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CHAPTER I

rationally justified if for every level (k) of rules of that system there is
an e-argument on the next highest level (k + 1) which:

i. Is judged inductively strong by its own system’s rules.

ii, ‘H'as as its conclusion the statement that the system’s rules on the
original level (k) will work well next time.

III. Position: The pragmatic justification of induction.

Standard for Rational Justification: A system of inductive logjc is ratio-
n'ally justified if it is shown that the e-arguments that it judges induc-
tively strong yield true conclusions most of the time, if e-arguments
judged inductively strong by any method will. ’

The attempt at an inductive justification of scientific inductive logic taught
us to recognize different levels of arguments and corresponding levelsgof
inductive rules. It also showed that scientific inductive logic meets the
sta.n-dards for Rational Justification, Suggestion II. However, we saw that Sug-
gestion 11 is really not a sense of rational justification at all “for both scientiﬁgc
inductive logic and counterinductive logic can meet its conditions. Thus, it
cannot justify the choice of one over the other. e

The attempt at a pragmatic justification of scientific inductive logic showed
us that Suggestion III, properly interpreted in terms of levels of induction
would be an acceptable sense of rational justification, although it would be a
\ta;rgakgr se;s?ia than that proposed in Suggestion I. However, the pragmatic jus-
Su;e;)trilonml ;‘Ifo demonstrate that scientific induction meets the conditions of

I't seems that we cannot make more progress in justifying inductive logic
until we make some progress in saying exactly what scientific inductive logic is

Th(? puzzles to be discussed in the next chapter show that we have to be care-
ful in specifying the nature of scientific inductive logic.

1\Y

The Goodman Paradox and
The New Riddle of Induction

IV.1. INTRODUCTION. In Chapter III we presented some
general specifications for a system of scientific inductive logic. We said it
should be a system of rules for assigning inductive probabilities to arguments,
with different levels of rules corresponding to the different levels of argu-
ments. This system must accord fairly well with common sense and scientific
practice. It must on each level presuppose, in some sense, that nature is uni-
form and that the future will resemble the past. These general specifications
were sufficient to give us a foundation for surveying the traditional problem of
induction and the major attempts to solve or dissolve it.

However, to be able to apply scientific inductive logic, as a rigorous disci-
pline, we must know precisely what its rules are. Unfortunately no one has yet
produced an adequate formulation of the rules of scientific inductive logic. In
fact, inductive logic is in much the same state as deductive logic was before
Aristotle. This unhappy state of affairs is not due to a scarcity of brainpower in
the field of inductive logic. Some of the great minds of history have attacked
its problems. The distance by which they have fallen short of their goals is a
measure of the difficulty of the subject. Formulating the rules of inductive
logic, in fact, appears to be a more difficult enterprise than doing the same for
deductive logic. Deductive logic is a “yes or no” affair; an argument is either
deductively valid or it is not. But inductive strength is a matter of degree.
Thus, while deductive logic must classify arguments as valid or not, inductive
logic must measure the inductive strength of arguments.

Setting up such rules of measurement is not an easy task. It is in fact beset
with so many problems that some philosophers have been convinced it is im-
possible. They maintain that a system of scientific induction cannot be con-
structed; that prediction of the future is an art, not a science; and that we must
rely on the intuitions of experts, rather than on scientific inductive logic, to
predict the future. We can only hope that this gloomy doctrine is as mistaken
as the view of those early Greeks who believed deductive logic could never be
reduced to a precise system of rules and must forever remain the domain of
professional experts on reasoning.

If constructing a system of scientific inductive logic were totally impossible,
we would be left with an intellectual vacuum, which could not be filled by ap-
peal to “experts.” For, to decide whether someone is an expert predictor or a
charlatan, we must assess the evidence that his predictions will be correct.
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And to assess this evidence, we must appeal to the second level of scientific
inductive logic.

Fortunately there are grounds for hope. Those who have tried to construct
a system of scientific inductive logic have made some solid advances. Although
the intellectual jigsaw puzzle has not been put together, we at least know what
some of the pieces look like. Later we shall examine some of these “building
blocks” of inductive logic, but first we shall try to put the problem of con-
structing a system of scientific induction in perspective by examining one of
the main obstacles to this goal.

IV.2. REGULARITIES AND PROJECTION. At this point you
may be puzzled as to why the construction of a system of scientific inductive
logic is so difficult. After all, we know that scientific induction assumes that
nature is uniform and that the future will be like the past, so if, for example, all
observed emeralds have been green, the premise embodying this information
confers high probability on the conclusion that the next emerald to be
observed will be green. We say that scientific inductive logic projects an
observed regularity into the future because it assigns high inductive probabil-
ity to the argument:

All observed emeralds have been green.

The next emerald to be observed will be green.

In contrast, counterinduction would assume that the observed regular
connection between being an emerald and being green would not hold in the
future, and thus would assign high inductive probability to the argument:

All observed emeralds have been green.

The next emerald to be observed will not be green.

So it seems that scientific induction, in a quite straightforward manner, takes
observed patterns or regularities in nature and assumes that they will hold in
the future. Along these same lines, the premise that 99 percent of the ob-
served emeralds have been green would confer a slightly lower probability on
the conclusion that the next emerald to be observed would be green. Why can

wa nat cimnly oo & ey s o
We Hh

not simply say, then, that arguments of the forn
All observed X’s have been Ys.
The next observed X willbe a Y.

have an inductive probability of 1, and that all arguments of the form

THE GOODMAN PARADOX AND THE NEW RIDDLE OF INDUCTION 53

Ninety-nine percent of the observed X's have been Y’s.

The next observed X willbe a Y.

have an inductive probability of 99/100? o '
That is, why can we not simply construct a system of scientific induction by

giving the following rule on each level?

Rule S: An argument of the form
N percent of the observed X's have been Y's.

The next observed Xwillbea Y.
is to be assigned the inductive probability N/100.

Rule S does project observed regularities into the future, bu't there? are several
reasons why it cannot constitute a system of scientific inducuve.a logic.

The most obvious inadequacy of Rule § is that it only applies to arguments
of a specific form, and we are interested in assessing the induf:tive st.r‘ength of
arguments of different forms. Consider arguments which, in add.ltlf)n to a
premise stating the percentage of observed X’s that have been Y, have
another premise stating how many X's have been observed. Here the rule does
not apply, for the arguments are not of the required for.rr‘l. For example, R}lle
S does not tell us how to assign inductive probabilities to the following

arguments:
1 1I
Ten emeralds have been observed. One million emeralds have been
observed.
Ninety percent of the observed Ninety percent of the observed
emeralds have been green. emeralds have been green.

The next emerald to be observed The next emerald to be observed
will be green. will be green.

Obviously scientific inductive logic should tell us how to assign i.nductive
probabilities to these arguments, and in assigning these probabilities it should
take into account that the premises of Argument II bring a much greater
amount of evidence to bear than the premises of Argument L. '

Another type of argument that Rule S does not tell us how to evaluate is
one that includes a premise stating in what variety of circumstances the. regu-
larity has been found to hold. That is, Rule S does not tell us how to assign in-
ductive probabilities to the following arguments:
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Every person who has taken drug X  Every person who has taken drug X

h.as exhibited no adverse side reac- has exhibited no adverse side reac-
tions. tions.

Drug X has only been administered Drug X has been administered to
to persons between 20 and 25 years persons of all ages and varying
of age who are in good health. degrees of health.

The next person to take drug X will  The next person to take drug X will
have no adverse side reactions. have no adverse side reactions.

Again, scientific inductive logic should tell us how to assign i i
probabilities to these arguments, and in doing so it should takegirrllt;ni:l::f)tlll‘rﬁ
the fact that the premises of Argument IV tell us that the regularity has been
found to hold in a great variety of circumstances, whereas the premises of
Argument III inform us that the regularity has been found to hold in onl
limited area. e
There are many other types of argument that Rule S does not tell us how to
evaluate, including most of the arguments advanced as examples in Chapter I
We can now appreciate why an adequate system of rules for scientific induc-.
tive logic must be a fairly complex structure. But there is another shortcomin
of Rule S which has to do with arguments to which it does apply, that i;g,

arguments of the form:

N percent of the observed X’s have been Y.

The next observed X willbe a Y.

The following two arguments are of that for-m, so we can apply Rule S to

evaluate them:

A%

One hundred percent of the ob-
served samples of pure water have
had a freezing point of +32 degrees
Fahrenheit.

VI

One hundred percent of the
recorded economic  depressions
have occurred at the same time as
large sunspots.

The next observed sample of pure
water will have a freezing point of
+ 32 degrees Fahrenheit.

The next economic depression will
occur at the same time as a large
sunspot.
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If we apply Rule S we find that it assigns an inductive probability-of 1 to each
of these arguments. But surely Argument V has a much higher degree of
inductive strength than Argument VI! We feel perfectly justified in projecting
into the future the observed regular connection between a certain type of
chemical compound and its freezing point. But we feel that the observed regu-
lar connection between economic cycles and sunspots is a coincidence, an
accidental regularity or spurious correlation, which should not be projected
into the future. We shall say that the observed regularity reported in the
premise of Argument V is projectible, while the regularity reported in the
premise of Argument VI is not. We must now sophisticate our conception of
scientific inductive logic still further. Scientific inductive logic does project
observed regularities into the future, but only projectible regularities. It does
assume that nature is uniform and that the future will resemble the past, but
only in certain respects. It does assume that observed patterns in nature will
be repeated, but only certain types of patterns. Thus, Rule S is not adequate
for scientific inductive logic because it is incapable of taking into account
differences in projectibility of regularities.

Exercises

1. Construct five inductively strong arguments to which Rule S does not apply.

2. Give two new examples of projectible regularities and two new examples of un-
projectible regularities.

3. For each of the following arguments, state whether Rule S is applicable. If it is
applicable, what inductive probability does it assign to the argument?
a. One hundred percent of the crows observed have been black.

The next crow to be observed will be black.
b. One hundred percent of the crows observed have been black.

All crows are black.

¢. Every time I have looked at a calendar, the date has been before January 1,
2010.
The next time I look at a calendar the date will be before January 1,
2010.

d. Every time fire has been observed, it has continued to burn accordi
laws of nature until extinguished.

All unobserved fires continue to bumn according to the laws of nature
until extinguished. -
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e. Eighty-five percent of the time when I have dropped a piece of silverware,
company has subsequently arrived.

The next time I drop a piece of silverware company will subsequently arrive.

IV.3. THE GOODMAN PARADOX. If one tries to construct
various examples of projectible and unprojectible regularities, he will soon
come to the conclusion that projectibility is not simply a “yes or no” affair, but
rather a matter of degree. Some regularities are highly projectible, some have
a middling degree of projectibility, and some are quite unprojectible. Just how
unprojectible a regularity can be has been demonstrated by Nelson Goodman
in his famous “grue-bleen” paradox. g

Goodman invites us to consider a new color word, “grue.” It is to have the
general logical features of our old color words such as “green,” “blue,” and
“red.” That is, we can speak of things being a certain color at a certain time—
for example, “John’s face is red now”—and we can speak of things either
remaining the same color or changing colors. The new color word “grue” is
defined in terms of the familiar color words “green” and “blue” as follows:

Definition 6: A certain thing, X, is said to be grue at a certain time ¢ if
and only if:

X is green at t and t is before the year 2100
or

X is blue at t and t is during or after the year 2100.

Let us see how this definition works. If you see a green grasshopper today, you
can correctly maintain that you have seen a grue grasshopper today. Today is be-
fore the year 2100, and before the year 2100 something is grue just when it is
green. But if you or one of your descendants sees a green grasshopper during or
after the year 2100, it would then be incorrect to maintain that a grue grasshop-
per had been seen. During and after the year 2100, something is grue just when
it is blue. Thus, after the year 2100, a blue sky would also be a grue sky.

Suppose now that a chameleon were kept on a green cloth until the begin-
ning of the year 2100 and then transferred to a blue cloth. In terms of green
and blue we would say that the chameleon changed color from green to blue.’
But in terms of the new color word “grue” we would say that it remained the
same color: “grue.” The other side of the coin is that when something remains
the same color in terms of the old color words, it will change color in terms of
the new one. Suppose we have a piece of glass that is green now and that will
remain green during and after the year 2100. Then we would have to say that
it was grue before the year 2100 but was not grue during and after the year
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inni it changed color from grue to some
100. At the beginning of the year 2100 it ¢ ‘
ither color. To r%:\me the color that it changed to we mtioduc:a th(; Hew .color
word “bleen.” “Bleen” is defined in terms of “green” and “blue” as tollows:

Definition 7: A certain thing, X, is said to be bleen at a certain time ¢
if and only if:
X is blue at t and t is before the year 2100

or
Xis green att and t is during or after the year 2100.

ing i j hen it is green and bleen
before the year 2100 something is grue just when : cer
;‘It‘ltltli:zh:noiieis blu>;. In or after the year 2100 sofr.nt;:lthu;g is ;grue ]u:lt \:}l::r;) 11; (::
bleen just when it is green. In terms of the old color words
(b;lfu;l:sl;drer::;:uthe same color (green), but in terr)ns of the new color words
leen).
the piece of glass changes color (from grue to b . )
elf)rlxagine f tribe of people speaking a language that had “grue andS bleene
as basic color words rather than the more familiar ones that' we use. “I}))P(')S
we describe a situation in our language — for example, the piece qf gla}sls hemg
reen before the year 2100 and remaining green afterward—in w. 1{; tv}vle
would say that there is no change in color. But if they tl(iorre‘ctly d}?scge eTh;
ituation in their language, then, in their terms, there is a change. 114
i:::li S;t)mtellleoir:nlporta.nt and rather startling conclusion tha? V\{hether ﬁ' certan}
situation involves change or not may depend on the descriptive machinery o
d to discuss that situation.
theCl)e::eglrlnaiggeh;1 Sfbje((:)t that “grue” and “bleen” are not accept?l.)le color: wor.ds
because they have reference to a specific date in their d}?ﬁrélu?ns. {t is ((])1::;:
i language, in which blue and green are the basic color words,
tmz ta}:jg :)riez:lrm‘ixs% begdeﬁned not only in terms of blue and green but also ir(;
terms of the date “2100 A.D.” But a speaker of the grue-bleen language cou ¢
imaintain that definitions of our color words in his languilge must alic{) lhave:. ref-
erence to a specific date. In the grue-bleen language, “grue and “bleen” are
basic, and “blue” and “green” are defined as follows:

Definition 8: A certain thing, X, is said to be green at a certain time £
if and only if:
X is grue at t and t is before the year 2100

or _
X is bleen at t and t is during or after the year 2100.

Definition 9: A certain thing X is said to be blue at a certain time ¢ if
and only if:
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Xis bleen at ¢ and t is before the year 2100

or
Xis grue at ¢t and ¢ is during or after the year 2100.

Defining the old color words in terms of the new requires reference to a spe-
cific date as much as defining the new words in terms of the old. So the formal
structure of their definitions gives no reason to believe that “grue” and “bleen”
are not legitimate, although unfamiliar, color words.

Let us see what can be learned about regularities and projectibility from
these new color words. We have already shown that whether there is change in
a given situation may depend on what linguistic machinery is used to describe
that situation. We shall now show that what regularities we find in a given situ-
ation also may depend on our descriptive machinery. Suppose that at one
minute to midnight on December 31, 2099, a gem expert is asked to predict
what the color of a certain emerald will be after midnight. He knows that all
observed emeralds have been green. He projects this regularity into the future
and predicts that the emerald will remain green. Notice that this is in

accordance with Rule S, which assigns an inductive probability of 1 to the
argument: N

One hundred percent of the times that emeralds have been observed
they have been green.

The next time that an emerald is observed it will be green.

But if the gem expert were a speaker of the grue-bleen language, he would
find a different regularity in the color of observed emeralds. He would notice
that every time an emerald had been observed it had been grue. (Remember
that before the year 2100 everything that is green is also grue.) Now if he
followed Rule S he would project this regularity into the future, for Rule S
also assigns an inductive probability of 1 to the argument:

One hundred percent of the times emeralds have been observed they
have been “grue.”

The next time an emerald is observed it will be “grue.”

And if he projected the regularity that all observed emeralds have been grue
into the future, he would predict that the emerald will remain grue. But during
the year 2100 a thing is “grue” only if it is blue. So by projecting this regularity
he is in effect predicting that the emerald will change from green to blue,

Now, we will all agree that this is a ridiculous prediction to make on the ba-
sis of the evidence. And no one s really claiming that it should be made. But it
cannot be denied that this prediction results from the projection into the
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future of an observed regularity in accordance with Rule S. The point is that
the regularity of every observed emerald having been grue is a totally
unprojectible regularity. And the prediction of our hypothetical grue-bleen-
speaking gem expert is an extreme case of the trouble we get into when we
try to project, via some rule such as Rule S, regularities that are in fact
unprojectible.

The trouble we get into is indeed deep, for the prediction so arrived at will
conflict with the prediction arrived at by projecting a projectible regularity. If
we project the projectible regularity that every time an emerald has been
observed it has been green, then we arrive at the prediction that the emerald
will remain green. If we project the unprojectible regularity that every time an
emerald has been observed, it has been grue, then we arrive at the prediction
that the emerald will change from green to blue. These two predictions clearly
are in conflict.!

Thus, the mistake of projecting an unprojectible regularity may not
only lead to a ridiculous prediction. It may, furthermore, lead to a prediction
that conflicts with a legitimate prediction which results from projecting a
projectible regularity discovered in the same set of data. An acceptable
system of scientific inductive logic must provide some means to escape this
conflict. It must incorporate rules that tell us which regularities are pro-
jectible. From the discussion of accidental regularities and the sunspot theory
of economic cycles, we already know that scientific inductive logic must have
rules for determining projectibility. But the Goodman paradox gives this point
new urgency by demonstrating how unprojectible a regularity can be
and how serious are the consequences of projecting a totally unprojectible
regularity.

Let us summarize what is to be learned from the discussion of “grue” and
“bleen”:

1. Whether we find change or not in a certain situation may depend on
the linguistic machinery we use to describe that situation.

2. What regularities we find in a sequence of occurrences may depend
on the linguistic machinery used to describe that sequence.

3. We may find two regularities in a sequence of occurrences, one pro-
jectible and one unprojectible, such that the predictions that arise from
projecting them both are in conflict.

! Actually they are inconsistent only under the assumption that the emerald will not be
destroyed before 2100 A.D., but presumably we will have indepéndent inductive
evidence for this assumption.
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Exercise:

Define “grue” in terms of “blue,” “green,” and “bleen” without mentioning the year
2100. You can use “and,” “or,” and “not.”

IV4. THE GOODMAN PARADOX, REGULARITY, AND THE
PRINCIPLE OF THE UNIFORMITY OF NATURE. We saw, in the Iast
section, that projecting observed regularities into the future is not as simple as
it first appears. The regularities found in a certain sequence of events may
depend on the language used to describe that sequence of events. The Good-
man paradox showed that if we try to project all regularities that can be found
by using any language, our predictions may conflict with one another. This is a
startling result, and it dramatizes the need for rules for determining pro-
jectibility in scientific induction. (This might be accomplished through the
specification of the most fruitful language for scientific description of events,)

This need is further dramatized by the following, even more startling result:
For any prediction whatsoever, we can find a regularity whose projection li-
censes that prediction. Of course, most of these regularities will be unpro-
jectible. The point is that we need rules to eliminate those predictions based
on unprojectible regularities. I shall illustrate this principle in three ways: (1)
in an example that closely resembles Goodman’s “grue-bleen” paradox, (2)
with reference to the extrapolation of curves on graphs, (3) with reference to
the problem, often encountered on intelligence tests, of continuing a
sequence of numbers. The knowledge gained from this discussion will then be
applied to a reexamination of the principle of the uniformity of nature.

Example 1

Suppose you are presented with four boxes, each labeled “Excelsior!” In
the first box you discover a green insect; in the second, a yellow ball of wax; in
the third, a purple feather. You are now told that the fourth box contains a
mask and are asked to predict its color. You must look for a regularity in this
sequence of discoveries, whose projection will license a prediction as to the
color of the mask, Although on the face of it, this seems impossible, with a lit-
tle ingenuity a regularity can be found. What is more, for any prediction you
wish to make, there is a regularity whose projection will license that predic-
tion. Suppose you want to predict that the mask will be red. The regularity is
found in the following manner.

Let us define a new word, “snarf.” A snarfis something presented to you in
a box labeled “Excelsior!” and is either an insect, a ball of wax, a feather, or a
mask. Now you have observed three snarfs and are about to observe a fourth.
This is a step toward regularity, but there is still the problem that the three
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observed snarfs have been different colors. One more de'ﬁnition is reqﬁ'rfq ir:
order to find regularity in apparent chaos. A thing X is said to be “murkle” jus

when:
X is an insect and X is green

or
X is a ball of wax and X is yellow

or
X is a feather and X is purple

or

X is some other type of thing and X is red.

Now we have found the regularity: all observed snarfs have been I::fl‘rfle[;:f :lv:
project this regularity into the future, assuming th‘at.the2 next sn: orfto >
served will be murkle, we obtain the required predxch<3n. The neXtdSI;G to be
observed will be a mask, and for a mask to be mu‘rk‘]e .1t must be red. tef Hss
to say, this regularity is quite lunprojiectibh:l.1 Btutfltt is ;r;p;r;;x::t ;g s:::(e) a ;lead
could discover an unprojectible regularity at, if it w joct if: would lead
to the prediction that the mask is red. And it is easy to t;e(: tha ,maSk ; wanted
to discover a regularity that would lead to a pfgdlghor}‘ at the S :
i a few alterations to the definition of “murkle” wou accom
gigir:lrllits ca:l?:r?"l'lﬁs sort of thing can always be flone and, af w;f s,l"u:ll se;-:;i em
some areas we need not even resort to such exotic words as “snarf,” “murkle,

“grue,” and “bleen.”

Example 2

When basing predictions on statistical data we pften rflake use offr;pgz,
which help summarize the evidence and guide us in making our pre1 0c e(; rs.
To illustrate, suppose a certain small country takes a' gensus :l:fer)'f yf the,
and has taken three so far. The population was 11 mll!u?n at }? htrl?edo e
first census, 12 million at the second census, and 13 million at the thir t his
information is represented on a graph in Figure IV.1. Each dot represexlzes (e
information as to population size gained from one census. For esarillp : the
middle dot represents the second census, taken in Fhe year .lO, ar; ths omrﬁ%al
population of 12 million. Thus, it is placed at the intersection of the ve

. . . .. an ) fl
2This projection is in accordance with Rule S, which assigns an inductive probability o

to the ment:
:lll-ilserved snarfs have been murkle.

The next snarf to be observed will be murkle.
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Population in

millions
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Figure IV. 1

line drawn from the year 10 and the horizontal line drawn from the population
of 12 million.

Suppose now you are asked to predict the population of this country at the
time of the fourth census, that is, in the year 30. You would have to look for a
regularity that could be projected into the future. In the absence’ of any
further information, you would probably proceed as follows: First you would
notice that the points representing the first three census all fall on the straight
line labeled A in Figure IV.2, and would then project this regularity into the
future. This is in accordance with Rule S, which assigns an inductive probabil-
ity of 1 to the following argument:

All points representing census so far taken have fallen on line A.

The point representing the next census to be taken will fall on line A.

This projection would lead you to the prediction that the population at the
time of the fourth census will be 14 million, as shown by the dotted lines in
Figure IV.2. The process by which you would arrive at your prediction is called
extrapolation. If you had used similar reasoning to estimate the population
during the year 15 at 12.5 million, the process would be called interpolation.
Interpolation is estimating the position of a point that lies between the points
representing the data. Extrapolation is estimating the position of a point that
lies outside the points representing the data. So your prediction would be
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obtained by extrapolation, and your extrapolation would be a projection of the
regularity that all the points plotted so far fell on line A. ‘

But it is obvious that there are quite a few other regularities to be found in
the data which you did not choose to project. As shown in Figure IV.3 there is
the regularity that all the points plotted so far fall on curve B, and the regular-
ity that all the points plotted so far fall on curve C. The projection of one of
these regularities will lead to a different prediction. o

If you extrapolate along curve B, you can predict that the population in the
year 30 will be back to 11 million. If you extrapolate along curve C, you can
predict that the population will leap to 17 million. There are indeed an infinite
number of curves that pass through all the points and thus an infinite number
of regularities in the data. Whatever prediction you wish to make, a regularity
can be found whose projection will license that prediction.

Example 3

Often intelligence and aptitude tests contain problems where one is given a
sequence of numbers and asked to continue the sequence; for example:
i. 1,2,3,4,5, ...
ii. 2,4,6,8,10, ...;
ii. 1,3,5,7,9, . ...
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Population in
millions
17
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The natural way in which to continue sequence (i) is to add 6 to the end, for
sequence (ii) to add 12, and for sequence (iii) to add 11. These problems are
really problems of inductive logic on the intuitive level; one is asked to
discover a regularity in the segment of the series given and to project that reg-
ularity in order to find the next number of the series.

Let us make this reasoning explicit for the three series given. In example (i)
the first member of the series is 1, the second member is 2, the third member
is 3, and, in general, for all the members given, the kth member is k. If we
project this regularity to find the next member of the series, we will reason
that the sixth member is 6, which is the answer intuitively arrived at before. In
example (ii) the first member is twice 1, the second is twice 2, and, in general,
for all the members given, the kth member is twice k. If we project this regu-
larity, we will reason that the sixth member is twice 6, or 12, which is the an-
swer intuitively arrived at before. In example (iii) the first member is twice 1
less 1, the second member is twice 2 less 1, and the third member is twice 3
less 1. In general, for all the members given, the kth member is twice k less 1.
If we project this regularity, we will reason that the sixth member of the series
is twice 6 less 1, or 11, which is the result intuitively arrived at. We say that k is
a generating function for the first series, 2k a generating function for the
second series, and 2k — 1-a generating function for the third series. Although
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“generating function” may sound like a very technical term, its meaning is
quite simple. It is a formula with k in it, such that if 1 is substituted for k it
gives the first member of the series, if 2 is substituted for k it gives the second
member, and so on.

Thus, the regularity we found in each of these series is that a certain gener-
ating function yielded all the given members of the series. This regularity was
projected by assuming that the same generating function would yield the next
member of the series, and so we were able to fill in the ends of the series. For
example, the prediction that the sixth member of series (iii) is 11 implicitly
rests on the following argument:

For every given member of series (iii) the kth member of that series
was 2k — 1.

For the next member of series (iii) the kth member will be 2k — 1.

But, as you may expect, there is a fly in the ointment. If we look more
closely at these examples, we can find other regularities in the given members
of the various series. And the projection of these other regularities conflicts
with the projection of the regularities we have already noted. The generating
function (k—1) (k—2) (k—3) (k—4) (k—5) + k also yields the five given
members of series (i). (This can be checked by substituting 1 for k, which gives
1; 2 for k, which gives 2; and so on, up through 5.) But if we project this regu-
larity, the result is that the sixth member of the series is 126!

Indeed, whatever number we wish to predict for the sixth member of the
series, there is a generating function that will fit the given members of the se-
ries and that will yield the prediction we want. It is a mathematical fact that in
general this is true. For any finite string of numbers which begins a series,
there are generating functions that fit that string of given numbers and yield
whatever next member is desired. Whatever prediction we wish to make, we
can find a regularity whose projection will license that prediction.

Thus, if the intelligence tests were simply looking for the projection of a
regularity, any number at the end of the series would be correct. What they
are looking for is not simply the projection of a regularity but the projection of
an intuitively projectible regularity.

If we have perhaps belabored the point in Examples (1), (2), and (3) we have
done so because the principle they illustrate is so hard to accept. Any predic-
tion whatsoever can be obtained by projecting regularities. As Goodman puts it,
“To say that valid predictions are those based on past regularities, without being
able to say which regularities, is thus quite pointless. Regularities are where
you find them, and you can find them anywhere.” An acceptable scientific in-
ductive logic must have rules for determining the projectibility of regularities.
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It remains to be shown how this discussion of regularities and projectibility
bears on the principle of the uniformity of nature. Just as we saw that the
naive characterization of scientific inductive logic as a system that projects
observed regularities into the future was pointless unless we can say which
regularities it projects, so we shall see that the statement that scientific induc-
tive logic presupposes the uniformity of nature is equally pointless unless we
are able to say in what respects nature is presupposed to be uniform. For it is
self-contradictory to say that nature is uniform in all respects, and trivial to say
it is uniform in some respects.

In the original statement of the Goodman paradox, the gem expert, who
spoke our ordinary language, assumed nature to be uniform with respect to
the blueness or greenness of emeralds. Since observed emeralds had
always been green, and since he was assuming that nature is uniform and that
the future would resemble the past in this respect, he predicted that the
emerald would remain green. But the hypothetical gem expert who spoke the
grue-bleen language assumed nature to be uniform with respect to the
grueness or bleenness of emeralds. Since observed emeralds had always been
grue and since he was assuming that nature is uniform and that the future
would resemble the past in this respect, he predicted that the emerald would
remain grue. But we saw that these two predictions were in conflict. The
future cannot resemble the past in both these ways. As we have seen, such
conflicts can be multiplied ad infinitum. The future cannot resemble the past
in all respects. It is self-contradictory to say that nature is uniform in all
respects.

We might try to retreat to the claim that scientific induction presupposes

that nature is uniform in some respects. But this claim is so weak as to be no
claim at all. To say that nature is uniform in some respects is to say that it ex-
hibits some patterns, that there are some regularities in nature taken as a
whole (in both the observed and unobserved parts of nature). But as we have
seen in this section, in any sequence of observations, no matter how chaotic
the data may seem, there are always regularities. This holds not only for se-
quences of observations but also for nature as a whole. No matter how chaotic
nature might be, it would always exhibit some patterns; it would always be uni-
form in some respects. These uniformities might seem highly artificial, such as
a uniformity in terms of “grue” and “bleen” or “snarf” and “murkle.” They
might be fiendishly complex. But no matter how nature might behave, there
would always be some uniformity, “natural” or “artificial,” simple or complex.
It is therefore trivial to say that nature is uniform in some respects. Thus, if
the statement that scientific induction presupposes that nature is uniform is to
convey any information at all, it must specify in what respects scientific induc-
tion presupposes that nature is uniform.
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The points about regularities and projectibility and the uniformity of nature
are really two sides of the same coin. There aré so many regularities in any se-
quence of observations and so many ways for nature to be uniform that the
statements “Scientific induction projects observed regularities into the future”
and “Scientific induction presupposes the uniformity of nature” lose all mean-
ing. They can, however, be reinvested with meaning if we can formulate rules
of projectibility for scientific inductive logic. Then we could say that scientific
inductive logic projects regularities that meet these standards. And that would
be saying something informative. We could reformulate the principle of the
uniformity of nature to mean: Nature is such that projecting regularities that
meet these standards will lead to correct predictions most of the time. Thus,
the whole concept of scientific inductive logic rests on the idea of projectibil-
ity. The problem of formulating precise rules for determining projectibility is
the new riddle of induction.

Exercise:

In the example of the four boxes labeled “Excelsior!” find a regularity in the obser-
vations whose projection would lead to the prediction that the mask will be blue.

IV.5. SUMMARY. This chapter described the scope of the problem
of constructing a system of scientific inductive logic. We began with the sup-
position that scientific inductive logic could be simply characterized as the
projection of observed regularities into the future in accordance with some
rule, such as Rule S. We saw that this characterization of scientific inductive
logic is inadequate for several reasons, the most important being that too many
regularities are to be found in any given set of data. In one set of data we can
find regularities whose projection leads to conflicting predictions. In fact, for
any prediction we choose, there will be a regularity whose projection licenses
that prediction.

Scientific inductive logic must select from the multitude of regularities
present in any sequence of observations, for indiscriminate projection leads to
paradox. Thus, in order to characterize scientific inductive logic we must spec-
ify the rules used to determine which regularities it considers to be pro-
jectible. The problem of formulating these rules is called the new riddle of in-
duction.

Essentially the same problem reappears if we try to characterize scientific
inductive logic as a system that presupposes that nature is uniform. To say that
nature is uniform in some respects is trivial. To say that nature is uniform in all
respects is not only false but self-contradictory. Thus, if we are to characterize
scientific inductive logic in terms of some principle of the uniformity of nature



68 CHAPTER IV

which it presupposes, we must say in what respects nature is presupposed to
be uniform, which in turn determines what regularities scientific inductive
logic takes to be projectible. So the problem about the uniformity of nature is
just a different facet of the new riddle of induction.

The problem of constructing a system of scientific inductive logic will not
be solved until the new riddle of induction and other problems have been
solved. Although these solutions have not yet been found, there have been de-
velopments in the history of inductive logic which constitute progress towards
a system.

In the next chapter we shall pursue an analysis of causality which casts
some light on well-known features of the experimental method. Then we will
discuss the major achievement of the field, the probability calculus,
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Mill’s Methods of Experimental
Inquiry and the Nature of
Causality

V.1. INTRODUCTION. One of the purposes of scientific inductive
logic is to assess the evidential warrant for statements of cause and effect. But
what exactly do statements claiming causal connection mean, and what is their
relation to statements describing de facto regularities? These are old and deep
questions and we can give only partial answers here.

In his System of Logic, published in 1843, John Stuart Mill discussed five
“methods of experimental inquiry” that he found used in the work of contem-
porary scientists. When we make some simple distinctions between different
senses of “cause,” we will find that we can use the basics of logic introduced in
Chapter I to give a logical analysis of Mill's methods.

V.2. CAUSALITY AND NECESSARY AND SUFFICIENT CON-
DITIONS. Many of the inquiries of both scientific research and practical
affairs may be characterized as the search for the causes of certain effects. The
practical application of knowledge of causes consists either in producing the
cause in order to produce the effect or in removing the cause in order to prevent
the effect. Knowledge of causes is the key to control of effects. Thus, physicians
search for the cause of certain diseases so that they may remove the cause and
prevent the effect. On the other hand, advertising men engage in motivational
research into the causes of consumer demand so that they can produce the
cause and thus produce the effect of consumer demand for their products.

However, the word “cause” is used in English to mean several different
things. For this reason, it is more useful to talk about necessary conditions and
sufficient conditions rather than about causes.

Definition 10: A property F is a sufficient condition for a property G if
and only if whenever F is present, G is present.
Definition 11: A property H is a necessary condition for a property I if
and only if whenever I is present, H is present.

Being run over by a steamroller is a sufficient condition for death, but it

is not a necessary condition. Whenever someone has been run over by a
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