Validity and Provability in
Monadic Predicate Logic

1 Semantics for the quantifiers

We now wish to give a completely precise characterization of the difference
between valid and invalid argument-forms in LMPL, that is, of the difference
between the case where the conclusion of an LMPL argument-form is a semantic
consequence of its premises and the case where it is not. To make our way into
this topic, we consider two of the simplest invalid argument-forms:

Al (Ax)Fx & (AX)Gx
S (Ax)(Fx & Gx)

and

B: (Vx)Fx v Gx)
CVRFX v (VRGX

It is easy to see that these LMPL forms are invalid, since we can find English
instantiations of each which have actually true premises and actually false con-
clusions. For example, with quantifiers relativized to the domain of people, A
is the translation of

Ag Someone is male and someone is female
. Someone is both male and female

while B is the translation of

Be: Everyone is either male or female
.. Either everyone is male or everyone is female

The problem with A, then, is that its premise does not require that it be the
same thing which satisfies ‘F’ and ‘G, while its conclusion does require this;
and the problem with B is that its premise does not require every object to sat-
isfy ‘F' and does not require every object to satisfy ‘G’, while its conclusion
requires one or the other of these conditions to hold.

§1: Semantics for the quantifiers 171

The procedure illustrated by A; and B is one way of establishing the inval-
idity of an argument-form in LMPL: we find an English argument with true pre-
mises and false conclusion which has the form in question. But this procedure
rapidly becomes useless as argument-forms become more complex. Conse-
quently, we will develop a method of showing that LMPL argument-forms such
as A and B are invalid, one which does not depend on finding English argu-
ments with true premises and false conclusions which have those LMPL forms.

The idea behind the method is to describe in an abstract way the essential
structure of any situation in which the premises of a given LMPL argument-
form are true and its conclusion is false. For instance, returning to A, we can
see that if its premise ‘(Ix)Fx & (Ix)Gx’ is to be true and its conclusion ‘(Ix)(Fx
& Gx)' false, there would have to be an object which satisfies ‘F’ and an object
which satisfies ‘G’, but at the same time there would have to be no object which
satisfies both. The minimum number of objects needed to realize such a situa-
tion is two; there could be more, but the extra objects would be inessential, and
we are trying to describe what is essential to any situation where the premise
of A holds and the conclusion does not. What is essential, then, is that there be
two objects, one satisfying ‘F' and the other satisfying ‘G’, thereby verifying the
two conjuncts of A's premise; in addition, the object which satisfies ‘F’ should
not satisfy ‘G’, and the object which satisfies ‘G’ should not satisfy ‘F’, thereby
falsifying A's conclusion.

What we are calling a ‘situation’ we shall refer to more formally as an inter-
pretation of the argument-form. The collection of objects which occur in the sit-
uation, which must include at least one object, is called the domain of discourse
or universe of discourse of the interpretation (since we are dealing with formal
arguments in LMPL, we can think of these objects as being of any kind); and
when we say which objects satisfy ‘F' and which satisfy ‘G’ we are specifying
the extensions of the predicates ‘F' and ‘G, that is, we are saying what things
they apply to or ‘extend over'. There is a standard way of describing an inter-
pretation, which we can illustrate in connection with A. We use lowercase Greek
letters as names of objects in the domain and set-braces *{’ and ‘}’ to specify the
sets which constitute the domain and the extensions of the predicates. Then
the interpretation which shows A to be invalid is the following.

Interpretation: D ={«,fB}
Ext(F) = {od}
Ext(G) = {B}

‘D’ abbreviates ‘domain of discourse’ and ‘Ext(F)’ abbreviates “the extension of
‘F'" (so the parentheses do duty for the single quotes around ‘F’). There is also
another way in which the same information can be represented which is per-
haps more revealing, at least initially, and that is in the form of a matrix, where
we write the domain on the side and the predicate-letters along the top, and
indicate by the entries in the matrix which objects satisfy which predicates. The
matrix representation of the interpretation just given is displayed at the top of
page 172. A *+" at a position in the matrix indicates that the object on the row
in question satisfies the predicate of the column in question, a -’ that it does

172 Chapter 6: Validity and Provability in Monadic Predicate Logic

not satisfy it (the technique is borrowed from Gustason and Ulrich, Ch. 5.1).
We can do something similar for argument-form B; we could use the very
same interpretation to show that B is invalid, or else this slightly different one:

Interpretation: D = {8}
Ext(F) = {B}
Ext(G) = {o¢}

The premise of B is true because each object satisfies ‘F’ or satisfies ‘G’, but the
conclusion is false since both its disjuncts are false: it is not true that both
objects satisfy ‘F’, nor that both satisfy ‘G'.

Establishing the invalidity of an argument-form in monadic predicate logic
is a two-stage process. First we state the interpretation which shows the argu-
ment-form to be invalid, and secondly we explain why the interpretation estab-
lishes invalidity. Since anyone can fill in a matrix with pluses and minuses, the
second stage is required to show that we understand why our proposed inter-
pretation does what we claim it does. In the examples we have been discussing,
we have only roughly explained why the interpretations work, whereas what we
need is some reliable format in which we can give complete explanations, no
matter how complex the example.

Underlying our intuitive grasp of why the two preceding interpretations
demonstrate the invalidity of A and B are implicit principles about when quan-
tified sentences are true or false on interpretations. We will now make these
principles explicit, and the rest of this section will be devoted to understanding
how they are applied—we will return to the construction of ‘counterexamples’
to other invalid argument-forms in the next section. First we need to define the
notion of a sentence’s being an instance of a quantified sentence in an interpre-
tation. In this chapter the domains we consider will all be nonempty finite sets,
but we will not presuppose finiteness in our definitions. So let "(Qv)¢pv' be a
(closed) quantified sentence, where Q is either 'V’ or ‘3’, vis an individual vari-
able, ¢pv is a wff with all and only occurrences of v free, and Q is the main con-
nective of "(Qv)¢pv'. Then if 7is an interpretation with domain D = {«, £, y....},
we form instances of "(Qv)¢v' by choosing individual constants t; from the lex-
icon of LMPL, a different one for each element of the domain of 7, and form the
sentence ¢(t;,/v). That is, each instance of "(Qv)¢v' for a given interpretation 7
is obtained by deleting the quantifier prefix "(Qv)' and replacing every occur-
rence of vin ¢v by an LMPL name, using the same name throughout, so that we
end up with one instance of "(Qv)¢pv' for each element of the domain of 7.
Conventionally, we use ‘a’, ‘b’, ‘c’,... as LMPL individual constants for &, £, y,...
That is, we match the English and Greek letters alphabetically. This is called the

§1: Semantics for the quantifiers 173

alphabetic convention. So in the preceding interpretations,

(i) the instances of ‘(Ix)Fx’ and (Vx)Fx' are ‘Fa’ and ‘Fb’;

(ii) the instances of ‘(Ix)Gx" and (Vx)Gx' are ‘Ga’ and ‘Gb’;
(iii) the instances of “(Vx)(Fx v Gx)' are ‘Fa v Ga' and ‘Fb v Gb";
(iv) the instances of ‘(Ix)(Fx & Gx)" are ‘Fa & Ga' and ‘Fb & Gb'.

Thus the number of instances of a quantified sentence in an interpretation 7 is
determined by the number of objects in the domain of 7.

Let us be clear about the difference between the roman and Greek letters.
When we specify the domain of an interpretation, we use the Greek letters as if
they are metalanguage (English) names of specific objects—indeed, instead of
using Greek letters we could just use actual English names, such as numerals
or city names or names of rivers, to specify domains. By contrast, the letters ‘a’,
‘b’, ‘¢’ and so on are taken to be names in the object language, LMPL. Unlike
‘Socrates’, ‘3" or (we are supposing) ‘o, the individual constants of LMPL are
uninterpreted: in advance of stipulating some interpretation we cannot say
what they stand for, and we can stipulate any reference we like. This difference
is a little obscured by the alphabetic convention and the use of artificial names
in the metalanguage to specify domains, but these are simply matters of con-
venience and the reader who wishes to can use numerals to specify domains
and assign LMPL names to numbers any way he or she pleases.

We can now state the rules which determine the truth-values of quantified
sentences in interpretations. What we are doing here for the quantifiers is anal-
ogous to giving truth-tables for the sentential connectives, with two differenc-
es. A truth-table for a connective tells us how on an interpretation 7 the truth-
value of a compound sentence with that connective as main connective is deter-
mined by the truth-values on 7 of the main subsentences. In predicate logic, an
interpretation is not merely an assignment of truth-values to sentence-letters,
but also includes a specification of a nonempty domain of discourse and an
assignment of extensions to predicates. Moreover, the truth-value of "(Qv)¢hv'
on an interpretation 7 is not determined by the syntactic component to which
"(Qv)" connects, since that component, ¢v, does not have a truth-value, being
an open sentence. But we can think of the instances as components in a seman-
tic sense, so the dissimilarity with our procedure in sentential logic is not too
great (we give a more precise description of the difference in §1 of Chapter 8,
using the notion of full compositionality).

The semantic rules for quantifiers in predicate logic are these:

(V7T) Auniversal sentence is true on an interpretation 7if allits instances
in 7 are true.

(V1) Auniversal sentence is false on an interpretation 7 if at least one of
its instances in 7 is false.

(37) An existential sentence is true on an interpretation 7 if at least one
of its instances in 7 is true.

(31) An existential sentence is false on an interpretation 7 if all its in-
stances in 7 are false.

174 Chapter 6: Validity and Provability in Monadic Predicate Logic

Each rule states a sufficient condition for a quantified sentence to have a par-
ticular truth-value, but granted the intuitive meaning of ‘all’ and ‘some’, the
stated conditions are clearly necessary as well as sufficient. Indeed, in view of
the Principle of Bivalence, each pair of rules could be expressed in a single rule:
a universal sentence is true if and only if all its instances are true, an existential
sentence is true if and only if at least one of its instances is true. However, in
constructing and reasoning about interpretations, it is useful to have an explic-
it, separate formulation of the truth condition and the falsity condition for each
kind of quantified sentence. The reader should pay careful attention to the rule
(31). The most common mistake in constructing an interpretation with a view
to making an existential sentence false is forgetting that this requires all the
instances to be false. To see the justification for this requirement, note that the
falsity of *At least one U.S. president was a spy' requires that it be false that
Bush was a spy, that Reagan was a spy, that Carter was a spy and so on back to
Washington.

In principle, we should supplement the four quantifier rules with rules for
each of the other syntactic categories of sentence of LMPL: atomic sentences,
negations, conjunctions, disjunctions, conditionals and biconditionals. Howev-
er, the rules for these five kinds of sentence are the same as in sentential logic,
where we embodied them in truth-tables. For example, a conjunction is true on
an interpretation 7 if both of its conjuncts are true on 7, and false on 7if at least
one conjunct is false on 7; a biconditional is true on 7 if both of its sides have
the same truth-value on 7, false if they do not. And if an atomic sentence is a
sentence-letter, it is true or false on 7 according to whether 7 assigns it T or L
(remember that every interpretation 7 assigns L to ‘A"). Since there is nothing
new in this, we will not bother to recapitulate the principles for the connectives
in separate clauses. However, atomic sentences built out of predicates and indi-
vidual constants do represent something new, so we should make explicit how
the truth-value on an interpretation 7 of such an atomic sentence relates to
what 7 says about the extension of the relevant predicate. The rule, which is
simple, is stated so as to include the sentential case:

(AT) An atomic sentence At is true on an interpretation 7if the object re-
ferred to by the individual constant t belongs to the extension in 7
of A; a sentence-letter p is true on 7 if 7 assigns T to p.

(A1) An atomic sentence At is false on an interpretation 7 if the object
named by the individual constant t does not belong to the extension
in 7 of A; a sentence-letter p is false on 7if 7 assigns L to p; every 7
assigns L to ‘A’

For example, ‘Socrates is wise’ is true on an interpretation 7 if the object named
by ‘Socrates’ is in the extension in 7 of ‘is wise’; if 7 is the real world, this just
means that Socrates is one of those who are wise.

We can now use these six rules to give a complete demonstration of the
invalidity of arguments A and B. For both arguments, we will use our first inter-
pretation: D = {«,B}, Ext(F) = {o¢}, Ext(G) = {8}. We have to show that in each case,
the premise of the argument-form is true and the conclusion is false.

§1: Semantics for the quantifiers 175

Example 1: Show that the LMPL argument-form A is invalid.

A: (Ix)Fx & (Ix)Gx
o (Ex)Fx & Gx)

Interpretation: D = {x, B}, Ext(F) = {«}, Ext(G) = { B}, or as a matrix, below; ‘a’ refers
to « and ‘b’ refers to B. Explanation: The premise is true because both con-

juncts are true. ‘(Ix)Fx’ is true because ‘Fa’ is true (rule 37). (Ix)Gx" is true
because ‘Gb" is true (rule 3 7). 'Fa’ is true because ‘a’ denotes o and « belongs
to Ext(F), and ‘Gb' is true because ‘b’ denotes f and § belongs to Ext(G) (rule
AT) (3X(Fx & Gx)' is false because ‘Fa & Ga' is false and ‘'Fb & Gb’ is false (rule
31). 'Fa & Ga’' is false because ‘Ga’ is false, and ‘Fb & Gb’ is false because ‘Fb’ is
false (we assume knowledge of the truth-table for ‘&’). Finally, ‘Ga’ is false
because ‘a’ denotes « and « does not belong to Ext(G) and ‘Fb’ is false because
‘b’ denotes B and B does not belong to Ext(F).

Since this is our first example of a demonstration of invalidity for an argu-
ment-form in LMPL, we have spelled it out in complete detail. But in future,
steps in the explanation which appeal to truth-tables to account for the truth-
values of sentential combinations of atomic formulae (e.g., ‘Fb & Gb’) will be
omitted. As abbreviations, we will use the standard mathematical symbols ‘&’
and ‘¢’ for ‘belongs to' and ‘does not belong to’ respectively. And we will not
explicitly state the part of the interpretation that is covered by the alphabetic
convention, in this case that ‘a’ denotes « and ‘b’ denotes 8, unless the individ-
ual constant of LMPL in question actually occurs in the argument-form for
which an interpretation is being given. If it does so occur, we state its reference
in the form "Ref(t) = x", which abbreviates "t refers to x". And in the subsequent
reasoning, we will not cite which of the quantifier rules we are appealing to
when we use them. All this enables us to give a more succinct demonstration
of B's invalidity.

Example 2: Show that the LMPL argument-form B is invalid.

B: (Vx)(Fx v Gx)
C(VRFX v (VG

Interpretation: As in Example 1. Explanation: The premise is true because both
its instances ‘(Fa v Ga)' and ‘(Fb v Gb)' are true, since &« € Ext(F) and f € Ext(G).
The conclusion is false because both its disjuncts are: ‘(Vx)Fx' is false since ‘Fb’
is false (B ¢ Ext(F)), and ‘(Vx)Gx' is false since ‘Ga’ is false («x ¢ Ext(G)).

176 Chapter 6: Validity and Provability in Monadic Predicate Logic

The most important points to notice about these examples are how we
explain the falsity of the conclusion in A and the truth of the premise in B. In
explaining why the conclusion of A, *(Ix)(Fx & Gx)', is false, we cite the falsity
of both instances. It would not be sufficient to say that ‘(Ix)(Fx & Gx)’ is false
because ‘Fa & Ga' is false, since that is not sufficient for the falsity of "(Ix)NFx &
Gx)' in a domain which contains other objects (recall the example ‘at least one
U.S. president was a spy’). Similarly, it would not be sufficient to explain the
truth of (Vx)(Fx v Gx)' to cite merely the truth of one instance: the truth of all
instances has to be cited.

As noted earlier, in forming the instances of a quantified sentence we use
LMPL individual constants ‘a’, ‘b’ and so on, whose interpretation we stipulate.
In A and B none of these names occur in the arguments themselves, but in §1
of Chapter 5 (page 149) we considered the intuitively invalid English arguments

D: (1) Socrates is wise
(2) .. Everyone is wise

and

E: (1) Someone is happy
(2) .. Plato is happy.

We now translate these into LMPL and demonstrate their invalidity.
Example 3: Show that the LMPL argument-form D.s is invalid.

D.s: Wa
CO(VXIWX

Interpretation: D = {8}, EXt(W) = {1}, Ref(a) = «. Explanation: (Vx)Wx' is false
because ‘Wh' is false (since B ¢ Ext(W)), while ‘Wa’ is true since Ref(a) € Ext(W).

Example 4: Show that the LMPL argument-form E.s is invalid.

E.s (dx)Hx

Interpretation: D = {o, S}, Ext(H) = {oe}, Ref(b) = B. Explanation: "Hb’ is false since
B & Ext(H), while *(Ix)Hx’ is true since ‘Ha' is true, since o« € Ext(W).

In these symbolizations of the English arguments, the interpreted metalan-
guage proper names ‘Socrates’ and ‘Plato’ are rendered by the uninterpreted
LMPL individual constants ‘a’ and ‘b’ and then an interpretation is specified for
the resulting argument-forms in which *a’ and ‘b’ denote « and 8 (whatever they
are!) rather than Socrates and Plato. This further emphasizes the fact that the
validity or invalidity of the original English arguments turns on their forms, not
their subject matter.

§1: Semantics for the quantifiers 177

We can now explicitly state the conception of interpretation and validity
underlying the four demonstrations of invalidity just given. Since the object
language LMPL includes LSL, the account of interpretation has to include the
kind of interpretation appropriate for LSL as well as the kind appropriate for
the new apparatus.

An interpretation of an argument-form in LMPL consists in a specifica-
tion of a nonempty domain of discourse together with an assignment
of extensions to the predicate-letters, if any, in the argument-form, of
references to the individual constants, if any, in the argument-form,
and of truth-values to the sentence-letters, if any, in the argument-
form. An extension for a predicate in an interpretation 7 is a subset of
the domain of 7. * A" is always assigned 1.

It should be noted that since the empty set is a subset of every set, this def-
inition allows us to assign an empty extension to a predicate-letter; in other
words, we can have predicate-letters which are true of no objects, just as we
can have English predicates which are true of no objects (consider ‘is a Mar-
tian’).! A standard symbol for the empty set is ‘@".

An argument-form in LMPL is valid if and only if there is no interpre-
tation of it on which all its premises are true and its conclusion is false.

An English argument is monadically valid if and only if it translates
into a valid argument-form of LMPL.

As in the sentential case, a monadically valid English argument is valid abso-
lutely. A monadically invalid English argument may be absolutely invalid, or it
may translate into a valid argument-form of a more powerful kind of logic. D
and E have just been shown to be monadically invalid. Although we cannot
prove that they are invalid absolutely, it seems plausible that they are, since
their translations into LMPL appear to capture all relevant aspects of the struc-
ture of the English sentences.

The definition of LMPL validity is like the definition of LSL validity; what
has changed is just the notion of interpretation in the two definitions. Another
definition which carries over from LSL is that of logical equivalence:

If p and g are sentences of LMPL, p and g are said to be logically equiv-
alent if and only if, for each interpretation 7, the truth-value of p on 7
is the same as the truth-value of g on 7.

1 Why is the empty set a subset of every set? To say that X is a subset of Y is to say that every member
of X is a member of Y, or in symbols, {(vx)ix € X = x e Y)'. If X is the empty set, then no matter what
the domain of discourse, every instance of '(vx)ix € X — x e Y)" will be true since the antecedent of
every instance will be false. Consequently, no matter what set Y is, if X is empty, X is a subset of Y.

178 Chapter 6: Validity and Provability in Monadic Predicate Logic

We now wish to apply these techniques to demonstrate particular LMPL
arguments to be invalid. But before beginning on this, we need to familiarize
ourselves further with the truth and falsity conditions of sentences of LMPL.
Here is an interpretation, chosen completely at random, which is rather more
complex than the two we have considered so far:

H I J
o + + - + -
Bl - - - + +
Y| + - - - +

Thus D = {o,B,y}, ExXt(F) = {e, v}, Ext(G) = {o}, Ext(H) = &, Ext(I) = {ot, B}, Ext(]) =
{B,¥}. The following six sentences are also chosen at random, and we have to
determine their truth-values in this interpretation.

(1) ~Ja

(2) Fc—1Ic

(3) (IX(x —~ Hx)

4) (Vx)(Jx — (Gx v Fx))

(5) (AGx — (Vy)Fy v Gy)

(6) AYNVNGY & (Jx — (Ix v Fx)))

(1) *~Ja' is true because ‘Ja’ is false, since o ¢ Ext(]).

(2) 'Fc — Ic’ is false because y € Ext(F) and y ¢ Ext(I).

(3) (Ix)(Jx — Hx)' is true because ‘Ja - Ha' is true, since « ¢ Ext(]) and o ¢
Ext(H).

(4) (Vx)(Jx — (Gx v Fx))' is false because ‘Jb — (Gb v Fb) is false, since § € Ext(])
but ¢ Ext(G) and 5 ¢ Ext(F).

(5) "(Ix)Gx — (Vy)Fy v Gy) is false because ‘(IX)Gx’ is true and (Vy)(Fy v Gy)'
is false. "(Ix)Gx’ is true because ‘Ga’ is true, since & € Ext(G). (Vy)NFy v Gy)'is
false because ‘Fb v Gb’ is false, since f ¢ Ext(F) and 8 ¢ Ext(G).

(6) (IyNVGyY & (Jx — (Ix v Fx)))' is true because (Vx)(Ga & (Jx — (Ix v Fx)))' is
true, in turn because ‘(Ga & (Ja — (Ia v Fa))), (Ga & (Jb — (Ib v Fb)))' and (Ga &
(Jc — (Ic v Fc)))' are all true. (Ga & (Ja — (Ia v Fa)))' is true because o = Ext(G)
and o ¢ Ext(]). "(Ga & (Jb — (Ib v Fb)))" is true because o € Ext(G) and f & Ext(I).
And (Ga & (Jc — (Ic v Fe)))' is true because o« € Ext(G) and y & Ext(F).

In all our evaluations we follow the syntactic structure of the formula: we
begin with the main subformulae and then work down through their main sub-
formulae, and so on until we arrive at atomic formulae. (5) should be noted. (5)
is a conditional, not a quantified sentence, and it would be a mistake to begin
its evaluation by applying a quantifier rule. Rather, since (5) is a conditional, we
calculate the truth-values of its antecedent and consequent separately, and
then use the truth-table for *—".

Special attention should be paid to (6), in which two quantifiers prefix the

§1: Semantics for the quantifiers 179

body of the formula. This makes the search process longer. Since (6) is existen-
tial, we can find out whether it is true or false by finding out whether or not it
has a true instance. The instances of (6) are

(6a) (Vx)(Ga& (Jx — (Ix v Fx)))
(6b) (Vx)(Gb & (Jx — (Ix v Fx)))
(6c) (Vx)NGe & (Jx — (Ix v Fx))).

Each of these instances is a universal sentence, and each of them in turn has
three instances. For example, the instances of (6b) are:

(6b,) Gb & (Ja — (Ia v Fa))
(6b,) Gb & (Jb — (Ib v Fh))
(6bs) Gb & (Jc — (Ic v Fc))

Had (6) been false, therefore, we would have had to consider a total of nine
quantifier-free sentences to confirm this. Fortunately, (6) is true, and this is
shown by its instance (6a).?

U Exercise

Evaluate the numbered formulae in the displayed interpretation. Explain your
reasoning in the same way as in (1)-(6) above, accounting for the truth-values
of quantified sentences in terms of the truth-values of their instances.

F G H I

o |+ - + - +

Bl + - + - -

y| + - - + +
(1) (Hav He) —Ib (2) (Ha & Hc) v (Ja & Jo)

#(3) (IxNFx & Gx) (4) ~(IAx)Gx

(3) (AX)(Ix — Hx) (6) (Vx)(Hx v Ix) — Fx)
(7) (VX)(Fx & Hx) — Jx) *8) (Vx)(HxX — (Fy)(Jx & Iy))
(9) (Vx)(Iy)Fx — (Hx v Jy) (10) (IXIx — (Vx)(Jx — Ix)

(11) (3K — (Vy)(Jy — Iy)
(12) (YUVYN(EX — Gy) — Gw)(3z)Hw &]z))

2 The rules of this section explain the term ‘logical constant’ mentioned earlier, which is applied
both to gquantifiers and to sentential connectives. Domains and extensions of predicates vary from
interpretation to interpretation, but the evaluation rules for connectives and quantifiers are constant
across all interpretations. Any expression which has a constant evaluation rule is called a logical con-
stant.

180 Chapter 6: Validity and Provability in Monadic Predicate Logic

2 Constructing counterexamples

Now that we understand how sentences of LMPL are evaluated in interpreta-
tions, we turn to the question of how to find interpretations which show invalid
LMPL argument-forms to be invalid. An interpretation which shows an LMPL
argument-form to be invalid is called a counterexample to the argument-form.
The question, then, is how to go about constructing counterexamples. We will
illustrate the techniques in connection with a number of examples. But first we
reintroduce the double-turnstile notation, which we are going to use to express
semantic consequence exactly as we did for LSL in §4 of Chapter 3:

¢ For any sentences p,,...,p, and g of LMPL, we write p,,...,p, & g to
mean that g is a semantic consequence of p,,...,p,, that is, that no
interpretation of p,,...,p, and g makes all of p,,...,p, true and q false.

¢ For any sentences p,,...,p, and g of LMPL, we write p,,...,p, ¥ g to
mean that g is not a semantic consequence of p,,...,p,, that is, that
some interpretation of p,,...,p, and g makes all of p,,...,p, true and
q false.

¢ For any sentence g of LMPL, we write = g to mean that there is no
interpretation that makes g false, or in other words, that every
interpretation makes g true. Such a g is said to be logically true. An
example: = (Vx)((Fx & Gx) — Fx).

Logical truth is the special case n = 0 of semantic consequence, in that a logical
truth is a semantic consequence of the empty set of premises.

To give a counterexample to an argument-form with premises p,,...,p, and
conclusion g is to show that py,...,p, # g, and this will be our preferred way of
expressing our goal.

Example 1: Show (VX)(Fx — Gx), (VX)(Fx — Hx) ¥ (¥Vx)(Gx — Hx).

Provisionally, we begin by setting up a domain D = {&«}. No matter what the
problem, this can always be the first step, since every interpretation must have
a nonempty domain. We say that the specification of D at this stage is provi-
sional because in the course of making the conclusion false and the premises
true, it may be necessary to add further objects to the domain.

When the conclusion formula is a universal sentence, it is clear what we
must do: we must arrange that some object in the domain provides a false
instance of the universal sentence. Such an object is also known as a counterex-
ample—not a counterexample to the argument-form but to the universal sen-
tence. In this particular case, what is required is an object in the extension of
‘G’ which is not in the extension of ‘H'. So we set Ext(G) = {«}, Ext(H) = J; again,
this is merely provisional, since it may later be necessary to add to the exten-
sions of ‘G' and ‘H'. Our interpretation now makes the conclusion false, but in
order to evaluate the premises in it we have to specify an extension for ‘F'. To
make both premises true, what we must avoid is having an object in the exten-

§2: Constructing counterexamples 181

sion of ‘F’ which is not in the extension of ‘G’ or not in the extension of ‘H'. In
the current setup, the simplest way of avoiding such an object is to let the
extension of ‘F' be empty. So we do not need to add to the domain or to the
extensions of the other two predicates. The interpretation we arrive at is: D =
{od}, Ext(F) = @, Ext(G) = {ee} and Ext(H) = &, with the matrix displayed below. To

complete the solution to the problem, we explain why this interpretation is a
counterexample. ‘(Vx)(Gx — Hx)' is false because ‘Ga — Ha’ is false, since « &
Ext(G) and o ¢ Ext(H). '(Vx)(Fx — Gx)" and (Vx)(Fx — Hx)" are both true because
‘Fa — Ga’ and ‘Fa — Ha' are both true, since o ¢ EXU(F).

Example 2: Show (Ix)(Fx & Gx), (IxNFx & Hx), (V)(Gx — ~Hx) &
(VX)Fx — (Gx v Hx)).

We begin as before with {«} as provisional domain. A counterexample to
(Vx)Fx — (Gx v Hx))' requires either (i) an object in Ext(F) which is in neither
Ext(G) nor Ext(H), or else (ii) an object in at least one of Ext(G) and Ext(H) which
is not in Ext(F). Since premise 1 will require an object in Ext(F) anyway, we start
with (i) (if we can find no way of making all the premises true, we will have to
come back to (ii)). Provisionally, then, we set Ext(F) = {&} and put nothing into
the extensions of ‘G’ and ‘H'; this gives us the false conclusion-instance ‘Fa —
(Ga v Ha)". Turning to the premises, we see that to make all three true we have
to set up Ext(F), Ext(G) and Ext(H) so that true instances of the first two pre-
mises are provided and at the same time no object is in both Ext(G) and Ext(H)
(otherwise premise 3 would be false). We could obtain a true instance of
premise 1 by adding & to Ext(G), but this would defeat what we have already
done to ensure the falsity of the conclusion. Consequently, we have to add a
second object to the domain to provide a true instance of premise 1. Thus we
now put D = {&,}, Ext(F) = {a, B}, Ext(G) = {5} (making ‘Fb & Gb’ true) and add
nothing to the extension of ‘H’, as in the matrix below. This means that we do

not yet have a true instance for premise 2. If we set Ext(H) = {«} we have a true
instance for premise 2, but we will have made ‘Fa — (Ga v Ha)' true, and as ‘Fb
— (Gb v Hb)' is also true, we would have made the conclusion true. And if we
set Ext(H) = {8}, we have an object in both Ext(G) and Ext(H), which is exactly

182 Chapter 6: Validity and Provability in Monadic Predicate Logic

x| + - -
Bl + + -
y| + - 4

what we must avoid in order to verify premise 3. Consequently, we must add a
third object to D to provide a true instance for premise 2 that does not refute
premise 3. The interpretation at which we arrive, therefore, is D = {,8,y}, Ext(F)
=1{,B,y} Ext(G) = {8}, Ext(H) = {y}, displayed above, and we confirm that this is
right with the following explanation: (Vx)(Fx - (Gx v Hx))' is false because ‘Fa
— (Ga v Ha)' is false, since o € Ext(F), o ¢ Ext(G) and o ¢ Ext(H). ‘(Ix)(Fx & Gx)’
is true because ‘Fb & Gb’ is true, since € Ext(F) and B € Ext(G). "(Ix)(Fx & Hx)'
is true because ‘Fc & Hc' is true, since y € Ext(F) and y € Ext(H). ‘(Vx)(Gx — ~Hx)’'
is true because all three of ‘Ga — ~Ha’, ‘Gb — ~Hb' and ‘Gc — ~Hc' are true. First,
‘Ga — ~Ha’ is true because o ¢ Ext(G); next, ‘Gb — ~Hb’ is true because f§ <
Ext(G) and $ ¢ Ext(H); last, ‘Gc — ~Hc’ is true because y ¢ Ext(G).

Example 2 illustrates the usual reason for increasing the size of the
domain: a number of existential premises require different objects to provide
true instances, since using the same object for all those premises would make
another premise false or the conclusion true.

The next example illustrates how we handle arguments which contain sen-
tence-letters as well as predicates and quantifiers.

Example 3: Show (Ix)(Fx — A) & (Ix)Fx — A.

It is important to note the different forms of the premise and conclusion: the
premise is an existential sentence in which ‘- is within the scope of *3’, while
the conclusion is a conditional in which *3’ is within the scope of ‘—'. Since the
conclusion has antecedent ‘(Ix)Fx’ and consequent ‘A’, we require an interpre-
tation in which ‘(Ix)Fx’ is true and ‘A’ is false. However, the interpretation 7
with D = {«}, Ext(F) = {«x}, and L assigned to ‘A’ also makes the premise false,
since there is only the instance ‘Fa — A’. To make the premise true, we have to
provide another instance, which means adding an object to the domain. But
since ‘A’ is false and we want the new object to provide a true instance of the
premise, we should not add the new object to the extension of ‘F'. So the inter-
pretation at which we arrive is: D = {8}, Ext(F) = {a}, L assigned to ‘A’ as dis-
played below. Explanation: '(3x)Fx — A’ is false because ‘A’ is false and ‘(Ix)Fx’

F
a’T
g1l -

‘A’ is false

§2: Constructing counterexamples 183

is true; ‘(IxJFX’ is true because « € Ext(F). And ‘(Ix)(Fx — A)’ is true because
‘Fb — A’ is true, since f ¢ Ext(F).
Finally we give an example involving successive quantifiers.

Example 4: Show (Ix)(Vy)(Fx — Gy) & (V)(IyNFx — Gy).

To make the conclusion false, we must have at least one of its instances false.
On any interpretation, the instances of ‘(Vx)(3y)Fx — Gy)' are existential sent-
ences of the form ‘(Iy)(F_ — Gy)', where the blank is filled by an individual con-
stant. One of these instances must be false for (Vx)(3y)}(Fx — Gy)' to be false.
Since our domain will contain « anyway, we may as well begin by making
(Jy)(Fa — Gy)' false. This means, by (3 1), that all its instances have to be false,
s0 in particular ‘(Fa — Ga)’ must be false. Hence « € Ext(F), o« ¢ Ext(G). This
gives us the interpretation immediately below. However, as things stand in this

T

interpretation, the premise of Example 4 is false. The premise is an existential
sentence, and so only requires one true instance for it to be true itself. But with
just o in the domain, the premise has only one instance, ‘(Vy)(Fa — Gy)’, and
this universal sentence is false because it has the false instance ‘(Fa — Ga)'.
Since we do not want to alter any entries we have already made in the interpre-
tation (they were required to make the conclusion false) it follows that to make
the premise (IxNVy)(Fx — Gy)' true, we should provide it with another instance
(Vy)Fb — Gy)" and ensure that this instance is true.

There are now two constraints to satisfy simultaneously: we have to make
(Vy)Fb — Gy)' true, which means making both its instances ‘Fb — Ga' and ‘Fb
— Gb' true, and at the same time we have to avoid doing anything that would
make the conclusion true. Since ‘Ga’ is false, our only option for making ‘Fb —
Ga’ true is to make ‘Fb’ false as well. Consequently, we set § ¢ Ext(F), and then
‘Fb — Ga’ and ‘Fb — Gb’ are both true, so (Vy)(Fb — Gy)' is true as desired,
which in turn makes the premise ‘(Ix)(Vy)NFx — Gy)’ true. As for the conclusion,
the important thing is to keep its previously false instance ‘(Iy)(Fa — Gy)’ still
false. The new instance of this existential sentence is ‘Fa — Gb’, and since ‘Fa’
is true, we have to set f ¢ Ext(G) to make this conditional false. So the final
interpretation is D = {«, 8}, Ext(F) = {at}, Ext(G) = &, as exhibited below:

184 Chapter 6: Validity and Provability in Monadic Predicate Logic

To summarize: (Ix)(Vy)(Fx — Gy)' has two instances, (i) ‘(Vy)(Fa — Gy)' and
(ii) (Vy)NFb — Gy)', and it is true because (ii) is true. (ii) is true because it has
two instances, ‘Fb — Ga' and ‘Fb — Gb' and both are true since both have false
antecedents. On the other hand, ‘(¥Vx)(3y)(Fx — Gy)' is false. It has two instanc-
es, (iii) ‘(Iy)(Fa — Gy)’ and (iv) ‘(Iy)(Fb — Gy)’, and (iii) is false. (iii) is false
because both its instances, ‘(Fa — Ga)' and ‘Fa — Gb’, are false, since both have
true antecedent and false consequent.

It is noticeable that all our problems of showing failure of semantic conse-
quence have been solved with small domains, whereas in Chapter 5, the
domains with respect to which our symbolizations are relativized are large:
people, places, things. But counterexamples with small domains to argument-
forms derived from symbolizations of English relativized to large domains are
not irrelevant to English arguments, for if the argument-form can be shown to
be invalid by an interpretation with a small domain, then it is shown to be
invalid, and if it is the form of an English argument, it follows that that English
argument is monadically invalid. Moreover, a counterexample with a small
domain can be ‘blown up' into one with a large domain by a duplication process
(see Exercise I1.2), so our preference for simplicity does not entail irrelevance.

U Exercises

I Show the following, with explanations:

(1) (Vx)Fx — Gx) & (VX)(Gx — Fx)
(2) (Vx)Fx v GX), (VX)Fx v Hx) ¥ (VX)I(Gx v Hx)
(3) (VxX)Fx — ~GX), (VXNGX — HX) & (VX)(Fx — ~Hx)
#4) (VX)((Fx & GX) — Hx) & (VX)(Fx v Gx) v (VX)(Fx v Hx)
(3) (AX(Fx & ~Hx), (INGx & ~Hx) # (IX)(Fx & Gx)
(6) (INFX — GX) &= (IxFx v Gx)
(7) (INFx & Gx), (VX)I(GX — Hx) & (VX)(FX — Hx)
(8) (VX)Fx — (TG & (VX)(Fx — GX)
(9 (INFx v GX), (VXIFX — ~Hx), (I3x)HX & (IX)GX
(10) (VX)(FX — Gx) & ~(VX)(FX — ~GX)
(11) (I)~Fx & ~(IN)Fx
(12) ~(Vx)Fx # (Vx)~Fx
*(13) (VX)(Fx — GxX) — (VX)(Hx — Jx) # (IN(Fx & Gx) — (VX)(HxX — Jx)
(14) (IFx — A), (XA — Fx) # (VXHA ~ Fx)
(15) ~(A — (VX)FX) # (VXA — ~Fx)
(16) (VX)FX — A & (VX)FX — A)
(17) (VX)Fx — (Vx)Gx # Fa — (Vx)GX
(18) Fa — (IX)Gx # (AN)Fx — (IGX
(19) (VX)FX — (VX)GX & (IX)(FX — GX)
*(20) (VX)Fx — (Fy)Gy & (Vx)(Fx — (Ty)Gy)
(21) (I(Fx — (Vy)GY) ¥ (IFX — (Vy)Gy
(22) ~(TAFx v ~(Ax)Gx # ~(Ix)Fx v GX)

§3: Deductive consequence: quantifiers in NK 185

(23) (AX)NFx ~ Gx), (VXHGX — (Hx — X)) & (3] v ~(I)Fx
(24) (V) 3FyNFy — Gx) ¥ (VX)(IVNGY — Fx)
(25) (Ix)Fx — (AY)GY) ¥ (FNVYIFX — Gy)
(26) (Vx)(IVNFx — Gy) ¥ (I(VY)IFx — Gy)
*27) (VX)EVIGY — Fx) & (VX)[(Ty)Gy — Fx]
(28) (VXI(Vy)Gy — Fx] # (VXUVYIGy — FX)
(29) (VX)Fx — (Fy)GY) ¥ (VX(VYIFX — Gy)
(30) (ANVYIFX — Gy) ¥ FVHV(FX — Gy)

I Show (Ix)(Fx & Gx) & (IX)FxX & ~Gx) & (Ix)(~Fx & Gx) & (VX)(Fx v Gx). Then
evaluate the following two statements as true or false. Explain your answer.

(1) If a sentence is true on at least one interpretation whose domain
has n members (n = 2), it is true on at least one interpretation
whose domain has n - 1 members.

*(2) If a sentence is true on at least one interpretation whose domain
has n members (n = 2), it is true on at least one interpretation
whose domain has n + 1 members. (Hint: think of how you could de-
fine the notion of two objects being indistinguishable in an interpre-
tation.)

3 Deductive consequence: quantifiers in NK

It is perfectly natural to respond to an English argument by saying that the con-
clusion does not follow from the premises and in support of this to describe a
possible situation in which the premises of the argument would be true and the
conclusion false. Our abstract model of this procedure, as described in the pre-
vious section, is therefore quite realistic. However, we do not usually advance
an argument by stating our premises and conclusion and defying an opponent
to describe a situation in which the premises would be true and the conclusion
false (the strategy is not totally unnatural: it is embodied in the rhetorical ques-
tion ‘How could it fail to follow?'). In advancing an argument it is much more
common to try to reason from the premises to the conclusion. So we now wish
to extend our formal model of this procedure, the natural-deduction system
NK, to those arguments which involve quantification and predication. Actual
arguments in natural language are taking place in an interpreted language, of
course. But the reasoning principles involved in giving an argument are inde-
pendent of interpretation and can be stated for an uninterpreted formal lan-
guage like LMPL.

The new logical constants are the two quantifiers, so at the very least we
shall have to add two I and two E rules for these symbols to NK. However, we
shall continue to call the system ‘NK’ rather than give it a new name to indicate
the presence of new rules; whenever we want to contrast NK before and after
the new rules are added we will speak of sentential NK versus quantificational
NK. This section introduces quantificational NK through three of the four new

