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Nowadays, the use of machine learning algorithms to classify (or
make predictions about) human beings is ubiquitous.

Often, these algorithms make predictions/classifications that are
biased (or “unfair”) with respect to certain protected/sensitive
characteristics (e.g., gender, ethnicity, sexual orientation) [8].

For instance, the COMPAS recidivism prediction algorithm has
exhibited various kinds of bias (or unfairness) with respect to
the protected attribute of race [1]. More on this case, below.

There has been a lot of recent work on “fairness in machine
learning,” some of which is devoted to developing and applying
statistical fairness measures to address these problems.

Next, we will describe some of these fairness measures. Then, we
will discuss some impossibility theorems, which reveal that not
all of these notions of fairness can be satisfied simultaneously.

Time permitting, we will briefly demo our Mathematica [5]
notebook for exploring these impossibility theorems [4].
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Suppose we are evaluating an algorithm which aims to predict
whether a person (in some population) will have some target
property (on the basis of some known characteristics).

Let T denote the proposition that the person (in fact) has the
target property, and let T̂ denote the proposition that the
algorithm predicts that person has the target property.

Finally, let P denote the proposition that the person has some
protected/sensitive characteristic or property.

In the COMPAS example, T states that the person will (likely)
recidivate, and P states that the person in question is black.

All of the fairness measures we will discuss involve various
probabilistic relations among the three propositions T , T̂ , and P .

Specifically, all of the fairness measures will involve relations of
probabilistic independence among the propositions T , T̂ , and P .

Next: two key notions of probabilistic independence.
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Definition. Propositions X and Y are (unconditionally)
independent (abbreviated X y Y ) just in case

Pr(X | Y) = Pr(X | ¬Y).

In words, X and Y are (unconditionally) independent (X y Y ) iff
X has the same probability on the supposition of Y as it does on
the supposition of ¬Y . Note: the relation y is symmetric.

Definition. Propositions X and Y are conditionally independent,
given proposition Z (abbreviated X y Y | Z) just in case

Pr(X | Y & Z) = Pr(X | ¬Y & Z).

In words, X and Y are conditionally independent, given Z
(X y Y | Z) iff supposing Z renders X and Y independent.

With these two definitions in hand, we can now state the
definitions of some of the (statistical, group) fairness measures.
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Predictive Parity. An algorithm satisfies predictive parity (with
respect to T , P ) just in case T y P | T̂ , i.e., iff

Pr(T | P & T̂ ) = Pr(T | ¬P & T̂ ).

True Positive Parity. An algorithm satisfies true positive parity
(with respect to T , P ) just in case T̂ y P | T , i.e., iff

Pr(T̂ | P & T) = Pr(T̂ | ¬P & T).

False Positive Parity. An algorithm satisfies false positive parity
(with respect to T , P ) just in case T̂ y P | ¬T , i.e., iff

Pr(T̂ | P &¬T) = Pr(T̂ | ¬P &¬T).

Statistical Parity. An algorithm satisfies statistical parity (with
respect to T , P ) just in case T̂ y P , i.e., iff

Pr(T̂ | P) = Pr(T̂ | ¬P).
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COMPAS Data. In the overall population (all 18293 defendants):

T̂ (high risk score) ¬T̂ (nonhigh risk score)

T (actually recidivist) 2921 (TPo) 5489 (FNo)

¬T (actually non-recidivist) 1693 (FPo) 8190 (TNo)

True Positive Rate (overall): TPo
TPo+FNo = 35%; False Positive Rate (overall): FPo

FPo+TNo = 17%

In the P sub-population (9779 black defendants), we have:

T̂ (high risk score) ¬T̂ (nonhigh risk score)

T (actually recidivist) 2174 (TPP ) 2902 (FNP )

¬T (actually non-recidivist) 1226 (FPP ) 3477 (TNP )

True Positive Rate (black): 43%; False Positive Rate (black): 26%

In the ¬P sub-population (8514 nonblack defendants), we have:

T̂ (high risk score) ¬T̂ (nonhigh risk score)

T (actually recidivist) 747 (TP¬P ) 2587 (FN¬P )

¬T (actually non-recidivist) 467 (FP¬P ) 4713 (TN¬P )

True Positive Rate (nonblack): 22%; False Positive Rate (nonblack): 9%

True Positive Parity & False Positive Parity aren’t even
approximately satisfied here (0.43 0 0.22 and 0.26 0 0.09).
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More generally, we can use the contingency tables on the
previous slide to see whether other fairness measures were
(even approximately) satisfied by the COMPAS algorithm.

To test Predictive Parity, we need to estimate and compare
Pr(T | P & T̂ ) and Pr(T | ¬P & T̂ ) using the COMPAS data.

Pr(T | P & T̂ ) is the proportion of black defendants with high
COMPAS scores who actually recidivated, which is:

Pr(T | P & T̂ ) = TPP
TPP + FPP

= 2174
2174+ 1226

= 2174
3400

= 0.64

Similarly, Pr(T | ¬P & T̂ ) is the proportion of nonblack
defendants with high COMPAS scores who actually recidivated:

Pr(T | ¬P & T̂ ) = TP¬P
TP¬P + FP¬P

= 747
747+ 467

= 747
1214

= 0.62

As we can see, the COMPAS algorithm did (approximately) satisfy
Predictive Parity (in this population of defendants).
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To test Statistical Parity, we need to estimate and compare
Pr(T̂ | P) and Pr(T̂ | ¬P) using the COMPAS data.

Pr(T̂ | P) is the proportion of black defendants who received
high risk scores from COMPAS, which is given by:

Pr(T̂ | P) = TPP + FPP
TPP + FPP + FNP + TNP

= 3400
9779

= 0.35

Similarly, Pr(T̂ | ¬P) is the proportion of nonblack defendants
who received high risk scores from COMPAS, which is:

Pr(T̂ | ¬P) = TP¬P + FP¬P
TP¬P + FP¬P + FN¬P + TN¬P

= 1214
8514

= 0.14

So, the COMPAS algorithm also failed to (even approximately)
satisfy Statistical Parity. But, it is worth noting in this
connection that Equal Base Rates (T y P ) also fails here, since

Pr(T | P) = TPP + FNP
TPP + FPP + FNP + TNP

= 5076
9779

= 0.60

Pr(T | ¬P) = TP¬P + FN¬P
TP¬P + FP¬P + FN¬P + TN¬P

= 3334
8514

= 0.39
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Theorem 1 [3]. Unless Equal Base Rates (T y P ) holds, it is
impossible to simultaneously satisfy all of: Predictive Parity,
True Positive Parity, False Positive Parity & Statistical Parity.

More generally [6], as long as Pr(T | P) 0 Pr(T | ¬P), no
algorithm can — even approximately — simultaneously satisfy
all four of the fairness measures defined above.

Finally, consider the following pair of weak background
assumptions regarding the algorithm being evaluated.

Imperfection. An algorithm is imperfect iff Pr(T̂ | P &¬T) ≠ 0,
Pr(T̂ | ¬P &¬T) ≠ 0, Pr(T̂ | P & T) ≠ 1, and Pr(T̂ | ¬P & T) ≠ 1.

Nonzero Precision. An algorithm has nonzero precision iff
either Pr(T | T̂ & P) ≠ 0 or Pr(T | T̂ &¬P) ≠ 0.

Theorem 2 [6]. Assuming Unequal Base Rates, no algorithm
satisfying both Imperfection and Nonzero Precision can
simultaneously satisfy the three fairness measures: Predictive
Parity, True Positive Parity, and False Positive Parity.
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Many other fairness measures (that can be defined in terms of
the three contingency tables described above) have been
proposed, applied, and defended in the literature [7, 2, 8].

We have created a Mathematica notebook for exploring
impossibility theorems involving fairness measures [4].

Our notebook uses PrSAT — a decision procedure for
probability calculus which BF implemented in Mathematica [5].

There, we study a total of 8 fairness measures (the 4 discussed
here, plus 4 more that appear in the recent literature).

We show how to discover new impossibility theorems by
automatically checking various subsets of these eight conditions
(plus various background assumptions like those above).

In principle, one could use PrSAT to discover all possible
impossibility theorems of these kinds (since it is a general
decision procedure for probability calculus). Brief demo. . .
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Exploring Impossibility Results for
Algorithmic Fairness Using PrSAT

Tina Eliassi-Rad & Branden Fitelson
June 5, 2023

PrSAT — A Decision Procedure for Probability Calculus
PrSAT is a decision procedure for probability calculus that has been implemented inMathematica (it’s
been tested on versions ofMathematica up to v12.3). See Fitelson (2008) for details.

The package is self-contained, and can be downloaded from the following website (which also includes
instructions for installation and use).

http://fitelson.org/PrSAT/

We begin by loading the PrSAT package (which defines all theMathematica functions we’ll be using).

In[1]:= << PrSAT`

Notation, Fairness Measures, and Side
Conditions/Auxiliary Assumptions

Wewill be discussing binary classification. Our binary classifier T can take two values: T = 1 or T = 0.
We will denote these predicted values as T and ¬T, respectively. The actual value of the parameter in
question will either take the value T = 1 or T = 0, and we will denote these two possibilities as T and ¬T,
respectively.

Initially, we will be looking at a single, (binary) protected attribute P, which can take either the value P
= 1 or the value P = 0, and we will denote these two possibilities as P and ¬P, respectively.

Assuming these notational conventions, we can define the following four traditional, confusion-matrix-
based measures of algorithmic fairness (expressed in pure probability calculus), as follows:
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