I pointed out the difference between inductive probability,
which applies to arguments, and epistemic probability, which applies to state-
ments. There is yet another type of probability, which applies to properties.
When we speak of the probability of throwing a “natural” in dice, or the
probability of living to age 65, we are ascribing probabilities to properties.
When we speak of the probability that John Q. Jones will live to age 65, or the
probability that the next throw of the dice will come up a natural, we are as-
cribing probabilities to statements. Thus, there are at least three different
types of probability which apply to three different types of things: arguments,
statements, and properties.

Luckily, there is a common core to these various concepts of probability:
Each of these various types of probability obeys the rules of the mathematical
theory of probability. Furthermore, the different types of probability are inter-
related in other ways, some of which were brought out in the discussion of in-
ductive and epistemic probability. In Chapter VI it will be shown how these
different concepts of probability put flesh on the skeleton of the mathematical
theory of probability. Here, however, we shall restrict ourselves to developing
the mathematical theory

The mathematical theory is often called the probability calculus. In order
to facilitate the framing of examples we shall develop the probability calculus
as it applies to statements. But we shall see later how it can also accommodate
arguments and properties.
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Remember that the truth tables for “~,” “&,” and “v” enable us to find out
whether a complex statement is true or false if we know whether its simple
constituent statements are true or false. However, truth tables tell us nothing
about the truth or falsity of the simple constituent statements. In a similar
manner, the rules of the probability calculus tell us how the probability of a
complex statement is related to the probability of its simple constituent state-
ments, but they do not tell us how to determine the probabilities of simple
statements. The problem of determining the probability of simple statements
(or properties or arguments) is a problem of inductive logic, but it is a problem
that is not solved by the probability calculus.

Probability values assigned to complex statements range from 0 to 1.
Although the probability calculus does not tell us how to determine the proba-
bilities of simple statements, it does assign the extreme values of 0 and 1 to

special kinds of complex statements. Previously we discussed complex state-'

ments that are true no matter what the facts are. These statements were called
tautologies. Since a tautology is guaranteed to be true, no matter what the

facts are, it is assigned the highest possible probability value.
Rule 1: If a statement is a tautology, then its probability is equal to 1.

Thus, just as the complex statement sv~s is true no matter whether its simple
constituent statement, s, is true or false, so its probability is 1 regardless of the
probability of the simple constituent statement.

We also discussed another type of statement that is false no matter what the
facts are. This type of statement, called the self-contradiction, is assigned the
lowest possible probability value.

Rule 2: If a statement is a self-contradiction, then its probability is
equal to 0.

Thus, just as the complex statement s&~s is false no matter whether its simple
constituent statement, s, is true or false, so its probability is 0 regardless of the
simple constituent statement.

When two statements make the same factual claim, that is, when they are
true in exactly the same circumstances, they are logically equivalent. Now if a
statement that makes a factual claim has a certain probability, another state-

ment that makes exactly the same claim in different words should be equally
prgbable_ The statement “My next throw of the r‘-’ce \'I'Ii_ll come un 2 natural”
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should have the same probability as “It is not the case that my next throw of
the dice will not come up a natural.” This fact is reflected in the following rule:

Rule 3: If two statements are logically equivalent, then they have the
same probability.
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By the truth table method it is easy to show that the simple statement p is logi-
cally equivalent to the complex statement that is its double negation, ~~p,
since they are true in exactly the same cases.

p ~p ~~p
Case 1: T - F T
Case 2: F T F

Thus, the simple statement “My next throw of the dice will come up a natural”
has, according to Rule 3, the same probability as its double negation, “It is not
the case that my next throw of the dice will not come up a natural.”

The first two rules cover certain special cases. They tell us the probability of
a complex statement if it is either a tautology or a contradiction. The third rule
tells us how to find the probability of a complex contingent statement from its
simple constituent statements, if that complex statement is logically equivalent
to one of its simple constituent statements. But there are many complex
contingent statements that are not logically equivalent to any of their simple
constituent statements, and more rules shall be introduced to cover them. The
next two sections present rules for each of the logical connectives.

Exercises

Instead of writing “The probability of p is §,” we shall write, for short “Pr(p) = 3.”
Now suppose that Pr(p) = % and Pr(g) = %. Find the probabilities of the following
complex statements, using Rules 1 through 3 and the method of truth tables:

1. pvp. 5. ~(pv~p).

2. g&q. 6. ~~(pv~p).
3. g&~q. 7. pvigk~q).
4. ~(g&~q). 8. q&(pv~p).

VI.3. DISJUNCTION AND NEGATION RULES. The probabil-
ity of a disjunction pvq is most easily calculated when its disjuncts, p and g, are
mutually exclusive or inconsistent with each other. In such a case the probabil-
ity of the disjunction can be calculated from the probabilities of the disjuncts

by means of the special disjunction rule. We shall use the notation introducing

the exercises at the end of the previous section writing “The probability of p is
x” as: “Pr(p) = x.”
Rule 4: If p and g are mutually exclusive, then Pr(pvq) = Pr(p) +
Pr(q).
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For example, the statements “Socrates is both bald and wise” and “Socrates is
neither bald nor wise” are mutually exclusive. Thus, if the probability that
Socrates is both bald and wise is ; and the probability that Socrates is neither
bald nor wise is {, then the probability that Socrates is either both bald and
wise or neither bald nor wise is  + §, or 2.

We can do a little more with the special alternation rule in the following
case: Suppose you are about to throw a single six-sided die and that each of
the six outcomes is equally probable; that is:

Pr(the die will come upa 1) = }
Pr(the die will come up a 2) = i
Pr(the die will come up a 3) = }
Pr(the die will come up a 4) = :
Pr(the die will come up a 5) = }
Pr(the die will come up a 6) = {

Since the die can show only one face at a time, these six statements may be
treated as being mutually exclusive.! Thus, the probability of getting a 1 or a 6
may be calculated by the special disjunction rule as follows:

Pr(1v6) = Pr(1) + Pr(6) = § + | =

The probability of getting an even number may be calculated as
Pr(even) = Pr(2v4v6) = Pr(2) + Pr(4) + Pr(6) = é + é +

1
6
The probability of getting an even number that is greater than 3 may be calcu-
lated as

Pr(even and greater thaﬁ 3) = Pr(4v6) = Pr(4) + Pr(6) = : +'%
The probability of getting an even number or a 3 may be calculated as

Pr{even or 3) = Pr(2v4v6v3) = i=2

Finally, calculating the probability of getting either a 1, 2, 3, 4, 5, or 6 (that is,
the probability that the die will show one face or another) gives £, or 1.

'Actually the statements are not mutually exclusive in the logical sense. We cannot show
that they are inconsistent with each other by the method of truth tables, and it is logically
possible that the die might change shape upon being thrown so as to display two faces si-
multaneously. To treat this case rigorously, we would have to use the general disjunction
rule, along with a battery of assumptions: Pr(1&2) = 0, Pr(2&3) = 0, Pr(1&3) = 0, etc.
However, we shall see that the result is the same as when we use the special disjunction
rule, and treat these statements as if they were mutually exclusive.

3
THE PROBABILITY CALCULUS 11

We will now apply the special disjunction rule to a case of more general
interest. It can be shown, by the method of truth tables, that any statement p
is inconsistent with its negation, ~p. Since p and ~p are therefore mutually
exclusive, the special disjunction rule permits the conclusion that

Pr(pv~p) = Pr(p) + Pr(~p)
But the statement pv~p is a tautology, so by Rule 1,
Pr(pv~p) =1
Putting these two conclusions together gives
Pr(p) + Pr(~p) =1
If the quantity Pr(p) is subtracted from both sides of the equation, the sides
will remain equal, so we may conclude that
Pr(~p) = 1 — Pr(p)

This conclusion holds good for any statement, since any statement is incon‘sis-
tent with its negation, and for any statement p its disjunction wi'th its negation,
pv~p, is a tautology. This therefore establishes a general negation ru'lf:, whu':h
allows us to calculate the probability of a negation from the probability of its
constituent statement:

Rule 5: Pr(~p) = 1 ~ Pr(p).

Suppose in the example using the die we wanted to know the probability of
not getting a 3:

Pr(~3)=1-Pr(3)=1-1=

(=115

Note that we get the same answer as we would if we took the long road to
solving the problem and confined ourselves to using the special disjunction
rule:

Pr(~3) = Pr(1v2v4v5v6)

Pr(1) + Pr(2) + Pr(4)5+ Pr(5) + Pr(6)
1,1 _

eielrieles

We shall apply the special disjunction rule one more time in order to estab-
lish another generally useful rule. For any two statements, p, g, we can show
by the truth table method that the complex statements p&g, p&~q, and
~p&q are inconsistent with each other. As shown in the followpg_ Fable, there
is no case in which two of them are true:
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4 g ~p ~q p& p&~q ~p&q
Casel: T T F F T F F
Case 2: T F F T F T F
Case 3: F T T F F F T
Cased: F F T T F F F

Since they are mutually exclusive, we can apply the special disjunction rule
and conclude:
a. Prilp&qivip&~q)] = Pr(p&q) + Pr(p&~q)
- b. Pr{(p&g)v(~p&q)] = Prip&q) + Pr(~p&kq)
c. Pr{lp&q)v(p &~gv(~p&q)] = Pr(p&q) + Pr(p&~q) +
Pr(~p&q)

But the complex statement (p&q)v(p&~q) is logically equivalent to the simple
statement p, as is shown by the following truth table:

p q ~q p&q  p&~q (p&qv(p&~q)
Case 1: T T F T F T
Case2: T F T F T T
Case 3: F T F F F F
Case4: F F T F F F

Since, .af:cording to Rule 3, logically equivalent statements have the same
probability, equation (a) may be rewritten as

a'. Pr(p) = Pr(p&q) + Prp&~q)

A similar truth table will show that the complex statement (p&q)v(~p&gq) is

logically equivalent to the simple statement g. Therefore, equation (b) may be
rewritten as

b'. Pr(q) = Prip&q) + Pr(~p&q)

Finally, a truth table will show that the complex statement (p&g)v(p&~q)

v(~p&q) is logically equivalent to the complex statement pvg, which enables
us to rewrite equation (c) as

¢’. Pr(pvg) = Prip&q) + Pr(p&~q) + Pr(~p&yq)
Now let us add equations (a’) and (b’) together to get
d. Pr(p) + Pr(q) = 2 Pr(p&q) + Pr(p&~q) + Pr(~p&q)
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If we subtract the quantity Pr(p&q) from both sides of the preceding
equation, we get

d’. Pr(p) + Pr(q) — Pr(p&q) = Pr(p&q) + Pr(p&~q) + Pr(~p&q)
If equation (d') is compared with equation (c') we see that Pr(pvq) is equal to
the same thing as Pr(p) + Pr(q) — Pr(p&q). This establishes a general dis-
junction rule that is good for all disjunctions, whether the disjuncts are mutu-
ally exclusive or not:

Rule 6: Pr(pvq) = Pr(p) + Pr(q) — Pr(p&q).

If some of the algebra used to establish the general disjunction rule has left
you behind, the following diagram may help to make the reasoning clear:

Pr(p&~q)
Pr(p)
Pr(p&yq) Pr(pvq)
Pr(q)
Pr({~p&gq)

When Pr(p) is added to Pr(g), then Pr(p&q) is counted twice. But to get
Pr(pvq), it should be counted only once. Thus, to get Pr(pvq), we add Pr(p)
and Pr(g) and then subtract Pr(p&gq) to make up for having counted it twice.
In the case in which p and g are mutually exclusive, this makes no difference,
because when p and q are mutually exclusive, Pr(p&q) = 0. No matter how
many times 0 is counted, we will always get the same result. For example, by
the general disjunction rule, Pr(pv~p) = Pr(p) + Pr(~p) — Pr(p&~p). But
the statement p&~p is a self-contradiction, so its probability is zero. Thus, we
get the same result as if we had used the special disjunction rule. Counting
Pr(p&q) twice does make a difference when p and g are not mutually exclu-
sive. Suppose we use the general disjunction rule to calculate the probability
of the complex statement pvp:

Pr(pvp) = Pr(p) + Pr(p) — Pr(p&p)
But since the complex statement p&p is logically equivalent to the simple
statement p, Prip&p) = Pr{p), we get

Pr(pvp) = Pr(p) + Pr(p) — Prip) = Pr(p)

We know this is the correct answer, because the complex statement pvp is also
logically equivalent to the simple statement p.
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The example with the die shall be used to give one more illustration of the
use of the general disjunction rule. Suppose that we want to know the proba-
bility that the die will come up an even number or a number less than 3.
T}iere is a way to calculate this probability using only the special disjunction
rule:

Pr(even v less than 3) = Pr(1v2v4v6)
= Pr(1) + Pr(2) + Pr(4) + Pr(6) = 5 =2

We may use the special disjunction rule because the outcomes 1, 2, 4, and 6
are mutually exclusive. However, the outcomes “even” and “less than 3” are
not mutually exclusive, since the die might come up 2. Thus, we may apply the
general disjunction rule as follows:

Pr(even v less than 3)
= Pr(even) + Pr(less than 3) — Pr{even&less than 3)

Now we may calculate Pr(even) as Pr(2v4v6) by the special disjunction rule; it
is equal to ;. We may calculate Pr(less than 3) as Pr(1v2) by the special dis-
junction rule; it is equal to ;. And we may calculate Pr(even&less than 3) as
Pr(2), which is equal to é. So, by this method,

Pr(evenvlessthan3) =} +3 — ¢ =2

The role of the subtraction term can be seen clearly in this example. What we
have done is to calculate Pr{even v less than 3) as

Pr(2v4v6) + Pr(1v2) — Pr(2)

so the subtraction term compensates for adding in Pr(2) twice when we add
Pr(even) and Pr(less than 3). In this example use of the general disjunction
rule was the long way of solving the problem. But in some cases it is necessary
to use the general disjunction rule. Suppose you are told that

Pr(p) = ;
Prg) = %
Pr(p&q) = §

You are asked to calculate Pr(pvg). Now you cannot use the special disjunction
rule since you know that p and q are not mutually exclusive. If they were,
Pr(p&q) would be 0, and you are told that it is i. Therefore, you must use the
general disjunction rule in the following way:

Pr(pvg) = Pr(p) + Pr(g) — Pr(p&q)

- pu e ~— -~ B S Y [
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In Section V1.2, we compared the rules of the probability calculus to the
way in which the truth tables for the logical connectives relate the truth or
falsity of a complex statement to the truth or falsity of its simple constituent
statements. We are now at the point where we must qualify this comparison.
We can always determine the truth or falsity of a complex statement if we
Kknow whether its simple constituent statements are true or false. But we can-
not always calculate the probability of a complex statement from the probabili-
ties of its simple constituent statements. Sometimes, as in the example above,
in order to calculate the probability of the complex statement pvg, we need
not only know the probabilities of its simple constituent statements, p and q,
we also need to know the probability of another complex statement, p&q. We
shall discuss the rules that govern the probabilities of such conjunctions in the
next section. However, we shall find that it is not always possible to calculate
the probability of a conjunction simply from the probabilities of its constituent
statements.

Exercises

1. Suppose you have an ordinary deck of 52 playing cards. You are to draw one
card. Assume that each card has a probability of 1/52 of being drawn. What is the
probability that you will draw:

. The ace of spades?

. The queen of hearts?

The ace of spades or the queen of hearts?
. An ace?

A heart?

A face card (king, queen, or jack)?

A card that is not a face card?

. An ace or a spade?

A queen or a heart?

j. A queen or a non-spade?

2. Prip) = 1, Pr(g) = }, Prip&q) = §. What is Pr(pvg)?
3. Pr{r) = %, Pr(s) = %, Pr(rvs) = %. What is Pr(r&s)?
4, Pr(u) = %, Pr(t) = %, Priu&~t) = é. What is Priuv~t)?

*oge 0 A o

VI.4. CONJUNCTION RULES AND CONDITIONAL PROBA-
BILITY. Before the rules that govern the probability of conjunctions are
discussed, it is necessary to introduce the notion of conditional probability.
We may write Pr(q given p) as the probability of g on the condition that p.
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This probability may or may not be different from Pr(q). We shall deal with
the concept of conditional probability on the intuitive level before a precise
definition for it is introduced.

In the example with the die, we found that the probability of throwing an
even number was 3. However, the probability of getting an even number given
that a 2 or a 4 is thrown is not § but 1. And the probability of casting an even
number given that a 1 or a 3 is thrown is 0. To take a little more complicated
example, suppose that the die remains unchanged and you are to bet on
whether it will come up even, with a special agreement that if it comes up 5 all
bets will be off and it will be thrown again. In such a situation you would be
interested in the probability that it will come up even given that it will be
either a 1, 2, 3, 4, or 6. This probability should be greater than j since the con-
dition excludes one of the ways in which the die could come up odd. It is, in
fact, g Thus, the probabilities of “even,” given three different conditions, are
each different from the probability of “even” by itself:

a. Pr(even) = %
b. Pr(even given 2v4) = 1
c. Pr(even given 1v3) = 0
d. Pr(even given 1v2v3v4v6) = ¢
Conditional probabilities allow for the fact that if a certain statement, p, is
known to be true, this may affect the probability to be assigned to another

statement, g. The most striking cases occur when there is a deductively valid
argument from p to g:

p = The next throw of the die will come up 2

v
the next throw of the die will come up 4.

g = The next throw of the die will come up even.
In this case, Pr(q given p) = 1:2
Pr(even given 2v4) = 1

Suppose there is a deductively valid argument from p to ~¢:

2We must make one qualification to this statement. When p is a self-contradiction, then
for any statement ¢ there is a deductively valid argument from p to ¢ and a deductively
valid argument from p to ~¢. In such a case, Pr(q given p) has no value.
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p = The next throw of the die will come up 1

v

the next throw of the die will come up 3.

~q = The next throw of the die will not come up even.
In this case, Pr(q given p) = 0:
Pr(even given 1v3) = 0.3

There are, however, important cases where neither the argument from p to
g nor the argument from p to ~q is deductively valid and yet Pr(q given p) dif-
fers from Pr(q), as in the previous example with the die:

Pr(even given 1v2v3v4v6) = §
Pr(even) = %

There are other cases where the knowledge that p is true may be com-
pletely irrelevant to the probability to be assigned to g. For example, it was
said that the probability that the next throw of the die will come up even is ;.
We could say that the probability that the next throw of the die will come up
even, given that the President of the United States sneezes simultaneously
with our throw, is still 1. The President’s sneeze is irrelevant to the probability
assigned to “even.” Thus, the two statements “The next throw of the die will
come up even” and “The President of the United States will sneeze simultane-
ously with the next throw of the die” are independent.*

We can now give substance to the intuitive notions of conditional probabil-
ity and independence by defining them in terms of pure statement probabili-
ties. First we will define conditional probability:

Definition 12: Conditional probability:®
Pr(p&q)
Pr(p)
Let us see how this definition works out in the example of the die:

Pr(q given p) =

3We must make one qualification to this statement. When p is a self-contradiction, then
for any statement g there is a deductively valid argument from p to g and a deductively
valid argument from p to ~q. In such a case, Pr(q given p) has no value.

4This type of independence is called probabilistic or stochastic independence. It should
not be confused with the mutual logical independence discussed in deductive logic. Sto-
chastic independence of two statements is neither a necessary nor a sufficient condition
for their mutual logical independence.

SWhen Pr(p) = 0 the quotient is not defined. In this case there is no Pr(q given p).
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Prieven&(2v4)]  Pr(2v4)
Pr(2v4) Pr(2v4)

) _ Prleven&(1v3)] 0

b. Pr(even given 1v3) = —W = ? =0

Prieven&(1v2v3v4ve)]
Pr(1v2v3v4ve)
Pr(2v4v6)

T Pr(1v2v3vave)

a. Pr(even given 2v4) =

c. Pr(even given 1v2v3v4ve) =

3
5

x| @ics

Notice that the conditional probabilities computed by using the definition ac-
cord with the intuitive judgments as to conditional probabilities in the die ex-
ample. We may test the definition in another way. Consider the special case of
Pr(q given p), where p is a tautology and q is a contingent statement. Since a
tautology makes no factual claim, we would not expect knowledge of its truth
to influence the probability that we would assign to the contingent statement,
q. The probability that the die will come up even given that it will come up ei-
ther even or odd should be simply the probability that it will come up even. In
general, if we let T stand for an arbitrary tautology, we should expect Pr(q
given T) to be equal to Pr(g). Let us work out Pr(q given T), using the defini-
tion of conditional probability:

Pr(T&q)
Pr(T)

But the probability of a tautology is always \equal to 1. This gives

Pr(q given T) =

Pr(q given T) = Pr(T&q)

When T is a tautology and g is any statement whatsoever, the complex state-
ment Téyq is logically equivalent to the simple statement g. This can always be
shown by truth tables. Since logically equivalent statements have the same
probability, Pr(q given T) = Pr(q).5 Again, the definition of conditional proba-
bility gives the expected result.

Now that conditional probability has been defined, that concept can be
used to define independence:

®We could have constructed the probability calculus by taking conditional probabilities as
basic, and then defining pure statement probabilities as follows: The probability of a
statement is defined as its probability given a tautology. Instead we have taken statement
probabilities as basic, and defined conditional probabilities. The choice of starting point
makes no difference to the system as a whole. The systems are equivalent.

—— e —
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Definition 13: Independence: Two statements p and g are indepen-
dent if and only if Pr(q given p) = Pr(g).

We talk of two statements p and q being independent, rather than p being
independent of ¢ and g being independent of p. We can do this because we
can prove that Pr(g given p) = Pr(q) if and only if Pr(p given q) = Pr(p). If
Pr(g given p) = Pr(q), then, by the definition of conditional probability,

Pr(p&q)

Pr(p)

Multiplying both sides of the equation by Pr(p) and dividing both sides by
Pr(g), we have

= Pr(q)

Pr(p&q) 3
Prlg) Pr(p)
But by the definition of conditional probability, this means Pr(p given q)
= Pr(p).

This proof only works if neither of the two statements has 0 probability.
Otherwise, one of the relevant quotients would not be defined. To take care of
this eventuality, we may add an additional clause to the definition and say that
two statements are also independent if at least one of them has probability 0.
It is important to realize the difference between independence and mutual
exclusiveness. The statement about the outcome of the throw of the die and
the statement about the President’s sneeze are independent, but they are not
mutually exclusive. They can very well be true together. On the other hand,
the statements “The next throw of the die will come up an even number” and
“The next throw of the die will come up a 5” are mutually exclusive, but they
are not independent. Pr(even) = é, but Pr(even given 5) = 0. Pr(5) = %, but
Pr(5 given even) = 0. In general, if p and g are mutually exclusive they are not
independent, and if they are independent they are not mutually exclusive.”

Having specified the definitions of conditional probability and indepen-
dence, the rules for conjunctions can now be introduced. The general conjunc-
tion rule follows directly from the definition of conditional probability:

Rule 7: Pr(p&q) = Pr(p) X Pr(q given p).
The proof is simple. Take the definition of conditional probability:

Pr(p&q)

Pr(g given p) = Prip)

7 The exception is when at least one of the statements is a self-contradiction and thus has
probability 0.
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Multiply both sides of the equation by Pr(p) to get
Pr(p) X Pr(g given p) = Prip&q)

which is the general conjunction rule. When p and q are independent, Pr(g

given p) = Pr(q), and we may substitute Pr(q) for Pr(g given p) in the general
conjunction rule, thus obtaining

Pr(p) X Pr(q) = Pr(p&yq)

Of course, the substitution may only be made in the special case when p and ¢
are independent. This result constitutes the spectal conjunction rule:

Rule 8: If p and q are independent, then Pr(p&q) = Pr(p) X Pr(q).

The general conjunction rule is more basic than the special conjunction rule.
But since the special conjunction rule is simpler, its application will be illus-

trated first. Suppose that two dice are thrown simultaneously. The basic proba-
bilities are as follows:

Die A Die B
Pr(l) =} Pr(l) =}
CPr(2) =1 Pr(2) =}
Pr(3) = } Pr(3) = }
Pr(4) =1 Pr(4) = }
Pr(5) = } Pr(5) = }
Pr(6) = 1 Pr(6) = }

Since the face shown by die A presumably does not influence the face shown
by die B, or vice versa, it shall be assumed that all statements claiming various
outcomes for die A are independent of all the statements claiming various out-
comes for die B. That is, the statements “Die A will come up a 3” and “Die B
will come up a 5 are independent, as are the statements “Die A will come up
a 6” and “Die B will come up a 6.” The statements “Die A will come up a 5”
and “Die A will come up a 3” are not independent; they are mutually exclusive
(when made in regard to the same throw).

Now suppose we wish to calculate the probability of throwing a 1 on die A
and a 6 on die B. The special conjunction rule can now be used:

Pr(l1onA & 6 on B) = Pr(1 on A) X Pr(6 on B)

=1y 1l_1
=5X68 "%

In the same way, the probability of each of the 36 possible combinations of re-
sults of die A and die B may be calculated as 5, as shown in Table VI.1. Note
that each of the cases in the table is mutually exclusive of each other case.

THE PROBABILITY CALCULUS 123

Thus, by the special alternation rule, the probability of case 1 v case 3 is equal
to the probability of case 1 plus the probability of case 3.

Table V1.1
Possible results when throwing two dice
Case Die A Die B Case Die A Die B
1 1 1 19 4 1
2 1 2 20 4 2
3 1 3 21 4 3
4 1 4 22 4 4
5 1 5 23 4 5
6 1 6 24 4 6
7 2 1 25 5 1
8 2 2 26 5 2
9 2 3 27 5 3
10 2 4 28 5 4
11 2 5 29 5 5
12 2 6 30 5 6
13 3 1 31 6 1
14 3 2 32 6 2
15 3 3 33 6 3
16 3 4 34 6 4
17 3 5 35 6 5
18 3 6 36 6 6

Suppose now that we wish to calculate the probability that the dice wi'll
come up showing a 1 and a 6. There are two ways this can happen: a 1 on die
A and a 6 on die B (case 31). The probability of this combination appearing
may be calculated as follows:

Pr(l1&6) = Pr{(lonA&6onB)v(l on B & 60nA)]

Since the cases are mutually exclusive, the special disjunction rule may be
used to get

Pr[(lonA&6onB)v(l on B & 6 on A)]
= Pr{lon A & 6 on B) + Pr(l on B & 6 on A)

But it has already been shown, by the special conjunction rule, that
Pr(lonA&6o0nB) = 3
PrlonB&6onA) = 5

PO | 1 1
so the answer is 35 + 3, OF 13-
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The same sort of reasoning can be used to solve more complicated prob-
lems. Suppose we want to know the probability that the sum of spots showing
on both dice will equal 7. This happens only in cases 6, 11, 16, 21, 26, and 31.
Therefore

Pr(total of 7) = Pr[(1 on A & 6 on B)
v(2on A &5 on B)
v(3onA & 40nB)
v(4onA & 3 on B)
vi3onA & 2o0nB)
v(6on A & 1 on B)]

;I)singﬁthe s?ecial disjunction rule and the special conjunction rule Pr(total of
= 36 or 6

In solving a particular problem, there are often several ways to apply the
rules. Suppose we wanted to calculate the probability that both dice will come
up even. We could determine in which cases both dice are showing even num-
bers, and proceed as before, but this is the long way to solve the problem.
Instead, we can calculate the probability of getting an even number on die A
as 3 by the special disjunction rule:

Pr(evenon A) = Pr{2onAv4on Av6on A)

= fr(2lon A) + Pr(4onA) + Pr(6on A)

6 2

and calculate the probability of getting an even number on die B as ; by the
same method. Then, by the special conjunction rule,®

Pr(even on A & even on B) = Pr(even on A) X Pr(even on B)
2

-

1
2
We apply the general conjunction rule when two statements are not

independent. Such is the case in the following example. Suppose you are pre-
sented with a bag containing ten gumdrops, five red and five black. You are to

shake the bag, close your eyes and draw out a gumdrop, look at it, eat it, and .

then repeat the process once more. We shall assume that, at the time of each
draw, each gumdrop in the bag has an equal probability of being drawn. The
problem is to find the probability of drawing two red gumdrops.

81t can be shown that the statements “Die A will come up even” and “Die B will come up

even” are independent, on the basis of the independence assumptions made in setting up
this example.
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To solve this problem we must find the probability of the conjunction
Pr(red on 1 & red on 2). We will first find Pr(red on 1). We will designate each
of the gumdrops by a letter: A, B, C, D, E, F, G, H, I, ]. We know that we will
draw one of these on the first draw, so

Pr(AonlvBonlvConlv...vJonl) =1
Now, by the special disjunction rule,
Pr(Aonl) + Pr(Bonl) + Pr(Con 1)+ ... +(Pr(Jon =1

Since each of the gumdrops has an equal chance of being drawn, and there are
10 gumdrops, therefore

Pr(Aonl) = 35
Pr(Bonl) = %

Pr(Jonl) =3

We said that there were five red ones. We will use the letters A, B, C, D, and E
to designate the red gumdrops and the remaining letters to designate the
black ones. By the special disjunction rule, the probability of getting a red
gumdrop on draw 1 is

PrlAonlvBonlvConlvDonlvEonl)
=PrfAonl)+Pr(Bonl)+ Pr(Conl)+ Pr(Donl)+ Pr(E on 1)
5 1

10 2

We shall have to use the general conjunction rule to find Pr(red on 1 & red on
2), since the statements “A red gumdrop will be drawn the first time” and “A
red gumdrop will be drawn the second time” are not independent. If a red
gumdrop is drawn the first time, this will leave four red and five black gum-
drops in the bag with equal chances of being drawn on the second draw. But if
a black gumdrop is drawn the first time, this will leave five red and four black
gumdrops awaiting the second draw. Thus, the knowledge that a red one is
drawn the first time will influence the probability we assign to a red one being
drawn the second time, and the two statements are not independent. Applying
the general conjunction rule, we get

Pr(red on 1 & red on 2) = Pr(red on 1) X Pr(red on 2 given red on 1)

Wé have already found Pr(red on 1). Now we must calculate Pr(red on 2 given
red on 1). Given that we draw a red gumdrop on the first draw, there will be
nine gumdrops remaining; four red and five black. We must draw one of them,

*
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and they each have an equal chance of being drawn. By reasoning similar to
that used above, each has a probability of § of being drawn, and the probabil-
ity of drawing a red one is 5. Therefore

Pr(red on 2 given red on 1) =
We can now complete our calculations:
Pr(redon 1 & redon2) = % X g = %
We can calculate Pr(black on 1 & red on 2) in the same way:
Pr(blackon 1) = %
Pr(red on 2 given black on 1) = g
Therefore, by the general conjunction rule,
Pr(blackon 1 & redon2)=1 X % = &

18

At this point the question arises as to what the Pr(red on 2) is. We know
Pr(red on 2 given red on 1) = g We know Pr(red on 2 given black on 1) = g
But what we want to know now is the probability of getting a red gumdrop on
the second draw before we have made the first draw. We can get the answer if
we realize that red on 2 is logically equivalent to

(red on 1 & red on 2) v (not-red on 1 & red on 2)

Remember that the simple statement ¢ is logically equivalent to the complex
statement (p&q)v(~p&q). Therefore

Pr(red on 2) = Pr[(red on 1 & red on 2) v (not-red on 1 & red on 2)]
By the special disjunction rule,

Pr(red on 2) = Pr(redon 1 & red on 2) +
Pr(not-red on 1 & red on 2)

We have calculated Pr(red on 1 & red on 2) as %. We have also calculated
Pr(not-red on 1 & red on 2) = Pr(blackon 1 & redon 2) = &
Therefore
Pr(redon?) = 2+ J+ L +3 =2 =1

The same sort of applications of conditional probability and the general
conjunction rule would apply to card games where the cards that have
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been played are placed in a discard pile rather than being returned to the
deck. Such considerations are treated very carefully in manuals on poker and
blackjack. In fact, some gambling houses have resorted to using a new deck for
each hand of blackjack in order to keep astute students of probability from
gaining an advantage over the house.

Exercises

1. Prip) = %, Pr(g) = ;, p and q are independent.
a. What is Pr(p&q)?
b. Are p and g mutually exclusive?
c. What is Pr{pvq)?

2. Suppose two dice are rolled, as in the example above.

a. What is the probability of both dice showing a 1?

b. What is the probability of both dice showing a 6?

c. What is the probability that the total number of spots showing on both dice
will be either 7 or 11?7

3. A coin is flipped three times. Assume that on each toss Pr(heads) =% and
Pr(tails) = % Assume that the tosses are independent.

. What is Pr(3 heads)?

. What is Pr(2 heads and 1 tail)?

What is Pr(1 head and 2 tails)?

. What is Pr(head on toss 1 & tail on toss 2 & head on toss 3)?
What is Pr(at least 1 tail)?

What is Pr(no heads)?

. What is Pr{either 3 heads or 3 tails)?

4. Suppose you have an ordinary deck of 52 cards. A card is drawn and is not
replaced, then another card is drawn. Assume that on each draw each of the
cards then in the deck has an equal chance of being drawn.

a. What is Pr(ace on draw 1)?

b. What is Pr(10 on draw 2 given ace on draw 1)?
¢. What is Pr(ace on draw 1 & 10 on draw 2)?

d. What is Pr(10 on draw 1 & ace on draw 2)?

e. What is Pr(an ace and a 10)?

f. What is Pr(2 aces)?

. The probability that George will study for the test is i, The probability that he
will pass the test given that he studies is §. The probability that he will pass the
test given that he does not study is - What is the probability that George will
pass the test? Hint: The simple statement “George will pass the test” is logically
equivalent to the complex statement “Either George will study and pass the test
or George will not study and pass the test.”

Qe D o

(92§
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VL5. EXPECTED VALUE OF A GAMBLE. The attractiveness
of a wager depends not only on the probabilities involved, but also on the odds
given. The probability of getting a head and a tail on two independent tosses
of a fair coin is §, while the probability of getting two heads is only ;. But if
someone were to offer either to bet me even money that I will not get a head
and a tail or give 100 to 1 odds against my getting two heads, I would be well
advised to take the second wager. The probability that I will win the second
wager is less, but this is more than compensated for by the fact that if I win, 1
will win a great deal, and if I lose, I will lose much less. The attractiveness of a
wager can be measured by calculating its expected value. To calculate the ex-
pected value of a gamble, first list all the possible outcomes, along with their
probabilities and the amount won in each case. A loss is listed as a negative
amount. Then for each outcome multiply the probability by the amount won
or lost. Finally, add these products to obtain the expected value. To illustrate,
suppose someone bets me 10 dollars that I will not get a head and a tail on two

tosses of a fair coin. The expected value of this wager for me can be calculated
as follows:

Possible outcomes

Toss 1 Toss 2

Probability Gain Probability X Gain

H H i -$10 - -$2.50
H T i 10 2.50
T H 1 10 2.50
T T : ~10 —-2.50

Expected value:  $0.00

Thus, the expected value of the wager for'me is $0, and since my opponent
wins what I lose and loses what I win, the expected value for him is also $0.
Such a wager is called a fair bet.- Now let us calculate the expected value for
me of a wager where my opponent will give me 100 dollars if I get two heads,
and I will give him one dollar if I do not.

Possible outcomes

Toss 1 Toss 2

Probability Gain Probability X Gain

H H i $100 $25.00
H T : -1 -0.25
T H : -1 -0.25
T T : -1 —-0.25

Expected value: ~ $24.25
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The expected value of this wager for me is $24.25. Since my opponent loses
what I win, the expected value for him is —$24.25. This is not a fair bet, since
it is favorable to me and unfavorable to him.

The procedure for calculating expected value and the rationale behind it
are clear, but let us try to attach some meaning to the numerical answer. This
can be done in the following way. Suppose that I make the foregoing wager
many times. And suppose that over these many times the distribution of
results corresponds to the probabilities; that is, I get two heads one-fourth of
the time; a head and then a tail one-fourth of the time; a tail and then a head
one-fourth of the time; and two tails one-fourth of the time. Then the
expected value will be equal to my average winnings on a wager (that is, my
total winnings divided by the number of wagers I have made).

I said that expected value was a measure of the attractiveness of a wager.
Generally, it seems reasonable to accept a wager with a positive expected gain
and reject a wager with a negative expected gain. Furthermore, if you are of-
fered a choice of wagers, it seems reasonable to choose the wager with the
highest expected value. These conclusions, however, are oversimplifications.
They assume that there is no positive or negative value associated with risk it-
self, and that gains or losses of equal amounts of money represent gains or
losses of equal amounts of money represent gains or losses of equal amount of
value to the individual involved. Let us examine the first assumption.

Suppose that you are compelled to choose an even-money wager either
for 1 dollar or for 100 dollars. The expected value of both wagers is 0. But if
you wish to avoid risks as much as possible, you would choose the smaller
wager. You would, then, assign a negative value to risk itself. However, if you
enjoy taking larger risks for their own sake, you would choose the larger wa-
ger. Thus, although expected value is a major factor in determining the at-
tractiveness of wagers, it is not the only factor. The positive or negative val-
ues assigned to the magnitude of the risk itself must also be taken into
account.

We make a second assumption when we calculate expected value in terms of
money. We assume that gains or losses of equal amounts of money represent
gains or losses of equal amounts of value to the individual involved. In the lan-
guage of the economist this is said to be the assumption that money has a con-
stant marginal utility. This assumption is quite often false. For a poor man, the
Joss of 1000 dollars might mean he would starve, while the gain of 1000 dollars
might mean he would merely live somewhat more comfortably. In this situa-
tion, the real loss accompanying a monetary loss of 1000 dollars is much greater
than the real gain accompanying a monetary gain of 1000 dollars. A man in
these circumstances would be foolish to accept an even money bet of 1000 dol-
lars on the flip of a coin. In terms of money, the wager has an expected value of
0. But in terms of real value, the wager has a negative expected value.
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Suppose you are in a part of the city far from home. You have lost your
wallet and only have a quarter in change. Since the bus fare home is 35 cents,
it looks as though you will have to walk. Now someone offers to flip you for a
dime. If you win, you can ride home. If you lose, you are hardly any worse off
than before. Thus, although the expected value of the wager in monetary
terms is 0, in terms of real value, the wager has a positive expected value. In
assessing the attractiveness of wagers by calculating their expected value, we
must always be careful to see whether the monetary gains and losses
accurately mirror the real gains and losses to the individual involved.

Exercises

1. What is the expected value of the following gamble? You are to roll a pair of dice.
If the dice come up a natural, 7 or 11, you win 10 dollars. If the dice come up
snake-eyes, 2, or boxcars, 12, you lose 20 dollars. Otherwise the bet is off.

2. What is the expected value of the following gamble? You are to flip a fair coin. If
it comes up heads you win 1 dollar, and the wager is over. If it comes up tails you
lose 1 dollar, but you flip again for 2 dollars. If the coin comes up heads this time
you win 2 dollars. If it comes up tails you lose 2 dollars, but flip again for 4 dol-
lars. If it comes up heads you win 4 dollars. If it comes up tails you lose 4 dollars.
But in either case the wager is over.

Hint: The possible outcomes are:

Toss 1 Toss 2 Toss 3

None None
H None
T "H

T T

e

3. Suppose you extended the doubling strategy of Exercise 2 to four tosses. Would

this change the expected value?

4. Suppose that you tripled your stakes instead of doubling them. Would this
change the expected value?

V1.6. BAYES’ THEOREM. You may wonder what the relation is
between a conditional probability Pr(g given p) and its converse Pr(p given q).
They need not be equal. The probability that Ezekial is an ape, given that he is
a gorilla, is 1. But the probability that Ezekial is a gorilla, given that he is an
ape, is less than 1. The value of a conditional probability is not determined by
the value of its converse alone. But the value of a conditional probability can
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Table V1.2
Step Justification
1. Pr(q given p) = M Definition of conditional
Pr(p) probability
P
2. Pr(q given p) = p&g) p is logically equivalent to
Pr(p&q)

3. Pr(g given p) = Special disjunction rule

Pr(p&q) + Pr(p&~q)
4. Pr(q given p) = General conjunction rule
Pr(q) X Pr(p given q)
[Pr(q) X Pr(p given q)] + [Pr(~q) X Pr(p given ~q)]

be calculated from the value of its converse, together with certain other
probability values. The basis of this calculation is set forth in Bayes’ theorem. A
simplified version of a proof of Bayes’ theorem is presented in Table VI.2. Step 4
of this table states the simplified version of Bayes’ theorem.? Note that it allows
us to compute conditional probabilities going in one direction—that is, Pr(g
given p)—from conditional probabilities going in the opposite direction—that
is, Pr(p given q) and Pr(p given ~q)—together with certain statement proba-
bilities—that is, Pr(g) and Pr(~q). Let us see how this theorem is applied in a
concrete example.

Suppose we have two urns. Urn 1 contains eight red balls and two black
balls. Urn 2 contains two red balls and eight black balls. Someone has selected
an urn by flipping a fair coin. He then has drawn a ball from the urn he

® The general form of Bayes’ theorem arises as follows: Suppose that instead of simply
the two statements ¢ and ~q we consider a set of n mutually exclusive statements, q,, s,
. ++ G, which is exhaustive. That is, the complex statement, g,vgav . . . vg,,, is a tantology.
Then it can be proven that the simple statement p is logically equivalent to the complex
statement (p&q(p&ga)v . . . vip&yq,). This substitution is made in step 2, and the rest
“of the proof follows the model of the proof given. The result is
Prlg,) X Prlp given q)
Fria. gioen P) = o) X Prtp given g + [Prige) X Prlp given g7
+ --+ + [Pr(g,) X Pr(p given q,)]




132 : CHAPTER VI

selected. Assume that each ball in the urn he selected had an equal chance of
being drawn. What is the probability that he selected urn 1, given that he drew
a red ball? Bayes’ theorem tells us the Pr(urn 1 given red) is equal to
Pr(urn 1) X Pr(red given urn 1)
[Pr(urn 1) X Pr(red given urn 1)] + [Pr(~urn 1) X Pr(red given ~urn 1)}

The probabilities needed may be calculated from the information given in the
problem:

Pr(um 1) = é
Pr(~urn 1) = Pr{um 2) = %

Pr(red given urn 1) = 15
Pr(red given ~urn 1) = Pr(red given urn 2) = %

If these values are substituted into the formula, they give

Pr{(urn 1 given red) = % a % = T% =4

i EXEEXH  ErE

A similar calculation will show that Pr(urn 2 given red) = é Thus, the applica-

tion of Bayes’ theorem confirms our intuition that a red ball is more likely to
have come from urn 1 than urn 2, and it tells us how much more likely.

It is important to emphasize the importance of the pure statement proba-
bilities Pr(q) and Pr(~gq) in Bayes’ theorem. If we had not known that the urn
to be drawn from had been selected by flipping a fair coin, if we had just been
told that it was selected some way or other, we could not have computed
Pr(umn 1 given red). Indeed-if Pr(urn 1) and Pr(~urn 1) had been different,
then our answer would have been different. Suppose that the urn had been se-
lected by throwing a pair of dice. If the dice came up “snake-eyes” (a 1 on
each die), urn 1 would be selected; otherwise urn 2 would be selected. If this
were the case, then Pr{urn 1) = % and Pr(~urn 1) = Pr(urn 2) = %. Keeping
the rest of the example the same, Bayes theorem gives

Ly 8
- x -
. % 710 360 8
Pr(urn 1 given red) = o= =5=4
GHTEXD A

This is quite a different answer from the one we got when urns 1 and 2 had
an equal chance of being selected. In each case Pr(urn 1 given red) is higher
than Pr(urn 1). This can be interpreted as saying:that in both cases the
additional information that a red ball was drawn would raise confidence that
urn 1 was selected. But the initial level of confidence that urn 1 was selected is
different in the two cases, and consequently the final level s also.
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Exercises

1. The probability that George will study for the test is 5. The probability that he
will pass, given that he studies, is 5. The probability that he passes, given that he
does not study, is ;5. What is the probability that he has studied, given that he
passes?

2. Suppose there are three urns. Urn 1 contains six red balls and four black balls.
Urn two contains nine red balls and one black ball. U 3 contains five red balls
and five black balls. A ball is drawn at random from urn 1. If it is black a second
ball is drawn at random from urn 2, but if it is red the second ball is drawn at
random from urn 3.

a. What is the probability of the second ball being drawn from urn 2?

b. What is the probability of the second ball being drawn from urn 3?

c. What is the probability that the second ball drawn is black, given that it is
drawn from umn 2°?

d. What is the probability that the second ball drawn is black, given that it is
drawn from urn 3?

e. What is the probability that the second ball is black?

f. What is the probability that the second ball was drawn from umn 2, given that
itis black?

g. What is the probability that the second ball was drawn from urn 3, given that
it is black?

h. What is the probability that the second ball drawn was drawn from um 2,
given that it is red?

i. What is the probability that the second ball drawn was drawn from urm 3,
given that it is red?

j. What is the probability that the first ball drawn was red, given that the second
ball drawn is black?

k. What is the probability that the first ball is black, given that the second ball is
black?

1. What is the probability that both balls drawn are black?

3. A fair coin is flipped twice. The two tosses are independent. What is the proba-
bility of a heads on the first toss given a heads on the second toss?

4. Their captors have decided that two of three prisoners— Smith, Jones, and
Fitch—will be executed tomorrow. The choice has been made at random, but the
identity of the unfortunate selectees is to be kept from the prisoners until the final
hour. The prisoners, who are held in separate cells, unable to communicate with
each other, know this. Fitch asks a guard to tell the name of one of the other pris-
oners who will be executed. Regardless of whether Fitch was chosen or not, one
of the others will be executed, so the guard reasons that he is not giving Fitch any
illicit information by answering truthfully. He says: “Jones will be executed.” Fitch
is heartened by the news for he reasons that his probability of being the one who
escapes execution has risen from to 2 Has Fitch made a mistake? Has the
guard? Use Bayes’ theorem to analyze the reasoning involved. (Hint: Calculate

*
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the probability that Fitch will not be executed given that the guard tells him that
Jones will be executed, not the probability that Fitch will not be executed given
that Jones will be. What assumptions are possible about the probability that the
guard tells Fitch that Jones will be executed given that Fitch escapes execution?)

VL7. PROBABILITY AND CAUSALITY. What is meant when it
is said that smoking causes lung cancer? Not that smoking is a sufficient condi-
tion for contraction of lung cancer, for many people smoke and never contract
the disease. Not that smoking is a necessary condition for lung cancer, for
some who never smoke nevertheless develop lung cancer. What is meant is
something probabilistic: that smoking increases one’s chances of getting lung
cancer.

We might say that smoking has a tendency in the direction of sufficientness
if Pr(cancer given smoking) is greater than Pr(cancer given ~smoking) —that
is, if smoking is positively statistically relevant to cancer. We might say that
smoking has a tendency in the direction of necessaryness for lung cancer if
Pr(having smoked given cancer) is greater than Pr(having smoked given no
cancer) —that is, if cancer is positively statistically relevant to smoking. But we
can show from the probability calculus that for any two statements, P,Q,'°P is
positively statistically relevant to Q if and only if Q is positively statistically rel-
evant to P. By Bayes’ theorem:

Pr(P given Q) Pr(Q)

Pr(Q given P) = PrP)
S, Pr(Q given P)  Pr(P given Q)
TR PP

P is positively relevant to Q just in case the left-hand side of the equation is
greater than one; Q is positively relevant to P just in case the right-hand
side of the equation is greater than one. So the probabilistic notions of
being a tendency toward a sufficient condition, and having a tendency toward
being a necessary condition come to the same thing! Considerations appear to
be simpler in this way in a probabilistic setting than in a deterministic one.

But there is a complication that we must now discuss. Suppose that smok-
ing itself did not cause the cancer, but that desire to smoke and cancer were
both effects of some underlying genetically determined biological condition.
Then smoking wouid still be positively statistically relevant to cancer, but as a
symptom of having the bad gene rather than as a cause of cancer. If this hy-

"With positive probability.

- —— e —— e -

—— ..
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pothesis were correct, we would not say that smoking raised one’s chances of
getting lung cancer. If someone, say you, had the bad genes, then your
chances of contracting cancer would be already high and smoking would not
make them worse; if you didn’t have the bad genes, your chances of contract-
ing cancer would be lower and smoking wouldnt make them worse. That is,
the positive statistical relevance of smoking to cancer would disappear if we
looked at probabilities conditional on having the bad genes; likewise if we
looked at probabilities conditional on not having the bad genes:

Pr(cancer given smoking and bad genes) = Pr(cancer given bad
genes)

Pr(cancer given smoking and good genes) = Pr(cancer given good
genes)

To support the claim that smoking is a probabilistic cause of lung cancer,
the foregoing hypothesis (and others like it) must be ruled out. Perhaps identi-
cal twins can be found such that one of each pair is a long-time smoker, and
more of the smokers develop cancer. Perhaps subjects who don’t want to
smoke but are forced to inhale smoke anyway (certain laboratory mice, cock-
tail waitresses, and so on) have a higher incidence of lung cancer.

If we believe that a certain constellation of factors determines the chance of
getting lung cancer, then we consider smoking a probabilistic cause of lung
cancer if, when we hold all the other preexisting factors fixed, smoking
increases the chance of lung cancer. That is, if:

Pr(cancer given background factors and smoking) is greater than
Pr(cancer given background factors and no smoking)

Whether X is a probabilistic cause of Y for individual a may depend on just
what constellation of background factors is present for a. Some lucky people
have a biochemistry such that for them, contact with poison oak is not a proba-
bilistic cause of skin eruptions and intense itching, but for most of us it unfor-
tunately is.

Exercises
1. Discuss the following argument: Most heroin users have previously smoked mar-
ijuana. Therefore, marijuana use causes heroin use.

2. How would you go about finding out whether for you exposure to ragweed
pollen is a cause of a stuffed-up nose, runny eyes, and so on?

3. Some studies have found that, on average, convicted criminals exhibit vitamin
deficiencies. This suggests to some researchers that vitamin deficiencies might





