Probabilistic Measures of Causal Strength

Branden Fitelson (UC-Berkeley)
 Christopher Hitchcock (Caltech)

This is a companion Mathematica notebook for our paper "Probabilistic Measures of Causal Strength", which can be downloaded from http://fitelson.org/pmes.pdf.

- Requires the PrSAT package, which can be downloaded from http://fitelson.org/PrSAT/.

```
<< PrSAT`
```


- Defining the measures (Table 1)

In this section we give definitions of our measures of causal strength (CS) and preventative strength (PS), as described in Table 1 of the paper. As discussed in the beginning of the paper, we define $\operatorname{PS}(E, C)=-\operatorname{CS}(\neg E, C)$ for each of our CS-measures, and we introduce two rescalings for each of the CS-measures that are not already defined on $[-1,1]$.

- Eells

```
CSe[e_, c_] := Pr[e|c] - Pr[e| - c];
CSe[e_, c1_, c2_] := Pr[e|c1 ^c2]- Pr[e| | c1 ^c2];
PSe[e_, c_] := - CSe[\nege, c];
PSe[e_, c1_, c2_] := - CSe[\neg e, c1, c2];
```

- Suppes

```
CSs[e_, c_] := Pr[e|c] - Pr[e];
CSs[e_, c1_, c2_] := Pr[e|c1 \c2]- Pr[e|c2];
PSs[e_, c_] := -CSs[口e, c];
PSs[e_, c1_, c2_] := - CSS[` e, c1, c2];
```

- Galton

```
CSg[e_, c_] := 4 Pr[c] Pr[\negc] (Pr[e|c] - Pr[e| - c]);
CSg[e_, c1_, c2_] := 4 Pr[c1|c2] Pr[`c1|c2] (Pr[e|c1 ^c2] - Pr[e|fc1 ^c2]);
```



```
PSg[e_, c1_, c2_] := - CSg[re, c1, c2];
```

- Cheng

$$
\begin{aligned}
& \operatorname{CS} \mathbb{C}\left[e_{-}, c_{-}\right]:=\frac{\operatorname{Pr}[e \mid c]-\operatorname{Pr}[e \mid \neg c]}{\operatorname{Pr}[\neg e \mid \neg c]} ; \\
& \operatorname{CS} \mathbb{C}\left[e_{-}, c 1_{-}, c 2_{-}\right]:=\frac{\operatorname{Pr}[e \mid c 1 \wedge c 2]-\operatorname{Pr}[e \mid \neg c 1 \wedge c 2]}{\operatorname{Pr}[\neg e \mid \neg c 1 \wedge c 2]} ; \\
& \operatorname{PS} \mathbb{C}\left[e_{-}, c c_{-}\right]:=-\operatorname{CS} \mathbb{C}[\neg e, c] ; \\
& \operatorname{PS} \mathbb{C}\left[e_{-}, c 1_{-}, c 2_{-}\right]:=-\operatorname{CS} \mathbb{C}[\neg e, c 1, c 2] ;
\end{aligned}
$$

- Lewis Ratio


```
CSIr[e_, c1_, c2_] := Pr[e|c1 \c2]/Pr[e| ᄀc1 ^c2];
```

－First rescaling of Lewis Ratio

$$
\begin{aligned}
& \operatorname{CS} \mathbb{I} \mathbb{I} 1\left[e_{-}, c_{-}\right]:=\frac{\operatorname{Pr}[e \mid c]-\operatorname{Pr}[e \mid \neg c]}{\operatorname{Pr}[e \mid c]+\operatorname{Pr}[e \mid \neg c]} ; \\
& \operatorname{CSH} \mathbb{1} 1\left[e _, c 1_{-}, c 2 _\right]:=\frac{\operatorname{Pr}[e \mid c 1 \wedge c 2]-\operatorname{Pr}[e \mid \neg c 1 \wedge c 2]}{\operatorname{Pr}[e \mid c 1 \wedge c 2]+\operatorname{Pr}[e \mid \neg c 1 \wedge c 2]} ; \\
& \text { PSIㅛ } 1 \text { [e_, c_] := - CSIㅛ } 1[\neg e, c] ; \\
& \text { PSIr } 1 \text { [e_, c1_, c2_] : = -CSIr } 1[\neg e, c 1, c 2] ;
\end{aligned}
$$

－Second rescaling of Lewis Ratio

```
CSIlr2[e_, c_] := 1-(1/CSIlr[e,c]);
CSIIr2[e_, c1_, c2_] := 1-(1/CSIIr[e,c1, c2]);
PS\mathbb{Ir}2[e_, c_] := - CS\mathbb{1r}2[\nege,c];
PS\mathbb{Ir}2[e_, c1_, c2_] := - CS\lr2[\neg e, c1, c2];
```

－Good

$$
\begin{aligned}
& \operatorname{CSi} i \dot{y}\left[e_{1}, c_{-}\right]:=\frac{\operatorname{Pr}[\neg \mathrm{e} \mid \neg \mathrm{c}]}{\operatorname{Pr}[\neg \mathrm{e} \mid \mathrm{c}]} ; \\
& \operatorname{CSi} i \dot{y}\left[e_{Z}, \mathrm{c} 1_{-}, \mathrm{c} 2 _\right]:=\frac{\operatorname{Pr}[\neg \mathrm{e} \mid \neg \mathrm{c} 1 \wedge \mathrm{c} 2]}{\operatorname{Pr}[\neg \mathrm{e} \mid \mathrm{c} 1 \wedge \mathrm{c} 2]}
\end{aligned}
$$

－First rescaling of Good

$$
\begin{aligned}
& \text { CSiị1 }\left[e_{-}, c_{-}\right]:=\frac{\operatorname{Pr}[\neg \mathrm{e} \mid \neg \mathrm{c}]-\operatorname{Pr}[\neg \mathrm{e} \mid \mathrm{c}]}{\operatorname{Pr}[\neg \mathrm{e} \mid \neg \mathrm{c}]+\operatorname{Pr}[\neg \mathrm{e} \mid \mathrm{c}]} \text {; } \\
& \text { CSiij1 [e_, c1_, c2_] }:=\frac{\operatorname{Pr}[\neg \mathrm{e} \mid \neg \mathrm{c} 1 \wedge \mathrm{c} 2]-\operatorname{Pr}[\neg \mathrm{e} \mid \mathrm{c} 1 \wedge \mathrm{c} 2]}{\operatorname{Pr}[\neg \mathrm{e} \mid \neg \mathrm{c} 1 \wedge \mathrm{c} 2]+\operatorname{Pr}[\neg \mathrm{e} \mid \mathrm{c} 1 \wedge \mathrm{c} 2]} \text {; } \\
& \text { PSīj1 [e_, c_] : = - CSiiji }[\neg e, c] ; \\
& \text { PSìj1[e_, c1_, c2_] : = - CSiiji [} 1 \text { e, c1, c2]; }
\end{aligned}
$$

－Second rescaling of Good

```
CSìj2[e_, c_] := 1 - (1 / CSinj [e, c]);
CSìij2[e_, c1_, c2_] := 1-(1/CSìj [e, c1, c2]);
PSiij2[e_, c_] := - CSiij2[न e, c];
PS立立2[e_, c1_, c2_] := - CS立立2[\neg e, c1, c2];
```


－Scale Verification

In this section，we verify that all the（possibly rescaled）measures we＇ll examine below，are on a $[-1,1]$ scale．We do this using the func－ tion PrRange（now part of the PrSAT package）which calculates the range of a probabilistic expression（first argument）subject to proba－ bilistic constraints（second argument）：

Eells

```
PrRange[CSe[\mathbb{E},\mathbb{C}],\operatorname{Pr}[\mathbb{E}|\mathbb{C}]\geq\operatorname{Pr}[\mathbb{E}]]
{0, 1}
PrRange [PSe[\mathbb{E},\mathbb{C}],\operatorname{Pr}[\mathbb{E}|\mathbb{C}]\leq\operatorname{Pr}[\mathbb{E}]]
{-1,0}
```


Suppes

$\operatorname{PrRange}[\operatorname{CSs}[\mathbb{E}, \mathbb{C}], \operatorname{Pr}[\mathbb{E} \mid \mathbb{C}] \geq \operatorname{Pr}[\mathbb{E}]]$
$\{0,1\}$
$\operatorname{PrRange}[\operatorname{PSs}[\mathbb{E}, \mathbb{C}], \operatorname{Pr}[\mathbb{E} \mid \mathbb{C}] \leq \operatorname{Pr}[\mathbb{E}]]$
$\{-1,0\}$

Galton

```
PrRange[CSg[\mathbb{E},\mathbb{C}],\operatorname{Pr}[\mathbb{E}|\mathbb{C}]\geq\operatorname{Pr}[\mathbb{E}]]
```

$\{0,1\}$
$\operatorname{PrRange}[\operatorname{CS} \mathbb{G}[\mathbb{E}, \mathbb{C}], \operatorname{Pr}[\mathbb{E} \mid \mathbb{C}] \leq \operatorname{Pr}[\mathbb{E}]]$
$\{-1,0\}$

Cheng

```
PrRange [CS\mathbb{C}[\mathbb{E},\mathbb{C}],\operatorname{Pr}[\mathbb{E}|\mathbb{C}]\geq\operatorname{Pr}[\mathbb{E}]]
```

$\{0,1\}$
$\operatorname{PrRange}[\operatorname{PS} \mathbb{C}[\mathbb{E}, \mathbb{C}], \operatorname{Pr}[\mathbb{E} \mid \mathbb{C}] \leq \operatorname{Pr}[\mathbb{E}]]$
$\{-1,0\}$

Lewis Ratio (two rescaled versions)

```
PrRange[CS\mathbb{Ir}1[\mathbb{E},\mathbb{C}],\operatorname{Pr}[\mathbb{E}|\mathbb{C}]\geq\operatorname{Pr}[\mathbb{E}]]
```

$\{0,1\}$
$\operatorname{PrRange}[\operatorname{PS} \mathbb{I} \mathbb{I}[\mathbb{E}, \mathbb{C}], \operatorname{Pr}[\mathbb{E} \mid \mathbb{C}] \leq \operatorname{Pr}[\mathbb{E}]]$
$\{-1,0\}$
$\operatorname{PrRange}[\operatorname{CS} \mathbb{I} 2[\mathbb{E}, \mathbb{C}], \operatorname{Pr}[\mathbb{E} \mid \mathbb{C}] \geq \operatorname{Pr}[\mathbb{E}]]$
$\{0,1\}$
$\operatorname{PrRange}[\operatorname{PS} \mathbb{1} \mathbb{I} 2[\mathbb{E}, \mathbb{C}], \operatorname{Pr}[\mathbb{E} \mid \mathbb{C}] \leq \operatorname{Pr}[\mathbb{E}]]$
$\{-1,0\}$

Good (two rescaled versions)


```
{0, 1}
PrRange[PSiiji [\mathbb{E},\mathbb{C}],\operatorname{Pr}[\mathbb{E}|\mathbb{C}]\leq\operatorname{Pr}[\mathbb{E}]]
{-1,0}
PrRange[CSili 2[\mathbb{E},\mathbb{C}],\operatorname{Pr}[\mathbb{E}|\mathbb{C}]\geq\operatorname{Pr}[\mathbb{E}]]
{0, 1}
PrRange[PSiiji [\mathbb{E},\mathbb{C}],\operatorname{Pr}[\mathbb{E | C ] s Pr[\mathbb{E}]]}]
{-1,0}
```


- Inter-Definability Verification (Table 3)

Here, we verify the inter-definability relations stated in Table 3 of the paper, using the function PrReduce from the PrSat package:

Suppes

```
PrReduce[{CSs[\mathbb{E},\mathbb{C}]==\operatorname{Pr}[\neg\mathbb{C}]\mathbf{CSe[EE},\mathbb{C}]}]
```

True

Galton

```
PrReduce [{CSg[\mathbb{E},\mathbb{C}]==4\operatorname{Pr}[\mathbb{C}]\operatorname{Pr}[\neg\mathbb{C}]\operatorname{CSe}[\mathbb{E},\mathbb{C}]==4\operatorname{Pr}[\mathbb{C}]\operatorname{CSs}[\mathbb{E},\mathbb{C}]}]
```

True

Cheng

$$
\begin{aligned}
& \operatorname{PrReduce}\left[\left\{\operatorname{CS} \mathbb{C}[\mathbb{E}, \mathbb{C}]==\frac{\operatorname{CSe}[\mathbb{E}, \mathbb{C}]}{\operatorname{Pr}[\neg \mathbb{E} \mid \neg \mathbb{C}]}==\frac{\operatorname{CSs}[\mathbb{E}, \mathbb{C}]}{\operatorname{Pr}[\neg \mathbb{E} \wedge \neg \mathbb{C}]}==\frac{\operatorname{CS} \mathbb{G}[\mathbb{E}, \mathbb{C}]}{4 \operatorname{Pr}[\mathbb{C}] \operatorname{Pr}[\neg \mathbb{E} \wedge \neg \mathbb{C}]}\right\}\right] \\
& \text { True }
\end{aligned}
$$

Lewis Ratio

$$
\operatorname{PrReduce}\left[\left\{\operatorname{CS} \mathbb{1} \mathbb{1}[\mathbb{E}, \mathbb{C}]==\frac{\operatorname{CS} \mathbb{1}[\mathbb{E}, \mathbb{C}]-1}{\operatorname{CS} \mathbb{1}[\mathbb{E}, \mathbb{C}]+1}==\frac{\operatorname{CS} \in[\mathbb{E}, \mathbb{C}]}{\operatorname{Pr}[\mathbb{E} \mid \mathbb{C}]+\operatorname{Pr}[\mathbb{E} \mid \neg \mathbb{C}]}\right\}\right]
$$

True

$$
\begin{aligned}
& \operatorname{PrReduce}\left[\left\{\operatorname{CS} \mathbb{1 r} 2[\mathbb{E}, \mathbb{C}]==1-\frac{1}{\operatorname{CS} \mathbb{1}[\mathbb{E}, \mathbb{C}]}==\frac{\operatorname{CS} \in[\mathbb{E}, \mathbb{C}]}{\operatorname{Pr}[\mathbb{E} \mid \mathbb{C}]}==\right.\right. \\
& \left.\left.\quad \frac{\operatorname{CSs}[\mathbb{E}, \mathbb{C}]}{\operatorname{Pr}[\mathbb{E} \mid \mathbb{C}] \operatorname{Pr}[\neg \mathbb{C}]}=\operatorname{CS} \mathbb{C}[\mathbb{E}, \mathbb{C}] \frac{\operatorname{Pr}[\neg \mathbb{E} \mid \neg \mathbb{C}]}{\operatorname{Pr}[\mathbb{E} \mid \mathbb{C}]}==\frac{\operatorname{CS} \mathbb{C}[\mathbb{E}, \mathbb{C}]}{4 \operatorname{Pr}[\mathbb{E} \wedge \mathbb{C}] \operatorname{Pr}[\neg \mathbb{C}]}\right\}\right] \\
& \text { True }
\end{aligned}
$$

Good

```
PrReduce[CSi̇亠 [\mathbb{E},\mathbb{C}]== CS\mathbb{1r}[\neg\mathbb{E},\neg\mathbb{C}]]
```

True
$\operatorname{PrReduce}\left[\left\{\operatorname{CSiij} 1[\mathbb{E}, \mathbb{C}]==\frac{\operatorname{CSi} \dot{1}[\mathbb{E}, \mathbb{C}]-1}{\operatorname{CSi} \dot{1}[\mathbb{E}, \mathbb{C}]+1}=\operatorname{CS} \mathbb{1} \mathbb{I} 1[\neg \mathbb{E}, \neg \mathbb{C}]==\frac{\operatorname{CS} \in[\mathbb{E}, \mathbb{C}]}{\operatorname{Pr}[\neg \mathbb{E} \mid \mathbb{C}]+\operatorname{Pr}[\neg \mathbb{E} \mid \neg \mathbb{C}]}\right\}\right]$
True

$$
\begin{aligned}
& \operatorname{PrReduce}\left[\left\{\operatorname{CSìj} 2[\mathbb{E}, \mathbb{C}]==1-\frac{1}{\operatorname{CSin} \dot{y}[\mathbb{E}, \mathbb{C}]}=\right.\right. \\
& \left.\left.\frac{\operatorname{CSe}[\mathbb{E}, \mathbb{C}]}{\operatorname{Pr}[\neg \mathbb{E} \mid \neg \mathbb{C}]}==\frac{\operatorname{CSs}[\mathbb{E}, \mathbb{C}]}{\operatorname{Pr}[\neg \mathbb{E} \wedge \neg \mathbb{C}]}==\frac{\operatorname{CS} \mathbb{E}[\mathbb{E}, \mathbb{C}]}{4 \operatorname{Pr}[\neg \mathbb{E} \wedge \neg \mathbb{C}] \operatorname{Pr}[\mathbb{C}]}==\operatorname{CS} \mathbb{I r} 2[\neg \mathbb{E}, \neg \mathbb{C}]\right\}\right] \\
& \text { True }
\end{aligned}
$$

- Ordinal Relationship Verification (Table 4)

In this section, we verify all the ordinal relationships between all pairs of measures - as recorded in Table 4 of the paper (going from the first row, downward by rows). Here, we use PrSAT to search for models of the denials of the various ordinal relationships. If a model is found, this shows that the ordinal relationship in question does not hold (and the model given is a concrete counter-model to the ordinal relationship in question). If no model is found, then the ordinal relationship in question does hold.

- Eells \& Suppes

CSe and CSs are not ordinally equivalent in general (they are not G-E):

$$
\begin{aligned}
\{\{\mathbb{C} 1 & \rightarrow\left\{a_{2}, a_{6}, a_{7}, a_{8}, a_{12}, a_{13}, a_{14}, a_{16}\right\}, \mathbb{C} 2 \rightarrow\left\{a_{3}, a_{6}, a_{9}, a_{10}, a_{12}, a_{13}, a_{15}, a_{16}\right\}, \\
\mathbb{E} 1 & \rightarrow\left\{a_{4}, a_{7}, a_{9}, a_{11}, a_{12}, a_{14}, a_{15}, a_{16}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{5}, a_{8}, a_{10}, a_{11}, a_{13}, a_{14}, a_{15}, a_{16}\right\}, \\
\Omega & \left.\rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}\right\}\right\}, \\
\left\{a_{1}\right. & \rightarrow \frac{5683233420533249039}{16245548056506210750}, a_{2} \rightarrow \frac{3}{20}, a_{3} \rightarrow \frac{1}{345}, a_{4} \rightarrow \frac{1}{125}, a_{5} \rightarrow \frac{1}{524}, a_{6} \rightarrow \frac{5}{41}, a_{1} \rightarrow \frac{1}{33}, \\
a_{8} & \left.\left.\rightarrow \frac{1}{121}, a_{9} \rightarrow \frac{1}{999}, a_{10} \rightarrow \frac{1}{999}, a_{11} \rightarrow \frac{1}{999}, a_{12} \rightarrow \frac{1}{7}, a_{13} \rightarrow \frac{2}{57}, a_{14} \rightarrow \frac{1}{103}, a_{15} \rightarrow \frac{1}{953}, a_{16} \rightarrow \frac{5}{37}\right\}\right\}
\end{aligned}
$$

CSe and CSs are not ordinally equivalent in the class of cases with two causes and a single effect (they are not I-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\mathbf{C S e}[\mathbb{E}, \mathbb{C} 1] \geq \mathbf{C S e}[\mathbb{E}, \mathbb{C} 2], \mathbf{C S s}[\mathbb{E}, \mathbb{C} 1]<\mathbf{C S s}[\mathbb{E}, \mathbb{C} 2]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{\mathrm{a}_{2}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{5}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \mathbb{E} \rightarrow\left\{\mathrm{a}_{4}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \Omega \rightarrow\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}\right\},\right. \\
& \left.\left\{\mathrm{a}_{1} \rightarrow \frac{1400671985}{2148190703964}, \mathrm{a}_{2} \rightarrow \frac{1}{981}, \mathrm{a}_{3} \rightarrow \frac{19}{58}, \mathrm{a}_{4} \rightarrow \frac{1}{5}, a_{5} \rightarrow \frac{18}{43}, a_{6} \rightarrow \frac{1}{886}, a_{7} \rightarrow \frac{1}{20}, a_{8} \rightarrow \frac{1}{991}\right\}\right\}
\end{aligned}
$$

CSe and CSs are ordinally equivalent in the class of cases with two effects and a single cause (they are II-E):

PrSAT::srchfail : Search phase failed; attempting FindInstance

- Eells \& Galton

CSe and CSg are not ordinally equivalent in general (they are not $\mathrm{G}-\mathrm{E}$):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\operatorname{CS} \mathbb{e}[\mathbb{E} 1, \mathbb{C} 1] \geq \operatorname{CSe}[\mathbb{E} 2, \mathbb{C} 2], \operatorname{CS} g[\mathbb{E} 1, \mathbb{C} 1]<\operatorname{CS} \mathbb{G}[\mathbb{E} 2, \mathbb{C} 2]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{\mathrm{al}_{2}, \mathrm{al}_{6}, \mathrm{al}_{7}, \mathrm{al}_{8}, \mathrm{al}_{12}, \mathrm{al}_{13}, \mathrm{al}_{14}, \mathrm{al}_{16}\right\}, \mathbb{C} 2 \rightarrow\left\{\mathrm{al}_{3}, \mathrm{al}_{6}, \mathrm{al}_{9}, \mathrm{ad}_{10}, \mathrm{al}_{12}, \mathrm{al}_{13}, \mathrm{al}_{15}, \mathrm{al}_{16}\right\},\right.\right. \\
& \mathbb{E} 1 \rightarrow\left\{a_{4}, a_{7}, a_{9}, a_{11}, a_{12}, a_{14}, a_{15}, a_{16}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{5}, a_{8}, a_{10}, a_{11}, a_{13}, a_{14}, a_{15}, a_{16}\right\}, \\
& \left.\Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}\right\}\right\}, \\
& \left\{a_{1} \rightarrow \frac{676101601782601735273}{1256644399321100793150}, a_{2} \rightarrow \frac{1}{589}, a_{3} \rightarrow \frac{2}{25}, a_{4} \rightarrow \frac{1}{106}, a_{5} \rightarrow \frac{1}{56}, a_{6} \rightarrow \frac{1}{531}, a_{7} \rightarrow \frac{1}{107},\right. \\
& \left.\left.a_{8} \rightarrow \frac{1}{548}, a_{9} \rightarrow \frac{2}{53}, a_{10} \rightarrow \frac{14}{97}, a_{11} \rightarrow \frac{1}{952}, a_{12} \rightarrow \frac{1}{23}, a_{13} \rightarrow \frac{1}{999}, a_{14} \rightarrow \frac{1}{54}, a_{15} \rightarrow \frac{1}{179}, a_{16} \rightarrow \frac{3}{34}\right\}\right\}
\end{aligned}
$$

$\mathbf{C S e}$ and CSg are not ordinally equivalent in the class of cases with two causes and a single effect (they are not I-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\operatorname{CSe}[\mathbb{E}, \mathbb{C} 1] \geq \operatorname{CSe}[\mathbb{E}, \mathbb{C} 2], \operatorname{CS} \mathbb{G}[\mathbb{E}, \mathbb{C} 1]<\operatorname{CS} \mathbb{g}[\mathbb{E}, \mathbb{C} 2]\}, \operatorname{Probabilities} \rightarrow \text { Regular] }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left\{a_{1} \rightarrow \frac{488713}{828240}, a_{2} \rightarrow \frac{1}{70}, a_{3} \rightarrow \frac{4}{21}, a_{4} \rightarrow \frac{1}{48}, a_{5} \rightarrow \frac{3}{56}, a_{6} \rightarrow \frac{1}{952}, a_{7} \rightarrow \frac{1}{29}, a_{8} \rightarrow \frac{2}{21}\right\}\right\}
\end{aligned}
$$

CSe and CSg are ordinally equivalent in the class of cases with two effects and a single cause (they are II-E):

```
PrSAT[{CSe[EE1,\mathbb{C}]\geq\operatorname{CSe}[\mathbb{E}2,\mathbb{C}],\operatorname{CSg}[\mathbb{E1,\mathbb{C}]<\operatorname{CS}\mathbb{g}[\mathbb{E}2,\mathbb{C}]}, Probabilities }->\mathrm{ Regular]}
```

PrSAT::srchfail : Search phase failed; attempting FindInstance \{ \}

- Eells \& Cheng

CSe and CS© are not ordinally equivalent in general (they are not G-E):

6 | pmcs.nb

```
PrSAT[{CSe[\mathbb{E}1,\mathbb{C}1]\geqCS\mathbb{CE}2,\mathbb{C}2],CS\mathbb{C}[\mathbb{E}1,\mathbb{C}1]<CS\mathbb{C}[\mathbb{E}2,\mathbb{C}2]}, Probabilities }->\mathrm{ Regular]
```

$$
\begin{aligned}
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{a_{2}, a_{6}, a_{7}, a_{8}, a_{12}, a_{13}, a_{14}, a_{16}\right\}, \mathbb{C} 2 \rightarrow\left\{a_{3}, a_{6}, a_{9}, a_{10}, a_{12}, a_{13}, a_{15}, a_{16}\right\},\right.\right. \\
& \mathbb{E} 1 \rightarrow\left\{a_{4}, a_{7}, a_{9}, a_{11}, a_{12}, a_{14}, a_{15}, a_{16}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{5}, a_{8}, a_{10}, a_{11}, a_{13}, a_{14}, a_{15}, a_{16}\right\}, \\
& \left.\Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}\right\}\right\}, \\
& \left\{a_{1} \rightarrow \frac{91068197882708747}{270322787092438080}, a_{2} \rightarrow \frac{5}{51}, a_{3} \rightarrow \frac{3}{52}, a_{4} \rightarrow \frac{1}{59}, a_{5} \rightarrow \frac{1}{15}, a_{6} \rightarrow \frac{1}{23}, a_{7} \rightarrow \frac{7}{120},\right. \\
& \left.\left.a_{8} \rightarrow \frac{1}{33}, a_{9} \rightarrow \frac{1}{103}, a_{10} \rightarrow \frac{1}{118}, a_{11} \rightarrow \frac{10}{67}, a_{12} \rightarrow \frac{1}{31}, a_{13} \rightarrow \frac{2}{63}, a_{14} \rightarrow \frac{1}{320}, a_{15} \rightarrow \frac{1}{38}, a_{16} \rightarrow \frac{2}{65}\right\}\right\}
\end{aligned}
$$

CSe and CS© are not ordinally equivalent in the class of cases with two causes and a single effect (they are not I-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\mathbf{C S} \mathbb{E}[\mathbb{E}, \mathbb{C} 1] \geq \mathbf{C S} \mathbb{E}[\mathbb{E}, \mathbb{C} 2], \mathbf{C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 1]<\mathbf{C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 2]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{\mathrm{a}_{2}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{5}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \mathbb{E} \rightarrow\left\{\mathrm{a}_{4}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \Omega \rightarrow\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}\right\},\right. \\
& \left.\left\{\mathrm{a}_{1} \rightarrow \frac{6552877}{19684665}, \mathrm{a}_{2} \rightarrow \frac{2}{23}, \mathrm{a}_{3} \rightarrow \frac{2}{39}, \mathrm{a}_{4} \rightarrow \frac{1}{63}, \mathrm{a}_{5} \rightarrow \frac{26}{105}, \mathrm{a}_{6} \rightarrow \frac{3}{38}, \mathrm{a}_{7} \rightarrow \frac{3}{46}, \mathrm{a}_{8} \rightarrow \frac{4}{33}\right\}\right\}
\end{aligned}
$$

CSe and CS© are not ordinally equivalent in the class of cases with two effects and a single cause (they are not II-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\mathbf{C S} \in[\mathbb{E} 1, \mathbb{C}] \geq \mathbf{C S} \in[\mathbb{E} \mathbf{2}, \mathbb{C}], \mathbf{C S} \mathbb{C}[\mathbb{E} 1, \mathbb{C}]<\mathbf{C S} \mathbb{C}[\mathbb{E} \mathbf{2}, \mathbb{C}]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{E} 1 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{90764601181}{260065893780}, a_{2} \rightarrow \frac{1}{820}, a_{3} \rightarrow \frac{1}{882}, a_{4} \rightarrow \frac{10}{57}, a_{5} \rightarrow \frac{1}{693}, a_{6} \rightarrow \frac{3}{31}, a_{7} \rightarrow \frac{1}{999}, a_{8} \rightarrow \frac{46}{123}\right\}\right\}
\end{aligned}
$$

- Eells \& Lewis Ratio

$\mathbf{C S e}$ and CSㅛㅛ are not ordinally equivalent in general (they are not $\mathrm{G}-\mathrm{E}$):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\operatorname{CS} \in[\mathbb{E} 1, \mathbb{C} 1] \geq \operatorname{CS} \in[\mathbb{E} 2, \mathbb{C} 2], \operatorname{CS} \mathbb{1}[\mathbb{E} 1, \mathbb{C} 1]<\operatorname{CS} \mathbb{1}[\mathbb{E} 2, \mathbb{C} 2]\}, \operatorname{Probabilities} \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{a_{2}, a_{6}, a_{7}, a_{8}, a_{12}, a_{13}, a_{14}, a_{16}\right\}, \mathbb{C} 2 \rightarrow\left\{a_{3}, a_{6}, a_{9}, a_{10}, a_{12}, a_{13}, a_{15}, a_{16}\right\},\right.\right. \\
& \mathbb{E} 1 \rightarrow\left\{\mathrm{al}_{4}, \mathrm{al}_{7}, \mathrm{al}_{9}, \mathrm{al}_{11}, \mathrm{al}_{12}, \mathrm{al}_{14}, \mathrm{al}_{15}, \mathrm{al}_{16}\right\}, \mathbb{E} 2 \rightarrow\left\{\mathrm{al}_{5}, \mathrm{al}_{8}, \mathrm{al}_{10}, \mathrm{al}_{11}, \mathrm{al}_{13}, \mathrm{al}_{14}, \mathrm{al}_{15}, \mathrm{al}_{16}\right\}, \\
& \left.\Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}\right\}\right\}, \\
& \left\{\mathrm{al}_{1} \rightarrow \frac{8004879309751}{21360609408600}, \mathrm{a}_{2} \rightarrow \frac{2}{25}, \mathrm{a}_{3} \rightarrow \frac{3}{50}, \mathrm{a}_{4} \rightarrow \frac{1}{70}, \mathrm{a}_{5} \rightarrow \frac{6}{53}, \mathrm{a}_{6} \rightarrow \frac{2}{37}, \mathrm{a}_{7} \rightarrow \frac{1}{60}, \mathrm{a}_{8} \rightarrow \frac{1}{11},\right. \\
& \left.\left.a_{9} \rightarrow \frac{5}{56}, a_{10} \rightarrow \frac{1}{469}, a_{11} \rightarrow \frac{1}{30}, a_{12} \rightarrow \frac{1}{999}, a_{13} \rightarrow \frac{1}{30}, a_{14} \rightarrow \frac{1}{170}, a_{15} \rightarrow \frac{1}{69}, a_{16} \rightarrow \frac{1}{60}\right\}\right\}
\end{aligned}
$$

CSe and CSIr are not ordinally equivalent in the class of cases with two causes and a single effect (they are not I-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\operatorname{CSe}[\mathbb{E}, \mathbb{C} 1] \geq \operatorname{CSe}[\mathbb{E}, \mathbb{C} 2], \operatorname{CS} \mathbb{1}[\mathbb{E}, \mathbb{C} 1]<\operatorname{CS} \mathbb{1}[\mathbb{E}, \mathbb{C} 2]\}, \text { Probabilities } \rightarrow \text { Regular }]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left\{a_{1} \rightarrow \frac{6156667}{17272710}, a_{2} \rightarrow \frac{1}{999}, a_{3} \rightarrow \frac{1}{20}, a_{4} \rightarrow \frac{5}{52}, a_{5} \rightarrow \frac{1}{999}, a_{6} \rightarrow \frac{1}{798}, a_{7} \rightarrow \frac{1}{18}, a_{8} \rightarrow \frac{25}{57}\right\}\right\}
\end{aligned}
$$

CSe and CSIㅛ are not ordinally equivalent in the class of cases with two effects and a single cause (they are not II-E):
$\operatorname{PrSAT}[\{\operatorname{CS} \in[\mathbb{E} 1, \mathbb{C}] \geq \operatorname{CS} \in[\mathbb{E} 2, \mathbb{C}], \operatorname{CS} \mathbb{1} \mathbb{C}[\mathbb{E} 1, \mathbb{C}]<\operatorname{CS} \mathbb{1} \mathbb{r}[\mathbb{E} 2, \mathbb{C}]\}, \operatorname{Probabilities} \rightarrow$ Regular $]$

$$
\begin{aligned}
& \left\{\left\{\mathbb{C} \rightarrow\left\{\mathrm{a}_{2}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{8}\right\}, \mathbb{E} 1 \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{5}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \mathbb{E} 2 \rightarrow\left\{\mathrm{a}_{4}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \Omega \rightarrow\left\{a_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}\right\},\right. \\
& \left.\left\{\mathrm{a}_{1} \rightarrow \frac{18661411667}{75416638440}, \mathrm{a}_{2} \rightarrow \frac{1}{920}, \mathrm{a}_{3} \rightarrow \frac{2}{11}, \mathrm{a}_{4} \rightarrow \frac{1}{339}, \mathrm{a}_{5} \rightarrow \frac{2}{5}, a_{6} \rightarrow \frac{2}{19}, a_{7} \rightarrow \frac{1}{267}, a_{8} \rightarrow \frac{3}{52}\right\}\right\}
\end{aligned}
$$

- Eells \& Good

CSe and CSiij are not ordinally equivalent in general (they are not $\mathrm{G}-\mathrm{E}$):

$$
\begin{aligned}
& \mathbb{E} 1 \rightarrow\left\{a_{4}, a_{7}, a_{9}, a_{11}, a_{12}, a_{14}, a_{15}, a_{16}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{5}, a_{8}, a_{10}, a_{11}, a_{13}, a_{14}, a_{15}, a_{16}\right\}, \\
& \left.\Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}\right\}\right\}, \\
& \left\{a_{1} \rightarrow \frac{846077855323}{21499268659440}, a_{2} \rightarrow \frac{1}{20}, a_{3} \rightarrow \frac{3}{46}, a_{4} \rightarrow \frac{1}{16}, a_{5} \rightarrow \frac{1}{26}, a_{6} \rightarrow \frac{1}{19}, a_{7} \rightarrow \frac{3}{44}, a_{8} \rightarrow \frac{4}{53},\right. \\
& \left.\left.a a_{9} \rightarrow \frac{5}{52}, a_{10} \rightarrow \frac{1}{34}, a_{11} \rightarrow \frac{3}{17}, a_{12} \rightarrow \frac{2}{37}, a_{13} \rightarrow \frac{1}{19}, a_{14} \rightarrow \frac{2}{43}, a_{15} \rightarrow \frac{1}{24}, a_{16} \rightarrow \frac{2}{39}\right\}\right\}
\end{aligned}
$$

CSe and CSii \boldsymbol{j} are not ordinally equivalent in the class of cases with two causes and a single effect (they are not I-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\operatorname{CS} \mathbb{E}[\mathbb{E}, \mathbb{C} 1] \geq \operatorname{CS} \in[\mathbb{E}, \mathbb{C} 2], \operatorname{CSi} \dot{j}[\mathbb{E}, \mathbb{C} 1]<\operatorname{CSi} \dot{j}[\mathbb{E}, \mathbb{C} 2]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{\mathrm{al}_{2}, \mathrm{ad}_{5}, \mathrm{a}_{6}, \mathrm{ad}_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{\mathrm{am}_{3}, \mathrm{a}_{5}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \mathbb{E} \rightarrow\left\{\mathrm{a}_{4}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \Omega \rightarrow\left\{\mathrm{al}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{1410773791657}{4029684167040}, a_{2} \rightarrow \frac{21}{128}, a_{3} \rightarrow \frac{11}{112}, a_{4} \rightarrow \frac{3}{155}, a_{5} \rightarrow \frac{37}{131}, a_{6} \rightarrow \frac{2}{101}, a_{7} \rightarrow \frac{1}{85}, a_{8} \rightarrow \frac{7}{129}\right\}\right\}
\end{aligned}
$$

CSe and CSíi \mathbf{y} are not ordinally equivalent in the class of cases with two effects and a single cause (they are not II-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\mathbf{C S e}[\mathbb{E} 1, \mathbb{C}] \geq \mathbf{C S e}[\mathbb{E} \mathbf{2}, \mathbb{C}], \mathbf{C S i} \dot{\operatorname{j}}[\mathbb{E} 1, \mathbb{C}]<\mathbf{C S i} \dot{\mathbb{y}}[\mathbb{E} \mathbf{2}, \mathbb{C}]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{E} 1 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{3281145539}{12793606020}, a_{2} \rightarrow \frac{3}{13}, a_{3} \rightarrow \frac{1}{27}, a_{4} \rightarrow \frac{6}{59}, a_{5} \rightarrow \frac{1}{20}, a_{6} \rightarrow \frac{2}{17}, a_{7} \rightarrow \frac{6}{79}, a_{8} \rightarrow \frac{3}{23}\right\}\right\}
\end{aligned}
$$

- Suppes \& Galton

CSs and CS \mathfrak{g} are not ordinally equivalent in general (they are not $\mathrm{G}-\mathrm{E}$):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\operatorname{CSs}[\mathbb{E} 1, \mathbb{C} 1] \geq \operatorname{CSs}[\mathbb{E} 2, \mathbb{C} 2], \operatorname{CS} \mathbb{G}[\mathbb{E} 1, \mathbb{C} 1]<\operatorname{CS} \mathbb{g}[\mathbb{E} 2, \mathbb{C} 2]\}, \operatorname{Probabilities} \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{\mathrm{al}_{2}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}, \mathrm{a}_{12}, \mathrm{a}_{13}, \mathrm{a}_{14}, \mathrm{a}_{16}\right\}, \mathbb{C} 2 \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{6}, \mathrm{a}_{9}, \mathrm{a}_{10}, \mathrm{a}_{12}, \mathrm{al}_{13}, \mathrm{a}_{15}, \mathrm{a}_{16}\right\},\right.\right. \\
& \mathbb{E} 1 \rightarrow\left\{a_{4}, a_{7}, a_{9}, a_{11}, a_{12}, a_{14}, a_{15}, a_{16}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{5}, a_{8}, a_{10}, a_{11}, a_{13}, a_{14}, a_{15}, a_{16}\right\}, \\
& \left.\Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}\right\}\right\} \text {, } \\
& \left\{a_{1} \rightarrow \frac{6922763391622931}{2336883816890975760}, a_{2} \rightarrow \frac{1}{36}, a_{3} \rightarrow \frac{1}{93}, a_{4} \rightarrow \frac{4}{43}, a_{5} \rightarrow \frac{1}{136}, a_{6} \rightarrow \frac{1}{16}, a_{7} \rightarrow \frac{3}{58},\right. \\
& \left.\left.a_{8} \rightarrow \frac{16}{37}, a_{9} \rightarrow \frac{1}{12}, a_{10} \rightarrow \frac{1}{47}, a_{11} \rightarrow \frac{4}{47}, a_{12} \rightarrow \frac{6}{67}, a_{13} \rightarrow \frac{1}{171}, a_{14} \rightarrow \frac{1}{97}, a_{15} \rightarrow \frac{1}{115}, a_{16} \rightarrow \frac{1}{136}\right\}\right\}
\end{aligned}
$$

$\mathbf{C S s}$ and CSg are not ordinally equivalent in the class of cases with two causes and a single effect (they are not I-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\operatorname{CSs}[\mathbb{E}, \mathbb{C} 1] \geq \operatorname{CSs}[\mathbb{E}, \mathbb{C} 2], \operatorname{CS} \mathbb{G}[\mathbb{E}, \mathbb{C} 1]<\operatorname{CS} \mathbb{g}[\mathbb{E}, \mathbb{C} 2]\}, \operatorname{Probabilities} \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{\mathrm{al}_{2}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{5}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \mathbb{E} \rightarrow\left\{\mathrm{a}_{4}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \Omega \rightarrow\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{18490511}{53199630}, a_{2} \rightarrow \frac{2}{29}, a_{3} \rightarrow \frac{3}{20}, a_{4} \rightarrow \frac{1}{654}, a_{5} \rightarrow \frac{1}{34}, a_{6} \rightarrow \frac{1}{396}, a_{7} \rightarrow \frac{1}{15}, a_{8} \rightarrow \frac{1}{3}\right\}\right\}
\end{aligned}
$$

$\mathbf{C S s}$ and $\mathbf{C S}$ g are ordinally equivalent in the class of cases with two effects and a single cause (they are II-E):
$\operatorname{PrSAT}[\{\operatorname{CSs}[\mathbb{E} 1, \mathbb{C}] \geq \operatorname{CSs}[\mathbb{E} 2, \mathbb{C}], \operatorname{CS} \mathscr{G}[\mathbb{E} 1, \mathbb{C}]<\operatorname{CS} \mathbb{G}[\mathbb{E} 2, \mathbb{C}]\}$, Probabilities \rightarrow Regular $]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

- Suppes \& Cheng

CSs and CS© are not ordinally equivalent in general (they are not $\mathrm{G}-\mathrm{E}$):
$8 \mid p m c s . n b$
$\operatorname{PrSAT}[\{\operatorname{CSs}[\mathbb{E} 1, \mathbb{C} 1] \geq \operatorname{CSs}[\mathbb{E} 2, \mathbb{C} 2], \operatorname{CS} \mathbb{C}[\mathbb{E} 1, \mathbb{C} 1]<\operatorname{CS} \mathbb{C}[\mathbb{E} 2, \mathbb{C} 2]\}$, Probabilities \rightarrow Regular $]$

$$
\begin{aligned}
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{a_{2}, a_{6}, a_{7}, a_{8}, a_{12}, a_{13}, a_{14}, a_{16}\right\}, \mathbb{C} 2 \rightarrow\left\{a_{3}, a_{6}, a_{9}, a_{10}, a_{12}, a_{13}, a_{15}, a_{16}\right\},\right.\right. \\
& \mathbb{E} 1 \rightarrow\left\{a_{4}, a_{7}, a_{9}, a_{11}, a_{12}, a_{14}, a_{15}, a_{16}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{5}, a_{8}, a_{10}, a_{11}, a_{13}, a_{14}, a_{15}, a_{16}\right\}, \\
& \left.\Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}\right\}\right\}, \\
& \left\{a_{1} \rightarrow \frac{54598177821239}{122557892826600}, a_{2} \rightarrow \frac{1}{29}, a_{3} \rightarrow \frac{1}{290}, a_{4} \rightarrow \frac{1}{275}, a_{5} \rightarrow \frac{3}{25}, a_{6} \rightarrow \frac{1}{126}, a_{7} \rightarrow \frac{2}{53}, a_{8} \rightarrow \frac{1}{28},\right. \\
& \left.\left.a_{9} \rightarrow \frac{1}{999}, a_{10} \rightarrow \frac{4}{21}, a_{11} \rightarrow \frac{1}{999}, a_{12} \rightarrow \frac{2}{33}, a_{13} \rightarrow \frac{1}{73}, a_{14} \rightarrow \frac{1}{213}, a_{15} \rightarrow \frac{1}{45}, a_{16} \rightarrow \frac{1}{56}\right\}\right\}
\end{aligned}
$$

$\mathbf{C S s}$ and $\mathbf{C S} \mathbb{C}$ are not ordinally equivalent in the class of cases with two causes and a single effect (they are not I-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\mathbf{C S s}[\mathbb{E}, \mathbb{C} 1] \geq \mathbf{C S s}[\mathbb{E}, \mathbb{C} 2], \mathbf{C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 1]<\mathbf{C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 2]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{3538711217}{14154875280}, a_{2} \rightarrow \frac{1}{92}, a_{3} \rightarrow \frac{5}{27}, a_{4} \rightarrow \frac{1}{35}, a_{5} \rightarrow \frac{11}{78}, a_{6} \rightarrow \frac{1}{303}, a_{7} \rightarrow \frac{6}{31}, a_{8} \rightarrow \frac{3}{16}\right\}\right\}
\end{aligned}
$$

CSs and CS© are not ordinally equivalent in the class of cases with two effects and a single cause (they are not II-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\mathbf{C S s}[\mathbb{E} 1, \mathbb{C}] \geq \mathbf{C S s}[\mathbb{E} 2, \mathbb{C}], \mathbf{C S} \mathbb{C}[\mathbb{E} 1, \mathbb{C}]<\mathbf{C S} \mathbb{C}[\mathbb{E} 2, \mathbb{C}]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} \rightarrow\left\{\mathrm{a}_{2}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{8}\right\}, \mathbb{E} 1 \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{5}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \mathbb{E} 2 \rightarrow\left\{\mathrm{a}_{4}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \Omega \rightarrow\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}\right\},\right. \\
& \left.\left\{\mathrm{a}_{1} \rightarrow \frac{10679500945811}{45156373654770}, \mathrm{a}_{2} \rightarrow \frac{2}{35}, \mathrm{a}_{3} \rightarrow \frac{1}{999}, \mathrm{a}_{4} \rightarrow \frac{7}{34}, \mathrm{a}_{5} \rightarrow \frac{1}{122}, a_{6} \rightarrow \frac{7}{31}, a_{7} \rightarrow \frac{1}{758}, a_{8} \rightarrow \frac{14}{53}\right\}\right\}
\end{aligned}
$$

- Suppes \& Lewis Ratio

$\mathbf{C S s}$ and $\mathbf{C S} \mathbb{1} \mathbb{r}$ are not ordinally equivalent in general (they are not $\mathrm{G}-\mathrm{E}$):
$\operatorname{PrSAT}[\{\operatorname{CSs}[\mathbb{E} 1, \mathbb{C} 1] \geq \operatorname{CSs}[\mathbb{E} 2, \mathbb{C} 2], \operatorname{CS} \mathbb{1}[\mathbb{E} 1, \mathbb{C} 1]<\operatorname{CS} \mathbb{1}[\mathbb{E} 2, \mathbb{C} 2]\}$, Probabilities \rightarrow Regular $]$

$$
\begin{aligned}
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{\mathrm{a}_{2}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}, \mathrm{a}_{12}, \mathrm{a}_{13}, \mathrm{a}_{14}, \mathrm{a}_{16}\right\}, \mathbb{C} 2 \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{6}, \mathrm{a}_{9}, \mathrm{a}_{10}, \mathrm{a}_{12}, \mathrm{al}_{13}, \mathrm{a}_{15}, \mathrm{a}_{16}\right\},\right.\right. \\
& \mathbb{E} 1 \rightarrow\left\{a_{4}, a_{7}, a_{9}, a_{11}, a_{12}, a_{14}, a_{15}, a_{16}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{5}, a_{8}, a_{10}, a_{11}, a_{13}, a_{14}, a_{15}, a_{16}\right\}, \\
& \left.\Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}\right\}\right\}, \\
& \left\{\mathrm{a}_{1} \rightarrow \frac{21928990223}{647751861900}, \mathrm{a}_{2} \rightarrow \frac{4}{55}, \mathrm{a}_{3} \rightarrow \frac{1}{29}, \mathrm{a}_{4} \rightarrow \frac{2}{51}, \mathrm{a}_{5} \rightarrow \frac{2}{27}, \mathrm{a}_{6} \rightarrow \frac{1}{29}, \mathrm{a}_{7} \rightarrow \frac{1}{75}, \mathrm{a}_{8} \rightarrow \frac{8}{29},\right. \\
& \left.\left.a_{9} \rightarrow \frac{4}{45}, \mathrm{a}_{10} \rightarrow \frac{1}{83}, \mathrm{a}_{11} \rightarrow \frac{9}{41}, \mathrm{ad}_{12} \rightarrow \frac{1}{204}, \mathrm{a}_{13} \rightarrow \frac{1}{348}, \mathrm{a}_{14} \rightarrow \frac{2}{55}, \mathrm{ad}_{15} \rightarrow \frac{2}{39}, \mathrm{a}_{16} \rightarrow \frac{1}{164}\right\}\right\}
\end{aligned}
$$

CSs and CS표 are not ordinally equivalent in the class of cases with two causes and a single effect (they are not I-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\operatorname{CSs}[\mathbb{E}, \mathbb{C} 1] \geq \operatorname{CSs}[\mathbb{E}, \mathbb{C} 2], \operatorname{CS} \mathbb{1}[\mathbb{E}, \mathbb{C} 1]<\operatorname{CS} \mathbb{1}[\mathbb{E}, \mathbb{C} 2]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{\mathrm{an}_{2}, \mathrm{a}_{5}, \mathrm{aa}_{6}, \mathrm{a}_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{\mathrm{am}_{3}, \mathrm{a}_{5}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \mathbb{E} \rightarrow\left\{\mathrm{a}_{4}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \Omega \rightarrow\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}\right\},\right. \\
& \left.\left\{\mathrm{a}_{1} \rightarrow \frac{31048357}{56814408}, \mathrm{a}_{2} \rightarrow \frac{19}{85}, \mathrm{a}_{3} \rightarrow \frac{1}{24}, \mathrm{a}_{4} \rightarrow \frac{1}{10}, \mathrm{a}_{5} \rightarrow \frac{1}{19}, \mathrm{a}_{6} \rightarrow \frac{1}{38}, \mathrm{a}_{7} \rightarrow \frac{1}{126}, \mathrm{a}_{8} \rightarrow \frac{1}{698}\right\}\right\}
\end{aligned}
$$

CSs and CSIr are not ordinally equivalent in the class of cases with two effects and a single cause (they are not II-E):
$\operatorname{PrSAT}[\{\operatorname{CSs}[\mathbb{E} 1, \mathbb{C}] \geq \operatorname{CSs}[\mathbb{E} 2, \mathbb{C}], \operatorname{CS} \mathbb{1}[\mathbb{E} 1, \mathbb{C}]<\operatorname{CS} \mathbb{1}[\mathbb{E} 2, \mathbb{C}]\}$, Probabilities \rightarrow Regular $]$

$$
\begin{aligned}
& \left\{\left\{\mathbb{C} \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{E} 1 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{18735952583407}{74400225940586}, a_{2} \rightarrow \frac{1}{988}, a_{3} \rightarrow \frac{20}{59}, a_{4} \rightarrow \frac{1}{116}, a_{5} \rightarrow \frac{9}{34}, a_{6} \rightarrow \frac{1}{223}, a_{7} \rightarrow \frac{1}{749}, a_{8} \rightarrow \frac{4}{31}\right\}\right\}
\end{aligned}
$$

- Suppes \& Good

CSs and CSiíj are not ordinally equivalent in general (they are not $\mathrm{G}-\mathrm{E}$):

$$
\begin{aligned}
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{\mathrm{al}_{2}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}, \mathrm{a}_{12}, \mathrm{a}_{13}, \mathrm{a}_{14}, \mathrm{a}_{16}\right\}, \mathbb{C} 2 \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{6}, \mathrm{a}_{9}, \mathrm{a}_{10}, \mathrm{a}_{12}, \mathrm{a}_{13}, \mathrm{a}_{15}, \mathrm{a}_{16}\right\},\right.\right. \\
& \mathbb{E} 1 \rightarrow\left\{a_{4}, a_{7}, a_{9}, a_{11}, a_{12}, a_{14}, a_{15}, a_{16}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{5}, a_{8}, a_{10}, a_{11}, a_{13}, a_{14}, a_{15}, a_{16}\right\}, \\
& \left.\Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}\right\}\right\}, \\
& \left\{a_{1} \rightarrow \frac{10538490604381}{40767510250630800}, a_{2} \rightarrow \frac{5}{42}, a_{3} \rightarrow \frac{1}{999}, a_{4} \rightarrow \frac{5}{42}, a_{5} \rightarrow \frac{1}{999}, a_{6} \rightarrow \frac{26}{69}, a_{7} \rightarrow \frac{3}{62}, a_{8} \rightarrow \frac{7}{43},\right. \\
& \left.\left.a_{9} \rightarrow \frac{1}{700}, a_{10} \rightarrow \frac{1}{999}, a_{11} \rightarrow \frac{5}{37}, a_{12} \rightarrow \frac{1}{34}, a_{13} \rightarrow \frac{1}{999}, a_{14} \rightarrow \frac{1}{956}, a_{15} \rightarrow \frac{1}{624}, a_{16} \rightarrow \frac{1}{972}\right\}\right\}
\end{aligned}
$$

CSs and CSiij are not ordinally equivalent in the class of cases with two causes and a single effect (they are not I-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\mathbf{C S s}[\mathbb{E}, \mathbb{C} 1] \geq \mathbf{C S s}[\mathbb{E}, \mathbb{C} 2], \operatorname{CSi} \dot{j}[\mathbb{E}, \mathbb{C} 1]<\mathbf{C S i} \dot{j}[\mathbb{E}, \mathbb{C} 2]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{183180441981}{766827368230}, a_{2} \rightarrow \frac{1}{211}, a_{3} \rightarrow \frac{1}{19}, a_{4} \rightarrow \frac{1}{22}, a_{5} \rightarrow \frac{3}{35}, a_{6} \rightarrow \frac{1}{109}, a_{7} \rightarrow \frac{8}{43}, a_{8} \rightarrow \frac{20}{53}\right\}\right\}
\end{aligned}
$$

CSs and CSiij are not ordinally equivalent in the class of cases with two effects and a single cause (they are not II-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\mathbf{C S s}[\mathbb{E} 1, \mathbb{C}] \geq \mathbf{C S s}[\mathbb{E} 2, \mathbb{C}], \operatorname{CSi} \dot{j}[\mathbb{E} 1, \mathbb{C}]<\mathbf{C S i} \dot{j}[\mathbb{E} 2, \mathbb{C}]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{E} 1 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{36642643319}{113226380280}, a_{2} \rightarrow \frac{1}{65}, a_{3} \rightarrow \frac{1}{999}, a_{4} \rightarrow \frac{5}{54}, a_{5} \rightarrow \frac{1}{158}, a_{6} \rightarrow \frac{9}{89}, a_{7} \rightarrow \frac{1}{120}, a_{8} \rightarrow \frac{14}{31}\right\}\right\}
\end{aligned}
$$

- Galton \& Cheng

$\mathbf{C S} g$ and $\mathbf{C S} \mathbb{C}$ are not ordinally equivalent in general (they are not $\mathrm{G}-\mathrm{E}$):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\operatorname{CS} \mathscr{G}[\mathbb{E} 1, \mathbb{C} 1] \geq \operatorname{CS} \mathfrak{g}[\mathbb{E} 2, \mathbb{C} 2], \operatorname{CS} \mathbb{C}[\mathbb{E} 1, \mathbb{C} 1]<\operatorname{CS} \mathbb{C}[\mathbb{E} 2, \mathbb{C} 2]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{\mathrm{a}_{2}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}, \mathrm{a}_{12}, \mathrm{a}_{13}, \mathrm{a}_{14}, \mathrm{a}_{16}\right\}, \mathbb{C} 2 \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{6}, \mathrm{a}_{9}, \mathrm{a}_{10}, \mathrm{a}_{12}, \mathrm{a}_{13}, \mathrm{a}_{15}, \mathrm{a}_{16}\right\},\right.\right. \\
& \mathbb{E} 1 \rightarrow\left\{a_{4}, a_{7}, a_{9}, a_{11}, a_{12}, a_{14}, a_{15}, a_{16}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{5}, a_{8}, a_{10}, a_{11}, a_{13}, a_{14}, a_{15}, a_{16}\right\}, \\
& \left.\Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}\right\}\right\}, \\
& \left\{a_{1} \rightarrow \frac{16352691536717}{56256292461600}, a_{2} \rightarrow \frac{1}{84}, a_{3} \rightarrow \frac{3}{74}, a_{4} \rightarrow \frac{1}{59}, a_{5} \rightarrow \frac{1}{28}, a_{6} \rightarrow \frac{5}{32}, a_{7} \rightarrow \frac{5}{84}, a_{8} \rightarrow \frac{1}{84},\right. \\
& \left.\left.\mathrm{a}_{9} \rightarrow \frac{1}{400}, \mathrm{a}_{10} \rightarrow \frac{2}{15}, \mathrm{a}_{11} \rightarrow \frac{1}{423}, \mathrm{a}_{12} \rightarrow \frac{3}{77}, \mathrm{a}_{13} \rightarrow \frac{1}{23}, \mathrm{a}_{14} \rightarrow \frac{1}{344}, \mathrm{a}_{15} \rightarrow \frac{1}{77}, \mathrm{a}_{16} \rightarrow \frac{7}{50}\right\}\right\}
\end{aligned}
$$

$\mathbf{C S} \mathbb{g}$ and $\mathbf{C S} \mathbb{C}$ are not ordinally equivalent in the class of cases with two causes and a single effect (they are not I-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\mathbf{C S} \mathbb{G}[\mathbb{E}, \mathbb{C} 1] \geq \mathbf{C S} \mathbb{G}[\mathbb{E}, \mathbb{C} 2], \mathbf{C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 1]<\mathbf{C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 2]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{\mathrm{a}_{2}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{5}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \mathbb{E} \rightarrow\left\{\mathrm{a}_{4}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \Omega \rightarrow\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}\right\},\right. \\
& \left.\left\{\mathrm{a}_{1} \rightarrow \frac{106387}{345950}, \mathrm{a}_{2} \rightarrow \frac{1}{25}, \mathrm{a}_{3} \rightarrow \frac{1}{12}, \mathrm{a}_{4} \rightarrow \frac{14}{33}, \mathrm{a}_{5} \rightarrow \frac{1}{11}, \mathrm{a}_{6} \rightarrow \frac{1}{148}, \mathrm{a}_{7} \rightarrow \frac{1}{22}, \mathrm{a}_{8} \rightarrow \frac{1}{561}\right\}\right\}
\end{aligned}
$$

$\mathbf{C S} \mathbb{g}$ and $\mathbf{C S} \mathbb{C}$ are not ordinally equivalent in the class of cases with two effects and a single cause (they are not II-E):
$\operatorname{PrSAT}[\{\operatorname{CS} \mathscr{G}[\mathbb{E} 1, \mathbb{C}] \geq \operatorname{CS} \mathbb{C}[\mathbb{E} 2, \mathbb{C}], \operatorname{CS} \mathbb{C}[\mathbb{E} 1, \mathbb{C}]<\operatorname{CS} \mathbb{C}[\mathbb{E} 2, \mathbb{C}]\}$, Probabilities \rightarrow Regular $]$

$$
\begin{aligned}
& \left\{\left\{\mathbb{C} \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{E} 1 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{73624}{209715}, a_{2} \rightarrow \frac{1}{41}, a_{3} \rightarrow \frac{1}{41}, a_{4} \rightarrow \frac{14}{55}, a_{5} \rightarrow \frac{1}{124}, a_{6} \rightarrow \frac{5}{41}, a_{7} \rightarrow \frac{1}{31}, a_{8} \rightarrow \frac{11}{60}\right\}\right\}
\end{aligned}
$$

- Galton \& Lewis Ratio

$\mathbf{C S} \mathbb{g}$ and $\mathbf{C S} \mathbb{1} \mathbb{r}$ are not ordinally equivalent in general (they are not $\mathrm{G}-\mathrm{E}$):

$$
\begin{aligned}
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{a_{2}, a_{6}, a_{7}, a_{8}, a_{12}, a_{13}, a_{14}, a_{16}\right\}, \mathbb{C} 2 \rightarrow\left\{a_{3}, a_{6}, a_{9}, a_{10}, a_{12}, a_{13}, a_{15}, a_{16}\right\},\right.\right. \\
& \mathbb{E} 1 \rightarrow\left\{a_{4}, a_{7}, a_{9}, a_{11}, a_{12}, a_{14}, a_{15}, a_{16}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{5}, a_{8}, a_{10}, a_{11}, a_{13}, a_{14}, a_{15}, a_{16}\right\}, \\
& \left.\Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}\right\}\right\}, \\
& \left\{a_{1} \rightarrow \frac{1421801290792405981}{4737362510908510560}, a_{2} \rightarrow \frac{1}{30}, a_{3} \rightarrow \frac{1}{827}, a_{4} \rightarrow \frac{7}{36}, a_{5} \rightarrow \frac{1}{186}, a_{6} \rightarrow \frac{1}{864}, a_{7} \rightarrow \frac{13}{62},\right. \\
& \left.\left.a_{8} \rightarrow \frac{1}{482}, a_{9} \rightarrow \frac{1}{30}, a_{10} \rightarrow \frac{7}{54}, a_{11} \rightarrow \frac{1}{392}, a_{12} \rightarrow \frac{3}{55}, a_{13} \rightarrow \frac{1}{417}, a_{14} \rightarrow \frac{1}{368}, a_{15} \rightarrow \frac{1}{412}, a_{16} \rightarrow \frac{1}{40}\right\}\right\}
\end{aligned}
$$

$\mathbf{C S} \mathbb{g}$ and $\mathbf{C S} \mathbb{1} \mathbb{r}$ are not ordinally equivalent in the class of cases with two causes and a single effect (they are not I-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\operatorname{CS} \mathbb{G}[\mathbb{E}, \mathbb{C} 1] \geq \operatorname{CS} \mathbb{G}[\mathbb{E}, \mathbb{C} 2], \operatorname{CS} \mathbb{1}[\mathbb{E}, \mathbb{C} 1]<\operatorname{CS} \mathbb{1}[\mathbb{E}, \mathbb{C} 2]\}, \text { Probabilities } \rightarrow \text { Regular }]
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left\{a_{1} \rightarrow \frac{101643217}{234554100}, a_{2} \rightarrow \frac{5}{33}, a_{3} \rightarrow \frac{1}{678}, a_{4} \rightarrow \frac{2}{25}, a_{5} \rightarrow \frac{1}{660}, a_{6} \rightarrow \frac{7}{37}, a_{7} \rightarrow \frac{7}{85}, a_{8} \rightarrow \frac{2}{33}\right\}\right\}
\end{aligned}
$$

$\mathbf{C S} \mathbb{g}$ and $\mathbf{C S I I}$ re are not ordinally equivalent in the class of cases with two effects and a single cause (they are not II-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\mathbf{C S} \mathbb{G}[\mathbb{E} 1, \mathbb{C}] \geq \mathbf{C S} \mathbb{C}[\mathbb{E}, \mathbb{C}], \operatorname{CS} \mathbb{1}[\mathbb{E} 1, \mathbb{C}]<\mathbf{C S} \mathbb{1}[\mathbb{E} \mathbf{2}, \mathbb{C}]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{E} 1 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{1417850087}{4609269280}, a_{2} \rightarrow \frac{1}{29}, a_{3} \rightarrow \frac{1}{11}, a_{4} \rightarrow \frac{1}{582}, a_{5} \rightarrow \frac{11}{60}, a_{6} \rightarrow \frac{3}{49}, a_{7} \rightarrow \frac{1}{32}, a_{8} \rightarrow \frac{11}{38}\right\}\right\}
\end{aligned}
$$

- Galton \& Good

$\mathbf{C S g}$ and CSii \mathbf{j} are not ordinally equivalent in general (they are not G-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\operatorname{CS} \mathbb{G}[\mathbb{E} 1, \mathbb{C} 1] \geq \operatorname{CS} \mathfrak{g}[\mathbb{E} 2, \mathbb{C} 2], \operatorname{CS} \dot{1} \dot{j}[\mathbb{E} 1, \mathbb{C} 1]<\operatorname{CSij} \dot{j}[\mathbb{E} 2, \mathbb{C} 2]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{\mathrm{al}_{2}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}, \mathrm{a}_{12}, \mathrm{a}_{13}, \mathrm{a}_{14}, \mathrm{a}_{16}\right\}, \mathbb{C} 2 \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{6}, \mathrm{a}_{9}, \mathrm{a}_{10}, \mathrm{a}_{12}, \mathrm{al}_{13}, \mathrm{a}_{15}, \mathrm{a}_{16}\right\},\right.\right. \\
& \mathbb{E} 1 \rightarrow\left\{\mathrm{al}_{4}, \mathrm{al}_{7}, \mathrm{al}_{9}, \mathrm{al}_{11}, \mathrm{al}_{12}, \mathrm{al}_{14}, \mathrm{al}_{15}, \mathrm{al}_{16}\right\}, \mathbb{E} 2 \rightarrow\left\{\mathrm{al}_{5}, \mathrm{al}_{8}, \mathrm{al}_{10}, \mathrm{al}_{11}, \mathrm{al}_{13}, \mathrm{al}_{14}, \mathrm{al}_{15}, \mathrm{al}_{16}\right\}, \\
& \left.\Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}\right\}\right\}, \\
& \left\{a_{1} \rightarrow \frac{1489965617368492451701}{3639223726139996794800}, a_{2} \rightarrow \frac{1}{590}, a_{3} \rightarrow \frac{11}{164}, a_{4} \rightarrow \frac{11}{164}, a_{5} \rightarrow \frac{1}{432}, a_{6} \rightarrow \frac{14}{151}, a_{7} \rightarrow \frac{9}{154},\right. \\
& \left.\left.a_{8} \rightarrow \frac{21}{200}, a_{9} \rightarrow \frac{1}{52}, a_{10} \rightarrow \frac{3}{151}, a_{11} \rightarrow \frac{4}{109}, a_{12} \rightarrow \frac{3}{83}, a_{13} \rightarrow \frac{1}{22}, a_{14} \rightarrow \frac{1}{253}, a_{15} \rightarrow \frac{2}{103}, a_{16} \rightarrow \frac{2}{129}\right\}\right\}
\end{aligned}
$$

$\mathbf{C S} \boldsymbol{g}$ and CSii \boldsymbol{j} are not ordinally equivalent in the class of cases with two causes and a single effect (they are not I-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\mathbf{C S} \mathbb{G}[\mathbb{E}, \mathbb{C} 1] \geq \mathbf{C S} \mathbb{G}[\mathbb{E}, \mathbb{C} 2], \operatorname{CSi} \dot{j}[\mathbb{E}, \mathbb{C} 1]<\mathbf{C S i} j[\mathbb{E}, \mathbb{C} 2]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{82557216031}{174544966524}, a_{2} \rightarrow \frac{5}{24}, a_{3} \rightarrow \frac{1}{129}, a_{4} \rightarrow \frac{1}{632}, a_{5} \rightarrow \frac{1}{233}, a_{6} \rightarrow \frac{3}{17}, a_{7} \rightarrow \frac{4}{47}, a_{8} \rightarrow \frac{1}{23}\right\}\right\}
\end{aligned}
$$

$\mathbf{C S} \boldsymbol{g}$ and CSiíi are not ordinally equivalent in the class of cases with two effects and a single cause (they are not II-E):
$\operatorname{PrSAT}[\{\operatorname{CS} \mathbb{G}[\mathbb{E} 1, \mathbb{C}] \geq \operatorname{CS} \mathscr{G}[\mathbb{E} 2, \mathbb{C}], \operatorname{CSi} \dot{1}[\mathbb{E} 1, \mathbb{C}]<\operatorname{CS} \dot{1} \dot{j}[\mathbb{E} 2, \mathbb{C}]\}$, Probabilities \rightarrow Regular $]$

$$
\begin{aligned}
& \left\{\left\{\mathbb{C} \rightarrow\left\{\mathrm{am}_{2}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{8}\right\}, \mathbb{E} 1 \rightarrow\left\{\mathrm{al}_{3}, \mathrm{a}_{5}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \mathbb{E} 2 \rightarrow\left\{\mathrm{a}_{4}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \Omega \rightarrow\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{al}_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{156979}{608304}, a_{2} \rightarrow \frac{4}{19}, a_{3} \rightarrow \frac{2}{23}, a_{4} \rightarrow \frac{3}{29}, a_{5} \rightarrow \frac{1}{16}, a_{6} \rightarrow \frac{3}{38}, a_{7} \rightarrow \frac{1}{24}, a_{8} \rightarrow \frac{3}{19}\right\}\right\}
\end{aligned}
$$

- Cheng \& Lewis Ratio
$\mathbf{C S} \mathbb{C}$ and CS표 \mathfrak{r} are not ordinally equivalent in general (they are not $\mathrm{G}-\mathrm{E}$):

$$
\begin{aligned}
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{\mathrm{ab}_{2}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}, \mathrm{a}_{12}, \mathrm{a}_{13}, \mathrm{a}_{14}, \mathrm{a}_{16}\right\}, \mathbb{C} 2 \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{6}, \mathrm{a}_{9}, \mathrm{a}_{10}, \mathrm{a}_{12}, \mathrm{al}_{13}, \mathrm{a}_{15}, \mathrm{a}_{16}\right\},\right.\right. \\
& \mathbb{E} 1 \rightarrow\left\{a_{4}, a_{7}, a_{9}, a_{11}, a_{12}, a_{14}, a_{15}, a_{16}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{5}, a_{8}, a_{10}, a_{11}, a_{13}, a_{14}, a_{15}, a_{16}\right\}, \\
& \left.\Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}\right\}\right\}, \\
& \left\{a_{1} \rightarrow \frac{71659914453187427}{730589028241010400}, a_{2} \rightarrow \frac{1}{999}, a_{3} \rightarrow \frac{1}{517}, a_{4} \rightarrow \frac{3}{25}, a_{5} \rightarrow \frac{1}{989}, a_{6} \rightarrow \frac{1}{999}, a_{7} \rightarrow \frac{3}{14},\right. \\
& \left.\left.\mathrm{a}_{8} \rightarrow \frac{1}{999}, \mathrm{al}_{9} \rightarrow \frac{10}{53}, \mathrm{a}_{10} \rightarrow \frac{19}{94}, \mathrm{a}_{11} \rightarrow \frac{1}{999}, \mathrm{a}_{12} \rightarrow \frac{5}{61}, \mathrm{a}_{13} \rightarrow \frac{1}{999}, \mathrm{a}_{14} \rightarrow \frac{1}{96}, \mathrm{a}_{15} \rightarrow \frac{1}{79}, \mathrm{ad}_{16} \rightarrow \frac{3}{47}\right\}\right\}
\end{aligned}
$$

$\mathbf{C S} \mathbb{C}$ and CSㅛㅛ are not ordinally equivalent in the class of cases with two causes and a single effect (they are not I-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\mathbf{C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 1] \geq \mathbf{C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 2], \operatorname{CS} \mathbb{1}[\mathbb{E}, \mathbb{C} 1]<\mathbf{C S} \mathbb{1}[\mathbb{E}, \mathbb{C} 2]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{3229633}{11888100}, a_{2} \rightarrow \frac{1}{72}, a_{3} \rightarrow \frac{11}{50}, a_{4} \rightarrow \frac{1}{840}, a_{5} \rightarrow \frac{1}{999}, a_{6} \rightarrow \frac{1}{153}, a_{7} \rightarrow \frac{1}{5}, a_{8} \rightarrow \frac{2}{7}\right\}\right\}
\end{aligned}
$$

$\mathbf{C S} \mathbb{C}$ and CSIIr are not ordinally equivalent in the class of cases with two effects and a single cause (they are not II-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\mathbf{C S} \mathbb{C}[\mathbb{E} 1, \mathbb{C}] \geq \mathbf{C S} \mathbb{C}[\mathbb{E} 2, \mathbb{C}], \operatorname{CS} \mathbb{1}[\mathbb{E} 1, \mathbb{C}]<\mathbf{C S} \mathbb{1} \mathbb{r}[\mathbb{E} 2, \mathbb{C}]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{E} 1 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{1417850087}{4609269280}, a_{2} \rightarrow \frac{1}{29}, a_{3} \rightarrow \frac{1}{11}, a_{4} \rightarrow \frac{1}{582}, a_{5} \rightarrow \frac{11}{60}, a_{6} \rightarrow \frac{3}{49}, a_{7} \rightarrow \frac{1}{32}, a_{8} \rightarrow \frac{11}{38}\right\}\right\}
\end{aligned}
$$

- Cheng \& Good

$\mathbf{C S} \mathbb{C}$ and CSiij are ordinally equivalent in general (they are G-E):

PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

- Lewis Ratio \& Good

CSIr and CSiij are not ordinally equivalent in general (they are not G-E):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{C S \mathbb{1} \mathbb{r}[\mathbb{E} 1, \mathbb{C} 1] \geq \operatorname{CS} \mathbb{1} \mathbb{C}[\mathbb{E} 2, \mathbb{C} 2], \operatorname{CSi} \dot{\mathbb{y}}[\mathbb{E} 1, \mathbb{C} 1]<\operatorname{CSi} \dot{j}[\mathbb{E} 2, \mathbb{C} 2]\}, \text { Probabilities } \rightarrow \operatorname{Regular}] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{a_{2}, a_{6}, a_{7}, a_{8}, a_{12}, a_{13}, a_{14}, a_{16}\right\}, \mathbb{C} 2 \rightarrow\left\{a_{3}, a_{6}, a_{9}, a_{10}, a_{12}, a_{13}, a_{15}, a_{16}\right\},\right.\right. \\
& \mathbb{E} 1 \rightarrow\left\{a_{4}, a_{7}, a_{9}, a_{11}, a_{12}, a_{14}, a_{15}, a_{16}\right\}, \mathbb{E} 2 \rightarrow\left\{a_{5}, a_{8}, a_{10}, a_{11}, a_{13}, a_{14}, a_{15}, a_{16}\right\}, \\
& \left.\Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, a_{11}, a_{12}, a_{13}, a_{14}, a_{15}, a_{16}\right\}\right\}, \\
& \left\{a_{1} \rightarrow \frac{1927075715645624223873}{6545193215139594055040}, a_{2} \rightarrow \frac{1}{68}, a_{3} \rightarrow \frac{1}{986}, a_{4} \rightarrow \frac{1}{640}, a_{5} \rightarrow \frac{2}{33}, a_{6} \rightarrow \frac{1}{139}, a_{7} \rightarrow \frac{3}{35},\right. \\
& \text { al } \left.\left._{8} \rightarrow \frac{3}{56}, \text { ang }_{9} \rightarrow \frac{1}{985}, \text { al }_{10} \rightarrow \frac{1}{71}, \text { al }_{11} \rightarrow \frac{1}{998}, \text { al }_{12} \rightarrow \frac{1}{521}, \text { al }_{13} \rightarrow \frac{7}{52}, \text { al }_{14} \rightarrow \frac{5}{56}, \text { al }_{15} \rightarrow \frac{1}{132}, \text { al }_{16} \rightarrow \frac{19}{82}\right\}\right\}
\end{aligned}
$$

CS표 \mathfrak{r} and CSíi are not ordinally equivalent in the class of cases with two causes and a single effect (they are not $\mathrm{I}-\mathrm{E}$):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\mathbf{C S} \mathbb{1} \mathbb{r}[\mathbb{E}, \mathbb{C} 1] \geq \mathbf{C S} \mathbb{1}[\mathbb{E}, \mathbb{C} 2], \mathbf{C S} \dot{1} \dot{y}[\mathbb{E}, \mathbb{C} 1]<\mathbf{C S} \dot{1} \dot{y}[\mathbb{E}, \mathbb{C} 2]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{50912868509}{162069276936}, a_{2} \rightarrow \frac{16}{97}, a_{3} \rightarrow \frac{1}{24}, a_{4} \rightarrow \frac{1}{86}, a_{5} \rightarrow \frac{3}{47}, a_{6} \rightarrow \frac{9}{38}, a_{7} \rightarrow \frac{14}{111}, a_{8} \rightarrow \frac{2}{49}\right\}\right\}
\end{aligned}
$$

CSIㅛ and CSiij are not ordinally equivalent in the class of cases with two effects and a single cause (they are not II-E):
$12 \mid p m c s . n b$

- Continuity Property Verification (Table 5)

In this section, we verify the continuity properties of all the measures, as reported in Table 5 of the paper (again, using PrSAT, as above so if a model is found, then it is a counterexample to the salient continuity property, and if no models are found, then the salient continuity property holds generally in that case).

- Causation-Prevention Continuity (CPC)

Eells

$\operatorname{PrSAT}[\{\mathrm{CSe}[\mathbf{y}, \mathrm{X}] \neq-\mathrm{CSe}[-\mathbf{y}, \mathrm{X}]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}

Suppes

$\operatorname{PrSAT}[\{\operatorname{CSs}[\mathbf{Y}, \mathrm{X}] \neq-\mathbf{C S s}[\neg \mathbf{Y}, \mathrm{X}]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}

Galton

$\operatorname{PrSAT}[\{\operatorname{CSg}[\mathbf{Y}, \mathrm{x}] \neq-\operatorname{CSg}[\urcorner \mathbf{y}, \mathrm{X}]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}

Cheng

$\operatorname{PrSAT}[\{\operatorname{CS} \mathbb{C}[\mathbf{Y}, \mathrm{X}] \neq-\mathbf{C S} \mathbb{C}[\neg \mathbf{Y}, \mathrm{X}]\}, \operatorname{Probabilities} \rightarrow$ Regular $]$
$\left\{\left\{X \rightarrow\left\{a_{2}, a_{4}\right\}, Y \rightarrow\left\{a_{3}, a_{4}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}\right\},\left\{a_{1} \rightarrow \frac{7510271}{14910716}, a_{2} \rightarrow \frac{1}{943}, a_{3} \rightarrow \frac{1}{268}, a_{4} \rightarrow \frac{29}{59}\right\}\right\}$

Lewis Ratio (first rescaling)

$\operatorname{PrSAT}[\{C S \mathbb{I} \mathbb{1}[\mathrm{Y}, \mathrm{X}] \neq-\operatorname{CS} \mathbb{1} \mathbb{r} 1[\neg \mathrm{Y}, \mathrm{X}]\}$, Probabilities \rightarrow Regular $]$

$$
\left\{\left\{X \rightarrow\left\{\mathrm{am}_{2}, \mathrm{a}_{4}\right\}, \mathrm{Y} \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{4}\right\}, \Omega \rightarrow\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\right\}\right\},\left\{\mathrm{am}_{1} \rightarrow \frac{997}{1998}, \mathrm{a}_{2} \rightarrow \frac{1}{4}, \mathrm{a}_{3} \rightarrow \frac{1}{999}, \mathrm{a}_{4} \rightarrow \frac{1}{4}\right\}\right\}
$$

Lewis Ratio (second rescaling)

```
PrSAT[{CS\mathbb{Ir}2[Y, X] f - CS\mathbb{1r}2[\neg Y , X]}, Probabilities -> Regular]
```


Good (first rescaling)

```
PrSAT[{CSiì1[Y, X] f - CSìj1[\neg Y , X] }, Probabilities -> Regular]
```

$$
\left\{\left\{\mathrm{X} \rightarrow\left\{\mathrm{a}_{2}, \mathrm{a}_{4}\right\}, \mathrm{Y} \rightarrow\left\{\mathrm{ad}_{3}, \mathrm{a}_{4}\right\}, \Omega \rightarrow\left\{\mathrm{ad}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{am}_{4}\right\}\right\},\left\{\mathrm{a}_{1} \rightarrow \frac{505481}{1010988}, \mathrm{a}_{2} \rightarrow \frac{63}{253}, \mathrm{a}_{3} \rightarrow \frac{1}{999}, \mathrm{a}_{4} \rightarrow \frac{1}{4}\right\}\right\}
$$

Good (second rescaling)

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\text { CSi } \dot{\mathrm{j}} \mathbf{2}[\mathbf{Y}, \mathrm{X}] \neq-\mathbf{C S} \dot{\mathrm{i}} \dot{\mathrm{j}} 2[\neg \mathbf{Y}, \mathrm{X}]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{X \rightarrow\left\{\mathrm{a}_{2}, \mathrm{a}_{4}\right\}, \mathrm{Y} \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{4}\right\}, \Omega \rightarrow\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\right\}\right\},\left\{\mathrm{a}_{1} \rightarrow \frac{119333}{244790}, \mathrm{a}_{2} \rightarrow \frac{1}{910}, \mathrm{a}_{3} \rightarrow \frac{1}{269}, \mathrm{a}_{4} \rightarrow \frac{33}{65}\right\}\right\}
\end{aligned}
$$

- Causation-Omission Continuity (COC)

Eells

```
PrSAT[{CSe[Y, X] # - CSe[Y, - X]}, Probabilities }->\mathrm{ Regular]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}
\{ \}

Suppes

$\operatorname{PrSAT}[\{\mathbf{C S s}[\mathbf{Y}, \mathrm{X}] \neq-\mathrm{CSs}[\mathrm{Y}, \quad \mathrm{X}]\}$, Probabilities \rightarrow Regular]
$\left\{\left\{X \rightarrow\left\{\mathrm{ad}_{2}, \mathrm{ad}_{4}\right\}, \mathrm{Y} \rightarrow\left\{\mathrm{am}_{3}, \mathrm{ad}_{4}\right\}, \Omega \rightarrow\left\{\mathrm{al}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{ad}_{4}\right\}\right\},\left\{\mathrm{a}_{1} \rightarrow \frac{9896}{46953}, \mathrm{ad}_{2} \rightarrow \frac{1}{999}, \mathrm{a}_{3} \rightarrow \frac{1}{999}, \mathrm{ad}_{4} \rightarrow \frac{37}{47}\right\}\right\}$
Galton
$\operatorname{PrSAT}[\{\operatorname{CSg}[\mathbf{Y}, \mathrm{X}] \neq-\operatorname{CSg}[\mathbf{Y}, \quad \mathrm{X}]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}
Cheng
$\operatorname{PrSAT}[\{\operatorname{CS} \mathbb{C}[\mathbf{Y}, \mathrm{X}] \neq-\mathbf{C S} \mathbb{C}[\mathbf{Y}, \neg \mathrm{X}]\}$, Probabilities \rightarrow Regular $]$
$\left\{\left\{X \rightarrow\left\{\mathrm{ad}_{2}, \mathrm{ad}_{4}\right\}, \mathrm{Y} \rightarrow\left\{\mathrm{am}_{3}, \mathrm{a}_{4}\right\}, \Omega \rightarrow\left\{\mathrm{ad}_{1}, \mathrm{ad}_{2}, \mathrm{ad}_{3}, \mathrm{a}_{4}\right\}\right\},\left\{\mathrm{al}_{1} \rightarrow \frac{1}{300}, \mathrm{ad}_{2} \rightarrow \frac{29}{60}, \mathrm{ad}_{3} \rightarrow \frac{12}{25}, \mathrm{a}_{4} \rightarrow \frac{1}{30}\right\}\right\}$

Lewis Ratio (first rescaling)

```
PrSAT[{CS\mathbb{rr}1[Y, X] # - CS\mathbb{lr}1[Y, ᄀX]}]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}

Lewis Ratio (second rescaling)

$$
\begin{aligned}
& \operatorname{PrSAT}[\{C S \mathbb{I} \mathbf{r} 2[\mathbf{Y}, \mathrm{X}] \neq-\operatorname{CS} \mathbb{I} \mathbf{r} \mathbf{2}[\mathbf{Y}, \neg \mathrm{X}]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{\mathrm{X} \rightarrow\left\{\mathrm{a}_{2}, \mathrm{a}_{4}\right\}, \mathrm{Y} \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{4}\right\}, \Omega \rightarrow\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\right\}\right\},\left\{\mathrm{a}_{1} \rightarrow \frac{22266503}{44695430}, \mathrm{a}_{2} \rightarrow \frac{1}{998}, \mathrm{a}_{3} \rightarrow \frac{1}{265}, \mathrm{a}_{4} \rightarrow \frac{84}{169}\right\}\right\}
\end{aligned}
$$

Good (first rescaling)

```
PrSAT[{CSi̇j1[Y, X] # - CSíij1[Y, ᄀX]}]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}
Good (second rescaling)

14 | pmcs.nb

- Causation = Prevention By Omission Continuity (CPO)

Eells

$\operatorname{PrSAT}[\{\operatorname{CSe}[\mathrm{Y}, \mathrm{X}] \neq \operatorname{CSe}[\neg \mathbf{Y}, \neg \mathrm{X}]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}

Suppes

$\operatorname{PrSAT}[\{C S s[\mathbf{Y}, \mathrm{X}] \neq \operatorname{CSs}[\neg \mathbf{Y}, \neg \mathrm{X}]\}$, Probabilities \rightarrow Regular]
$\left\{\left\{X \rightarrow\left\{a_{2}, a_{4}\right\}, Y \rightarrow\left\{a_{3}, a_{4}\right\}, \Omega \rightarrow\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\right\}\right\},\left\{\mathrm{a}_{1} \rightarrow \frac{1105}{892107}, \mathrm{a}_{2} \rightarrow \frac{37}{47}, \mathrm{a}_{3} \rightarrow \frac{4}{19}, \mathrm{a}_{4} \rightarrow \frac{1}{999}\right\}\right\}$

Galton

$\operatorname{PrSAT}[\{\operatorname{CSg}[\mathbf{Y}, \mathrm{X}] \neq \operatorname{CSg}[\neg \mathbf{Y}, \quad \mathrm{X}]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}

Cheng

$\operatorname{PrSAT}[\{\operatorname{CS} \mathbb{C}[\mathrm{Y}, \mathrm{X}] \neq \operatorname{CS} \mathbb{C}[\neg \mathrm{Y}, \neg \mathrm{X}]\}$, Probabilities \rightarrow Regular $]$
$\left\{\left\{X \rightarrow\left\{a_{2}, a_{4}\right\}, Y \rightarrow\left\{a_{3}, a_{4}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}\right\},\left\{a_{1} \rightarrow \frac{995}{3996}, a_{2} \rightarrow \frac{1}{999}, a_{3} \rightarrow \frac{1}{4}, a_{4} \rightarrow \frac{1}{2}\right\}\right\}$

Lewis Ratio (first rescaling)

$\operatorname{PrSAT}[\{C S \mathbb{1} \mathbb{1}[\mathbf{Y}, \mathrm{X}] \neq \operatorname{CS} \mathbb{1} \mathbb{r}[\neg \mathbf{Y}, \neg \mathrm{X}]\}]$

$$
\left\{\left\{\mathrm{X} \rightarrow\left\{\mathrm{a}_{2}, \mathrm{a}_{4}\right\}, \mathrm{Y} \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{4}\right\}, \Omega \rightarrow\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\right\}\right\},\left\{\mathrm{a}_{1} \rightarrow \frac{1}{4}, \mathrm{a}_{2} \rightarrow 0, \mathrm{a}_{3} \rightarrow \frac{1}{4}, \mathrm{a}_{4} \rightarrow \frac{1}{2}\right\}\right\}
$$

Lewis Ratio (second rescaling)

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\operatorname{CS} \mathbb{1 r} \mathbf{2}[\mathbf{Y}, \mathbf{X}] \neq \operatorname{CS} \mathbb{1} \mathbb{r} 2[\neg \mathbf{Y}, \neg \mathbf{X}]\}, \text { Probabilities } \rightarrow \text { Regular }] \\
& \left\{\left\{X \rightarrow\left\{\mathrm{a}_{2}, \mathrm{a}_{4}\right\}, \mathrm{Y} \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{4}\right\}, \Omega \rightarrow\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\right\}\right\},\left\{\mathrm{a}_{1} \rightarrow \frac{505481}{1010988}, \mathrm{a}_{2} \rightarrow \frac{1}{4}, \mathrm{a}_{3} \rightarrow \frac{1}{999}, a_{4} \rightarrow \frac{63}{253}\right\}\right\}
\end{aligned}
$$

Good (first rescaling)

```
PrSAT[{CSiiji [Y, X] = CSiiji [\neg Y , ᄀX]}]
```

$$
\left\{\left\{\mathrm{X} \rightarrow\left\{\mathrm{a}_{2}, \mathrm{a}_{4}\right\}, \mathrm{Y} \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{4}\right\}, \Omega \rightarrow\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\right\}\right\},\left\{\mathrm{a}_{1} \rightarrow \frac{1}{4}, \mathrm{a}_{2} \rightarrow \frac{1}{2}, \mathrm{a}_{3} \rightarrow \frac{1}{4}, \mathrm{a}_{4} \rightarrow 0\right\}\right\}
$$

Good (second rescaling)

$$
\left\{\left\{X \rightarrow\left\{\mathrm{a}_{2}, \mathrm{a}_{4}\right\}, \mathrm{Y} \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{4}\right\}, \Omega \rightarrow\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}\right\}\right\},\left\{\mathrm{a}_{1} \rightarrow \frac{995}{3996}, \mathrm{a}_{2} \rightarrow \frac{1}{2}, \mathrm{a}_{3} \rightarrow \frac{1}{4}, \mathrm{a}_{4} \rightarrow \frac{1}{999}\right\}\right\}
$$

Causal Independence (definitions, and two fundamental properties)

First, we define the various causal independence relations, for the various measures of causal strength:


```
ICS\mathbb{C}[\mathbb{E}-,\mathbb{C1_, \mathbb{C2}]}:=\operatorname{CS}\mathbb{C}[\mathbb{E},\mathbb{C1},\mathbb{C2}]== CS\mathbb{C}[\mathbb{E},\mathbb{C1},\neg\mathbb{C2];}
```


Then, we set-up our background conditions (BACK), which include the following: (i) that $\mathbb{C} 1$ and $\mathbb{C} 2$ are unconditionally probabilistically independent, (ii) that $\mathbb{C} 1$ and $\mathbb{C} 2$ are both positively causally relevant to $\mathbb{E}[i . e$, that $\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 1]>\operatorname{Pr}[\mathbb{E}]$ and $\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 2]>\operatorname{Pr}[\mathbb{E}]]$. Finally, to simplify the searches, we will also assume (as part of $\mathbf{B A C K}$) - without loss of generality in this context $-($ iii) that $\operatorname{Pr}[\mathbb{E} \mid \mathbb{C 1}]=1 / 2$ and $\operatorname{Pr}[\mathbb{E}]=1 / 4$ and that $\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 2]=1 / 2$ and $\operatorname{Pr}[\mathbb{E}]=1 / 4$. This last assumption [which is just a more precise way of asserting (ii)] could be relaxed, but the searches would take much longer to complete.

The following two fundamental properties involving causal Independence judgments are satisfied by all of our measures, given BACK:

- $\quad \operatorname{ICS}(\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2)$ iff $\operatorname{ICS}(\mathbb{E}, \mathbb{C} 2, \mathbb{C} 1)$
[Symmetry of ICS in $\mathbb{C 1}, \mathbb{C} 2]$
- ICS $(\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2)$ iff $\operatorname{ICS}(\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2)=\operatorname{ICS}(\mathbb{E}, \mathbb{C} 1) \quad$ [Equivalence of conditional/unconditional definitions of ICS]

Here are PrSAT-verifications of these fundamental properties (given BACK), for each of our measures of causal strength. First, we define a non-equivalence relation $(\not \equiv)$, to make it easier to assert that a logical equivalence fails to hold:

$$
\begin{aligned}
& \mathbf{p}_{-} \equiv q_{-}:=(p \Rightarrow q) \& \&(q \Rightarrow p) ; \\
& \mathbf{p}_{-} \neq \mathbf{q}_{-}:=\neg p \equiv \mathbf{q}^{2} ;
\end{aligned}
$$

- Eells

Symmetry of ICSe in $\mathbb{C} 1, \mathbb{C} 2$, given BACK:
$\operatorname{PrSAT}[$ bACK $\cup\{\operatorname{ICSe}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \not \equiv \operatorname{ICSe}[\mathbb{E}, \mathbb{C} 2, \mathbb{C} 1]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance \{ \}

Equivalence of conditional/unconditional definitions of ICSe, given BACK:

PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

- Suppes

Symmetry of ICSs in $\mathbb{C} 1, \mathbb{C} 2$, given BACK:

```
PrSAT[BACK\{ICSs[\mathbb{E},\mathbb{C}1,\mathbb{C}2]\not\equivICSs[\mathbb{E},\mathbb{C}2,\mathbb{C}1]}]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}
Equivalence of conditional/unconditional definitions of ICSs, given BACK:

```
PrSAT[BACK U{ICSs[\mathbb{E},\mathbb{C1},\mathbb{C2}]\not\equiv(CSs[\mathbb{E},\mathbb{C1},\mathbb{C}2]==CSs[\mathbb{E},\mathbb{C}1])}]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance

16 |pmcs.nb

Galton

Symmetry of $\mathbf{I C S g}$ in $\mathbb{C} 1, \mathbb{C} 2$, given BACK:

```
PrSAT[BACK U{ICS [\mathbb{E},\mathbb{C}1,\mathbb{C}2]\not\equiv ICSG[\mathbb{E},\mathbb{C}2,\mathbb{C}1]}]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance \{\}

Equivalence of conditional/unconditional definitions of ICSg, given BACK:
$\operatorname{PrSAT}[\mathrm{BACK} \bigcup\{\operatorname{ICS} \mathfrak{g}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \not \equiv(\operatorname{CS} \mathfrak{g}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]==\mathbf{C S} \subseteq[\mathbb{E}, \mathbb{C} 1])\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance \{ \}

- Cheng

Symmetry of ICS \mathbb{C} in $\mathbb{C} 1, \mathbb{C} 2$, given BACK:
$\operatorname{PrSAT}[B A C K \cup\{\operatorname{ICS} \subset[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \equiv \operatorname{ICS} \mathbb{C}[\mathbb{E}, \mathbb{C} 2, \mathbb{C} 1]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance \{\}

Equivalence of conditional/unconditional definitions of ICSg, given BACK:

```
PrSAT[BACK}\cup{ICS\mathbb{C}[\mathbb{E},\mathbb{C}1,\mathbb{C}2]\not\equiv(CS\mathbb{C}[\mathbb{E},\mathbb{C}1,\mathbb{C}2]==\mathbf{CS}\mathbb{C}[\mathbb{E},\mathbb{C}1])}
```

PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

- Lewis Ratio

Symmetry of $\operatorname{ICS} \mathbb{1}$ r in $\mathbb{C} 1, \mathbb{C} 2$, given BACK:
$\operatorname{PrSAT}[B A C K \cup\{\operatorname{ICS} \mathbb{1}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \neq \operatorname{ICS} \mathbb{I r}[\mathbb{E}, \mathbb{C} 2, \mathbb{C} 1]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}
Equivalence of conditional/unconditional definitions of ICSIr , given BACK:
$\operatorname{PrSAT}[B A C K \cup\{I C S \mathbb{I}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \equiv(C S \mathbb{I}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]==\operatorname{CS} \mathbb{I}[\mathbb{E}, \mathbb{C} 1])\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance \{ \}

- Good

Symmetry of ICSi̇i in $\mathbb{C} 1, \mathbb{C} 2$, given BACK:

PrSAT::srchfail : Search phase failed; attempting FindInstance \{\}

Equivalence of conditional/unconditional definitions of ICSiij , given BACK:

PrSAT::srchfail : Search phase failed; attempting FindInstance \{\}

- Agreement on Causal Independence Judgments (Table 6)

In this section, we verify the claims about agreement on independence judgments reported in Table 6 of the paper (using PrSAT, as above).

- Eells \& Suppes

$\mathbf{C S e}$ and CSs agree on all independence judgments (assuming BACK). First, we show that $\mathbf{I C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} \mathbf{2}] \Rightarrow \operatorname{ICSs}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]$, given BACK:

```
PrSAT[BACK\{ICS\mathbb{E}[\mathbb{E},\mathbb{C1, C2], ᄀICSs[\mathbb{E},\mathbb{C}1,\mathbb{C}2]}]}]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance \{\}

Then, we show that $\operatorname{ICSs}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \Rightarrow \operatorname{ICS} \mathbb{E}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]$, given BACK:

```
PrSAT[BACK U{\neg ICS\mathbb{E}[\mathbb{E},\mathbb{C}1,\mathbb{C2}],\operatorname{ICSs}[\mathbb{E},\mathbb{C}1,\mathbb{C}2]}]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

Finally, we show that there are some cases (satisfying BACK) in which CSe and CSs agree that $\mathbb{C} 1$ and $\mathbb{C} 2$ are independent causes of \mathbb{E} (nontriviality):

$$
\begin{aligned}
& \operatorname{PrSAT}\left[\text { BACK } \cup\left\{\mathbf{I C S e}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \mathbf{I C S s}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{Pr}[\mathbb{C} 1]=\frac{\mathbf{1}}{\mathbf{3}}\right\}, \text { Probabilities } \rightarrow \text { Regular }\right] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{391}{876}, a_{2} \rightarrow \frac{61}{438}, a_{3} \rightarrow \frac{10}{73}, a_{4} \rightarrow \frac{1}{876}, a_{5} \rightarrow \frac{2}{73}, a_{6} \rightarrow \frac{37}{438}, a_{7} \rightarrow \frac{6}{73}, a_{8} \rightarrow \frac{6}{73}\right\}\right\}
\end{aligned}
$$

- Eells \& Galton

$\mathbf{C S e}$ and $\mathbf{C S} \mathfrak{g}$ agree on all independence judgments (assuming BACK). First, we show that $\mathbf{I C S e}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \Rightarrow \operatorname{ICS} \mathbb{G}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]$, given BACK:
$\operatorname{PrSAT}[B A C K \cup\{\operatorname{ICSe}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], ~ \neg \operatorname{ICS} g[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}

Then, we show that $\operatorname{ICS} \mathfrak{G}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \Rightarrow \operatorname{ICS} \mathbb{E}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]$, given BACK:
$\operatorname{PrSAT}[B A C K \cup\{\neg \operatorname{ICS} \mathbb{E}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{ICS} \mathbb{G}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}
Finally, we show that there are some cases (satisfying BACK) in which $\mathbf{C S e}$ and $\mathbf{C S g}$ agree that $\mathbb{C} 1$ and $\mathbb{C} \mathbf{2}$ are independent causes of \mathbb{E} (nontriviality):

18 |pmcs.nb

$$
\begin{aligned}
& \operatorname{PrSAT}\left[\operatorname{BACK} \cup\left\{\operatorname{ICS} \in[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{ICS} \mathbb{G}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{Pr}[\mathbb{C} 1]==\frac{1}{3}\right\}, \text { Probabilities } \rightarrow \text { Regular }\right] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{949}{2124}, a_{2} \rightarrow \frac{74}{531}, a_{3} \rightarrow \frac{145}{1062}, a_{4} \rightarrow \frac{1}{708}, a_{5} \rightarrow \frac{29}{1062}, a_{6} \rightarrow \frac{5}{59}, a_{7} \rightarrow \frac{29}{354}, a_{8} \rightarrow \frac{29}{354}\right\}\right\}
\end{aligned}
$$

- Eells \& Cheng

CSe and CS© agree on $n o$ independence judgments (assuming BACK).
$\operatorname{PrSAT}[B A C K \bigcup\{I C S \mathbb{E}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{ICS} \mathbb{C}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

- Eells \& Lewis Ratio

CSe and CS표 agree on no independence judgments (assuming BACK).
$\operatorname{PrSAT}[B A C K \bigcup\{\operatorname{ICS} \mathbb{E}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{ICS} \mathbb{1} \mathbb{C}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

- Eells \& Good

CSe and CSiij agree on no independence judgments (assuming BACK).
$\operatorname{PrSAT}[B A C K \cup\{\operatorname{ICS} \mathbb{E}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{ICS} \dot{1} \dot{j}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

- Suppes \& Galton

$\mathbf{C S s}$ and CSg agree on all independence judgments (assuming BACK). First, we show that $\mathbf{I C S s}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \Rightarrow \mathbf{I C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]$, given BACK:
$\operatorname{PrSAT}[\operatorname{BACK} \bigcup\{\operatorname{ICSs}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \neg \operatorname{ICS} \mathbb{G}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}
Then, we show that $\operatorname{ICS} \mathbb{G}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \Rightarrow \operatorname{ICSs}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]$, given BACK:
$\operatorname{PrSAT}[B A C K \bigcup\{\neg \operatorname{ICSs}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{ICS} \mathbb{G}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

Finally, we show that there are some cases (satisfying BACK) in which CSs and $\mathbf{C S} \mathbb{g}$ agree that $\mathbb{C} 1$ and $\mathbb{C} 2$ are independent causes of \mathbb{E} (nontriviality):

$$
\begin{aligned}
& \operatorname{PrSAT}\left[\operatorname{BACK} \cup\left\{\operatorname{ICSs}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{ICS} \mathscr{G}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{Pr}[\mathbb{C} 1]=\frac{1}{3}\right\}, \text { Probabilities } \rightarrow \text { Regular }\right] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{949}{2124}, a_{2} \rightarrow \frac{74}{531}, a_{3} \rightarrow \frac{145}{1062}, a_{4} \rightarrow \frac{1}{708}, a_{5} \rightarrow \frac{29}{1062}, a_{6} \rightarrow \frac{5}{59}, a_{7} \rightarrow \frac{29}{354}, a_{8} \rightarrow \frac{29}{354}\right\}\right\}
\end{aligned}
$$

- Suppes \& Cheng

CSs and CS© agree on no independence judgments (assuming BACK).
$\operatorname{PrSAT}[B A C K \cup\{I C S s[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{ICS} \mathbb{C}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

- Suppes \& Lewis Ratio

CSs and CS표 agree on no independence judgments (assuming BACK).
$\operatorname{PrSAT}[B A C K \bigcup\{\operatorname{ICSs}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{ICS} \mathbb{I}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

- Suppes \& Good

CSs and CSii \boldsymbol{i} agree on no independence judgments (assuming BACK).
$\operatorname{PrSAT}[$ Union [BACK, $\{\operatorname{ICSs}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{ICSi} \dot{1}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]\}]]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

- Galton \& Cheng

$\mathbf{C S} \mathscr{g}$ and $\mathbf{C S} \mathbb{C}$ agree on $n o$ independence judgments (assuming BACK).
$\operatorname{PrSAT}[B A C K \cup\{\operatorname{ICS} \mathscr{G}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{ICS} \mathbb{C}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

- Galton \& Lewis Ratio
$\mathbf{C S} \boldsymbol{g}$ and $\mathbf{C S} \mathbb{1} \mathbb{r}$ agree on no independence judgments (assuming BACK).
$\operatorname{PrSAT}[B A C K \bigcup\{\operatorname{ICS} \mathscr{G}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{ICS} \mathbb{1}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

- Galton \& Good

$\mathbf{C S} \mathbb{g}$ and CSi̇ij agree on no independence judgments (assuming BACK).

20 | pmcs.nb
$\operatorname{PrSAT}[B A C K \cup\{\operatorname{ICS} \subseteq[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{ICSi} \dot{1}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}

- Cheng \& Lewis Ratio
$\mathbf{C S} \mathbb{C}$ and $\mathbf{C S} \mathbb{1} \mathbb{r}$ agree on no independence judgments (assuming BACK).
$\operatorname{PrSAT}[B A C K \cup\{\operatorname{ICS} \mathbb{C}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{ICS} \mathbb{1}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}

- Cheng \& Good

$\mathbf{C S} \mathbb{C}$ and $\mathbf{C S} \dot{1} \dot{\mathfrak{j}}$ agree on all independence judgments (assuming BACK). First, we show that $\mathbf{I C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \Rightarrow \operatorname{ICSi} \dot{y}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]$, given BACK:

```
PrSAT[BACK U {ICS\mathbb{C}[\mathbb{E},\mathbb{C}1,\mathbb{C}2], ᄀ ICSìji[\mathbb{E},\mathbb{C}1,\mathbb{C}2]}]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}
Then, we show that $\operatorname{ICS} \dot{1} \dot{j}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \Rightarrow \operatorname{ICS} \mathbb{C}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]$, given BACK:

PrSAT::srchfail : Search phase failed; attempting FindInstance \{ \}

Finally, we show that there are some cases (satisfying back) in which $\mathbf{C S} \mathbb{C}$ and $\mathbf{C S} \dot{\operatorname{i} j}$ agree that $\mathbb{C} 1$ and $\mathbb{C} 2$ are independent causes of \mathbb{E} (non-triviality):

$$
\begin{aligned}
& \operatorname{PrSAT}\left[\boldsymbol{B A C K} \cup\left\{\mathbf{I C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{ICSSij}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{Pr}[\mathbb{C} 1]=\frac{\mathbf{1}}{\mathbf{3}}\right\}, \text { Probabilities } \rightarrow \text { Regular }\right] \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{\mathrm{a}_{2}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{\mathrm{a}_{3}, \mathrm{a}_{5}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \mathbb{E} \rightarrow\left\{\mathrm{a}_{4}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}, \Omega \rightarrow\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \mathrm{a}_{4}, \mathrm{a}_{5}, \mathrm{a}_{6}, \mathrm{a}_{7}, \mathrm{a}_{8}\right\}\right\},\right. \\
& \left.\left\{\mathrm{a}_{1} \rightarrow \frac{343}{732}, \mathrm{a}_{2} \rightarrow \frac{49}{366}, \mathrm{a}_{3} \rightarrow \frac{7}{61}, \mathrm{a}_{4} \rightarrow \frac{1}{732}, \mathrm{a}_{5} \rightarrow \frac{2}{61}, \mathrm{a}_{6} \rightarrow \frac{37}{366}, \mathrm{a}_{7} \rightarrow \frac{5}{61}, \mathrm{a}_{8} \rightarrow \frac{4}{61}\right\}\right\}
\end{aligned}
$$

- Lewis Ratio \& Good

CSIIr and CSiij jagree on no independence judgments (assuming BACK).

```
PrSAT[BACKU {ICS\mathbb{Ir}[\mathbb{E},\mathbb{C}1,\mathbb{C}2], ICSijij[E, C1, \mathbb{C2]}]}
```

PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}

- Constraint (\dagger) on the values of independent causal strengths

In this section, we will show that some of our measures m are such that:
$(\dagger) \quad \operatorname{ICSm}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \Rightarrow \operatorname{CSm}[\mathbb{E}, \mathbb{C} 1]+\operatorname{CSm}[\mathbb{E}, \mathbb{C} 2] \leq 1$.

That is, for some of our measures \mathfrak{m}, if $\mathbb{C 1}$ and $\mathbb{C} 2$ are independent causes of \mathbb{E} according to m, then the individual m-causal-strengths of $\mathbb{C} 1$ and $\mathbb{C} 2$ cannot sum to more than 1 . We will also show that some measures do not imply any such constraint (\dagger) on independent individual causal strengths.

- Eells

CSe does entail (\dagger):

```
PrSAT[{ICSe[\mathbb{E},\mathbb{C}1,\mathbb{C}2],}\operatorname{Pr[C1|\mathbb{C}2]== Pr[\mathbb{C1],}
```



```
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}
```

- Suppes

CSs does entail (\dagger):
$\operatorname{PrSAT}[\{\operatorname{ICSs}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{Pr}[\mathbb{C} 1 \mid \mathbb{C} 2]=\operatorname{Pr}[\mathbb{C} 1], \operatorname{CSs}[\mathbb{E}, \mathbb{C} 1]+\operatorname{CSs}[\mathbb{E}, \mathbb{C} 2]>1, \operatorname{CSs}[\mathbb{E}, \mathbb{C} 1]>0, \operatorname{CSs}[\mathbb{E}, \mathbb{C} 2]>0\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}

- Galton
$\mathbf{C S} g$ does entail (\dagger):

PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

- Cheng
$\mathbf{C S} \subset$ does not entail (\dagger) :

$$
\left.\begin{array}{l}
\operatorname{PrSAT}[\{\mathbf{I C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{Pr}[\mathbb{C} 1 \mid \mathbb{C} 2]=\operatorname{Pr}[\mathbb{C} 1], \mathbf{C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 1]+\mathbf{C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 2]>1, \mathbf{C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 1]>0, \\
\quad \mathbf{C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 2]>0, \operatorname{Pr}[\mathbb{C} 1]=1 / 2, \operatorname{Pr}[\mathbb{C} 2]=1 / 2\}, \operatorname{Probabilities} \rightarrow \text { Regular, BypassSearch } \rightarrow \text { True }]
\end{array}\right\} \begin{aligned}
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\},\right. \\
& \left.\left\{a_{1} \rightarrow \frac{1}{6}, a_{2} \rightarrow \frac{1}{16}, a_{3} \rightarrow \frac{1}{16}, a_{4} \rightarrow \frac{1}{12}, a_{5} \rightarrow \frac{3}{128}, a_{6} \rightarrow \frac{3}{16}, a_{7} \rightarrow \frac{3}{16}, a_{8} \rightarrow \frac{29}{128}\right\}\right\}
\end{aligned}
$$

- Lewis Ratio (first rescaling)

CSIrl 1 does not entail (\dagger):

```
\(\operatorname{PrSAT}[\{\operatorname{ICS} \mathbb{1}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{Pr}[\mathbb{C} 1 \mid \mathbb{C} 2]==\operatorname{Pr}[\mathbb{C} 1], \operatorname{CS} \mathbb{1} \mathbb{1}[\mathbb{E}, \mathbb{C} 1]+\operatorname{CS} \mathbb{1} \mathbb{1}[\mathbb{E}, \mathbb{C} 2]>1, \operatorname{CS} \mathbb{1} \mathbb{C}[\mathbb{E}, \mathbb{C} 1]>0\),
    \(\operatorname{CS} \mathbb{I} \mathbb{1}[\mathbb{E}, \mathbb{C} 2]>0, \operatorname{Pr}[\mathbb{C} 1]=1 / 2, \operatorname{Pr}[\mathbb{C} 2]==1 / 2\}, \operatorname{Probabilities} \rightarrow\) Regular, BypassSearch \(\rightarrow\) True]
```



```
    \(\left.\left\{\mathrm{a}_{1} \rightarrow \frac{31}{128}, \mathrm{a}_{2} \rightarrow \frac{15}{64}, \mathrm{a}_{3} \rightarrow \frac{3}{16}, \mathrm{a}_{4} \rightarrow \frac{1}{128}, \mathrm{a}_{5} \rightarrow \frac{1}{8}, \mathrm{a}_{6} \rightarrow \frac{1}{64}, \mathrm{a}_{7} \rightarrow \frac{1}{16}, \mathrm{a}_{8} \rightarrow \frac{1}{8}\right\}\right\}\)
```

- Lewis Ratio (second rescaling)

CSIr 2 does not entail (\dagger):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\operatorname{ICS} \mathbb{1} \mathbb{r}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{Pr}[\mathbb{C} 1 \mid \mathbb{C} 2]==\operatorname{Pr}[\mathbb{C} 1], \operatorname{CS} \mathbb{1} \mathbb{r} 2[\mathbb{E}, \mathbb{C} 1]+\operatorname{CS} \mathbb{1} \mathbb{C} 2[\mathbb{E}, \mathbb{C} 2]>1, \operatorname{CS} \mathbb{1} \mathbb{r} 2[\mathbb{E}, \mathbb{C} 1]>0, \\
& \operatorname{CS} \mathbb{I} 2[\mathbb{E}, \mathbb{C} 2]>0, \operatorname{Pr}[\mathbb{C} 1]=1 / 2, \operatorname{Pr}[\mathbb{C} 2]=1 / 2\}, \operatorname{Probabilities} \rightarrow \text { Regular, BypassSearch } \rightarrow \text { True] } \\
& \left\{\left\{\mathbb{C} 1 \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\},\right. \\
& \left.\left\{\mathrm{a}_{1} \rightarrow \frac{21}{92}, \mathrm{a}_{2} \rightarrow \frac{3}{16}, \mathrm{a}_{3} \rightarrow \frac{3}{16}, \mathrm{a}_{4} \rightarrow \frac{1}{46}, \mathrm{a}_{5} \rightarrow \frac{9}{128}, \mathrm{a}_{6} \rightarrow \frac{1}{16}, \mathrm{a}_{7} \rightarrow \frac{1}{16}, \mathrm{a}_{8} \rightarrow \frac{23}{128}\right\}\right\}
\end{aligned}
$$

- Good (first rescaling)

CSİij1 does not entail (\dagger):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{\operatorname{ICS} \dot{1} \dot{j}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{Pr}[\mathbb{C} 1 \mid \mathbb{C} 2]=\operatorname{Pr}[\mathbb{C} 1], \operatorname{CSi} \dot{1} 1[\mathbb{E}, \mathbb{C} 1]+\operatorname{CSi} \dot{j} 1[\mathbb{E}, \mathbb{C} 2]>1, \operatorname{CSíj} 1[\mathbb{E}, \mathbb{C} 1]>0 \text {, } \\
& \operatorname{CS} \dot{1} \dot{1} 1[\mathbb{E}, \mathbb{C} 2]>0, \operatorname{Pr}[\mathbb{C} 1]=1 / 2, \operatorname{Pr}[\mathbb{C} 2]=1 / 2\}, \operatorname{Probabilities} \rightarrow \text { Regular, BypassSearch } \rightarrow \text { True] }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left\{a_{1} \rightarrow \frac{1}{6}, a_{2} \rightarrow \frac{1}{16}, a_{3} \rightarrow \frac{1}{24}, a_{4} \rightarrow \frac{1}{12}, a_{5} \rightarrow \frac{1}{64}, a_{6} \rightarrow \frac{3}{16}, a_{7} \rightarrow \frac{5}{24}, a_{8} \rightarrow \frac{15}{64}\right\}\right\}
\end{aligned}
$$

- Good (second rescaling)

CSiì $\mathbf{2}$ does not entail (\dagger):

$$
\begin{aligned}
& \operatorname{PrSAT}[\{I C S i \dot{j}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2], \operatorname{Pr}[\mathbb{C} 1 \mid \mathbb{C} 2]=\operatorname{Pr}[\mathbb{C} 1], \operatorname{CSi} \dot{j} 2[\mathbb{E}, \mathbb{C} 1]+\operatorname{CSi} \dot{j} 2[\mathbb{E}, \mathbb{C} 2]>1, \operatorname{CSin} \dot{j} 2[\mathbb{E}, \mathbb{C} 1]>0, \\
& \operatorname{CSi亠j} \mathbf{j} 2[\mathbb{E}, \mathbb{C} 2]>0, \operatorname{Pr}[\mathbb{C} 1]=1 / 2, \operatorname{Pr}[\mathbb{C} 2]=1 / 2\}, \operatorname{Probabilities} \rightarrow \text { Regular, BypassSearch } \rightarrow \text { True] }
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left\{\mathrm{al}_{1} \rightarrow \frac{1}{6}, \mathrm{ad}_{2} \rightarrow \frac{1}{16}, \mathrm{a}_{3} \rightarrow \frac{1}{16}, \mathrm{a}_{4} \rightarrow \frac{1}{12}, \mathrm{a}_{5} \rightarrow \frac{3}{128}, \mathrm{a}_{6} \rightarrow \frac{3}{16}, \mathrm{a}_{7} \rightarrow \frac{3}{16}, a_{8} \rightarrow \frac{29}{128}\right\}\right\}
\end{aligned}
$$

- Causal Independence and The Causal Strength of Conjunctive Factors

In this section, we show that some of our measures m appear to violate the following "independence synergy property":
(S) $\operatorname{ICSm}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \Rightarrow(\operatorname{CSm}[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} 2]>\operatorname{CSm}[\mathbb{E}, \mathbb{C} 1] \& \operatorname{CSm}[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} 2]>\operatorname{CSm}[\mathbb{E}, \mathbb{C} 2])$

But, that the appearance of the failure of (S) for (all but one of) these measures m depends on an incorrect way of calculating " $\operatorname{CSm}[\mathbb{E}$, $\mathbb{C} 1 \wedge \mathbb{C} 2]$ ". Once this is corrected, we see that - on a proper understanding of " $\mathbf{C S m}[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} 2]$ ", all but one of our measures $m d o$ satisfy (S). There is but one "recalcitrant" measure - the Galton measure CSg.

- Eells

CSe appears to violate (S), as the existence of the following model indicates:

```
PrSAT[
    {
        Pr[\mathbb{C1 ^\mathbb{C2}] == Pr[\mathbb{C1] Pr[C2],}}\mathbf{P}=,
        Pr[\mathbb{E}|\mathbb{C2] > Pr[\mathbb{E}],}
        Pr[\mathbb{E | C1] > Pr[\mathbb{E}],}
        CSe[\mathbb{E},\mathbb{C}1,\mathbb{C}2]== CS\mathbb{E}[\mathbb{E},\mathbb{C}1,\neg\mathbb{C}2],
        CSe[\mathbb{E},\mathbb{C1}\\mathbb{C2}]<CS\mathbb{C}[\mathbb{E},\mathbb{C1}]
    },
    Probabilities }->\mathrm{ Regular
]
```



```
    {\mp@subsup{a}{1}{}->\frac{10736022587}{122536789540},\mp@subsup{\textrm{al}}{2}{}->\frac{36278969}{452458083},\mp@subsup{\textrm{a}}{3}{}->\frac{2}{5},
    ad4 }->\frac{146564197}{122536789540},\mp@subsup{a}{5}{}->\frac{15}{41},\mp@subsup{a}{6}{}->\frac{1}{101},\mp@subsup{a}{7}{}->\frac{1}{131},\mp@subsup{a}{8}{}->\frac{1}{21}}
```

But, on the following proper reformulation of $\mathbf{C S} \mathbb{E} \mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} 2]$

which compares $\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 1 \wedge \mathbb{C} 2]$ and $\operatorname{Pr}[\mathbb{E} \mid \neg \mathbb{C} 1 \wedge \neg \mathbb{C} 2]$ rather than $\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 1 \wedge \mathbb{C} 2]$ and $\operatorname{Pr}[\mathbb{E} \mid \neg(\mathbb{C} 1 \wedge \mathbb{C} 2)], \operatorname{such}$ examples do not exist. So (S) is satisfied by CSe - once it is properly understood.

```
PrSAT[
    {
        Pr[\mathbb{C1 \\mathbb{C2}]== Pr[\mathbb{C1] Pr[C2],}}\mathbf{P},
        Pr[\mathbb{E | C2] > Pr[\mathbb{E}],}
        Pr[\mathbb{E}|\mathbb{C1] > Pr[\mathbb{E}],}
        CSe[\mathbb{E},\mathbb{C}1,\mathbb{C}2]== CS\mathbb{E}[\mathbb{E},\mathbb{C}1,\neg\mathbb{C}2],
        Pr}[\mathbb{E}|\mathbb{C1}\\mathbb{C2]}-\operatorname{Pr}[\mathbb{E}|\neg\mathbb{C}1\wedge\neg\mathbb{C2]}\leq\operatorname{CSe}[\mathbb{E},\mathbb{C1]
    }
]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

This is to be expected, in light of the fact that CSe (assuming a proper reformulation of $\mathbf{C S} \in[\mathbb{E}, \mathbb{C} \mathbf{1} \boldsymbol{C} \mathbf{2}]$) admits of the following (additive) "decomposition" of the causal strength of a conjunctive causal factor, in cases where it judges the conjuncts to be independent in causing E :
$\operatorname{ICSe}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \Rightarrow \operatorname{CS} \in[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} 2]=\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 1 \wedge \mathbb{C} 2]-\operatorname{Pr}[\mathbb{E} \mid \neg \mathbb{C} 1 \wedge \neg \mathbb{C} 2]=\operatorname{CSe}[\mathbb{E}, \mathbb{C} 1]+\operatorname{CSe}[\mathbb{E}, \mathbb{C} 1]$
This can be verified using PrSAT, as follows:

```
PrSAT[
    {
        Pr[\mathbb{C1 \\mathbb{C2}]== Pr[\mathbb{C1] Pr[C2],}}\mathbf{P}=,
        Pr[\mathbb{E | C2] > Pr[\mathbb{E}],}
        Pr[\mathbb{E | C1] > Pr[\mathbb{E}],}
        CSe[\mathbb{E},\mathbb{C}1,\mathbb{C}2]== CS\mathbb{E}[\mathbb{E},\mathbb{C}1,\neg\mathbb{C}2],
```



```
    }
]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

- Suppes

CSs does not even appear to violate (S):

```
PrSAT[
    {
        Pr[\mathbb{C1 \\mathbb{C2}]== Pr[\mathbb{C1] Pr[C2],}}\mathbf{P}=,
        Pr[\mathbb{E | C2] > Pr[\mathbb{E}],}
        Pr[\mathbb{E | C1] > Pr[\mathbb{E}],}
        CSs[\mathbb{E},\mathbb{C}1,\mathbb{C}2]== CSs[\mathbb{E},\mathbb{C}1,\neg\mathbb{C}2],
        CSs[\mathbb{E},\mathbb{C}1\wedge\mathbb{C}2]<CSs[\mathbb{E},\mathbb{C}1]
    },
    Probabilities }->\mathrm{ Regular
]
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}
```

Thus, CSs satisfies (S) - even on naive application. This is to be expected, in light of the following (formal) additivity property of css:

```
ICS\mathbb{E}[\mathbb{C}1,\mathbb{C}2]=>CS\mathbb{E},\mathbb{C1}\wedge\mathbb{C2]}=\mathbf{CS}[\mathbb{E},\mathbb{C1}]+\mathbf{CS}[\mathbb{E},\mathbb{C}2]
```

which can be verified using PrSAT, as follows:

```
PrSAT[
    {
        Pr[\mathbb{C1 \\mathbb{C2}]== Pr[\mathbb{C1] Pr[C2],}}\mathbf{P}=,
        Pr[\mathbb{E | C2] > Pr[\mathbb{E}],}
        Pr[\mathbb{E | C1] > Pr[\mathbb{E}],}
        CSs[\mathbb{E},\mathbb{C}1,\mathbb{C}2]== CSs[\mathbb{E},\mathbb{C1, ᄀ\mathbb{C2],}}\mathbf{C}\mathrm{ ],}
        CSs[\mathbb{E},\mathbb{C1}\\mathbb{C2]}\not=\mathbf{CSs}[\mathbb{E},\mathbb{C}1]+\operatorname{CSs}[\mathbb{E},\mathbb{C}2]
    },
    Probabilities }->\mathrm{ Regular
]
PrSAT::srchfail : Search phase failed; attempting FindInstance
{ }
```

Since the Suppes measure does not involve conditioning on $\sim C$, there is no need to consider reformulations of $\mathbf{C S s}[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} 2]$.

- Galton

$\mathbf{C S} g$ appears to violate (S), as the existence of the following model indicates:

```
PrSAT [
    {
```



```
        Pr[\mathbb{E | C2] > Pr[\mathbb{E}],}
        Pr[\mathbb{E | C1] > Pr[\mathbb{E}],}
        CSg[\mathbb{E},\mathbb{C}1,\mathbb{C}2]== CSG[\mathbb{E},\mathbb{C}1,\neg\mathbb{C2],}
        CSg[\mathbb{E},\mathbb{C1}\\mathbb{C2}]<\operatorname{CSg}[\mathbb{E},\mathbb{C1}],
        Pr[\mathbb{C1] == 1/3}
    },
    Probabilities -> Regular
]
```



```
    { a m }->\frac{668143271}{1860173964},\mp@subsup{a}{2}{}->\frac{1096}{10989},\mp@subsup{a}{3}{}->\frac{151739}{1109889},\mp@subsup{a}{4}{}->\frac{506617}{206685996},\mp@subsup{a}{5}{}->\frac{1}{999},\mp@subsup{a}{6}{}->\frac{3}{37},\mp@subsup{a}{7}{}->\frac{17}{101},\mp@subsup{a}{8}{}->\frac{5}{33}}
```

Surprisingly, even on a proper reformulation of $\mathbf{C S}[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} 2]$, which (presumably) would be given by the following:

such examples still exist. So (\mathbf{S}) seems to be violated by $\mathbf{C S} \mathfrak{g}-$ even once $\mathbf{C S} \mathbb{g}[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} \mathbf{2}]$ is properly reformulated. Here‘s a "recalcitrant" model:

```
PrSAT[
    {
        Pr[\mathbb{C1 ^\mathbb{C2}] == Pr[\mathbb{C1] Pr[C2],}}\mathbf{P}=,
        Pr[\mathbb{E | C2] > Pr[\mathbb{E}],}
        Pr[\mathbb{E | C1] > Pr[\mathbb{E}],}
        CSg[\mathbb{E},\mathbb{C}1,\mathbb{C}2]== CSg[\mathbb{E},\mathbb{C1, ᄀ\mathbb{C2],}}\mathbf{C}=,
        CSg[\mathbb{E},\mathbb{C1}\\mathbb{C2]}< CSg[\mathbb{E},\mathbb{C1],}
```



```
        Pr[\mathbb{C1] == 1/4,}
        Pr[C2] == 1/4,
        Pr[\mathbb{E}]==1/2
    },
    Probabilities }->\mathrm{ Regular,
    BypassSearch }->\mathrm{ True
]
```



```
    {an }->\frac{45}{128},\mp@subsup{a}{2}{}->\frac{3}{64},\mp@subsup{a}{3}{}->\frac{3}{32},\mp@subsup{a}{4}{}->\frac{27}{128},\mp@subsup{a}{5}{}->\frac{1}{128},\mp@subsup{a}{6}{}->\frac{9}{64},\mp@subsup{a}{7}{}->\frac{3}{32},\mp@subsup{a}{8}{}->\frac{7}{128}}
```

- Cheng

CSc appears to violate (S), as the existence of the following model indicates:

```
PrSAT[
    {
```



```
        Pr[\mathbb{E | C2] > Pr[\mathbb{E}],}
        Pr[\mathbb{E | C1] > Pr[\mathbb{E}],}
        CS\mathbb{C}[\mathbb{E},\mathbb{C}1,\mathbb{C}2]== CS\mathbb{C}[\mathbb{E},\mathbb{C}1, ᄀ\mathbb{C2] == 1/2,}
    CS\mathbb{C}[\mathbb{E},\mathbb{C1}\\mathbb{C2]}<\mathbf{CS}\mathbb{C}[\mathbb{E},\mathbb{C1]}
    },
    Probabilities }->\mathrm{ Regular
]
```



```
    {al}->\frac{1312788}{33167407},\mp@subsup{a}{2}{}->\frac{2}{19},\mp@subsup{a}{3}{}->\frac{656394}{6234475}
    am4}->\frac{4922955}{1956877013},\mp@subsup{a}{5}{}->\frac{7}{25},\mp@subsup{a}{6}{}->\frac{7}{59},\mp@subsup{a}{7}{}->\frac{35117079}{3229458050}, a\mp@subsup{a}{8}{}->\frac{25}{74}}
```

But, on a proper reformulation of $\mathbf{C S} \mathbb{C}[\mathbf{E}, \mathbf{c} 1 \wedge \mathbf{c 2}]$, i.e.:

$$
\operatorname{CS} \mathbb{C}[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} 2]=\frac{\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 1 \wedge \mathbb{C} 2]-\operatorname{Pr}[\mathbb{E} \mid \neg \mathbb{C} 1 \wedge \neg \mathbb{C} 2]}{1-\operatorname{Pr}[\mathbb{E} \mid \neg \mathbb{C} 1 \wedge \neg \mathbb{C} 2]}
$$

which compares $\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 1 \wedge \mathbb{C} 2]$ and $\operatorname{Pr}[\mathbb{E} \mid \neg \mathbb{C} 1 \wedge \neg \mathbb{C} 2]$ rather than $\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 1 \wedge \mathbb{C} 2]$ and $\operatorname{Pr}[\mathbb{E} \mid \neg(\mathbb{C} 1 \wedge \mathbb{C} 2)]$, such examples do not exist. So (S) really is satisfied by $\mathbf{C S} \mathbb{C}$ - once it is properly understood.

```
PrSAT[
    {
        Pr[\mathbb{C1 \\mathbb{C2}]== Pr[\mathbb{C1] Pr[\mathbb{C2],}}\mathbf{P}}\mathbf{P}=\mp@code{P}
        Pr[\mathbb{E | C2] > Pr[\mathbb{E}],}
        Pr[\mathbb{E | C1] > Pr[\mathbb{E}],}
        CS\mathbb{C}[\mathbb{E},\mathbb{C}1,\mathbb{C}2]== CS\mathbb{C}[\mathbb{E},\mathbb{C}1,\neg\mathbb{C}2],
```



```
    }
]
PrSAT::srchfail : Search phase failed; attempting FindInstance
{ }
```

This is to be expected, in light of the fact that $\mathbf{C S} \mathbb{C}$ (assuming a proper reformulation of $\mathbf{C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} \mathbf{2}]$) admits of the following (multiplicative) "decomposition" of the causal strength of a conjunctive causal factor, in cases where it judges the conjuncts to be independent in causing E :

```
\(\operatorname{ICS} \mathbb{C}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \Rightarrow \operatorname{CS} \mathbb{C}[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} 2]=\frac{\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 1 \wedge \mathbb{C} 2]-\operatorname{Pr}[\mathbb{E} \mid \neg \mathbb{C} 1 \wedge \neg \mathbb{C} 2]}{1-\operatorname{Pr}[\mathbb{E} \mid \neg \mathbb{C} 1 \wedge \neg \mathbb{C} 2]}=1-(1-\mathbb{C S} \mathbb{C}[\mathbb{E}, \mathbb{C} 1])(1-\operatorname{CS} \mathbb{C}[\mathbb{E}, \mathbb{C} 2])\)
```

This can be verified using PrSAT, as follows:

```
PrSAT[
    {
        Pr[\mathbb{C1 \\mathbb{C2}]== Pr[\mathbb{C1] Pr[C2],}}\mathbf{P}=,
        Pr[\mathbb{E | C2] > Pr[\mathbb{E}],}
        Pr[\mathbb{E | C1] > Pr[\mathbb{E}],}
        CS\mathbb{C}[\mathbb{E},\mathbb{C}1,\mathbb{C}2]== CS\mathbb{C}[\mathbb{E},\mathbb{C}1, ᄀ\mathbb{C}2],
```



```
}
]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}

- Lewis Ratio (non-rescaled)

CSIr does not even appear to violate (S):

```
PrSAT[
    {
        Pr[\mathbb{C1 \\mathbb{C2}]== Pr[\mathbb{C1] Pr[C2],}}\mathbf{P}=,
        Pr[\mathbb{E | C2] > Pr[\mathbb{E}],}
        Pr[\mathbb{E | C1] > Pr[\mathbb{E}],}
        CS\mathbb{1}[\mathbb{E},\mathbb{C}1,\mathbb{C}2]== CS\mathbb{1}[\mathbb{E},\mathbb{C1}, ᄀ\mathbb{C2],}
        CS\mathbb{1r}[\mathbb{E},\mathbb{C1}\\mathbb{C2]}\leq\operatorname{CS}\mathbb{1}[\mathbb{E},\mathbb{C1]}
    },
    Probabilities }->\mathrm{ Regular
]
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}
```

Thus, CS표 satisfies (S) - even on naive application. This is despite the fact that $\mathbf{C S} \mathbb{1} \mathbb{r} \mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} 2]$ is not properly formulated (on naive application). What's more important here is that $\mathbf{C S} \mathbb{1} \mathfrak{r}$ satisfies (S), once $\mathbf{C S} \mathbb{1} \mathbb{r} \mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C}]$ is properly reformulated, as follows:

$$
\operatorname{CS} \mathbb{I r}[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} 2]=\frac{\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 1 \wedge \mathbb{C} 2]}{\operatorname{Pr}[\mathbb{E} \mid \neg \mathbb{C} 1 \wedge \neg \mathbb{C} 2]}
$$

This can be verified using PrSAT, as follows:

```
PrSAT[
    {
        Pr[\mathbb{C1 ^\mathbb{C2}] == Pr[\mathbb{C1] Pr[C2],}}\mathbf{P}
        Pr[\mathbb{E}|\mathbb{C2] > Pr[\mathbb{E}],}
        Pr[\mathbb{E | C1] > Pr[\mathbb{E}],}
        CS\mathbb{1}\mathbb{C}[\mathbb{E},\mathbb{C}1,\mathbb{C}2]== CS\mathbb{1}[\mathbb{E},\mathbb{C}1, ᄀ\mathbb{C}2],
        \operatorname{Pr}[\mathbb{E}|\mathbb{C1\wedge\mathbb{C2]}}
    },
    Probabilities }->\mathrm{ Regular
]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}
This is to be expected, in light of the fact that $\mathbf{C S} \mathbb{I} \mathbb{r}$ (assuming a proper reformulation of $\mathbf{C S} \mathbb{\mathbb { r }}[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C}]$) admits of the following (multiplicative) "decomposition" of the causal strength of a conjunctive causal factor, in cases where it judges the conjuncts to be independent in causing E :
$\operatorname{CS} \mathbb{1}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \Rightarrow \operatorname{CS} \mathbb{1}[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} 2]=\frac{\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 1 \wedge \mathbb{C} 2]}{\operatorname{Pr}[\mathbb{E} \mid \neg \mathbb{C} 1 \wedge \neg \mathbb{C} 2]}=\operatorname{CS} \mathbb{1}[\mathbb{E}, \mathbb{C} 1] * \operatorname{CS} \mathbb{1}[\mathbb{E}, \mathbb{C} 2]$
This can be verified using PrSAT, as follows:

```
PrSAT[
    {
        Pr[\mathbb{C1 \\mathbb{C2}]== Pr[\mathbb{C1] Pr[\mathbb{C2],}},}\mathbf{P},
        Pr[\mathbb{E | C2] > Pr[\mathbb{E}],}
        Pr[\mathbb{E | C1] > Pr[EE],}
        CS\mathbb{1}\mathbb{I}[\mathbb{E},\mathbb{C}1,\mathbb{C}2]== CS\mathbb{I}[\mathbb{E},\mathbb{C}1,\neg\mathbb{C}2],
        Pr[\mathbb{E | C1 \\mathbb{C2]}}
    },
    Probabilities }->\mathrm{ Regular
]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance \{\}

- Lewis Ratio (second rescaling)

CSIr 2 appears to violate (S), as the existence of the following model indicates:

```
PrSAT [
    \{
        \(\operatorname{Pr}[\mathbb{C} 1 \wedge \mathbb{C} 2]==\operatorname{Pr}[\mathbb{C} 1] \operatorname{Pr}[\mathbb{C} 2]\),
        \(\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 2]>\operatorname{Pr}[\mathbb{E}]\),
        \(\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 1]>\operatorname{Pr}[\mathbb{E}]\),
        \(\operatorname{CS} \mathbb{I C}^{\operatorname{C}} 2[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]=\operatorname{CS} \mathbb{I r} 2[\mathbb{E}, \mathbb{C} 1, \neg \mathbb{C} 2]\),
        CSIIr \(2[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} 2]<\operatorname{CS} \mathbb{I} 2[\mathbb{E}, \mathbb{C} 1]\)
    \},
    Probabilities \(\rightarrow\) Regular
]
\(\left\{\left\{\mathbb{C} 1 \rightarrow\left\{a_{2}, a_{5}, a_{6}, a_{8}\right\}, \mathbb{C} 2 \rightarrow\left\{a_{3}, a_{5}, a_{7}, a_{8}\right\}, \mathbb{E} \rightarrow\left\{a_{4}, a_{6}, a_{7}, a_{8}\right\}, \Omega \rightarrow\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\}\right\}\right.\),
    \(\left.\left\{\mathrm{ad}_{1} \rightarrow \frac{426722843}{7206311529}, \mathrm{a}_{2} \rightarrow \frac{632350171}{52668350928}, \mathrm{a}_{3} \rightarrow \frac{2}{9}, \mathrm{a}_{4} \rightarrow \frac{64}{63423}, \mathrm{a}_{5} \rightarrow \frac{1}{999}, \mathrm{a}_{6} \rightarrow \frac{4}{29}, \mathrm{a}_{7} \rightarrow \frac{1}{243}, \mathrm{a}_{8} \rightarrow \frac{9}{16}\right\}\right\}\)
```

But, on a proper reformulation of $\mathbf{C S} \mathbb{1} \mathbf{r} \mathbf{2}[\mathbf{E}, \mathbf{C 1} \wedge \mathbf{C 2}]$, i.e.:

$$
\operatorname{CS} \mathbb{I} \mathbb{C} 2[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} 2]=1-\frac{\operatorname{Pr}[\mathbb{E} \mid \neg \mathbb{C} 1 \wedge \neg \mathbb{C} 2]}{\operatorname{Pr}[\mathbb{E}| | \mathbb{C} 1 \wedge \mathbb{C} 2]}
$$

which involves $\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 1 \wedge \mathbb{C} 2]$ and $\operatorname{Pr}[\mathbb{E} \mid \neg \mathbb{C} 1 \wedge \neg \mathbb{C} 2]$ rather than $\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 1 \wedge \mathbb{C} 2]$ and $\operatorname{Pr}[\mathbb{E} \mid \neg(\mathbb{C} 1 \wedge \mathbb{C} 2)]$, such examples do not exist. So (S) really is satisfied by $\operatorname{CS} \mathbb{1} \mathbf{2}$ - once it is properly understood.

```
PrSAT
    \(\{\)
        \(\operatorname{Pr}[\mathbb{C} 1 \wedge \mathbb{C} 2]==\operatorname{Pr}[\mathbb{C} 1] \operatorname{Pr}[\mathbb{C} 2]\),
        \(\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 2]>\operatorname{Pr}[\mathbb{E}]\),
        \(\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 1]>\operatorname{Pr}[\mathbb{E}]\),
        \(\operatorname{CS} \mathbb{1} \mathbb{r} 2[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2]=\operatorname{CS} \mathbb{1} 2[\mathbb{E}, \mathbb{C} 1, \neg \mathbb{C} 2]\),
        \(1-\frac{\operatorname{Pr}[\mathbb{E} \mid \neg \mathbb{C} 1 \wedge \neg \mathbb{C} 2]}{\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 1 \wedge \mathbb{C} 2]} \leq \operatorname{CS} \mathbb{I r} 2[\mathbb{E}, \mathbb{C} 1]\)
    \},
    Probabilities \(\rightarrow\) Regular
]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance \{ \}

This is to be expected, in light of the fact that $\mathbf{C S} \mathbb{1} \mathbf{2}$ (assuming a proper reformulation of $\mathbf{C S} \mathbb{r} \mathbf{2}[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} \mathbf{2}]$) admits of the following (multiplicative) "decomposition" of the causal strength of a conjunctive causal factor, in cases where it judges the conjuncts to be independent in causing E :
$\operatorname{CS} \mathbb{I r} 2[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \Rightarrow \operatorname{CS} \mathbb{I} 2[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} 2]=1-\frac{\operatorname{Pr}[\mathbb{E} \mid-\mathbb{C} 1 \wedge-\mathbb{C} 2]}{\operatorname{Pr}[\mathbb{E} \mid \mathbb{C} 1 \wedge \mathbb{C} 2]}=1-(1-\operatorname{CS} \mathbb{1} 2[\mathbb{E}, \mathbb{C} 1])(1-\operatorname{CS} \mathbb{I} 2[\mathbb{E}, \mathbb{C} 2])$
This can be verified using PrSAT, as follows:

```
PrSAT[
    {
        Pr[\mathbb{C1}\\mathbb{C2] == Pr[\mathbb{C1] Pr[\mathbb{C2}],}}\mathbf{P}
        Pr[\mathbb{E | C2] > Pr[\mathbb{E}],}
        Pr[\mathbb{E}|\mathbb{C1] > Pr[\mathbb{E}],}
        CS\mathbb{r}2[\mathbb{E},\mathbb{C}1,\mathbb{C}2]== CS\mathbb{r}2[\mathbb{E},\mathbb{C}1, ᄀ\mathbb{C}2],
        1- }\frac{\operatorname{Pr}[\mathbb{E}|\neg\mathbb{C}1\wedge\neg\mathbb{C}2]}{\operatorname{Pr}[\mathbb{E}|\mathbb{C}1\wedge\mathbb{C}2]}\not=1-(1-\operatorname{CSIR}2[\mathbb{E},\mathbb{C}1])(1-\operatorname{CSIr}2[\mathbb{E},\mathbb{C}2]
    },
    Probabilities }->\mathrm{ Regular
]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance

- Good

CSiij does not even appear to violate (S):

```
PrSAT[
    {
        Pr[\mathbb{C1 \\mathbb{C2] == Pr[C1] Pr[\mathbb{C2]},}}\mathbf{P}
        Pr[\mathbb{E}|\mathbb{C2] > Pr[\mathbb{E}],}
        Pr[\mathbb{E}|\mathbb{C1] > Pr[\mathbb{E}],}
```



```
        CSiiji[\mathbb{E},\mathbb{C1}\\mathbb{C2}]<\operatorname{CSiji}[\mathbb{E},\mathbb{C1]}
    },
    Probabilities }->\mathrm{ Regular
]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance
\{\}

Thus, $\mathbf{C S} \dot{\operatorname{in}} \dot{j}$ satisfies (S) - even on naive application. This is despite the fact that $\mathbf{C S} \dot{\operatorname{in}} \mathbf{j}[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} 2]$ is not properly formulated (on naive application). What's more important here is that $\mathbf{C S i j}$ satisfies (S), once $\mathbf{C S} \dot{\mathbf{i}} \mathbf{j}[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} \mathbf{2}$ is properly reformulated, as follows:

This can be verified using PrSAT, as follows:

```
PrSAT[
    {
    Pr[\mathbb{C1 ^\mathbb{C2}] == Pr[\mathbb{C1] Pr[C2],}}\mathbf{P}=,
    Pr[\mathbb{E | C2] > Pr[\mathbb{E}],}
    Pr[\mathbb{E | C1] > Pr[\mathbb{E}],}
```



```
    },
    Probabilities }->\mathrm{ Regular
]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance

This is to be expected, in light of the fact that $\mathbf{C S} \mathbf{i j} \dot{j}$ (assuming a proper reformulation of $\mathbf{C S} \dot{\mathrm{I}} \mathbf{j}[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} \mathbf{2}]$) admits of the following (multiplicative) "decomposition" of the causal strength of a conjunctive causal factor, in cases where it judges the conjuncts to be independent in causing E :
$\operatorname{CSi} \dot{1}[\mathbb{E}, \mathbb{C} 1, \mathbb{C} 2] \Rightarrow \operatorname{CS} \dot{1} \dot{j}[\mathbb{E}, \mathbb{C} 1 \wedge \mathbb{C} 2]=\frac{\operatorname{Pr}[\neg \mathbb{E} \mid \neg \mathbb{C} 1 \wedge \neg \mathbb{C} 2]}{\operatorname{Pr}[\neg \mathbb{E} \mid \mathbb{C} 1 \wedge \mathbb{C} 2]}=1-((1-\operatorname{CSi} \dot{1} \dot{j}[\mathbb{E}, \mathbb{C} 1])(1-\operatorname{CS} \dot{1} \dot{j}[\mathbb{E}, \mathbb{C} 2]))$

This can be verified using PrSAT, as follows:

```
PrSAT[
    {
```



```
        Pr[\mathbb{E}|\mathbb{C2] > Pr[\mathbb{E}],}
        Pr[\mathbb{E}|\mathbb{C1] > Pr[\mathbb{E}],}
```



```
    },
    Probabilities }->\mathrm{ Regular
]
PrSAT::srchfail : Search phase failed; attempting FindInstance
{ }
```

- Boolean Representations of Cheng, Eells, Suppes, and Lewis Ratio (second rescaling)
- Cheng

Assume that (1) \mathbb{A}, \mathbb{Q}, and \mathbb{C} are pairwise independent and jointly independent, and (2) $\mathbb{E}=\mathbb{A} \vee(\mathbb{Q} \wedge \mathbb{C})$. Then, we have the following Boolean representation of $\mathbf{C S} \mathbb{C}$:

```
CS\mathbb{C}[\mathbb{E},\mathbb{C}]=\operatorname{Pr}[\mathbb{Q}]
```

Here is a verification:

```
ASS\mathbb{C}={\operatorname{Pr}[\mathbb{A}\wedge\mathbb{Q}]==\operatorname{Pr}[\mathbb{A}]\operatorname{Pr}[\mathbb{Q}],\operatorname{Pr}[\mathbb{A}\wedge\mathbb{C}]==\operatorname{Pr}[\mathbb{A}]\operatorname{Pr}[\mathbb{C}],
    Pr[\mathbb{Q}\\mathbb{C}]== Pr[\mathbb{Q}]\operatorname{Pr}[\mathbb{C}],\operatorname{Pr}[\mathbb{A}\wedge(\mathbb{Q}\wedge\mathbb{C})]==\operatorname{Pr}[\mathbb{A}]\operatorname{Pr}[\mathbb{Q}\wedge\mathbb{C}]};
E =
    A \
        (\mathbb{Q C);}
PrSAT[ASS\mathbb{C}U{CS\mathbb{C}[\mathbb{E},\mathbb{C}]\not=\operatorname{Pr}[\mathbb{Q}]}]
PrSAT::srchfail : Search phase failed; attempting FindInstance
{}
```

- Eells

Assume that (1) \mathbb{A} and \mathbb{Q} are mutually exclusive, (2) \mathbb{A} and \mathbb{C} are independent, (3) \mathbb{Q} and \mathbb{C} are independent, and $(4) \mathbb{E}=\mathbb{A} \vee(\mathbb{Q} \wedge \mathbb{C})$. Then, we have the following Boolean representation of CSe:

```
CSe[\mathbb{E},\mathbb{C}]=\operatorname{Pr}[\mathbb{Q}]
```

Here is a verification:

```
ASSe = {Pr[\mathbb{A}\wedge\mathbb{Q}]== 0, Pr[\mathbb{A}\wedge\mathbb{C}]== Pr[\mathbb{A}]\operatorname{Pr}[\mathbb{C}],\operatorname{Pr}[\mathbb{Q}\wedge\mathbb{C}]== Pr[\mathbb{Q}]\operatorname{Pr}[\mathbb{C}]};
```

```
PrSAT[ASSe U{CSe[\mathbb{E},\mathbb{C}]\not=\operatorname{Pr}[\mathbb{Q}]}]
```

PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

- Suppes

The same assumptions used for the Eells measure above yield the following Boolean representation of cSs:

```
CSs[\mathbb{E},\mathbb{C}]=\operatorname{Pr}[\mathbb{Q}\wedge\neg\mathbb{C}]
```

Here is a verification:
$\operatorname{PrSAT}[\operatorname{ASS} \mathbb{U} \bigcup\{\operatorname{CSs}[\mathbb{E}, \mathbb{C}] \neq \operatorname{Pr}[\mathbb{Q} \wedge \neg \mathbb{C}]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

- Lewis Ratio (second rescaling)

The same assumptions used for the Eells and Suppes measures above yield the following Boolean representation of csir $\mathbf{2}$:

```
CS\mathbb{Ir}2[\mathbb{E},\mathbb{C}]=\operatorname{Pr}[\mathbb{Q}|\mathbb{C}\wedge\mathbb{E}]
```

Here is a verification:
$\operatorname{PrSAT}[A S S \mathbb{e} \bigcup\{C S \mathbb{I r} 2[\mathbb{E}, \mathbb{C}] \neq \operatorname{Pr}[\mathbb{Q} \mid \mathbb{C} \wedge \mathbb{E}]\}]$
PrSAT::srchfail : Search phase failed; attempting FindInstance
\{ \}

