Philosophy 148 — Day 1: INTRODUCTION & ADMINISTRATION

- Administrative Stuff (i.e., Syllabus)
 - Me & Raul (intros., personal data, office hours, etc.)
 - Prerequisites (Boolean logic, some simple algebra, no math phobia!)
 - Texts & Supplementary Readings (all online via website)
 - Requirements [Quiz (10), Assignments (30), Mid-Term (30), Final (30)]
 - Sections (determined this week, via index cards — meet next week)
 ∗ Index Cards: Name, email, section time ranking. The 8 possible times are: Tu or Th: 9–10, 10–11, 1–2, or 2–3. Give a ranking of those among the 8 that you can do. Indicate those you cannot do.
 - Website (main source of course information — stay tuned!)
 - Tentative Schedule (somewhat loose, time-wise, but all readings set)

- Next: Brief Overview/Outline of the Course
Philosophy 148 — Day 1: Fundamental Underlying Questions

• I am writing a book on inductive logic (a.k.a., confirmation theory).
• My main focus is on “quantitative generalizations” of deductive logic.
• The notion of validity is the deductive ideal for “logical goodness”.
• But, some invalid arguments seem “better”/“stronger” than others:

 \[P_1. \] Someone is wise. \[P_2. \] Someone is either wise or unwise.
 \[\therefore C_1. \] Plato is wise. \[\therefore C_2. \] Socrates is wise.

• The argument from \(P_1 \) to \(C_1 \) seems “better” than the one from \(P_2 \) to \(C_2 \).
• Is there a satisfying explication of this “better than” concept?
• And, if so, is this best understood a logical concept or an epistemic one or a pragmatic one, etc.? Moreover, if there is a logical “better than”, how is it related to epistemology? For that matter, how is validity related to epistemology? These are the sorts of questions in the air.
Philosophy 148 — Day 1: Course Overview/Outline

• The precise timing of the course is not fixed. But all readings are up.

• The *order* of topics in the course is also (more or less) set:
 - Review of Boolean Logic and Boolean Algebra [12A review + FBAs]
 * Propositional Logic
 * Monadic Predicate Logic
 * Finite Boolean Algebras [general logical framework for course]
 - Introduction of the (formal) Probability Calculus
 * Axiomatic Treatments
 * Algebraic Treatments
 - “Personalistic” Interpretations/Kinds of Probability
 * Pragmatic: betting odds / betting quotients / *rational* dob’s
 * Epistemic: degrees of *credence* / *justified* degrees of belief
- Confirmation Theory and Inductive Logic
 - Deductive Approaches to Confirmation
 - Hempelian
 - Hypothetico-Deductive
 - Probabilistic Approaches to Confirmation
 - Logical (Carnapian)
 - Subjective/Personalistic ("Bayesian")
- The Paradoxes of Confirmation
 - The Raven Paradox
 - The Grue Paradox
- Other Problems for Confirmation Theory (mainly, for "Bayesian" CT)
 - Old Evidence/Logical Omniscience/maybe others
- Three Psychological Puzzles Involving Probability & Confirmation
 - The Base Rate Fallacy
 - The Conjunction Fallacy
 - The Wason Selection Task
Syntax of Sentential Logic (SL)

- The syntax of SL is simple. Its lexicon contains the following symbols:
 - Upper-case letters ‘A’, ‘B’, … which stand for *basic sentences*.
 - Five *sentential connectives* (or *sentential operators*):

<table>
<thead>
<tr>
<th>Operator</th>
<th>Name</th>
<th>Logical Function</th>
<th>Used to translate</th>
</tr>
</thead>
<tbody>
<tr>
<td>‘∼’</td>
<td>tilde</td>
<td>negation</td>
<td>not, it is not the case that</td>
</tr>
<tr>
<td>‘&’</td>
<td>ampersand</td>
<td>conjunction</td>
<td>and, also, moreover, but</td>
</tr>
<tr>
<td>‘∨’</td>
<td>vee</td>
<td>disjunction</td>
<td>or, either … or …</td>
</tr>
<tr>
<td>‘→’ (⊃)</td>
<td>arrow</td>
<td>conditional</td>
<td>if … then …, only if</td>
</tr>
<tr>
<td>‘↔’ (≡)</td>
<td>double arrow</td>
<td>biconditional</td>
<td>if and only if</td>
</tr>
</tbody>
</table>

- Parentheses ‘(’, ‘)’, brackets ‘[’, ‘]’, and braces ‘{’, ‘}’ for grouping.

- If a string of symbols contains anything other than these, it is not an SL sentence. And, only certain strings of these symbols are SL sentences.

- I assume you all know which SL strings are *sentences* and which are not…
Semantics of Sentential Logic: Truth Tables I

- Sentential Logic is *truth-functional* because the truth value of a compound S is a function of the truth values of S’s *atomic parts*.

- All statement forms p are defined by *truth tables*, which tell us how to determine the truth value of p’s from the truth values of p’s parts.

- Truth-tables provide a precise way of thinking about *logical possibility*. Each row of a truth-table can be thought of as a *logical possibility*. And, the actual world falls into *exactly one* of these rows/logical possibilities.

- In this sense, truth-tables provide a way to “see” logical space.

- Once we have an understanding of all the logically possible truth-values that and SL sentence can have (which truth-tables provide for us), testing the validity of SL arguments is easy — *inspection* of truth-tables!

- We just look for possible worlds (rows of the salient truth-table) in which all the premises are true and the conclusion is false.
Semantics of Sentential Logic: Truth Tables II

- We begin with negations, which have the simplest truth functions. The truth table for negation is as follows (we use T and F for true and false):

<table>
<thead>
<tr>
<th>p</th>
<th>∼p</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

- In words, this says that if \(p \) is true than \(∼p \) is false, and if \(p \) is false, then \(∼p \) is true. This is quite intuitive, and corresponds well to the English meaning of ‘not’. So, SL negation is like English negation.

- Examples:
 - It is not the case that Wagner wrote operas. (\(∼W \))
 - It is not the case that Picasso wrote operas. (\(∼P \))

- ‘\(∼W \)’ is false, since ‘\(W \)’ is true, and ‘\(∼P \)’ is true, since ‘\(P \)’ is false (like English).
Chapter 3 — Semantics of SL: Truth Tables III

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p & q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

- Notice how we have four (4) rows in our truth table this time (not 2). There are four possible ways of assigning truth values to p and q.

- The truth-functional definition of $\&$ is very close to the English ‘and’. A SL conjunction is true if *both* conjuncts are true; it’s false otherwise.
 - Monet and van Gogh were painters. ($M \& V$)
 - Monet and Beethoven were painters. ($M \& B$)
 - Beethoven and Einstein were painters. ($B \& E$)

- ‘$M \& V$’ is true, since both ‘M’ and ‘V’ are true. ‘$M \& B$’ is false, since ‘B’ is false. And, ‘$B \& E$’ is false, since ‘B’ and ‘E’ are both false (like English).
Semantics of Sentential Logic: Truth Tables IV

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p ∨ q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

- The truth-functional definition of ∨ is not as close to the English ‘or’. A SL disjunction is true if *at least one* disjunct is true; it’s false otherwise.

- In English, ‘A or B’ often implies that ‘A’ and ‘B’ are *not both true*. That is called *exclusive* or. In SL, ‘A ∨ B’ is *not* exclusive; it is *inclusive* (it is true if both disjuncts are true). We can express exclusive or in SL. How?
 - Either Jane austen or René Descartes was novelist. (J ∨ R)
 - Either Jane Austen or Charlotte Bronte was a novelist. (J ∨ C)
 - Either René Descartes or David Hume was a novelist. (R ∨ D)

- The first two disjunctions are true since at least one their disjuncts is true. The third disjunction is false, since both of its disjuncts are false.
Semantics of Sentential Logic: Truth Tables V

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>$p \rightarrow q$</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

- The SL conditional (\rightarrow) is farther from the English ‘only if’. An SL conditional is false iff its antecedent is true and its consequent is false.

- Consider the following English conditionals. [$M =$ the moon is made of green cheese, $O =$ life exists on other planets, and $E =$ life exists on Earth]
 - If the moon is made of green cheese, then life exists on other planets.
 - If life exists on other planets, then life exists on earth.

- The SL translations of these sentences are both true.
 - ‘$M \rightarrow O$’ is true because its antecedent ‘M’ is false.
 - ‘$O \rightarrow E$’ is true because its consequent ‘E’ is true.

- This does not capture the English ‘if’. Remember: $p \rightarrow q \equiv \neg p \lor q$.

UCB Philosophy

Introduction & Administration

01/22/08
Semantics of Sentential Logic: Truth Tables VI

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \leftrightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

- The SL biconditional \leftrightarrow inherits similar problems. An SL biconditional is true iff both of its components have the same truth value.

- Consider these two biconditionals. [$M = \text{the moon is made of green cheese, } U = \text{there are unicorns, } E = \text{life exists on Earth, and } S = \text{the sky is blue}$]
 - The moon is made of green cheese if and only if there are unicorns.
 - Life exists on earth if and only if the sky is blue.

- The SL translations of these sentences are both true.
 - $M \leftrightarrow U$ is true because M and U are false.
 - $E \leftrightarrow S$ is true because E and S are true.

- This does not capture the English ‘iff’. [$p \leftrightarrow q \models (p \land q) \lor (\neg p \land \neg q)$]
With the truth-table definitions of the five connectives in hand, we can now construct truth tables for arbitrary compound SL statements.

A non-trivial example:

\[
\begin{array}{ccc|ccccccc}
 p & q & r & (p & (q \lor r)) & \rightarrow & ((p & q) \lor (p & r)) \\
 T & T & T & T & T & T & T & T \\
 T & T & F & T & T & T & T & F \\
 T & F & T & T & T & T & F & T \\
 T & F & F & T & F & T & F & F \\
 F & T & T & F & T & F & F & F \\
 F & T & F & F & T & F & F & F \\
 F & F & T & F & T & F & F & F \\
 F & F & F & F & T & F & F & F \\
\end{array}
\]

Thus, “\((p & (q \lor r)) \rightarrow ((p & q) \lor (p & r))\)” is a tautology.
Logical Truth, Logical Falsity, and Contingency: Definitions

- A statement is **logically true** (or tautologous) if it is true regardless of the truth-values of its components. Example: $p \leftrightarrow p$ is a tautology.

 \[
 \begin{array}{c|c|c|c|c}
 p & p & \leftrightarrow & p \\
 \hline
 T & T & T & T \\
 F & F & T & T \\
 \end{array}
 \]

- A statement is **logically false** (or self-contradictory) if it is false regardless of the truth-values of its components. Example: $p \& \neg p$.

 \[
 \begin{array}{c|c|c|c|c}
 p & p & \& & \neg & p \\
 \hline
 T & T & F & F & T \\
 F & F & F & T & F \\
 \end{array}
 \]

- A statement is **contingent** if its truth-value varies depending on the truth-values of its components. Example: A (or any atom) is contingent.

 \[
 \begin{array}{c|c|c}
 A & A \\
 \hline
 T & T \\
 F & F \\
 \end{array}
 \]
Interpretations and Logical Equivalence

• An interpretation of an SL formula \(p \) is an assignment of truth-values to all of the sentence letters in \(p \).

• Each row of the truth-table of \(p \) is an interpretation of \(p \). Sometimes, I will also refer to rows of SL truth-tables as (logically) possible situations, or possible worlds.

• A tautology (contradiction) is an SL sentence whose truth value is \(T \) (\(F \)) on all of its interpretations (\(i.e. \), an SL sentence which is true (false) in all (logically) possible worlds).

• Two SL sentences are said to be logically equivalent iff they have the same truth-value on all (joint) interpretations.

• I’ll abbreviate “\(p \) and \(q \) are logically equivalent” as “\(p \equiv q \)” \([i.e., \ p \ follows \ from \ q \ (q \vdash p), \ and \ q \ follows \ from \ p \ (p \vdash q)]. \)
Equivalence, Contradictoriness, Consistency, and Inconsistency

- Two statements are said to be equivalent (written $p \equiv q$) if they have the same truth-value in all possible worlds (i.e., in all rows of a simultaneous truth-table of both statements). For instance, $A \rightarrow B \equiv \sim A \lor B$:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$A \rightarrow B$</th>
<th>$\sim A \lor B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

- Two statements are contradictory if they have opposite truth-values in all possible worlds (i.e., in all rows of a simultaneous truth-table of both statements). For instance, A and $\sim A$:

<table>
<thead>
<tr>
<th>A</th>
<th>$\sim A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
• Two statements are **inconsistent (mutually exclusive)** if they cannot both be true (i.e., no row of their simultaneous truth-table has them both being T). *E.g.*, \(A \leftrightarrow B \) and \(A \& \sim B \) are inconsistent (but not contradictory!):

\[
\begin{array}{ccc|c|c|cc}
A & B & A \leftrightarrow B & A \& \sim B \\
T & T & T & T & T & T \\
T & F & F & F & T & F \\
F & T & T & F & F & T \\
F & F & F & F & T & F \\
\end{array}
\]

• Two statements are **consistent** if they are both true in at least one possible world (i.e., in at least one row of a simultaneous truth-table of both statements). For instance, \(A \& B \) and \(A \lor B \) are consistent:

\[
\begin{array}{ccc|cc|ccc}
A & B & A \& B & A \lor B \\
T & T & T & T & T & T & T \\
T & F & F & F & T & T & F \\
F & T & F & F & T & T & T \\
F & F & F & F & F & F & F \\
\end{array}
\]
Logical Equivalence: Example #1

- I said that $p \rightarrow q$ is logically equivalent to $\neg p \lor q$.
- The following truth-table establishes this equivalence:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg p$</th>
<th>\lor</th>
<th>q</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

- The truth-tables of $\neg p \lor q$ and $p \rightarrow q$ are the same.
Logical Equivalence: Example #2

- \(p \leftrightarrow q \) is an abbreviation for \((p \rightarrow q) \& (q \rightarrow p)\).

- The following truth-table shows it is a legitimate abbreviation:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>((p \rightarrow q))</th>
<th>&</th>
<th>((q \rightarrow p))</th>
<th>(p \leftrightarrow q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

- \(p \leftrightarrow q \) and \((p \rightarrow q) \& (q \rightarrow p)\) have the same truth-table.
Some More Logical Equivalences

- Here is a simultaneous truth-table which establishes that

\[A \leftrightarrow B \equiv (A \land B) \lor (\neg A \land \neg B) \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A ↔ B</th>
<th>(A & B) \lor (\neg A & \neg B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

- Can you prove the following equivalences with truth-tables?

- \(\neg (A \land B) \equiv \neg A \lor \neg B \)
- \(\neg (A \lor B) \equiv \neg A \land \neg B \)
- \(A \equiv (A \land B) \lor (A \land \neg B) \)
- \(A \equiv A \land (B \to B) \)
- \(A \equiv A \lor (B \land \neg B) \)
Logical Equivalence, Contradictoriness, etc.: Relationships

- What are the relationships between “p and q are equivalent”, “p and q are consistent”, “p and q are contradictory”, “p and q are inconsistent”?

<table>
<thead>
<tr>
<th>Equivalent</th>
<th>Contradictory</th>
</tr>
</thead>
<tbody>
<tr>
<td>▼</td>
<td>▼</td>
</tr>
<tr>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

- Answers:
 1. Equivalent $\not\equiv$ Consistent ($p \land \lnot p$ and $q \land \lnot q$)
 2. Consistent $\not\equiv$ Equivalent ($p \to q$ and $p \land q$)
 3. Contradictory \Rightarrow Inconsistent (why?)
 4. Inconsistent $\not\Rightarrow$ Contradictory (example?)
Truth-Tables and Deductive Validity I

- Remember, an argument is valid if it is impossible for its premises to be true while its conclusion is false. Let \(p_1, \ldots, p_n \) be the premises of a SL argument, and let \(q \) be the conclusion of the argument. Then, we have:

\[
\begin{align*}
\quad & p_1 \\
\vdots \\
\quad & p_n \\
\therefore & \quad q
\end{align*}
\]

is valid if and only if there is no row in the simultaneous truth-table (interpretation) of \(p_1, \ldots, p_n \), and \(q \) which looks like:

<table>
<thead>
<tr>
<th>atoms</th>
<th>premises</th>
<th>conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>\ldots</td>
<td>(p_1)</td>
<td>\ldots</td>
</tr>
<tr>
<td>\ldots</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth-Tables and Deductive Validity II

<table>
<thead>
<tr>
<th>atoms</th>
<th>premises</th>
<th>conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>$A \rightarrow B$</td>
</tr>
<tr>
<td>$A \rightarrow B$</td>
<td>is valid:</td>
<td>A \rightarrow B</td>
</tr>
<tr>
<td>$\therefore B$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>atoms</th>
<th>premises</th>
<th>conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>$A \rightarrow B$</td>
<td>A</td>
</tr>
<tr>
<td>$A \rightarrow B$</td>
<td>is invalid:</td>
<td>$A \rightarrow B$</td>
</tr>
<tr>
<td>$\therefore A$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Finite Propositional Boolean Algebras I

- A *finite propositional Boolean algebra* is a finite set of *propositions* which is *closed* under the logical operations and satisfies the laws of SL.

- *Propositions* are the things expressed by sentences (abstract entities, distinct from sentences). If two sentences are logically equivalent, then they express the same proposition. *E.g.*, “$A \rightarrow B$” and “$\sim A \lor B$”.

- A set S is *closed* under logical operations if applying a logical operation to a member (or pair of members) of S always yields a member of S.

- Example: consider a sentential language with three atomic letters “X”, “Y”, and “Z”. The set of propositions expressible using the logical connectives and these three atomic letters forms a finite Boolean algebra.

- This Boolean algebra has $2^3 = 8$ *atomic propositions* or *states* (*i.e.*, rows of a 3-sentence truth-table!). Question: How many propositions does it contain *in total*? Answer: $2^8 = 256$ (255 plus the contradiction). *Why?*
Finite Propositional Boolean Algebras II

- A literal is either an atomic sentence or the negation of an atomic sentence (e.g., “A” and “¬A” are literals involving the atom “A”).

- A state of a Boolean algebra B is a proposition expressed by a maximal conjunction of literals in a language L_B describing B (“maximal”: “containing exactly one literal for each atomic sentence in B”).

- Consider an algebra B described by a 3-atom language L_B (“X”, “Y”, “Z”). The states of B are described by the $2^3 = 8$ state descriptions of L_B:

 $(s_1)\ X \& Y \& Z$
 $(s_2)\ X \& Y \& \sim Z$
 $(s_3)\ X \& \sim Y \& Z$
 $(s_4)\ X \& \sim Y \& \sim Z$
 $(s_5)\ \sim X \& Y \& Z$
 $(s_6)\ \sim X \& Y \& \sim Z$
 $(s_7)\ \sim X \& \sim Y \& Z$
 $(s_8)\ \sim X \& \sim Y \& \sim Z$
• We can “visualize” the states of \mathcal{B} using a truth table or a Venn Diagram.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>States</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>s_1</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>s_2</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>s_3</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>s_4</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>s_5</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>s_6</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>s_7</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>s_8</td>
</tr>
</tbody>
</table>

• Everything that can be expressed in the sentential language \mathcal{L}_B can be expressed as a *disjunction of state descriptions* (think about why).

• Thus, every proposition expressible in \mathcal{L}_B can be “visualized” simply by shading combinations of the 8 state-regions of the Venn Diagram of \mathcal{B}. It because of this that we can use Venn Diagrams to establish Boolean Laws.

• $p \vdash q$ (in \mathcal{B}) iff every shaded region in the Venn Diagram representation of p (in \mathcal{B}) is also shaded in the Venn Diagram representation of q (in \mathcal{B}).