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Abstract. A decision procedure (PrSAT) for classical (Kolmogorov) probability calcu-
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matica. A Mathematica implementation of PrSAT is also described, along with several
applications to various non-trivial problems in the probability calculus.

Keywords: Probability, decision procedure, Tarski, Kolmogorov, CAD, Bayesian

1. Probability Calculus: Axiomatic Presentation

The standard presentation of probability calculus is that of Kolomogorov
[19]. His presentation is axiomatic and couched in set-theoretic terms.
I will use Kolmogorov’s axioms here, but I will couch them in logical
rather than set-theoretic terms. This choice is merely conventional, but
it will make subsequent sections of the paper easier to digest.

I will be concerned only with finite probability models (i.e., prob-
ability models over finite Boolean algebras). As such, I begin with a
sentential language Ln, containing n atomic sentences {A1, . . . , An},
and all wffs that can be constructed from them using the standard
truth-functional connectives. I will use ‘>’ (‘⊥’) to denote an arbitrary
tautology (contradiction) of Ln, ‘î’ to denote the metatheoretic relation
of tautological entailment in Ln (‘ïî’ will denote tautological equiva-
lence in Ln), and lower-case italic letters p,q, r . . . will be metavariables
ranging over sentences of Ln. With this background in place, we have:

∗ I would like to thank Jason Alexander and Ben Blum for their invaluable assis-
tance with various Mathematica implementations of PrSAT. I would also like to thank
three avid users of PrSAT: Igor Douven, Wouter Meijs, and John Pollock, who have
come up with lots of interesting problems for PrSAT to solve, and also provided very
useful feedback on PrSAT’s performance. I would also like to thank the members
of audiences (too many individuals to thank here, I’m afraid!) at the University of
California–Irvine, the University of Michigan, Stanford University, the University of
Bristol, the University of California–Berkeley, the University of San Francisco, San
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Definition. A probability model Mn = 〈Ln,Pr〉 consists of a sentential
language Ln, together with a unary unconditional probability function
Pr(·): Ln , R satisfying the following axioms of Kolmogorov [19].

1. For all p ∈ Ln, Pr(p) ≥ 0.

2. For all p ∈ Ln, if p ïî>, then Pr(p) = 1.

3. For all p,q ∈ Ln, if p & q ïî⊥, then Pr(p ∨ q) = Pr(p)+ Pr(q).

Again following Kolmogorov [19], we also define a binary conditional
probability function Pr(·|·): Ln×Ln , R, in terms of Pr(·), as follows:

4. For all p,q ∈ Ln, if Pr(q) ≠ 0, then Pr(p | q) Ö Pr(p & q)
Pr(q)

.

In the next section, I will show how such probability models can,
alternatively, be couched entirely in simple algebraic terms. This will be
the key to our subsequent decision procedure for probability calculus.

2. Probability Calculus: Algebraic Presentation

In this section, I explain how any probability model Mn can be given a
simple algebraic representation using what I will call a stochastic truth-
table. Here is a simple example. Let’s take a sentential language L3 with
three atomic sentences {A,B,C}. An ordinary truth-table for such a
language has 23 = 8 rows. Each row (i) of the truth table corresponds to
a state description (si) of the language L3. And, every truth-functional
proposition definable in terms of {A,B,C} can be expressed as a dis-
junction of said state descriptions. So far, this is all just elementary
classical sentential calculus, with which we are all intimately familiar.
Now, a stochastic truth-table for M3 = 〈L3,Pr〉 is a truth-table with an
additional column containing real numbers corresponding to the values
assigned by Pr to each state description of L3. Thus, for M3, we have:

A B C State Descriptions (si) Pr(si) = si

T T T A & B & C = s1 Pr(s1) = s1

T T F A & B &∼C = s2 Pr(s2) = s2

T F T A &∼B & C = s3 Pr(s3) = s3

T F F A &∼B &∼C = s4 Pr(s4) = s4

F T T ∼A & B & C = s5 Pr(s5) = s5

F T F ∼A & B &∼C = s6 Pr(s6) = s6

F F T ∼A &∼B & C = s7 Pr(s7) = s7

F F F ∼A &∼B &∼C = s8 Pr(s8) = s8
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Now, just as each proposition p expressible in L3 is equivalent to
some disjunction

∨
i si of state descriptions of L3, each unconditional

probability term Pr(p) of the language of M3 can be expressed as a sum∑
i si of the real numbers assigned by Pr to those state descriptions of

L3 that make-up the disjunction of state descriptions which expresses
p.1 Moreover, each conditional probability term Pr(p|q) of the language
of M3 can be expressed as a ratio of the sums corresponding to Pr(p&q)
and Pr(q), respectively. This gives us a faithful translation from the lan-
guage of M3 into the language of simple real algebra (viz., high-school
algebra). Here are some examples of translations of probability terms
in the language of M3 into terms of high-school algebra:

− Pr(A) = Pr(s1 ∨ s2 ∨ s3 ∨ s4) = s1 + s2 + s3 + s4

− Pr(B &∼C) = Pr(s2 ∨ s6) = s2 + s6

− Pr(A|B ≡ C) = Pr(A & (B ≡ C))
Pr(B ≡ C) = Pr(s1 ∨ s4)

Pr(s1 ∨ s4 ∨ s5 ∨ s7) =
s1 + s4

s1 + s4 + s5 + s7

Our only remaining task is to demonstrate that this procedure really
does yield a general algebraic characterization of the concept of a (Kol-
mogorov) probability model Mn. There are two things that need to be
shown here. First, we need to show that if we are given a concrete prob-
ability model (which assigns real numbers to each of the si), then the
translation procedure yields an algebraic characterization of that con-
crete probability model. And, second, that, in the absence of specified
numerical values for all the real variables si, we can use our algebraic
translations to reason generally about probability models Mn.

For the first part, consider a concrete probability model Mn, and
note that our translation procedure has two steps. First, it goes from
Pr(p) to Pr(

∨
i si) where

∨
i si is tautologically equivalent to p. That step

is kosher, since it’s a theorem of the (Kolmogorov) probability calculus
(hence, true for all probability models) that Pr(p) = Pr(q) if pïîq. The
second step of our translation procedure goes from Pr(

∨
i si) to

∑
i si.

This step is also kosher, since the si are mutually exclusive and finite
additivity is one of the axioms of (Kolmogorov) probability calculus.
Finally, since our translations of unconditional probability terms (for a
concrete probability model) are Kosher, it follows that our translations
of conditional probability terms will also be Kosher (for a concrete
model), since translated conditional probabilities are defined in terms
of translated unconditional probabilities in the appropriate way.

1 Note added in proof: in the case where p ïî ⊥, the corresponding set of state
descriptions will be the empty set ∅. In this degenerate case, we just stipulate that
the empty disjunction gets assigned probability zero under all algebraic translations.
That is, if p ïî⊥, then the term [Pr(p)\ will be translated to ‘0’.
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For the second part, no numerical values are assigned to the si, and
we want to use our translations to reason generally about arbitrary
probability models of size n. Here, we just need to impose two simple
general algebraic constraints on the real variables si that appear in a
generic (non-numerical) stochastic truth-table for a model of size n:

− s1 ≥ 0, s2 ≥ 0, . . . , s2n ≥ 0.

− ∑2n
i=1 si = 1

It is easy to verify that these two algebraic constraints ensure that the
Kolmogorov axioms are respected (in general) by our translation. To see
why, note that these two constraints ensure the following:

(i) Pr(p) will always (and for all p) get translated to a high-school
algebra expression that is guaranteed (for all assignments of real
numbers to the si) to be non-negative. This follows from the first
constraint on the si’s (that they are all are non-negative), and the
fact that Pr(p) is always translated as a sum of si’s.

(ii) Pr(>)will always get translated to an expression that is algebraically
identical (in high-school algebra) to the number 1. This follows from
the translation set-up, and the second constraint on the si’s.

(iii) Provided that p and q are mutually exclusive, the terms Pr(p ∨ q)
and Pr(p)+ Pr(q) will always (and for all p and q) get translated to
expressions that are algebraically identical (in high-school algebra).
This doesn’t even depend on the two constraints on the si’s. It is
guaranteed by the nature of the translation scheme (and algebra).

Finally, since our translation is generally Kosher for unconditional prob-
ability terms, it will also be generally Kosher for conditional probability
terms, since conditional probability translations are constructed in the
appropriate way out of unconditional probability translations.2

With this translation technique in hand, we can now transform any
set of statements in probability calculus into a corresponding set of
statements in high-school algebra. By a statement of probability cal-
culus, I mean an algebraically well-formed statement, which is either
an equation, an inequation, or an inequality containing terms of the
language of a probability model Mn and/or symbols denoting real num-
bers (i.e., real constants), where these probabilistic and/or algebraic
terms can be combined using the standard algebraic operations of mul-
tiplication, division, addition, and subtraction. We also allow such sim-
ple statements of probability calculus to be combined using logical
connectives. Here are a few example statements of probability calculus:

2 See [21, pp. 13–14] for a more rigorous mathematical presentation of this
algebraic representation of probability functions over sentential languages.
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− Pr(A | B) · Pr(B | C) ≥ Pr(A | B & C)
Pr(B ∨ C)

− Pr(X)− Pr(Y)2 = 1
2

− Pr(C |A∨∼B)+ 2 · Pr(B) ≠ 1
π

− Pr(X | Y) > Pr(X) ∨ Pr(X) < Pr(Y)

This definition of a statement of probability calculus is rather broad,
but it does rule-out (in addition to statements that are not algebraically
or logically well-formed) statements involving quantification over sen-
tence letters and/or real variables. I enforce this restriction here be-
cause (a) it makes the presentation of our translation methods and
our decision procedure much simpler, and (b) most applications of
probability calculus (indeed, almost all applications with which I am
familiar) do not (essentially) involve such quantification. In any event,
the methods described here can be extended to this more general class
of statements. But, I will not explain such extensions in this paper.

A set S of statements of probability calculus is satisfiable just in case
there exists a concrete probability model M on which all members of S
are true. If S is unsatisfiable, this means that there is no such model, i.e.,
that a contradiction can be deduced from the members of S using only
the Kolmogorov axioms for probability calculus. A decision procedure
for probability calculus is an algorithm which takes as input an arbi-
trary finite set S of statements of probability calculus. If S is satisfiable,
then a decision procedure must output a concrete model M on which
all members of S are true, and if S is unsatisfiable, then a decision pro-
cedure must tell us that there are no such models. In the next section, I
explain how the algebraic translation procedure described above allows
us to produce a decision procedure for probability calculus, based on
an existing decision procedure for high-school algebra.

3. PrSAT: A Decision Procedure for Probability Calculus

3.1. A High-Level Description of PrSAT

The first step in constructing PrSAT is writing the translation algorithm,
which transforms any finite set S of statements in probability calculus
into a finite set S′ of statements in simple high-school algebra, in accor-
dance with the procedure above.3 Once this is done, we see immediately

3 Here, I am greatly indebted to Jason Alexander for implementing a very elegant
and fully general version of this translation procedure in Mathematica. Before Jason
came along, I had hard-coded the translation procedure in Mathematica for mod-
els of size n = 2,3,4 (I didn’t even bother doing n = 5!). See [10, Appendix] for
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that the problem of giving a decision procedure for probability calculus
is just the problem of giving a decision procedure for the satisfiability
of sets of statements in high-school algebra. Specifically, the problem
of deciding whether a set S of statements in probability calculus (in the
language of Mn) is satisfiable is just the problem of deciding whether
the following set of statements of high-school algebra is satisfiable:

S′ ∪

s1 ≥ 0, . . . , s2n ≥ 0,

2n∑

i=1

si = 1




In other words, if we can find a procedure for deciding whether the
union of our translated set S′ and the set containing the pair of alge-
braic constraints on our si is satisfiable, then we are done.

Happily, there is an existing decision procedure for statements of
high-school algebra, and so all we need to do is use our translation
algorithm, plus this existing decision procedure, and we’ll have our
decision procedure for probability calculus. In other words, we have:

1. Translate the set S of statements of probability calculus (in the
language of Mn) into the set S′ of high-school algebra statements,
in accordance with the translation procedure described above.

2. Form the union S′∪Cn, where Cn = {s1 ≥ 0, . . . , s2n ≥ 0,
∑2n
i=1 si = 1}

is the set of algebraic constraints on the si, which ensures that they
are basic probabilities corresponding to state descriptions of Ln.

3. Consult the existing decision procedure for sets of high-school al-
gebra statements (see below) as to the satisfiability of S′ ∪Cn.4

4. If the decision procedure for high-school algebra says that S′∪Cn is
unsatisfiable, then report that S is unsatisfiable. And, if the decision
procedure returns a model M′

n on which all members of S′∪Cn are
true, then translate M′

n back into the language of Mn, and this will
yield a probability model on which all members of S are true.

This general procedure, now known as PrSAT, has been implemented
in Mathematica (which has the requisite decision procedure for high-
school algebra as a built-in function — see below), and it has been

some early implementations of this kind. The new Mathematica implementation of
PrSAT (available on my PrSAT website: http://fitelson.org/PrSAT/) uses Jason’s
techniques to generate (canonical) stochastic truth-tables and translations on-the-fly,
from arbitrary sets S of statements in probability calculus.

4 Actually, the latest versions of PrSAT do some other tricks at this stage of the
high-level description of the procedure to simplify and optimize the input set. Also,
the latest version of PrSAT contains a random-search option (implemented by Ben
Blum), which can be tried before sending the problem to the decision procedure (i.e.,
before this step). See section 5 for discussion of this added functionality.

pm.tex; 16/04/2008; 8:08; p.6



A Decision Procedure for Probability Calculus with Applications 7

used to solve many non-trivial problems in probability calculus. I will
describe some example applications of PrSAT in the next section. But,
first, I should say something about the existing decision procedure
for high-school algebra (now built-in to Mathematica), which has been
treated as a “black box” in our high-level description of PrSAT.

3.2. Decidability in the Theory of Real-Closed Fields

The theory of real closed fields (TRCF) is a vast generalization of high-
school algebra. It is a first-order theory, which allows for arbitrary quan-
tification over statements of arbitrary complexity that can be expressed
using real variables and constants, the standard algebraic operations,
equality and inequality signs, and logical connectives. The theory of
high-school algebra is a tiny fragment of TRCF, which only involves
existential (or universal) quantification over such (sets of) statements.
High-school algebra does not involve mixed (∀∃ or ∃∀) quantification.
This is a significant difference in expressive power. To get a sense of
the power of full TRCF, note (e.g.) that the definition of a limit of any
high-school algebra term can be defined in TRCF. Here is an example:

lim
x→∞

3x2 − 5x + 7
7x2 − 2x + 11

Ö ιλ
[
(∀ε > 0)(∃δ)(∀x > δ)

(
−ε < 3x2 − 5x + 7

7x2 − 2x + 11
− λ < ε

)]

Of course, we don’t need the full power of the full TRCF for our
present purposes. But, as it turns out, even this much more powerful
theory is decidable. In the late 1920’s Alfred Tarski proved that the
full TRCF is decidable [7]. Tarski’s quantifier elimination algorithm for
TRCF was not properly published until 1951 [26]. And, even after the
publication of Tarski’s method, over 20 years went by before there was
significant further work on the problem or any real applications of such
decision procedures. One reason for this lag is that Tarski’s algorithm
is extremely computational complex. In general, its complexity is not
bounded by any tower of exponentials.5 In the early 70’s, George Collins
[5] came-up with a much more efficient decision procedure for TRCF,
based on methods of Cylindrical Algebraic Decomposition (CAD). The
complexity of Collins’s CAD algorithm is (merely!) double-exponential
in the number of real variables contained in the set of TRCF sentences.
It has since been shown that double-exponential complexity in the num-

5 See [7] for a detailed accounting of the fascinating and complicated history of
Tarskian decision procedures for TRCF. And, see [4] for all technical details about
various decision procedures for TRCF and their computational complexities. The
details of these methods are beyond the scope of this paper, which is primarily
concerned with communicating the basic ideas behind PrSAT and its applications.
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ber of real variables is a lower-bound for any general decision proce-
dure for TRCF [6].6 In the 1990’s, various practical improvements to
various parts of the CAD algorithm were developed by Hong [13, 15],
McCallum [20], Brown [2, 3], and others. Ultimately, these efforts have
led to the computer program QEPCAD. An up-to-date C implementation
of QEPCAD is now freely available for download [16]. In 2003, Mathemat-
ica [27] was released with a suite of QEPCAD-like functions built-in to its
main Kernel. Adam Strzebonski [24, 25] was (and still is) responsible for
these Mathematica functions. Specifically, Mathematica has a function
called FindInstance, which will take as input a finite set S′ of state-
ments of high-school algebra, and it will return an assignment of real
numbers to all the real variables in S′ on which all the members of S′ are
true (if there is one). If the set S′ is unsatisfiable, it will return the empty
set { }. This is precisely the function that PrSAT uses to decide the
satisfiability of its sets S′∪Cn of high-school algebra statements (from
step 3 of our high-level description of PrSAT, above). As we will see
in the next section, the Mathematica implementation of PrSAT is quite
powerful, as it is able to solve many non-trivial problems in probability
calculus. But, before we get to these applications, I want to say one
more thing about decision procedures for TRCF and its fragments.

Since high-school algebra only involves existential quantification over
sets of simple algebraic claims, a natural question to ask is whether
there are algorithms more efficient than QEPCAD for just the pure ex-
istential fragment of TRCF. Theoretically, the answer to this question
is “Yes”. But, practically, the answer is less clear. That is, theoretically,
it can be shown that the complexity of the decision problem for the
existential fragment of TRCF is “only” single-exponential, as opposed
to double-exponential for the full TRCF [1]. However, when one looks at

6 Since the number of real variables in our problems grows exponentially in n
(2n), the complexity of PrSAT, using any decision procedure for the full TRCF, will
be (at least) triple exponential in n! This means that (naïvely) solving problems of
size n > 4 is not (generally) practical. Some heuristics for speeding-up PrSAT’s
model-finding are illustrated in http://fitelson.org/pm.nb, which is this paper’s
companion Mathematica notebook. There, all the problems in the final section of
this paper are quickly solved using PrSAT, with the help of a simple heuristic (which
serves to reduce the effective number of real variables in the problem). That heuristic
technique can also be used to quickly find models for problems involving 4 or even 5
atomic sentence letters. It is crucial that today’s computers are much more powerful
than even those of the late 90’s, when QEPCAD began to be applied to non-trivial
problems. For instance, all of the “practically intractable” application problems re-
ported in Brown’s 1998 CAD applications paper [2] can be solved (with Mathematica)
in under 15 minutes on today’s PCs (even on our laptops!). This is one of the reasons
that PrSAT is (nowadays) able to solve so many non-trivial problems. In the latest
version of PrSAT, there is also a random search feature, which greatly speeds-up
model finding in many (satisfiable) examples. See section 5 for further discussion.
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existing implementations of these algorithms, one finds that in practice
they tend to be much slower than QEPCAD, except on very large prob-
lems that are practically intractable anyway [14]. However, recently,
there has been some progress on improving the implementations of
these pure-exsitential decision procedures.7 This is an interesting area
for future research and development.

4. Some Applications of PrSAT

This section contains several non-trivial problems from probability cal-
culus (some of which are also of philosophical interest) that can be
solved rather easily with the Mathematica implementation of PrSAT.8

4.1. A Well-Known Problem in Probability Calculus

We begin with a well-known problem in probability calculus, which is
discussed in most contemporary introductory texts on probability [8,
p. 116]. Consider a language L3 with three atomic sentences {A,B,C}.
Question: if A, B, and C are pairwise probabilistically independent, does
it follow that they are mutually probabilistically independent? That is,
do the statements (1)–(3) in probability calculus entail statement (4)?

1. Pr(A & B) = Pr(A) · Pr(B)

2. Pr(A & C) = Pr(A) · Pr(C)

3. Pr(B & C) = Pr(B) · Pr(C)

4. Pr(A & B & C) = Pr(A) · Pr(B) · Pr(C)

An equivalent question is whether the set S consisting of (1), (2), (3),
and the denial of (4) is unsatisfiable. To illustrate how our translation
procedure works on a real example, we can use the stochastic truth-
table for M3 above to translate (1), (2), (3), and the denial of (4), into the
following set S′ of high-school algebra statements in terms of s1–s8:

7 Galen Huntington has been working on more practically efficient decision pro-
cedures for the pure existential fragment of TRCF. Indeed, he has made significant
progress on this front. He now has an algorithm that solves all of Hong’s challenge
problems [14] in a matter of minutes (as opposed to eons, which is what previous
algorithms would have taken). Galen’s work will soon appear in his thesis [17].

8 All of the problems discussed in this section have been solved with the Mathe-
matica implementation of PrSAT, which can be freely downloaded from the PrSAT
website, at http://fitelson.org/PrSAT/. The PrSAT website also contains doc-
umentation and further examples. A Mathematica notebook containing all of the
examples discussed here can be downloaded from http://fitelson.org/pm.nb.
That notebook also describes a heuristic technique for speeding-up model searches,
as well as Blum’s random search add-on (which often finds models very quickly),
which has recently been added to PrSAT. See section 5 for discussion.
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1′. s1 + s2 = (s1 + s2 + s3 + s4) · (s1 + s2 + s5 + s6)

2′. s1 + s3 = (s1 + s2 + s3 + s4) · (s1 + s3 + s5 + s7)

3′. s1 + s5 = (s1 + s2 + s5 + s6) · (s1 + s3 + s5 + s7)

4′. s1 ≠ (s1 + s2 + s3 + s4) · (s1 + s2 + s5 + s6) · (s1 + s3 + s5 + s7)

Following our procedure, we need to determine whether the set S′ ∪C3

is satisfiable, where C3 is the following set of nine algebraic statements:

{s1 ≥ 0, s2 ≥ 0, s3 ≥ 0, s4 ≥ 0, s5 ≥ 0, s6 ≥ 0, s7 ≥ 0, s8 ≥ 0,
s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 = 1}

PrSAT can find many assignments to the si on which all members of
S′ ∪ C3 are true. So, the set S is satisfiable. Hence, the answer to the
question is “No” — pairwise probabilistic independence of three state-
ments does not entail their mutual independence. Before reporting a
nice model found by PrSAT, it is worth noting that all of the answers
to this problem that I have seen in the textbooks — see, e.g., Feller [8,
p. 116] — involve models which assign probability zero to at least one
state description of L3, owing to some kind of logical dependencies
between atomic sentences. It is interesting to note that that PrSAT can
easily (and automatically) find models that are regular — i.e., that as-
sign nonzero probability to all state descriptions of L3. Indeed, PrSAT
can find regular models such that the si’s have equal denominators (i.e.,
regular “urn models”). Here is a nice PrSAT model on which all members
of S′ ∪ C3 are true (think in terms of sampling from an urn containing
2000 balls, with properties A, B, C , distributed according to the si):

A B C State Descriptions (si) Pr(si) = si

T T T A & B & C = s1 Pr(s1) = s1 = 1
2000

T T F A & B &∼C = s2 Pr(s2) = s2 = 19
2000

T F T A &∼B & C = s3 Pr(s3) = s3 = 19
2000

T F F A &∼B &∼C = s4 Pr(s4) = s4 = 161
2000

F T T ∼A & B & C = s5 Pr(s5) = s5 = 19
2000

F T F ∼A & B &∼C = s6 Pr(s6) = s6 = 161
2000

F F T ∼A &∼B & C = s7 Pr(s7) = s7 = 161
2000

F F F ∼A &∼B &∼C = s8 Pr(s8) = s8 = 1459
2000

On this model, we have the following:
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1. Pr(A & B) = 1
100 = 1

10 · 1
10 = Pr(A) · Pr(B)

2. Pr(A & C) = 1
100 = 1

10 · 1
10 = Pr(A) · Pr(C)

3. Pr(B & C) = 1
100 = 1

10 · 1
10 = Pr(B) · Pr(C)

4. Pr(A & B & C) = 1
2000 ≠ 1

10 · 1
10 · 1

10 = Pr(A) · Pr(B) · Pr(C)

Next, we will discuss some examples motivated by philosophical (specif-
ically, philosophy of science) applications of probability calculus.

4.2. Three Problems from Bayesian Confirmation Theory

According to Bayesian confirmation theory, an evidential statement E
is said to confirm a hypothesis statement H, relative to a probability
model M = 〈L,Pr〉, just in case E and H are positively correlated under
the probability function Pr, i.e., just in case Pr(H |E) > Pr(H). Moreover,
there are many Bayesian measures c(H, E) of the degree to which E
confirms H [9]. Here are a few measures that have been used:

d(H, E) Ö Pr(H | E)− Pr(H)

l(H, E) Ö Pr(E |H)− Pr(E | ∼H)
Pr(E |H)+ Pr(E | ∼H)

s(H, E) Ö Pr(H | E)− Pr(H | ∼E)

All of these measures respect the qualitative Bayesian definition, since
they are all positive when E confirms H, negative when E disconfirms
H, and zero when E and H are independent. Moreover, all three of these
measures are defined on a [−1,1] scale. But, these measures disagree
radically on comparative claims [9] of the form c(H, E) ≥ c(H′, E′).
The following condition is assumed by most commentators to be a
desideratum for Bayesian measures of degree of confirmation [18]:

(?) If Pr(H | E1) ≥ Pr(H | E2), then c(H, E1) ≥ c(H, E2).

Indeed, it was simply assumed by many that (?) must be satisfied by
any Bayesian measure. An early prototype of PrSAT was able to show
that, while d and l satisfy (?), s violates it [10]! This result came as a sur-
prise to many Bayesian confirmation theorists. If you run PrSAT on the
d-instance or the l-instance of (?), it will tell you (correctly) that there
are no models on which these instances of (?) are false. However, if you
run PrSAT on the s-instance of (?) it will find a countermodel. Here is
one such PrSAT model, which is regular and has equal denominators
(think of an urn with 5120 balls and three properties E1, E2, and H):
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E1 E2 H State Descriptions (si) Pr(si) = si

T T T E1 & E2 &H = s1 Pr(s1) = s1 = 669
5120

T T F E1 & E2 &∼H = s2 Pr(s2) = s2 = 291
5120

T F T E1 &∼E2 &H = s3 Pr(s3) = s3 = 127
5120

T F F E1 &∼E2 &∼H = s4 Pr(s4) = s4 = 193
5120

F T T ∼E1 & E2 &H = s5 Pr(s5) = s5 = 1539
5120

F T F ∼E1 & E2 &∼H = s6 Pr(s6) = s6 = 1341
5120

F F T ∼E1 &∼E2 &H = s7 Pr(s7) = s7 = 225
5120

F F F ∼E1 &∼E2 &∼H = s8 Pr(s8) = s8 = 735
5120

Strictly speaking, Bayesian confirmation is a four-place relation, be-
tween E, H, a corpus of background knowledge K, and a probability
model M = 〈L,Pr〉. So, our three measures should really be defined as:

d(H, E |K) Ö Pr(H | E &K)− Pr(H |K)

l(H, E |K) Ö Pr(E |H &K)− Pr(E | ∼H &K)
Pr(E |H &K)+ Pr(E | ∼H &K)

s(H, E |K) Ö Pr(H | E &K)− Pr(H | ∼E &K)

For many results — like the ones concerning (?) above — the back-
ground corpus K plays no role, and so it may be suppressed (for sim-
plicity). But, in many cases, the background corpus plays a crucial role.
One set of important results in confirmation theory depends essentially
on the background corpus. These results have to do with the concept
of independent evidence defined in [11] in the following way.

− E1 and E2 are said to be confirmationally independent regarding H,
according to a measure c just in case both c(H, E1 | E2) = c(H, E1)
and c(H, E2 |E1) = c(H, E2). Here, c(H, E) can be thought of uncon-
ditionally, as above, or it can be thought of as c(H, E | >).

Intuitively, if E1 and E2 are confirmationally independent regarding H,
then they do not “interact” in the support they provide for H. Following
Peirce, we have argued [11] that in such cases (provided that each of E1

and E2 individually confirms H), the degree to which the conjunction
E1 & E2 confirms H should be greater than the degree to which either
conjunct alone confirms H. Specifically, we should have the following:

(†) If each of E1 and E2 individually confirms H, and if c(H, E1 | E2) =
c(H, E1) and c(H, E2 | E1) = c(H, E2), then c(H, E1 & E2) > c(H, E2).

It seems to me that (†) should be a desideratum for any measure of
degree of confirmation c(H, E|K). Interestingly (and, again, surprisingly,
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to my mind), an early prototype of PrSAT was able to establish that,
while measures d and l satisfy (†), s violates it. If you run PrSAT on
the d-instance or the l-instance of (†), it will tell you (correctly) that
there are no models on which these instances of (†) are false. However,
if you run PrSAT on the s-instance of (†) it will find a countermodel.
Indeed, PrSAT is able to find a single model, which shows both that
the s-instance of (?) is false and that the s-instance of (†) is false,
simultaneously. We have already seen such a model: the model reported
above for (?) also serves as a countermodel to the s-instance of (†). To
see this, note that the following facts obtain on this model:

− Pr(H | E1) = 199
320 >

23
40 = Pr(H | E2) > Pr(H) = 1

2

− s(H, E1) = Pr(H | E1)− Pr(H | ∼E1) = 199
320

− 147
320

= 13
80

< s(H, E2) = Pr(H | E2)− Pr(H | ∼E2) = 23
40
− 11

40
= 3

10

− s(H, E1 | E2) = Pr(H | E1 & E2)− Pr(H | ∼E1 & E2) = 223
320

− 171
320

= 13
80

= s(H, E1) = Pr(H | E1)− Pr(H | ∼E1) = 199
320

− 147
320

= 13
80

− s(H, E2 | E1) = Pr(H | E2 & E1)− Pr(H | ∼E2 & E1) = 223
320

− 127
320

= 3
10

= s(H, E2) = Pr(H | E2)− Pr(H | ∼E2) = 23
40
− 11

40
= 3

10

− s(H, E1 & E2) = Pr(H | E1 & E2)− Pr(H | ∼(E1 & E2)) = 223
320

− 1891
4160

= 63
260

< s(H, E2) = Pr(H | E2)− Pr(H | ∼E2) = 23
40
− 11

40
= 3

10

Our third and final class of problems from Bayesian confirmation
theory involves Hempel’s infamous raven paradox. This is also a case in
which non-trival new theorems and non-trivial new models were found
by PrSAT. I won’t get into the philosophical background behind the
raven paradox here. Rather, I’ll just briefly (and at a high-level) explain
the purely formal part of contemporary Bayesian approaches to the
paradox, and how PrSAT allowed us to discover a new-and-improved
approach. See [12] for all of the philosophical and technical details. The
formal part of standard Bayesian resolutions of the raven paradox rests
on the following four statements of probability calculus.

1. Pr(B | R &H) = 1.
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2. Pr(∼B) > Pr(R).

3. Pr(B |H) = Pr(B).

4. Pr(R |H) = Pr(R).

From these assumptions, it is possible to prove the following:

5. Pr(H | R & B) > Pr(H | ∼R &∼B).

Indeed, the main formal component of Bayesian resolutions of the raven
paradox involves describing sets of sufficient conditions for (5). The
usual set of sufficient conditions is (1)–(4). But, these assumptions are
controversial, because they have undesirable consequences, such as:

6. Pr(H | ∼R &∼B) > Pr(H).

7. Pr(H | ∼R & B) < Pr(H).

So, if we could find sufficient conditions for (5) that were weaker than
(1)–(4) — so that they do not entail (6) and (7) — that would be an
improvement on the standard Bayesian approaches. Note: conditions
(1) and (2) are non-negotiable, as they are either logically implied by the
set-up of the raven paradox or they are otherwise uncontroversial. As
such, the challenge is to find conditions C such that: (a) the conditions
(1), (2), and C jointly entail (5), (b) C is strictly weaker than the conjunc-
tion (3) & (4), and (c) the conditions (1), (2), and C do not jointly entail
either (6) or (7). James Hawthorne and I [12] have recently reported that
the following condition C will serve as a replacement for (3) and (4):

(C) Pr(H | R) ≥ Pr(H | ∼B).

We discovered this condition by using PrSAT to examine various condi-
tions that are strictly weaker than the conjunction (3) & (4). It is easy to
see that (C) satisfies (b), since (3) & (4) entails Pr(H | R) = Pr(H | ∼B) =
Pr(H), which entails (C), but (C) does not entail Pr(H |R) = Pr(H |∼B) or
Pr(H |R) = Pr(H) or Pr(H |∼B) = Pr(H). The hard part of the problem is
establishing (a). PrSAT told us that (a) was true, but it took awhile for us
to find an axiomatic proof (PrSAT does not output proof objects). James
Hawthorne eventually discovered an axiomatic proof of (a), which is
reported in [12]. As for (c), PrSAT gives us concrete models which show
that (1), (2), and (C) do not entail either (6) or (7). In fact, here is a single
PrSAT model that shows both things simultaneously:
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B H R State Descriptions (si) Pr(si) = si

T T T B &H & R = s1 Pr(s1) = s1 = 125
2650

T T F B &H &∼R = s2 Pr(s2) = s2 = 30
2650

T F T B &∼H & R = s3 Pr(s3) = s3 = 80
2650

T F F B &∼H &∼R = s4 Pr(s4) = s4 = 21
2650

F T T ∼B &H & R = s5 Pr(s5) = s5 = 0

F T F ∼B &H &∼R = s6 Pr(s6) = s6 = 105
2650

F F T ∼B &∼H & R = s7 Pr(s7) = s7 = 51
2650

F F F ∼B &∼H &∼R = s8 Pr(s8) = s8 = 1128
2650

To see this, note that, on the above model, we have:

(1) Pr(B | R &H) = 1

(2) Pr(∼B) = 9
10 >

1
10 = Pr(R)

(C) Pr(H | R) = 125
256 = Pr(H | ∼B)

∼(6) Pr(H | ∼R &∼B) = 375
751 <

1
2 = Pr(H)

∼(7) Pr(H | ∼R & B) = 10
17 >

1
2 = Pr(H)

4.3. Examples from Howard Sobel’s “Lotteries and Miracles”

In his recent paper “Lotteries and Miracles”, Howard Sobel [23] reports
many interesting new theorems of probability calculus, which he puts
to good use for the purpose of reconstructing (and critiquing) various
arguments concerning testimonial evidence regarding the possibility
of miracles. One important class of results (in a section devoted to a
particular Humean claim about such testimony) involves the following
five claims of probability calculus (using a slightly different notation):

1. Pr(T) < 1/2.

2. Pr(T |W) > 1/2.

3. Pr(W | T) > 1/2.

4. Pr(T | ∼W) < Pr(W).

5. Pr(T |W)− Pr(T | ∼W) > Pr(∼W)− Pr(W).

Sobel’s analysis led him to the following three questions:

− Do (1)–(3) entail (4)?
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− Do (1)–(3) entail (5)?

− Do (1)–(3) entail the disjunction (4) ∨ (5)?

Sobel (email correspondence, May 2006) asked me if I could answer any
of these questions. Of course, I immediately plugged them into PrSAT,
and I found answers to all of these questions very quickly. The answers
are “No”, “No”, and “Yes”, respectively. That is, PrSAT found (i) models
in which (1)–(3) are all true but (4) is false, (ii) models in which (1)–(3) are
all true but (5) is false, and (iii) no models in which (1)–(3) are all true
but the disjunction (4) ∨ (5) is false. Sobel reports the PrSAT models
for (i) and (ii) in his paper. Since PrSAT does not produce proofs of
theorems, the task remained (as in our raven paradox example above)
to find an axiomatic proof of the disjunction (4) ∨ (5) from (1)–(3). And,
just as in the case of our new ravens theorem, James Hawthorne (email
correspondence, May 2006) was able to find an axiomatic proof.

These examples should be sufficient to illustrate to power and use-
fulness of PrSAT in real mathematical and philosophical applications of
probability calculus. I encourage readers to try PrSAT for themselves.
In the final section, I will discuss three kinds of extensions to (and/or
generalizations of) PrSAT that suggest directions for future research.

5. Directions for Future Research

There are three main extensions/improvements to PrSAT that are be-
ing investigated. First, there is the extension (mentioned above) to the
broader class of statements which allow for (non-trivial) quantifica-
tion over both sentence letters and real variables of the language of
probability calculus. Such an extension would allow us to work with
statements which are now beyond the scope of PrSAT.

The second alteration to PrSAT involves trying out different (asymp-
totically single-exponential) decision procedures for the existential frag-
ment of TRCF (on the simple class of statements considered in this
paper). As I mentioned, Hong’s investigation [14] of these alternatives to
QEPCAD in the early 90’s indicated that no practical gain in performance
would be had by making such a switch (except on problems of pro-
hibitive size). Of course, Hong did not investigate all possible decision
procedures for existential TRCF. And, it now appears that there is good
reason for optimism on this front.9

Finally, a more radical departure from the current approach would
be to consider alternative incomplete or nondeterministic model finding

9 As I mentioned above, Galen Huntington has succeeded in implementing a much
more efficient algorithm for this purpose, which will be reported in his thesis [17].
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(or SAT) techniques. For instance, various local search SAT algorithms
[22] have proved to be very powerful for other sorts of SAT problems.
Ben Blum has implemented a simple random search add-on for PrSAT,
which has linear complexity in the number of state descriptions.10
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