Philosophy 148 — Announcements & Such

• Administrative Stuff
 - Branden’s office hours today will be 2:30–3:30.
 - Raul’s office hours will be 10–12 Wed., and by appointment.
 - Section times have been determined. Sections will meet Tuesday, 10–11 and Wednesday, 9–10. You should have received an email assigning you to a section. Otherwise, please see Raul about this.
 - We have a permanent location for the Tuesday section: 206 Wheeler. Stay tuned for the permanent location for the Wednesday section.

• Last Time: More Overview Stuff & Algebraic Probability (Intro.)

• Today’s Agenda
 - An Algebraic Approach to Probability Calculus, Continued
 ∗ “The Algebraic Method” and a Decision Procedure for PC (PrSAT)
 ∗ Systematic vs Extra-Systematic Logical Relations in Algebraic PC
 - Next: An Axiomatic Approach to Probability Calculus
The Probability Calculus: An Algebraic Approach I

- Once we grasp the concept of a finite Boolean algebra of propositions, understanding the probability calculus algebraically is very easy.

- The central concept is a *finite probability model*. A finite probability model \(\mathcal{M} \) is a finite Boolean algebra of propositions \(\mathcal{B} \), together with a function \(\Pr(\cdot) \) which maps elements of \(\mathcal{B} \) to the unit interval \([0, 1] \in \mathbb{R}\).

- This function \(\Pr(\cdot) \) must be a *probability function*. It turns out that a probability function \(\Pr(\cdot) \) on \(\mathcal{B} \) is just a function that assigns a real number on \([0, 1]\) to each state \(s_i \) of \(\mathcal{B} \), such that \(\sum_i \Pr(s_i) = 1 \).

- Once we have \(\Pr(\cdot)'s \) *basic assignments* to the states of \(\mathcal{B} \) (s.d.'s of \(\mathcal{L} \)), we define \(\Pr(p) \) for *any* statement \(\mathcal{L} \) of the language of \(\mathcal{B} \), as follows:

 \[
 \Pr(p) = \sum_{s_i \models p} \Pr(s_i) \quad [\text{note: if } p \models \bot, \text{ then } \Pr(p) = 0]
 \]

- In other words, \(\Pr(p) \) is the sum of the probabilities of the state descriptions in \(p \)'s (equivalent) disjunction of state descriptions.
The Probability Calculus: An Algebraic Approach II

- Here’s an example of a finite probability model \mathcal{M}, whose algebra \mathcal{B} is characterized by a language \mathcal{L} with two atomic letters “X” and “Y”:

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>States</th>
<th>$\Pr(s_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>s_1</td>
<td>$\frac{1}{6}$</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>s_2</td>
<td>$\frac{1}{4}$</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>s_3</td>
<td>$\frac{1}{8}$</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>s_4</td>
<td>$\frac{11}{24}$</td>
</tr>
</tbody>
</table>

The area of the box is 1, since $\Pr(T) = 1$.

- On the left, a stochastic truth-table (STT) representation of \mathcal{M}; on the right, a stochastic Venn Diagram (SVD) representation, in which area is proportional to probability. This is a regular model: $\Pr(s_i) > 0$, for all i.

- \mathcal{M} determines a numerical probability for each p in \mathcal{L}. Examples?

- We can also use STTs to furnish an algebraic method for proving general facts about all probability models — the algebraic method.
The Probability Calculus: An Algebraic Approach III

- Let $a_i = \Pr(s_i)$ be the probability [under the probability assignment $\Pr(\cdot)$] of state s_i in B — i.e., the area of region s_i in our SVD.

- Once we have real variables (a_i) for each of the basic probabilities, we can not only calculate probabilities relative to specific numerical models — we can say general things, using only simple high-school algebra.

- That is, we can translate any expression $'\Pr(p)'$ into a sum of some of the a_i, and thus we can reduce probabilistic claims about the p's in B/\mathcal{L} into simple, high-school-algebraic claims about the real variables a_i.

- This allows us to be able to prove general claims about probability functions, by proving their corresponding algebraic theorems.

- Method: translate the probability claim into a claim involving sums of the a_i, and determine whether the corresponding claim is a theorem of algebra (assuming only that the a_i are on $[0,1]$ and that they sum to 1).
The Probability Calculus: An Algebraic Approach IV

• Here are two simple/obvious examples involving two atomic sentences:

Theorem. \(\Pr(X \lor Y) = \Pr(X) + \Pr(Y) - \Pr(X \land Y) \).

Proof. \(\Pr(X \lor Y) = a_1 + a_2 + a_3 = (a_1 + a_2) + (a_1 + a_3) - a_1 \).

Theorem. \(\Pr(X) = \Pr(X \land Y) + \Pr(X \land \lnot Y) \).

Proof. \(a_1 + a_2 = a_1 + a_2 \).

• Here are two general facts that are also obvious from the set-up:

Theorem. If \(p \vdash q \), then \(\Pr(p) = \Pr(q) \).

Proof. Obvious, since the same regions always have the same areas, and the algebraic translation is the same for logically equivalent \(p/q \).

Theorem. If \(p \models q \), then \(\Pr(p) \leq \Pr(q) \).

Proof. Since \(p \models q \), the set of state descriptions entailing \(p \) is a subset of the set of state descriptions entailing \(q \). Thus, the set of \(a_i \) in the summation for \(\Pr(p) \) will be a subset of the \(a_i \) in the summation for \(\Pr(q) \). Thus, since all the \(a_i \geq 0 \), \(\Pr(p) \leq \Pr(q) \).
The Probability Calculus: An Algebraic Approach V

- **Conditional Probability.** $\Pr(p \mid q) \overset{\text{def}}{=} \frac{\Pr(p \& q)}{\Pr(q)}$, provided that $\Pr(q) > 0$.

- Intuitively, $\Pr(p \mid q)$ is supposed to be the probability of p given that q is true. So, *conditionalizing* on q is like “supposing q to be true”.

- Using Venn diagrams, we can explain: “Supposing Y to be true” is like “treating the Y-circle as if it is the bounding box of the Venn Diagram”.

- This is like “moving to a new $\Pr^*(\cdot)$ such that $\Pr^*(Y) = 1$.” Picture:
The Probability Calculus: An Algebraic Approach VI

• There may be other ways of defining conditional probability, which may also seem to capture the “supposing \(q \) to be true” intuition.

• But, any such definition must make \(\Pr(\cdot \mid q) \) a probability function, for all \(q \) [if \(\Pr(q) > 0 \)]. We can (algebraically) “check” this, as follows:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(\Pr(s_i))</th>
<th>(\Pr(s_i \mid q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>(a_1)</td>
<td>(\frac{\Pr(s_1 & q)}{\Pr(q)} = \frac{a_1}{a_1 + a_3})</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>(a_2)</td>
<td>(\frac{\Pr(s_2 & q)}{\Pr(q)} = 0)</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>(a_3)</td>
<td>(\frac{\Pr(s_3 & q)}{\Pr(q)} = \frac{a_3}{a_1 + a_3})</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>(a_4)</td>
<td>(\frac{\Pr(s_4 & q)}{\Pr(q)} = 0)</td>
</tr>
</tbody>
</table>

• Note: the new basic probabilities assigned to the state descriptions, under our “conditionalized” \(\Pr(\cdot \mid q) \) satisfy the requirements for being a probability function, since \(\frac{a_1}{a_1 + a_3} + \frac{a_3}{a_1 + a_3} = 1 \), and \(\frac{a_1}{a_1 + a_3}, \frac{a_3}{a_1 + a_3} \in [0, 1] \).
The Probability Calculus: An Algebraic Approach VII

- We can also use the algebraic method to verify that theorems which hold for \(\text{Pr}(\cdot) \) also hold for \(\text{Pr}(\cdot \mid q) \), for any \(q \) [provided \(\text{Pr}(q) > 0 \)].

- Recall the following theorem (trivial from an algebraic perspective).

\[
\text{Pr}(X \lor Y) = \text{Pr}(X) + \text{Pr}(Y) - \text{Pr}(X \land Y).
\]

- If \(\text{Pr}(\cdot \mid q) \) is to be a probability function for all \(q \) [where \(\text{Pr}(q) > 0 \)], then we must also have the following theorem, for all \(Z \) [where \(\text{Pr}(Z) > 0 \)]:

\[
\text{Pr}(X \lor Y \mid Z) = \text{Pr}(X \mid Z) + \text{Pr}(Y \mid Z) - \text{Pr}(X \land Y \mid Z).
\]

- Indeed, any theorem that holds for unconditional probabilities \(\text{Pr}(\cdot) \) must also hold for conditional probabilities, that is, when \(\text{Pr}(\cdot) \) is replaced by \(\text{Pr}(\cdot \mid q) \), so long as \(\text{Pr}(q) > 0 \). This will always be the case.

- Using our algebraic method, we can prove the above theorem. We just need to remind ourselves of what the 3-atomic sentence algebra looks like, and how the algebraic translation of this equation would go …
By our definition of conditional probability, we have:

\[
\Pr(X \lor Y \mid Z) = \frac{\Pr((X \lor Y) \land Z)}{\Pr(Z)} = \frac{\Pr((X \land Z) \lor (Y \land Z))}{\Pr(Z)} = \frac{a_1 + a_3 + a_5}{a_1 + a_3 + a_5 + a_7}
\]

and

\[
\Pr(X \mid Z) + \Pr(Y \mid Z) - \Pr(X \land Y \mid Z) = \frac{\Pr(X \land Z)}{\Pr(Z)} + \frac{\Pr(Y \land Z)}{\Pr(Z)} - \frac{\Pr(X \land Y \land Z)}{\Pr(Z)}
\]

\[
= \frac{\Pr(X \land Z) + \Pr(Y \land Z) - \Pr(X \land Y \land Z)}{\Pr(Z)}
\]

\[
= \frac{(a_1 + a_3) + (a_1 + a_5) - a_1}{a_1 + a_3 + a_5 + a_7} = \frac{a_1 + a_3 + a_5}{a_1 + a_3 + a_5 + a_7}
\]
Here’s a neat theorem of the probability calculus, proved algebraically.

Theorem. \(\Pr(X \rightarrow Y) \geq \Pr(Y \mid X) \). [Provided that \(\Pr(X) > 0 \), of course.]

Proof. \(\Pr(X \rightarrow Y) = \Pr(\sim X \lor Y) = \Pr(s_1 \lor s_3 \lor s_4) = a_1 + a_3 + a_4. \)

\[
\Pr(Y \mid X) = \frac{\Pr(Y \& X)}{\Pr(X)} = \frac{\Pr(s_1)}{\Pr(s_1 \lor s_2)} = \frac{a_1}{a_1 + a_2}.
\]

So, we need to prove that \(a_1 + a_3 + a_4 \geq \frac{a_1}{a_1 + a_2} \).

- First, note that \(a_4 = 1 - (a_1 + a_2 + a_3) \), since the \(a_i \)'s must sum to 1.
- Thus, we need to show that \(a_1 + a_3 + 1 - a_1 - a_2 - a_3 \geq \frac{a_1}{a_1 + a_2} \).
- By simple algebra, this reduces to showing that \(1 - a_2 \geq \frac{a_1}{a_1 + a_2} \).
- If \(a_1 + a_2 > 0 \) and \(a_i \in [0, 1] \), this must hold, since then we must have: \(a_2 \geq a_2 \cdot (a_1 + a_2) \), and then the boxed formulas are equivalent. \(\square \)
The Probability Calculus: An Algebraic Approach IX

- Here are some further fundamental theorems of probability calculus, involving 2 or 3 atomic sentences and CP. Easy, given defn. of CP.
 - **The Law of Total Probability (LTP):**
 \[
 \Pr(X \mid Y) = \Pr(X \mid Y \& Z) \cdot \Pr(Z \mid Y) + \Pr(X \mid Y \& \sim Z) \cdot \Pr(\sim Z \mid Y)
 \]
 - Note: \(\Pr(X \mid \top) = \Pr(X)\). Why? So, the LTP has a special case:
 \[
 \Pr(X \mid \top) = \Pr(X) = \Pr(X \mid \top \& Z) \cdot \Pr(Z \mid \top) + \Pr(X \mid \top \& \sim Z) \cdot \Pr(\sim Z \mid \top)
 \]
 \[
 = \Pr(X \mid Z) \cdot \Pr(Z) + \Pr(X \mid \sim Z) \cdot \Pr(\sim Z)
 \]
 - Two forms of **Bayes’s Theorem.** The second one follows, using (LTP):
 \[
 \Pr(X \mid Y) = \frac{\Pr(Y \mid X) \cdot \Pr(X)}{\Pr(Y)}
 \]
 \[
 = \frac{\Pr(Y \mid X) \cdot \Pr(X)}{\Pr(Y \mid Z) \cdot \Pr(Z) + \Pr(Y \mid \sim Z) \cdot \Pr(\sim Z)}
 \]
One more interesting theorem (due to Popper & Miller), algebraically.

Let \(d(X, Y) \overset{\text{def}}{=} \Pr(X \mid Y) - \Pr(X) \). Then, we have the following theorem:

Theorem (PM). \(d(X, Y) = d(X \lor Y, Y) + d(X \lor \neg Y, Y) \).

Proof (algebraic, using STT from \(X/Y \) language, above).

\[
d(X, Y) \overset{\text{def}}{=} \Pr(X \mid Y) - \Pr(X) = \frac{a_1}{a_1 + a_3} - (a_1 + a_2)
\]

\[
d(X \lor Y, Y) \overset{\text{def}}{=} \Pr(X \lor Y \mid Y) - \Pr(X \lor Y) = 1 - a_1 - a_2 - a_3
\]

\[
d(X \lor \neg Y, Y) \overset{\text{def}}{=} \Pr(X \lor \neg Y \mid Y) - \Pr(X \lor \neg Y) = \frac{a_1}{a_1 + a_3} - (a_1 + a_2 + a_4)
\]

\[
\therefore d(X \lor Y, Y) + d(X \lor \neg Y, Y) = 1 - a_1 - a_2 - a_3 + \frac{a_1}{a_1 + a_3} - a_1 - a_2 - a_4
\]

\[
= \frac{a_1}{a_1 + a_3} + 1 - a_1 - a_2 - a_3 - a_1 - a_2 - (1 - (a_1 + a_2 + a_3))
\]

\[
= \frac{a_1}{a_1 + a_3} - (a_1 + a_2). \quad \square
\]
The Probability Calculus: An Algebraic Approach XI

- The algebraic approach for *refuting* general claims involves two steps:
 1. Translate the claim from probability notation into algebraic terms.
 2. Find a (numerical) probability model on which the translation is *false*.

- Show that \(\Pr(X | Y \& Z) = \Pr(X | Y \lor Z) \) can be *false*. Here’s a model \(\mathcal{M} \):

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(Z)</th>
<th>States</th>
<th>(\Pr(s_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>(s_1)</td>
<td>(a_1 = 1/6)</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>(s_2)</td>
<td>(a_2 = 1/6)</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>(s_3)</td>
<td>(a_3 = 1/4)</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>(s_4)</td>
<td>(a_4 = 1/16)</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>(s_5)</td>
<td>(a_5 = 1/6)</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>(s_6)</td>
<td>(a_6 = 1/12)</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>(s_7)</td>
<td>(a_7 = 1/24)</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>(s_8)</td>
<td>(a_8 = 1/16)</td>
</tr>
</tbody>
</table>

(1) Algebraic Translation: \(\frac{a_1}{a_1 + a_5} = \frac{a_1 + a_2 + a_3}{a_1 + a_2 + a_3 + a_5 + a_6 + a_7} \).

(2) This claim is *false* on \(\mathcal{M} \), since \(1/2 \neq 2/3 \). I used PrSAT to find \(\mathcal{M} \).
The Probability Calculus: An Algebraic Approach XII

• There are decision procedures for Boolean propositional logic, based on truth-tables. These methods are exponential in the number of atomic sentences \((n)\), because truth-tables grow exponentially in \(n\) \((2^n)\).

• It would be nice if there were a decision procedure for probability calculus, too. In algebraic terms, this would require a decision procedure for the salient fragment of high-school (real) algebra.

• As it turns out, high-school (real) algebra (HSA) is a decidable theory. This was shown by Tarski in the 1920’s. But, it’s only been very recently that computationally feasible procedures have been developed.

• In my “A Decision Procedure for Probability Calculus with Applications”, I describe a user-friendly decision procedure (called PrSAT) for probability calculus, based on recent HSA procedures.

• My implementation is written in Mathematica (a general-purpose mathematics computer programming framework). It is freely downloadable from my website, at: http://fitelson.org/PrSAT/.
The Probability Calculus: An Algebraic Approach XIII

- I encourage the use of PrSAT as a tool for finding counter-models and for establishing theorems of probability calculus. It is not a requirement of the course, but it is a useful tool that is worth learning.

- PrSAT doesn’t give readable proofs of theorems. But, it will find concrete numerical counter-models for claims that are not theorems.

- PrSAT will also allow you to calculate probabilities that are determined by a given probability assignment. And, it will allow you to do algebraic and numerical “scratch work” without making errors.

- I have posted a Mathematica notebook which contains the examples from algebraic probability calculus that we have seen in this lecture. I will be posting further notebooks as the course goes along.

- Let’s have a look at this first notebook (examples_1.nb). I will now go through the examples in this notebook, and demonstrate some of the features of PrSAT. I encourage you to play around with it.
Systematic vs Extra-Systematic Logical Relations I

- The entailment relation \(\vdash \) that we’ve been talking about is just the Boolean entailment relation that is in force within the algebra over which \(\Pr(\cdot) \) is defined. I will call this relation **systematic entailment**.

Because **probability zero is not the same thing as systematic logical falsehood**, there is room to emulate extra-systematic logical relations using probability models. This is an important “trick” we’ll use often.

- Here’s an example. Consider a propositional language with three atomic letters: \(X, Y, Z \). This sets-up the standard 3-atomic-sentence Boolean algebra \(\mathcal{B} \) that we’ve seen several times already. Now, we’ll add a twist.

- Let’s extra-systematically interpret ‘\(X \)’ as \((\forall x)(Rx \to Bx) \), ‘\(Y \)’ as \(Ra \), and ‘\(Z \)’ as \(Ba \). This extra-systematic interpretation of the atomic sentences has no effect on the systematic logical relations in \(\mathcal{B} \).

- But, we can use a suitable \(\Pr(\cdot) \) over \(\mathcal{B} \) to emulate the extra-systematic (MPL) entailment relations \((\vdash) \) between \(Ra, Ba, \) and \((\forall x)(Rx \to Bx) \).
Systematic vs Extra-Systematic Logical Relations II

- **Example.** Extra-systematically, we have: \((\forall x)(Rx \rightarrow Bx) \land Ra \vdash Ba\).

- We do *not* have the corresponding *systematic* entailment: \(X \land Y \not\equiv Z\)!

- But, we can *emulate* this \(\vdash\) relation, by assigning \(\Pr(X \land Y \land \neg Z) = 0\).

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>States</th>
<th>(\Pr(s_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>(s_1)</td>
<td>(a_1)</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>(s_2)</td>
<td>(a_2 = 0)</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>(s_3)</td>
<td>(a_3)</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>(s_4)</td>
<td>(a_4)</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>(s_5)</td>
<td>(a_5)</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>(s_6)</td>
<td>(a_6)</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>(s_7)</td>
<td>(a_7)</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>(s_8)</td>
<td>(a_8)</td>
</tr>
</tbody>
</table>

- By enforcing the *extra-systematic constraint* \(\Pr(X \land Y \land \neg Z) = 0\), we can investigate features of our extra-systematic (*monadic-predicate-logical*) interpretation of \(X\), \(Y\), and \(Z\), using only *sentential* probability calculus.

- This very useful “trick” will be used throughout the course.
Axiomatic Treatment of Probability Calculus I

- A probability model \mathcal{M} is a Boolean algebra of propositions \mathcal{B}, together with a function $\Pr(\cdot) : \mathcal{B} \to \mathbb{R}$ satisfying the following three axioms.
 1. For all $p \in \mathcal{B}$, $\Pr(p) \geq 0$. [non-negativity]
 2. $\Pr(\top) = 1$, where \top is the tautological proposition. [normality]
 3. For all $p, q \in \mathcal{B}$, if p and q are mutually exclusive (inconsistent), then $\Pr(p \lor q) = \Pr(p) + \Pr(q)$. [additivity]

- Conditional probability is defined in terms of unconditional probability in the usual way: $\Pr(p \mid q) \overset{\text{def}}{=} \frac{\Pr(p \& q)}{\Pr(q)}$, provided that $\Pr(q) > 0$.

- We could also state everything in terms of a (propositional) language \mathcal{L} with a finite number of atomic sentences. Then, we would talk about sentences rather than propositions, and the axioms would read:
 1. For all $p \in \mathcal{L}$, $\Pr(p) \geq 0$.
 2. For all $p \in \mathcal{L}$, if $p \vDash \top$, then $\Pr(p) = 1$.
 3. For all $p, q \in \mathcal{L}$, if $p \& q \vDash \bot$, then $\Pr(p \lor q) = \Pr(p) + \Pr(q)$.
Axiomatic Treatment of Probability Calculus II

• Instead of using the algebraic approach for proving theorems, we can also give *axiomatic* proofs. This is the standard way of proving claims in probability calculus (PrSAT doesn’t give proofs, so we need axioms).

• Here are two examples of theorems and their *axiomatic* proofs (see the Eells Appendix). Note: these are *trivial* from an *algebraic* point of view!

Theorem. \(\Pr(\neg p) = 1 - \Pr(p) \).

Proof. Since \(p \lor \neg p \) is a tautology, (2) implies \(\Pr(p \lor \neg p) = 1 \); and since \(p \) and \(\neg p \) are m.e., (3) implies \(\Pr(p \lor \neg p) = \Pr(p) + \Pr(\neg p) \). Therefore, \(1 = \Pr(p) + \Pr(\neg p) \), and thus \(\Pr(\neg p) = 1 - \Pr(p) \), by simple algebra. \(\square \)

Theorem. If \(p \models q \), then \(\Pr(p) = \Pr(q) \).

Proof. Assume \(p \models q \). Then, \(p \) and \(\neg q \) are mutually exclusive (inconsistent), and \(p \lor \neg q \models \top \). So by axioms (2) and (3), and the previous theorem \([\Pr(\neg p) = 1 - \Pr(p)]\):

\[
1 = \Pr(p \lor \neg q) = \Pr(p) + \Pr(\neg q) = \Pr(p) + 1 - \Pr(q)
\]

So, \(1 = \Pr(p) + 1 - \Pr(q) \), and \(0 = \Pr(p) - \Pr(q) \). \(\therefore \Pr(p) = \Pr(q) \). \(\square \)
Axiomatic Treatment of Probability Calculus III

- Here are two more axiomatic proofs:

Theorem. If \(p \models \bot \), then \(\Pr(p) = 0 \).

Proof. Assume \(p \models \bot \). Then, \(\sim p \models \top \), and, by (2), \(\Pr(\sim p) = 1 \). Then, by the above theorem, \(\Pr(\sim p) = 1 - \Pr(p) = 1 \), and \(\Pr(p) = 0 \). \(\square \)

Theorem. If \(p \models q \), then \(\Pr(p) \leq \Pr(q) \).

Proof. First, note the following two Boolean equivalences:

\[
\begin{align*}
p & \models (p \land q) \lor (p \land \sim q) \\
q & \models (p \land q) \lor (\sim p \land q)
\end{align*}
\]

Thus, by our theorem above, we must have the following two identities:

\[
\begin{align*}
\Pr(p) & = \Pr[(p \land q) \lor (p \land \sim q)] \\
\Pr(q) & = \Pr[(p \land q) \lor (\sim p \land q)]
\end{align*}
\]
By axiom (3), this yields the following two identities:

\[\Pr(p) = \Pr(p \& q) + \Pr(p \& \neg q) \]
\[\Pr(q) = \Pr(p \& q) + \Pr(\neg p \& q) \]

Now, assume \(p \models q \). Then, \(p \& \neg q \models \bot \). Hence, by our theorem above, \(\Pr(p \& \neg q) = 0 \). And, under these circumstances, we must have:

\[\Pr(p) = \Pr(p \& q) \]
\[\Pr(q) = \Pr(p \& q) + \Pr(\neg p \& q) \]

That is to say, we must have the following:

\[\Pr(q) = \Pr(p) + \Pr(\neg p \& q) \]

But, by axiom (1), \(\Pr(\neg p \& q) \geq 0 \). So, by algebra, \(\Pr(q) \geq \Pr(p) \). \(\Box \)

- This gives us an alternative way to prove \(p \models q \implies \Pr(p) = \Pr(q) \). We just apply the previous theorem, in both directions (plus algebra).
- You should now be able to prove that \(\Pr(p) \in [0, 1] \), for all \(p \).