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Abstract 

A number of theories of causation posit that causes raise the probability of their effects. 
In this chapter, we survey a number of proposals for analysing causal strength in 
terms of probabilities. We attempt to characterize just what each one measures, discuss 
the relationships between the measures, and discuss a number of properties of each 
measure. 

One encounters the notion of 'causal strength'. in many contexts. In linear causal 
models with continuous variables, the regression coefficients (or perhaps the stan
dardized coefficients) are naturally interpreted as causal strengths. In Newtonian 
mechanics, the total force acting on a body can be decomposed into component forces 
due to different sources. Connectionist networks are governed by a system of'synaptic 
weights' that are naturaily interpreted as causal strengths. And in Lewis's account of 
'causation as influence' (Lewis 2000), he claims that the extent to which we regard one 
event as a cause of another depends upon the degree to which one event 'influences' 
the other. In this chapter, we examine the concept of causal strength as it arises within 
probabilistic approaches to causation. In particular, we are int~rested in_ ~tt~pts to 
measure the causal strength of one binary variable for another m probabilistLc terms. 
Our discussion parallels similar discussions in confirmation theory, in which a num
ber of probabilistic measures of degree of confirrnational support have been proposed. 
Fitelson (1999) and Joyce (MS) are two recent surveys of such measures. 

29.1 Causation as probability-raising 

The idea that causes raise the probabilities of their effects is found in many 
different approaches to causation. In probabilistic theories of causation, of 
the sort developed by Reichenbach (1956), Suppes (1970), Cartwright (1979), 
Skyrms (1980), and Eells (1991), C is a cause of E if C raises the probability 
of E in fixed background contexts. We form a partition {Ai, Az, A3, ... , A,.}, 
where each A; is a background context Then C is a cause of E in context 
A; just in case P(EJC /\A;)> P(Ei ~c /\A;), or equivalently, just in case 
P(EJC /\A;)> P(EJA;).1 The idea is that each background context controls 

1 Note that both inequalities fail, albeit for different reasons, if P(~C!A;) = 0. 
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for confounding causes of E, so that any correlation that remains between 
C and E is not spurious. According to Cartwright (1979), each background 
context should hold fixed (either as being present, or as being absent), every 
cause of E that is not itself caused by C. Eells (1991) has a similar proposal. 
If we construct the background contexts in this way, we would expect the 
conditional probabilities of the form P(EJC /\A;) and P(El ~c /\A;) to take 
values of 0 or 1 if E is caused deterministically. However, as Dupre (1984) 
points out, this carves up the background conditions more finely than is 
needed if the goal is simply to avoid confounding. For this purpose, it suffices 
to hold fixed the common causes of C and E. If we construct the more coarse
grained partition in this way, the conditional probabilities P(EJC /\A;) and 
P (EI ~c /\ A;) might take intermediate values even if determinism is true. 
An issue remains about what it means to say that C causes E simpliciter: 
whether it requires that C raise the probability of E in all background contexts 
(the proposal of Cartwright 1979 and Eells 1991), whether it must raise the 
probability of E in some contexts and lower it in none (in analogy with Pareto
dominance, the proposal of Skyrms 1980), or whether C should raise the 
probability of E in a weighted average of background contexts (this is, essen
tially, the proposal of Dupre 1984; see Hitchcock 2003 for further discussion). 
We will avoid this issue by confining our discussion to the case of a single 
background context. 

In his paper (1986), Lewis offers a probabilistic version ofhis counterfactual 
theory of causation. Lewis says that E causally depends upon C just in case 
(i) C and E both occur, (ii) they are suitably distinct from one another, (iii) 
the probability that E would occur at the time C occurred was x, and (iv) 
the following counterfactual is true: if C had not occurred, the probability 
that E would occur would have been substantially less than x. Lewis takes 
causal dependence to be sufficient, but not necessary, for causation proper. 
In cases of preemption or overdetermination, there can be causation with
out causal dependence. We will largely ignore this complication here. The 
reliance on counterfactuals is supposed to eliminate any spurious correlation 
between C and E. The idea is that we evaluate the counterfactual 'if C had not 
occurred ... ' by going to the nearest possible world in which C does not occur. 
Such a world will be one where the same background conditions obtain. So 
common causes of C .and E get held constant on the counterfactual approach, 
much as they do in probabilistic theories of causation. 

The interventionist approach to causation developed by Woodward (2003) 
can also be naturally extended to account for probabilistic causation. The 
idea would be that interventions that determine whether or not C occurs 
result in different probabilities for the occurrence of E, with interventions 
that make C occur leading to higher probabilities for E than interventions '' 
that prevent C from occurring. The key idea here is that interventions are 
exogenous, independent causal processes that override the ordinary causes of 
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C. Thus even if C and E normally share a common cause, an intervention that 
determines whether or not C occurs disrupts this normal causal structure and 
brings C or ~c about by some independent means. 

29.2 Assumptions 

We will remain neutral about the metaphysics of causation, and about the 
best theoretical approach to adopt. For definiteness, we will work within the 
mathematical framework of probabilistic theories of causation. Conditional 
probabilities are simpler and more familiar than probabilities involving coun
terfactuals or interventions, although the latter are certainly mathematically 
tractable (e.g. in the framework of Pearl 2000). We will assume that we are 
working within one particular background context A;. Within this context, C 
and E will be correlated only if C is causally relevant to E. We will leave open 
the possibility that the context is not specified in sufficient detail to ensure that 
the conditional probabilities P(EIC /\A;) and P(EI ~c /\A;) take extreme 
values if determinism is true. To keep the notation simple, however, we will 
suppress explicit reference to this background context. Moreover, when we 
are considering more than one cause of E, C1 and C2, we will assume that 
the background condition also fixes any common causes of C1 and C2. In 
addition, we shall assume that C1 and C2 are probabilistically independent in 
this background context. This means that we are ignoring the case where C1 
causes C2 or vice versa. 

In all of our examples, we will assume binary cause and effect variables, 
Xe and XE, respectively. These can take the values 1 and 0, representing 
the occurrence or non-occurrence of the corresponding events. We will also 
write C as shorthand for Xe = 1, and ~c as shorthand for Xe = 0, and analo
gously for XE. We will have a probability function P defined over the algebra 
generated by Xe and XE, and also including at a minimum the relevant 
background context. P represents some type of objective probability. We do 
not assume that this objective probability is irreducible. For instance, it may 
be possible to assign probabilities to the outcomes of games of chance, even 
if the underlying dynamics are deterministic. We leave it open that it may be 
fruitful to understand causation in such systems probabilistically. 

It will often be useful to make reference to a population of individuals, 
trials, situations, or instances in which C and E are either present or absent. 
For instance, in a clinical drug trial, the population is the pool of subjects, 
and each subject either receives the drug or not. In other kinds of exper
iments, we may have a series of trials in which C is either introduced or 
not. Eells (1991, Chapter 1) has a detailed discussion of such populations. 
We will call the members of such populations 'individuals', even though they 
may not be people or even objects, but trials, situations, and so on. P(C) is 
then understood as the probability that C is present for an individual in the 

Probabilistic measures of causal strength 603 

population, and likewise for other events in the algebra on which P is defined. 
This probability is approximated by the frequency of C in the population, 
although we do not assume that the probability is identical to any actual 
frequency. 

When we discuss counterfactuals, these are to be understood as non
backtracking counterfactuals, in the sense of Lewis (1979). The antecedents of 
these counterfactuals are to be thought of as brought about by small 'miracles' 
(Lewis 1979) or exogenous interventions (Woodward 2003). We will abbreviate 
the counterfactual 'if A had occurred, then B would have occurred' by A > B. 
In some cases, we will want to explore the consequences of assuming coun
teifactual definiteness. Counterfactual definiteness is an assumption similar 
to determinism. It requires that for every individual in a population, either 
C > E or C > ~ E is true, and either ~c > E or ~c > ~ E. (This assumption 
is also called conditional excluded middle, and it implies that counterfactuals 
obey the logic of Stalnaker (1968) rather than Lewis (1973).) If counterfactual 
definiteness is true, we will assume that holding the relevant background 
condition fixed suffices to ensure that P(EIC) = P(C > E) and P(Ei ~C) = 
P ( ~c > E). 2 We will not, however, assume that counterfactual definiteness is 
true in general. In particular, counterfactual definiteness seems implausible 
if determinism does not hold. If counterfactual definiteness is not true, we 
will assume that holding the relevant background condition fixed ensures that 
C > P(E) = p, where p = P(EIC), and likewise for ~c. In other words, ifC 
were the case, then the probability of E would have been p, where pis the 
actual conditional probability P (EI C). 

We are interested in measures of the causal strength of C for E. We will 
write generically CS(E, C) for this causal strength. Specific measures to be 
discussed will be denoted by appending subscripts to the function CS. These 
measures are to be characterized in terms of formulas involving probabilities 
such as P (EI C), P (EI ~C), and perhaps others as well. It will be convenient to 
write CS(E, C) to represent the result of applying the mathematical formula 
to C and E, even if this cannot naturally be interpreted as a causal strength 
(for example, if C does not raise the probability of E). 

When we are considering multiple causes, we will represent the causal 
strength of C1 for E in the presence of C2 as CS(E, C1; C2). This will be 
defined in the same way as CS, but using the conditional probability P(•IC2) 
instead of P(•). 

We will also be interested in measures of preventative strength, which we 
will denote PS(E, C). We define the preventative strength of C for E in the 
following way: 

2 Note that we are assuming that C and E do not themselves include counterfactuals. As 
Lewis (1976) shows, if we allow embeddings, we cannot equate probabilities of conditionals with 
conditional probabilities under pain of triviality. 
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PS(E, C) = -CS(~E, C). 

That is, the preventative strength of C for E is just the causal strength of C 
for ~ E, with a change in sign. 3 

We will consider a variety of candidate measures of causal strength. Some of 
these have been explicitly proposed as measures of causal strength; others are 
naturally suggested by various probabilistic approaches to causation. We will 
discuss the properties of each measure, and try to give an informal explanation 
of what each one is measuring. Although our overall approach is pluralistic, 
we will make a few remarks regarding what we take to be the merits and 
demerits of each measure. We will also discuss the relationships between the 
measures. 

For purposes of comparing measures, we will convert all measures to a 
unit scale. That is, we will adopt the following two scaling conventions for all 
measures of causal strength (CS) and preventative strength (PS): 

IfC causes E, then CS(E, C) E (0, 1]. 

IfCprevents E, then PS(E, C) = -CS(~E, C) E [-1, 0). 

Measures that are based on differences in probabilities will typically already be 
defined on a [-1,1] scale. But, measures that are based on ratios of probabilities 
will generally need to be rescaled. We adopt two desiderata for any such rescal
ing: (a) that it map the original measure onto the interval [-1,1], as described 
above, and (b) that it yields a measure that is ordinally equivalent to the original 
measure, where CS1(E, C) and CS2(E, C) are ordinally equivalentiff 

For all C, E, C'andE': CS1(E, C) :'.".: CS1(E', C') iffCS2(f, C) :'.".: CS2(E', C'). 

There are many ways to rescale a (probabilistic relevance) ratio-measure of the 
form p / q, in accordance with these two rescaling desiderata. Here is a general 
(parametric) class of such rescalings, where>.:'.".: 0, and p > q4 

p/q ~ (p - q)/(p +>.q). 

When>. = 0, we get: 

p/q ~ (p- q)/p 

3 lbis definition assumes that each measure CS ( E, C) has a corresponding measure of pre· 
ventative strength PS(E, C) with the samefanctionalform (although replacing E with ~E in the 
formula will sometimes result in different terms appearing in the expressions for CS ( E, C) and 
PS(E, C) - see the discussion of continuity properties below). In the recent literature on measures 
of confirmational strength, some authors have proposed that confumation and disconfumation 
should be measured using different fanctional forms (Crupi et al. 2007). We will not discuss 
any such 'piecewise' measures of causal/preventative strength here, but this is an interesting 
(possible) class of measures that deserves further scrutiny. 

4 We thank Kenny Easwaran for suggesting this general parametric way of representing 
rescalings of measures. 
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and, when >. = 1, we have: 

p/q ~ (p - q)/(p + q). 
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We will discuss several applications of each of these two kinds of rescalings, 
below. 

29.3 The measures 

Although we will spend much of the chapter introducing the measures in 
leisurely fashion, we will begin by presenting all of the measures that we will 
discuss in tabular form. These are shown in Table 29.1. For example, the Eells 
measure will be represented with a subscript e, and defined as the difference 
in conditional probabilities: CS,(E, C) = P(EIC)- P(EI ~C). 

29.4 Venn and Boolean representations 

In presenting and discussing the various measures, it will be helpful to rep
resent the probabilities pictorially using Venn diagrams. These will facilitate 
gaining an intuitive understanding of each measure. Figure 29.1 represents 
a situation in which C raises the probability of E. The square has an area of 
one unit. It represents the entire space of possibilities. This space is divided 
into six cells. The right side of the rectangle corresponds to the occurrence 
of C, the left half to ~c. The shaded region corresponds to the occurrence 
of E. The height of the shaded region on the right-hand side corresponds to 
the conditional probability P(EIC), and the shaded column on the left side 
corresponds to P(EI ~C). The two dotted lines are the result of extending 
the top of each shaded column all the way across the diagram. They are a 

Table 29.1 Measures of causal strength. 

Eells: CS,(E, C) = P(EIC) -P(EI ~C) 

Suppes: CS,(E, C) = P(EIC) - P(E) 

Galton: CSg(E, CJ =4P(C)P(~C)[P(EIC) -P(EI ~en 

Cheng: CSc(E, C) = (P(EIC) -P(EI ~C))/ P(~EI ~C) 

Lewis ratio: CS1r(E, CJ= P(EIC)/ P(EI ~CJ 
CS1r1 (E, C) = [P(EICJ -P(EI ~C)]/[P(EIC) + P(EI ~en 
CS1r2(E, CJ= [P(EICJ -P(EI ~cn/ P(EIC) 

Good: CSij(E, CJ= P(~EI ~C)/ P(~EIC) 
CS!ii(E, CJ= [P(~EI ~e) -P(~EIC)]/[P(~EI ~CJ+ P(~EIC)] 
CSi;2(E, CJ= [P(~EI ~CJ -P(~EIC)]/ P(~EI ~C) 
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Table 29.2 Pictorial representations. 

Eells: 

Suppes: 

Gal ton: 

Cheng: 

Lewis ratio: 

Good: 

a 

-c 

E= 

CS.(E, C) = c+d 

CS5 (E, C) =c 

CSg(E, C) =4cd 

CSc(E, C) =d/(b+d) 

CSir(E, C) = (d+ f)jf 
CS1r1(E, C) = dj(d + e + f) 
CSzri(E, C) = d/(d + f) 

CSy(E, CJ= (b + d)jd 
CS91(E, C) = dj(2b + d) 
CS92(E, C) = dj(b + d) 

b 

c 

Fig. 29.1 

mathematical convenience: they don'.t necessarily correspond to any events 
that are well-defined in the probability space. We will use the lower case letters 
a through f to denote the six regions in the diagram, and also to represent 
the areas of the regions. The ratios a : c : e are identical to the ratios b : d : f. 
With this diagram, we can write, for example: P(C) = b + d + f; P(EJ ~C) = 
e + f; P(EJC) - P(EI ~C) = c + d; and so on. The representations of the mea
sures in terms of this figure are summarized in Table 29.2. 

Additionally, several of the measures we will discuss can be given simple 
Boolean representations. A Boolean representation for CS ( E, C) is a probability 
space that has the following features: 

(a) it includes as events C and E, and two additional events A and Q; 

(b) E can be expressed as a Boolean function of the other three events: 
specifically, E = Av ( Q /\ C); 
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(c) the probabilities on the algebra generated by C and E are the same as 
the objective probabilities figuring in the measures of causal strength; 

( d) CS ( E, C) is the (conditional or unconditional) probability of some event 
in the space involving Q. 

Condition (b) is reminiscent of Mackie's definition of an INUS condition 
(Mackie 1974). C is an INUS condition for E just in case it is an insufficient 
but non-redundant part of an unnecessary but sufficient condition for E. In the 
expression E = Av ( Q /\ C), C is insufficient for E, since Q must also be 
present. Q /\ C is a sufficient condition for E, and C is not redundant: Q 
alone is insufficient. C is not necessary for E, since A may produce E even 
in the absence of C. Roughly; we may think of A as the proposition that 
conditions are right for E to occur in the absence of C, and we may think of Q 
as the proposition that conditions are right for C to cause E. If determinism is 
true, we may think of A as representing other causes that are sufficient for E, 
and of Q as representing the other background conditions that are necessary 
for C to be a cause of E. However, if there is genuine indeterminism, A 
and Q will not correspond to any physically real events, but are rather just 
mathematical conveniences; they may be thought of metaphorically as the 
results of God's dice rolls. The disjunctive form of the representation for E in 
(b), together with its probabilistic nature, has given it the name of a 'noisy or' 
representation. 

We will give Boolean representations for four of our measures. These repre
sentations differ along two dimensions. First, they differ in the assumptions 
they make about the probabilistic relations that the new events A and Q bear 
to C and E and to each other. Second, they identify causal strength with 
the probabilities of different events, or with probabilities conditional upon 
different events. The Boolean representations are often helpful for giving an 
intuitive feel for just what the measures are measuring. 

29.5 The Eells measure 

Eells (1991) offers a probabilistic theory of causation according to which C is 
a (positive) cause of E just in case P(EJC /\.A;)> P(EI ~c /\.A;) for every 
background context .A;. 5 He then defined the 'average degree of causal signifi
cance' of C for E as: ADCS(E, C) = ~i[P(E[C /\ A;)-P(EI "-'C /\ A;)]P(.A;). 6 

5 In Eells' theory, causal claims are relativized to a population and a population type. We ignore 
this complication here. 

6 The proposal ofDupre (1984) that we should count Casa cause of E if it raises the probability 
of E in a 'fair sample' amounts to the claim that C is a cause of E just in case ADCS ( E, CJ > ti. · 
Interestingly, Eells seems not to have understood this proposal. He was adamantly opposed to 
Dupre' s suggestion and even suggests that it is conceptually confused. In particular, he seems 
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Q 

A 

-c c 

Fig. 29.2 

This naturally suggests that when we confine ourselves to a single background 
context, we define causal strength as: 

CS.(E, C) = P(EIC) - P(Ei ~C). 

This is equal to the area c +din Figure 29.1. Equivalently, it is the difference 
between the heights of the two shaded columns. The Eells measure is identical 
to what psyChologists call the probability contrast- PC or .6. P for short (see e.g. 
Cheng and Novick 1990). 

The Eells measure may be given a simple Boolean representation. We make 
the following assumptions about the new events A and Q: 

(i) A and Qare mutually exclusive; 

(ii) A and C are probabilistically independent; and 

(iii) Q and C are probabilistically independent. 

As is standard, we identify E with Av ( Q /\ C). These assumptions are all 
shown diagrammatically in Figure 29.2. Given these assumptions, we have: 

CS 0 (E, C) = P(Q).7 

to interpret Dupre' s call for averaging over background contexts - which is clearly done in the 
formula for ADCS - as equivalent to saying that C causes E just in case P(E!C) > P(EI ~C), 
where we do not control for confounding factors. 

7 All of the mathematical claims that appear in this chapter are verified in a companion Mathe
matica notebook, which can be downloaded from the following URL: http://fitelson.org/pmcs.nb 
[a PDF version of this notebook is available at http://fitelson.org/pmcs.nb.pdf]. The companion 
Mathematica notebook makes use of the PrSAT Mathematica package (Fitelson 2008), which can 
be downloaded from the following URL: http://fitelson.org/PrSAT/. 
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Intuitively, the Eells measure measures the difference that C's presence 
makes to the probability of E. If we had a population of individuals who 
all belonged to the relevant background context, and conducted a controlled 
experiment in whiCh C is present for some individuals, and absent in others, 
the Eells measure would be an estimate of the difference between the relative 
frequencies of E in the two groups. 

The Eells measure is related to a concept that statisticians call causal effect. 
Assume counterfactual definiteness, and let X and Y be two quantitative 
variables. Let x and x' be two possible values of X, and let i be an individual 
in the population. The causal effect of X = x vs. X = x' on Y for i (abbreviated 
CE(Y, X = x, X = x', i)) is the difference between the value Y would take if 
X were x and the value Y would take if X were x' for individual i. That 
is, CE(Y, X = x, X = x', i) = y - y', where X = x > Y = y and X = x' > Y = y' 
are both true for i. Intuitively, the causal effect is the difference that a hypo
thetical Change from X = x' to X = x would make for the value of Y. Assuming 
counterfactual definiteness, the Eells measure is the expectation of the causal 
effect of C vs. ~con XE: CS 0 (E, C) = E[CE(XE, C, ~C)]. For example, if an 
individual i is suCh that C > E and ~c > ~ E, then for that individual, the 
causal effect of C vs. ~c on E is 1. The Eells measure corresponds to the 
expectation of this quantity. On the other hand, suppose that counterfactual 
definiteness is false. Then the Eells measure is equal to the causal effect of 
C vs. ~con the probability of E, or equivalently, the expectation of XE. Note 
that while the Eells measure itself is indifferent as to whether counterfactual 
definiteness is true or false, its interpretation in terms of causal effect is 
different in the two cases. 

The Eells measure is also closely related to what Pearl (2000) calls the proba
bility of necessity and sufficiency or PNS. Pearl assumes counterfactual definite
ness, and defines PNS(E, C) = P(C >El\ ~c > ~E). Intuitively, PNS(E, C) 
is the probability that C is both necessary and sufficient for E, where necessity 
and sufficiency are understood counterfactually. Monotonicity is the assump
tion that P ( C > ~ E /\ ~c > E) = 0. Intuitively, this means that there are no 
individuals that would have E if they lacked C, and also would have ~ E if they 
had C. Under the assumption of monotonicity, CS 0 (E, C) = PNS(E, C). This 
is most easily seen by referring to Figure 29.1. Monotonicity is the assumption 
that no individuals in cell e are suCh that if they had C, they would be in cell b; 
and no individuals in cell b are suCh that if they lacked C, they would be in cell 
e. Then we can interpret the figure in the following way: e and f comprise the 
individuals for whiCh C > E and ~c > E; a and b comprise the individuals 
for whiCh C > ~ E and ~c > ~ E; and c and d comprise the individuals 
for whiCh C > E and ~c > ~ E. The Eells measure is then the probability 
that an individual is in the last group. In other words, it is the proportion .of 
the population for whiCh C would make the difference between E and ~ E. 
We reiterate, however, that this interpretation assumes both counterfactual 
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definiteness and monotonicity. In particular, if counterfactual definiteness 
fails, the Eells measure can continue to take positive values, while PNS is 
identically zero. 

The Eells measure exhibits what we might call 'floor effects'. 7 If the back
ground context A; is one in which E is likely to occur even without C, then 
this will limit the size of CS,(E, C): there is only so much difference that C 
can make. In our Boolean representation, this is reflected in the assumption 
that A and Q are exclusive. If A is large, then Q must be small. This seems 
appropriate if we think of causal strength in terms of capacity to make a 
difference. On the other hand, if we think that the causal strength of C for E 
should be thought of as the intrinsic power of C to produce E, then it might 
seem strange that the causal strength should be limited by how prevalent E is· 
in the absence of C. 

29.6 The Suppes measure 

Suppes (1970) required that for C to cause E, P(E[C) > P(E). As we noted 
above, this is equivalent to the inequality P(E[C) > P(E[ ~C). However, the 
two inequalities suggest different measures of causal strength. Thus we define 
the Suppes measure as 

CS5 (E, C) = P(EJC) - P(E). 

This quantity is equal to the area of region c in Figure 29.1. 
The Suppes measure can be given a simple Boolean representation. Under 

the same assumptions as those made for the Eells measure, shown in 
Figure 29.2, we have 

CS5 (E, C) = P(QJ\ ~C). 

The Suppes measure is related to the Eells measure as follows: 

CS5 (E, C) = P(~C)CS0 (E, C) 

Table 29.3 provides a summary of all the mathematical inter-definitions. Note 
that we will only explicitly give the expression of a measure in terms of 
measures that have been previously introduced. The expression of the Suppes 
measure in terms of, e.g. the Galton measure can be derived simply by tal<ing 
the appropriate inverse: e.g. CS 5 (E, C) = CSg(E, C)/4P(C). 

The Suppes measure may be understood operationally in the following 
way: it is the amount by which the frequency of E would increase if C were 
present for all individuals in the population. Indeed Giere (1979) offers a 

7 This terminology is slightly non-standard, since we are describing an upper bound on CS, 
rather than a lower bound. However, looking at Figure 29.1, the bound results not from a ceiling 
that is low, but rather from a floor that is high. 
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Table 29.3 Inter-definability of the measures. 

Suppes: 

Galton: 

Cheng: 

Lewis ratio: 

Good: 

CSs(E, C) = P(~C)CS,(E, C) 

CSg(E, C) = 4P(C)P(~C)CS,(E, C) 
= 4P(C)CSs(E, C) 

CSc(E, C) = CS.(E, C)/P(~Ei ~C) 

= CS5 (E, C)/ P(~E/\ ~C) 

= CSg(E, C)/4P(C)P(~E/\ ~C) 

CSir1(E, C) = [CSir(E, C)-1]/[CSir(E, C) + 1] 

= CS,(E, C)/[P(EIC) + P(Ei ~C)] 

CSir2(E, C) = 1-1/CSi,.(E, C) 

= CS.(E, C)/ P(EIC) 

= CSs(E, C)/P(EIC)P(~C) 

= CSg(E, C)/4P(E A C)P(~C) 

= CSc(E, C)[P(~Ei ~C)/P(EiC)] 
CS;j(E, C) = CSir(~E, ~C) 

CS;j1(E, C) = [CS;j(E, C) -1]/[CS;j(E, C) + 1] 

= CSir1(~E, ~C) 

= CS,(E, C)/[P(~EIC) + P(~Ei ~C)] 

CS;j2(E, C) = 1-1/CS;j(E, C) = CSc(E, C) 

= CS,(E, C)/P(~Ei ~C) 

= CS5 (E, C)/P(~E/\ ~C) 

= CSg(E, C)/4P(C) P(~EA ~C) 

= CS1r2(~E, ~C) 
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probabilistic theory of causation in which causation is defined in just this way. 
This way of understanding the Suppes measure is only correct, however, if 
there is no frequency-dependent causation or int~r-unit causation. In biology, 
mimicry is an example of frequency-dependent causation. For example, the 
tasty viceroy butterfly protects itself by mimicl<ing the colour patterns of the 
unpalatable monarch butterfly. But the more prevalent the viceroys become, 
the less effective this ruse will become. So it may be that among butterflies, 
mimicking the monarch does in fact raise the probability of survival, but if all 
butterflies did it, the rate of survival would not go up. For an example of inter
unit causation, consider the effects of second-hand smoke. If everyone were 
to smoke, lung cancer rates would go up, in part because there would be more 
smokers, but also because at least some people would be exposed to greater~· · 
amounts of second-hand smoke. In this case, the Suppes measure would 
underestimate the amount by which lung cancer would increase. Intuitively, 
what is going on in each of these cases is that the Suppes measure predicts 
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the amount by which the prevalence of E will change within a fixed background 
context. However, when we increase the prevalence of C in the population, 
we also change the background context to which at least some members of 
the population belong. This will have an impact on the prevalence of E that 
goes beyond that predicted by the Suppes measure within a fixed background 
context. 

The Suppes measure will exhibit floor effects in much the same way the 
Eells measure does. The Suppes measure is also sensitive to the unconditional 
value of P(C): for fixed values of P(EIC) and P(EI ~C), CSs(E, C) decreases 
as P ( C) increases. The feature seems prima facie undesirable if we construe 
causal strength as a measure of the intrinsic tendency or capacity of C to cause 
E. Such an intrinsic capacity should be independent of the prevalence of C. 

29.7 The Gatton measure 

We name this measure after Francis Galton. With quantitative variables X and 
Y, we often evaluate the relationship between them in terms of the covariance 
or correlation. The covariance of two variables is defined as follows: 

Cov(X, Y) = E(XY)- E(X)E(Y). 

When X and Y are replaced by the indicator functions Xe and XE, a little 
calculation gives us 

Cov(XE, Xe)= P(C)P(~C)[P(EIC)- P(EI ~C)]. 

The multiplier P(C) P(~C) takes a maximum value ofl/4 when P(C)=0.5, so 
if we want to convert this measure to a unit scale we will need to normalize. 
One way to do this is to divide by the standard deviations of Xe and XE, 
yielding the correlation. We will adopt the simpler expedient of multiplying 
by4. Thus: 

CSg(E, C) =4P(C)P(~C)[P(EIC)- P(EI ~C)]. 

This is equal to 4 times the product of c and d in Figure 29.1. The Galton 
measure is related the Eells and Suppes measures as follows: 

CSg(E, C) = 4P(C)P(~C)CS,(E, C) 

= 4P(C)CS5 (E, C). 

Like the Suppes measure, the Galton measure will exhibit floor effects, and 
it will be sensitive to the unconditional probability of C. The Galton measure 
intuitively measures the degree to which there is variation in whether or not E 
occurs that is due to variation in whether or not C occurs. CSg ( E, C) will take 
its maximum value when P(EIC) is close to 1, P(EI ~C) is close to 0, and 

Probabilistic measures of causal strength 613 

P(C) is close to 0.5. In these circumstances, P(E) will be close to 0.5, so there 
is a lot of variation in the occurrence of E - sometimes it happens, sometimes 
it doesn't. When C occurs, there is very little variation: E almost always occurs; 
and when C doesn't occur, E almost never occurs. So there is a lot of variation 
in whether or not E occurs precisely because there is variation in whether or 
not C occurs. By contrast, suppose that P ( C) is close to 1. Then any variation 
in whether or not E occurs will almost all be due to the fact that P (EI C) is 
non-extreme: Esometimes happens in the presence of C, and sometimes it 
doesn't. Likewise if P(C) is close to 0. For example, it might be natural to say 
that smallpox is lethal: it is a potent cause of death. So we might think that the 
causal strength of smallpox for death is high. But the Galton measure would 
give it a low rating, perhaps even 0, since none of the actual variation in who 
lives and who dies during a given period is due to variation in who is exposed 
to smallpox: thankfully, no one is any more. 

Note that the standard measure of heritability used in genetics and evolu
tionary biology is essentially a measure of correlation, and behaves much like 
the Galton measure. Because of the sensitivity of the heritability measure to 
the absolute level of variation in some trait among the parents in a population, 
heritability is a poor measure of the intrinsic tendency of parents to produce 
offspring that resemble them with respect to the trait in question. 

29.8 The Cheng measure 

The psychologist Patricia Cheng proposed that we have a concept of 'causal 
power', and that this explains various aspects of our causal reasoning (1997). 
Under the special assumptions we have made, causal power reduces to the 
following formula: 

CSc(E, C) = [P(EIC)- P(EI ~C)]/ P(~EI ~C). 

In our pictorial representation (Figure 29.1), this is equal to the ratio dj(b + d). 
It is well-known that the Cheng measure has a 'noisy or' representation 

(see, e.g. Glymour 1998). We make the following assumption: 
A, Q, and C are both pairwise and jointly independent. 
As always, E is identified with Av ( Q /\ C). These assumptions are shown 

schematically in Figure 29.3. Then we can identify 

CSc(E, C) = P(Q). 

Note that while both cs. and CSc are identified with P( Q), the probabilistic 
assumptions underlying the two representations are different. 

The Cheng measure is related to our other measures by the following 
formulae: 
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CSc(E, C) = CS,(E, C)/ P(~EJ ~C) 

= CSs(E, C)/ P(~E/\ ~C) 

= CSg(E, C)/4P(C)P(~E/\ ~C). 

Only the first of these is particularly intuitive. One way of thinking about the 
Cheng measure is that it is like the Eells measure in focusing on the difference 
P(EIC) - P(EI ~C), but eliminates floor effects by dividing by P(~EJ ~C). 
The idea is that it is only within the space allowed by P (~EI ~C) that C has 
to opportunity to make a difference for the occurrence of E, so we should rate 
C's performance by how well it does within the space allowed it. 

Cheng conceives ofher causal power measure in the following way. Assume 
that E will occur just in case C occurs and 'works' to produce E, or some other 
cause of E is present and 'works' to produce E. In our Boolean representation, 
shown in Figure 29.3, Q corresponds to C's'working', and A corresponds to 
some other cause's working. CSc(E, C) is then the probability that C 'works'. 
These 'workings' are not mutually exclusive: it is possible that C is present 
and 'works' to produce E, and that some other cause also 'works' to produce 
E. Thus Cheng's model is compatible with causal overdetermination. A high 
probability for E in the absence of C neednt indicate that Cisn't working 
most of the time when it is present. But this is at best a heuristic for thinking 
about causal power. The nature of this 'working' is metaphysically mysterious. 
If the underlying physics is deterministic, then perhaps we can understand 
C's 'working' as the presence of conditions that render C sufficient for E 
(represented by Qin our Boolean representation). If the causal relationship is 

Q 

A 

-c c 

Fig. 29.3 
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indeterministic, however, it is hard to see what this 'working' could be. C and 
various other causes of E are present. In virtue of their presence E has a cer
tain probability of occurring. On most conceptions of indeterministic causa
tion, that is all there is to the story. (See, e.g. Lewis 1986 and Humphreys 1989, 
sections 29.10 and 29.11; Woodward (1990) challenges this conception. See 
also Hitchcock (2004) for discussion of the two different models.) 

The ~heng measure is related to what Pearl (2000) calls the probability 
of sufficiency or POS. Assuming counterfactual definiteness, Pearl defines 
POS(E, C) = P(C > El ~c /\ ~E). That is, in cases where neither C nor E 
occur, POS(E, C) is the probability that E would occur if C were to occur. 
Conditioning on ~c /\ ~ E means that we are in the rectangle occupied by a 
and c in Figure 29.l. Now assume monotonicity: that no individuals in region 
e would move to b if C were to occur, and no individuals in b would move 
toe if Cdid not occur. Then the result of hypothetically introducing C to the 
individuals in region a and c is to move them straight over to the right-hand 
side. So the proportion of individuals in regions a and c that will experience 
E when C is introduced is equal to dj(b + d). So under the assumptions 
of counterfactual definiteness and monotonicity, CSc(E, C) = POS(E, C). If 
counterfactual definiteness does not hold, however, this interpretation cannot 
be employed. In this case, CSg may still take positive values, while POS is 
identically zero. 

The Cheng measure does not exhibit floor effects, and it is not sensitive 
to the absolute value of P(C). For this reason it is a more plausible measure 
of the intrinsic capacity of C to produce E than any of the others we have 
discussed. 

29.9 The Lewis ratio measure 

In formulating the probabilistic extension of his counterfactual theory of 
causation, Lewis (1986) required that in order for E to be causally dependent 
upon C, the probability that E would occur if Chad not occurred had to be 
substantially less than the actual probability of E. Lewis then remarks that the 
size of the decrease is measured by the ratio of the quantities, rather than their 
difference. This naturally suggests the following measure: 

CS1r(E, C) = P(EJC)/ P(EI ~C). 

This is the ratio (d + f)/ fin Figure 29.l. The Lewis ratio measure is equiva
lent to the quantity called 'relative risk' in epidemiology and tort law: it is the 
risk of experiencing E in the presence of C, relative to the risk of E in the 
absence of C (see Parascandola 1996 for a philosophically sensitive discussion 
of these topics). 
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The Lewis ratio measure rates causes on a scale from one to infinity (and it 
gives numbers between zero and one when P (EI C) < P (EI ~C) ). Thus if we 
want to compare it directly with our other measures we will need to convert 
it to a unit scale. As discussed above, there are a number of ways of doing 
this. We will consider two. The first, corresponding to setting ,\ = 1 in our 
parametric rescaling formula above, is: 

CSir1(E, C) = [P(EIC)- P(EI ~C)]/[P(E!C) + P(EI ~C)]. 

This is equal to d / (d + e + f) in Figure 29.1. This re-scaling of the Lewis ratio 
measure is related to the Eells measure as follows: 

CSir1(E, C) = CS,(E, C)/[P(EIC) + P(EI ~C)]. 

Its mathematical relationship to the other measures is insufficiently elegant 
to be illuminating. 

The second rescaling corresponds to setting ,\ = 0: 

CSir2(E, C) = [P(EIC)- P(EI ~C)]/P(EIC). 

This is the ratio d/(d + f) in Figure 29.1. This rescaling of the Lewis measure 
can be given a Boolean representation, using the same probabilistic assump
tions as those used for the Eells and Suppes measures (shown in Figure 29.2). 
Then we have: 

CSir2(E, C) = P(QIC /\ E). 

This rescaling is related to our other measures via the following formulae: 

CSir2(E, C) = CS,(E, C)/ P(EIC) 

= CSs(E, C)/ P(EIC)P(~C) 

= CSg(E, C)/P(E /\ C)P(~C) 

= CSc(E, C)[P(~Ei ~C)/ P(E!C)]. 

CSir2 ( E, C) is equivalent to the quantity called the probability of causation in 
epidemiology and tort law. It is also related to what Pearl (2000) calls the 
probability of necessity, or PN. It will be helpful to consider the latter con
nection first. Assuming counterfactual definiteness, Pearl defines PN ( E, C) = 
P(~C > ~EJC /\ E). That is, given that C and E both occurred, PN(E, C) 
is the probability that C is necessary for E, where necessity is understood 
counterfactually. If we assume monotonicity, then PN(E, C) = CSir2(E, C). 
The idea is if C and E both occur, we are in the region d U fin Figure 29.1. 
Under the assumption of monotonicity, the effect of hypothetically removing 
C will be to shift individuals straight to the left. Thus the proportion of those 
in region d U f that would no longer experience E if C did not occur would 
be c/(c + e) = d/(d + f). Ifwe define causation directly in terms of (definite) 
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counterfactual dependence, as is done in the law; then CSir2(E, C) is the prob
ability that C caused E, given that C and E both occurred: hence the name 
'probability of causation'.. In our Boolean representation, Q can be thought 
of as C's being necessary for E, or C's causing E. 'Probability of causation'. 
is important in tort law. In civil liability cases, the standard of evidence is 
'more probable than not'. Thus if a plaintiffhas been exposed to C, and suffers 
adverse reaction E, in order to receive a settlement she must establish that the 
probability is greater than one-half that C caused E. This is often interpreted 
as requiring that the 'probability of causation'. is greater than 0.5. 

It is worth remembering, however, that the interpretation of CSir2 ( E, C) as 
the probability that C caused E depends upon three assumptions. The first 
is that counterfactual dependence is necessary for causation. This assump
tion fails in cases of preemption and overdetermination. We have chosen 
to ignore these particular problems, although as we have seen, the Cheng 
measure seems to be compatible with causal overdetermination. The second 
assumption is monotonicity. The third, and most important, is counterfactual 
definiteness. If counterfactual definiteness fails, then all we can say about 
those individuals that experience both C and E is that if C had not occurred, 
the probability of E would have been p, where pis P(EI ~C). Thus it is true 
for all the individuals that experience both C and E that the probability of 
E would have been lower if C had not occurred. So to the extent that there 
is a 'probability of causation'., that probability is 1: for all the individuals that 
experience both C and E, C was a cause of E (although there may be other 
causes as well). This is how Lewis himself interprets indeterministic causation 
(Lewis 1986). 8 

Lilce the Eells, Suppes, and Galton measures, the Lewis ratio measure and 
its rescalings will exhibit floor effects. Like the Eells and Cheng measures, the 
Lewis ratio measures and its rescalings are not sensitive to the unconditional 
probability of C. 

29.10 The Good measure 

Good (1961-2) sought to define a measure Q(E, C) of the tendency ofCto cause 
E. The measure he ultimately proposed was Q(E, C) =log[P (~ E 1~C)/P (~ E IC)]. 
We propose to simplify this formula (in a way that does not affect its ordinal 
scale) by not taking the log (or equivalently, raising the base (e or 10) to the 
power of Q). Since we have already used the subscript 'g' for the Galton 
measure, we will use Good's well-known first initials 'ij'. 

8 See also the discussion in Parascandola (1996) and Hitchcock (2004). 
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This is equal to the ratio (b + d)/d in Figure 29.1. The Good measure is related 
to the Lewis ratio measure via the formula: 

Llke the Lewis ratio measure, the Good measure yields a scale from one to 
infinity when P(EIC) > P(EI ~C), and from zero to one otherwise. So we 
will consider two rescalings. 

csij1(E, C) = [P(~EJ ~C) - P(~EIC)J/[P(~E1 ~C) + P(~EIC)J. 

This is equal to the ratio d / (2b + d) in Figure 29.1. This rescaling is related to 
other measures via the following formulae: 

csij1(E, C) = CS1r1(~E, ~C) 

= CS,(E, C)/[P(~EIC) + P(~EI ~C)]. 

It mathematical relationship to the other measures is insufficiently elegant to 
be illuminating. The second rescaling is: 

csijz(E, C) = [P(~E1 ~C) - P(~EIC)]/ P(~EI ~C) 

which is equal to d / (b + d). Interestingly, this second rescaling of the Good 
measure is identical to Cheng measure. Obviously, then, this rescaling will 
have the same properties, and be susceptible to the same interpretations, as 
the Cheng measure. Since the original Good measure and the first rescaling 
are ordinally equivalent to the second rescaling, they will be ordinally equiv
alent to the Cheng measure and also share many of its properties. Here are 
some other equivalences involving the second rescaling of the Good measure: 

CSijz(E, C) = CSc(E, C) 

29.11 Other measures 

= CS,(E, C)/ P(~EI ~C) 

= CSs(E, C)/ P(~E/\ ~C) 

= CSg(E, C)/4P(C)P(~E/\ ~C) 

= CS1r2(~E, ~C). 

It is fairly easy to generate other candidate measures. One would be the 
difference between the Eells and the Suppes measures, namely: 

CS(E, C) = P(E) - P(EI ~C). 

This could be understood operationally as the amount by which the frequency 
of E would decline if C were completely eliminated (modulo worries about 
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frequency dependent and inter-unit causation). We might think of this as the 
extent to which C is in fact causing E. Noting that the Lewis ratio measure is 
simply the ratio of the two quantities whose difference is the Eells measure, we 
could define a measure that is the ratio of the two quantities whose difference 
is the Suppes measure: 

CS(E, C) = P(EIC)/ P(E). 

And of course we could then take different rescalings of this measure to 
convert it to a unit scale. We could also construct an analog of the Cheng 
meas_ure that makes use of the difference that figures in the Suppes measure: 

CS(E, C) = [P(EIC) - P(E)]/ P(~E). 

And so on. Since the measures that we have already discussed are more than 
enough to keep us busy, we will leave an exploration of the properties of these 
new measures as an exercise for the reader. 9 

29.12 Properties and comparisons 

In the remaining sections, we will explore some further properties of the 
measures that we have introduced, and examine some relationships between 
them. First, we will consider whether any of our measures are ordinarily 
equivalent, or partially ordinally equivalent. Second, we will examine a num
ber of continuity properties of measures - these involve the behaviours of 
the measures as P (EI C) decreases from a value greater than P (EI ~C) to a 
value less than P (EI ~C). Finally, we will examine what the measures tell us 
about causal independence, and compare the independence judgments of the 
various measures. 

29.13 Ordinal relationships between measures 

Our two rescalings of the Lewis ratio measure are, by design, ordinally equiv
alent to the original Lewis ratio measure, and to each other. Llkewise for the 
rescalings of the Good measure. Moreover, as we have already seen, one of 
our rescalings of Good's measure is numerically identical to Cheng's measure. 

CSijz(E, C) = CSc(E, C). 

9 The computational tools developed in the companion Mathematica notebook (see footnote 7) 
are quite general, and can be applied to various other possible measures of causal strength, ana' 
various other properties of measures as well. 
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Table 29.4 Ordinal equivalences between measures. 

Eells Supp es Gal ton Cheng Lewis ratio Good 

Eells G-E II-E II-E None None None 
Suppes II-E G-E II-E None None None 
Gal ton II-E II-E G-E None None None 
Cheng None None None G-E None G-E 
Lewis ratio None None None None G-E None 
Good None None None G-E None G-E 

Apart from these cases, no other pair of measures we're discussing here are 
numerically equivalent. Indeed, it turns out that no other pair of measures -
we're discussing here are ordin.ally equivalent (in general). But, some other 
pairs of measures are ordinally equivalent in. special types of cases. Consider the 
following two special types of cases: 

I. Cases involving a single effect ( E) and two causes (C1 and C2). 

II. Cases involving a single cause (C) and two effects (E1 and E2). 

If two measures (CS1 and CS2) are such that, for all E, C1 and C2: 

then CS1 and CS2 are ordinally equivalent in. all cases of Type I (or 'I-equivalent', 
for short). And, if CS1 and CS2 are such that, for all C, E1 and E2: 

then CS1 and CS2 are ordinally equivalent in. all cases of Type II (or 'II
equivalent', for short). Various pairs of measures (which are not ordinally 
equivalent in general) turn out to be either I-equivalent or II-equivalent. For 
example, the Eells, Suppes, and Galton measures are all II-equivalent. 1bis 
can be seen readily by exarning the identities in Table 29.3. For a fixed C, the 
Eells, Suppes, and Galton measures are all fixed multiples of one another. 
Thus, for a fixed C, they will agree on comparative judgments of causal_ 
strength. Table 29.4 summarizes all ordinal relationships between measures 
(a 'G-E' in a cell of Table 29.4 means that the two measures intersecting on 
that cell are generally ordinally equivalent, a 'I-E' means they are I-equivalent, 
and a 'II-E' means they are II-equivalent). 
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29.14 Continuity properties of measures 

Some of our measures exhibit the following continuity between causation and 
prevention ('Causation-Prevention Continuity'): 

(CPC) CS(E, C) = -CS(~E, C). 

Recall that we are defining PS(E, C) as -CS(~E, C). As such, we can also 
express (CPC) as asserting that the absolute value of CS(E, C) is the same 
as the absolute value of PS(E, C). If a measure satisfies (CPC), then we can 
plug probabilities into the measure without regard to whether C causes E 
or prevents E. If the measure yields a positive value, that is the causal 
strength of C for E; if it yields a negative value, that is the preventative 
strength of C for E. By contrast, if a measure does not satisfy (CPC), then 
we must first determine whether C causes E or prevents E before we 
know which probabilities to plug into the formula. If a measure violates 
(CPC), it would suggest that causation and prevention are somehow concep
tually different - there is a 'discontinuity' where P (EI C) = P (EI ~C). 1° For 
example, the Eells measure is simply the difference between P(E\C) and 
P ( E \ ~C). The effect of switching E and ~ E is simply to reverse the sign. 
We can continue to use the same formula regardless of whether P(E\C) > 
P(E\ ~C) or P(E\C) < P(E\ ~C). The Suppes and Galton measures sim
ilarly obey (CPC). By contrast, the Cheng measure of the causal strength 
of C for E includes the term P(~E[ ~C) in its denominator. Thus if C 
prevents E, and we want to assess PS,(E, C) = -CS,(~E, C), we will need 
to replace P (~ E [ ~C) in the denominator with P ( E [ ~C), as well as merely 
changing the sign. So except for the special case where P(~E[ ~C) = 0.5, 
we will need to know whether C causes E or prevents E in order to know 
how to use the formula correctly. 

Some measures exhibit the following continuity between causation and 
omission ('Causation-Omission Continuity'): 

(COC) CS(E, C) = -CS(E, ~C). 

CS( E, ~q may be thought of as the causal strength with which the omission 
or absence of C causes E. If a measure satisfies (COC), then, when C prevents 
E, CS ( E, C) will give us a measure of the extent to which the absence of C 
causes E (with the sign reversed).Thus such a measure may be thought to 
treat causation and causation by omission as on a par. For example, the Eells 
measure satisfies (COC): swapping ~c for Chas the effect of switching the 
two terms, resulting in a change of sign. The Galton measure also satisfies 
(COC). 

lO We do not mean a literal discontinuity. All of our measures will take the value 0 when 
P (EI C) = P (EI ~CJ, and will approach this value from below and above. / 
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Table 29.5 Continuity properties of measures. 

(CPC) (COC) (CPO) 

Eells Yes Yes Yes 

Suppes Yes No No 

Galt on Yes Yes Yes 

Cheng No No No 
Lewis Ratio rescaling #1 CSlr1 No Yes No 
Lewis ratio rescaling #2 CSJr2 No No No 
Good rescaling #1 CSij1 No Yes No 
Good rescaling #2 CSij2 No No No 

Interestingly, one of our rescalings of the Lewis ratio measure satisfies 
(COC) while the other does not; similarly for the Good measure. This suggests 
that the choice of rescaling will make a substantive difference to how the 
measures treat causation by omission. It also suggests that there is more to 
rescaling than simply preserving ordinal equivalence. 

Finally, some measures exhibit the following continuity between causation, 
prevention, and omission ('Causation= Prevention by Omission): 

(CPO) CS(E, C) = CS(~E, ~C). 

Given our definition of PS, (CPO) says that the causal strength of C for Eis 
equal in magnitude and opposite in sign to the preventative strength of ~c 
for E. It is easy to see that (CPO) is a logical consequence of the conjunction of 
(CPC) and (COC). So, any measure that satisfies both (CPC) and (COC) must 
also satisfy (CPO). But, the converse does not hold. That is, (CPO) is strictly 
weaker than (CPC) & (COC).11 As reported in Table 29.5, the Eells and Galton 
measures satisfy both (CPC) and (COC). As a result, they both satisfy (CPO) 
as well. None of our other measures satisfy (CPO). Table 29.5 summarizes 
the behaviour of our measures of causal strength, with respect to these three 
continuity properties (see Section 29.5 of Eells and Fitelson 2002 for a formally 
similar table). 

29.15 Causal independence 

Causes sometimes operate independently of one another, and sometimes they 
do not. In this section, we will introduce a notion of causal independence and 
discuss some of its properties (vis-a-vis the measures of causal strength we 
are studying). First, we need a way of characterizing when two causes C1 and 
C2 of an effect E operate independently of one another (regarding E). The 

11 See (Eells and Fitelson 2002) for a discussion of these (and other) formal continuity proper
ties of probabilistic relevance measures (in the context of confirmation). 
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intuitive idea behind our formal definition of causal independence is that C1 

and C2 are independent in causing E just in case the causal strength of C1 for 
E does not depend on whether or not C2 is also present, and vice versa. This 
is not to say that C1 and C2 are (probabilistically) independent of each other. 12 

Formally, this intuitive idea is best captured by the following definition: 

C1 and C2 are indeprndrnt in causing E, according to a measure of causal strength CS 
iffCS(E, C1; C2) = CS(E, C1;~C2). 

We will abbreviate this relation Ics(E, C1, C2). To avoid embedded subscripts, 
we will use In to label the independence relation generated by CSn. Because we 
are assuming that C1 and C2 are probabilistically independent (given the back
ground condition), the following two basic facts can be shown to hold- for all 
of our measures of causal strength CS (assuming each of C1, C2 causes E): 

• Ics(E, C1, C2) ifflcs(E, Cz, C1). [Ics is symmetric in C1, C2.] 

• Ics(E, C1, C2) iffCS(E, C1; C2). [Ics can be defined in terms of 

= CS(E, C1) the absenceofC2 , or just in terms of 

conditional vs unconditional CS-values.] 

While all of our measures converge on these two fundamental properties 
of Ics, there are also some important divergences between our CS-measures, 
when it comes to Ics. 

First, we will consider whether it is possible for various pairs of distinct 
CS-measures to agree on judgments of causal independence. That is, for 
which pairs of measures CSi, CS2 can we have both Ics1 (E, Ci, C2) and 
Ics2 (E, C1, C2)? It should be apparent that ordinal equivalence is sufficient for 
agreement in independence judgments, although it is not necessary. It follows 
that the different rescalings of the Lewis ratio measure will always agree on 
their independence judgments, as will the different rescalings of the Good 
measure. Moreover, the Good measure and its rescalings yield all the same 
independence judgments as the Cheng measure. Interestingly, among all the 
measures we're discussing here, not all pairs can agree on Ics-judgments 
(apart from the trivial cases where one of C1 or C2 is not a cause of E). And, 
those pairs of measures that can agree on some Ic5-judgments, must agree on 
all !cs-judgments. Table 29.6 summarizes these !cs-agreement results. 

12 It is true that we are assuming (for simplicity) that C1 and C2 are probabilistically indepen
dent, relative to the background context. But, conceptually, this assumption is distinct from the 
assumption of the causal independence of C1 and C2 vis-a-vis E. A similar distinction needs 
to be made in the context of con.firmational independence of two pieces of evidence, regaramg" 
a hypothesis. Various accounts of confirmational independence mistakenly conflate these two 
notions. See (Fitelson 2001, chapter 3). 
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Table 29.6 Do measures C1 and C2 agree on all, some, or none of 
their !cs-judgments? 

Eells Suppes Galton Cheng Lewis ratio Good 

Eells All All All None None None 
Suppes All All All None ·None None 
Galt on All All All None None None 
Cheng None None None All None All 
Lewis ratio None None None None All None 
Good None None None All None All 

Second, we will consider whether a measure CS's judging that 
lcs(E, C2, C1) places substantive constraints on the individual causal strengths 
CS(E, C1), CS(E, C2). Interestingly, some measures CS are such that 
lcs(E, C2, C1) does impose substantive constraints on the values ofCS(E, C1), 
CS(E, C2). Specifically, the Eells, Suppes, and Galton measures all have the 
following property: 

(t) Iflcs(E, C2, C1), then CS(E, C1) + CS(E, C2)::; 1. 

Moreover, only the Eells, Suppes, _and Galton measures have property (t). 
None of the other measures studied here are such that lcs(E, C2, C1) places 
such a substantive constraint on the values ofCS(E, C1), CS(E, C2) for inde
pendent causes. {t) Strikes us as an undesirable property: it seems to indicate 
that there are a priori restrictions on which kinds of causes can act indepen
dently of one another. 

Finally, we ask whether 'the conjunction of two independent causes is 
better than one'. More precisely, we consider the following question: which of 
our measures satisfy the following property for conjunctions of independent 
causes: 

(S) Ifics(E, C2, C1), then CS(E, C1 /\ C2) > CS(E, C;), for both i = 1andi=2. 

The intuition behind (S) is that if C1 and C2 are independent causes of E, 
then their conjunction should be a stronger cause of E than either individual 
cause C1 or C2. It is interesting to note that some of our measures appear to 
violate (S). 13 That is, if we think of (S) in formal terms, then measures like Eells 
and Cheng appear to violate (S). The problem here lies with the proper way 
to unpack. 'CS(E, C1 /\ C2)' for measures like Eells and Cheng, which com
pare P(E[C) andP(E[ ~C). When calculating CS(E, C1 /\ C2) for such mea
sures, we should not simply compare P(EJC1 /\ C2) and P(EI ~(C1 /\ C2)), 

13 It is important to note here that all probabilistic relevance measures of degree of causal 
strength must satisfy the following, weaker, qualitative variant of (S):( SO) If Ics( E, C2, C1), then 
CS(E, C1 /\ C2) > 0 [i.e. C1 /\ C2 is a cause of E]. And, this will be true on eitherwayofunpacking 
'CS(E, C1 /\ C2)' discussed below. 

Probabilistic measures of causal strength 625 

since that involves averaging over different possible instantiations of causal 
factors that might undergird the truth of '~(C1 /\ C2)'. Rather, we should 
compare P(E[C1 /\ C2) and P(EI ~C1 /\ ~C2). Thus, for example, forthe Eells 
measun~, we would have CS,(E, C1 /\ C2) = P(EJC1 /\ C2)-P(E[ ~C1 /\ ~C2). 

Once we correct for this misleading way of unpacking 'CS(E, C1&C2)' in (S), 
then it follows that almost14 all of our measures of causal strength satisfy (S). 

Note that if we redefine CS(E, C1 /\ C2) in this way, then some of the 
identities in Table 29.3 will not hold for conjunctive causes. For instance, 
the identity CS,(E, C) = P(~C)CS.(E, C) relating the Eells and the Sup
pes measure for atomic causes, is not preserved. That is, it will not be 
the case that either CS,(E, C1 /\ C2) = P(~(C1 /\ C2)) CS,(E, C1 /\ C2) or 
CS,(E, C1 /\ C2) = P(~C1/\ ~C2)CS0 (E, C1 /\ C2) in general. Moreover, the 
redefinition of CS(E, C1 /\ C2) entails that in order to calculate causal 
strengths, we must identify the appropriate level of atomic causes. Most of 
the results in this chapter have to do only with such atomic (or fundamen
tal/primitive) causal factors (and that is the intended domain for Table 29.3). 
The general problem of combining atomic causal factors into complex causal 
factors is a subtle one, which is beyond the scope of the present discussion. 

Finally, we note that with this new definition of CS( E, C1 /\ C2), several of 
our measures yield fairly simple expressions for CS(E, C1 /\ C2) in terms of 
CS(E, C1) and CS(E, C2) in the case of independence: 

I.(E, C1, C2) implies CS,(E, C1 /\ C2) = CS,(E, C1) + CS,(E, C2) 

I,(E, C1, C2) implies CS,(E, C1 /\ C2) = CS,(E, C1) + CS,(E, C2) 

Ic(E, Ci, C2) implies CSc(E, C1/\C2)=1- (1- CSc(E, C1))(l - CSc(E, C2)) 

Izr(E, C1, C2) implies CSzr(E, C1 /\ C2) = CSzr(E, C1)CS1r(E, C2) 

lir2(E, Ci, C2)impliesCSzr2(E, C1/\C2)=l- (1- CS1r2(E, C1))(l- CS1r2(E, C2)) 

Iy( E, Ci, C2) implies CSy( E, C1 /\ C2) = 1 - (1 - CS;i ( E, C1))(1 - CS1r2 ( E, C2)). 

It bears remembering, however, that the antecedents are not all mutually 
satisfiable. 15 

14 1bis question is partiatlarly diffiatlt to analyse for the Galton measure. We haverit been able 
to find any plausible redefinition of CSg(E, C1 /\ C2) which ensures the satisfaction of (S) for the 
Galton measure. We suspect that the anomalous result occurs for CSg because of the way we 
are trying to force what is essentially a covariation measure into a measure designed for binary 
random variables. Intuitively, from a perspecitive of covariation, it makes more sense to somehow 
think of' C 1 /\ C 2' as a four-valued random variable. Considered just as a binary variable, it stands 
to reason that sometimes variation in whether or not 'C1 /\ C2' occurs wont capture some of the 
variation in whether E occurs, since some of the latter is due to variation in the different ways 
~(C1 /\ C2) can ocCUL 1bis is a nice illustration of the subtlety of combining the causal strengths 
of individual ('atomic') causal factors. ,• 

15 For more detailed treatment of the properties of conjunctive causes, see the accompanYing 
notebook at http://fitelson.org/pmcs.nb or http://fitelson.org/pmcs.nb.pdf, pp. 22-30. 
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