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Strictly speaking, modal logic studies reasoning that involves the use of 
the expressions ‘necessarily’ and ‘possibly’. The main idea is to introduce 
the symbols ∫ (necessarily) and ◊ (possibly) to a system of logic so that it 
is able to distinguish three different modes of assertion: ∫ A (A is neces-
sary), A (A is true), and ◊ A (A is possible). Introducing these symbols 
(or operators) would seem to be essential if logic is to be applied to judg-
ing the accuracy of philosophical reasoning, for the concepts of necessity 
and possibility are ubiquitous in philosophical discourse.

However, at the very dawn of the invention of modal logics, it was 
recognized that necessity and possibility have kinships with many other 
philosophically important expressions. So the term ‘modal logic’ is also 
used more broadly to cover a whole family of logics with similar rules 
and a rich variety of different operators. To distinguish the narrow sense, 
some people use the term ‘alethic logic’ for logics of necessity and possi-
bility. A list describing some of the better known of these logics follows.

System Symbols Expression Symbolized

Modal logic  
 (or Alethic logic)

∫
◊

It is necessary that
It is possible that

Tense logic G It will always be the case that
F It will be the case that
H It has always been the case that
P It was the case that

Deontic logic O It is obligatory that
P It is permitted that
F It is forbidden that
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Locative logic Tx It is the case at x that
Doxastic logic Bx x believes that
Epistemic logic Kx x knows that

This book will provide you with an introduction to all these logics, and 
it will help sketch out the relationships among the different systems. The 
variety found here might be somewhat bewildering, especially for the stu-
dent who expects uniformity in logic. Even within the above subdivisions 
of modal logic, there may be many different systems. I hope to convince 
you that this variety is a source of strength and flexibility and makes for 
an interesting world well worth exploring.
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1.1. The Language of Propositional Modal Logic

We will begin our study of modal logic with a basic system called K in 
honor of the famous logician Saul Kripke. K serves as the foundation 
for a whole family of systems. Each member of the family results from 
strengthening K in some way. Each of these logics uses its own symbols 
for the expressions it governs. For example, modal (or alethic) logics use 
∫ for necessity, tense logics use H for what has always been, and deontic 
logics use O for obligation. The rules of K characterize each of these sym-
bols and many more. Instead of rewriting K rules for each of the distinct 
symbols of modal logic, it is better to present K using a generic operator. 
Since modal logics are the oldest and best known of those in the modal 
family, we will adopt ∫ for this purpose. So ∫ need not mean necessarily 
in what follows. It stands proxy for many different operators, with differ-
ent meanings. In case the reading does not matter, you may simply call 
∫A ‘box A’.

First we need to explain what a language for propositional modal logic 
is. The symbols of the language are , ç, ∫; the propositional variables: p, 
q, r, p′, and so forth; and parentheses. The symbol  represents a contra-
diction, ç represents ‘if . . then’, and ∫ is the modal operator. A  sentence 

of propositional modal logic is defined as follows:

 and any propositional variable is a sentence.
If A is a sentence, then ∫A is a sentence.
If A is a sentence and B is a sentence, then (AçB) is a sentence.
No other symbol string is a sentence.
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In this book, we will use letters ‘A’, ‘B’, ‘C’ for sentences. So A may be 
a propositional variable, p, or something more complex like (pçq), or 
((pç )çq). To avoid eyestrain, we usually drop the outermost set of 
parentheses. So we abbreviate (pçq) to pçq. (As an aside for those who 
are concerned about use-mention issues, here are the conventions of this 
book. We treat ‘ ’, ‘ç’, ‘∫’, and so forth as used to refer to symbols with 
similar shapes. It is also understood that ‘∫A’, for example, refers to the 
result of concatenating ∫ with the sentence A.)

The reader may be puzzled about why our language does not con-
tain negation: ~ and the other familiar logical connectives: &, ñ, and ≠. 
Although these symbols are not in our language, they may be introduced 
as abbreviations by the following definitions:

(Def~) ~A =df Aç

(Def&) A&B =df ~(Aç~B)
(Defñ) AñB =df ~AçB
(Def≠) A≠B =df (AçB)&(BçA)

Sentences that contain symbols introduced by these definitions are 
understood as shorthand for sentences written entirely with ç and . 
So, for example, ~p abbreviates pç , and we may replace one of these 
with the other whenever we like. The same is true of complex sentences. 
For example, ~p&q is understood to be the abbreviation for (pç )&q, 
which by (Def&) amounts to ~((pç )ç~q). Replacing the two occur-
rences of ~ in this sentence, we may express the result in the language 
of K as follows: ((pç )ç(qç ))ç . Of course, using such primitive 
notation is very cumbersome, so we will want to take advantage of the 
abbreviations as much as possible. Still, it simplifies much of what goes 
on in this book to assume that when the chips are down, all sentences are 
written with only the symbols , ç, and ∫.

EXERCISE 1.1 Convert the following sentences into the primitive notation 
of K.
a) ~~p
b) ~p&~q
c) pñ(q&r)
d) ~(pñq)
e) ~(p≠q)
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Our use of  and the definition for negation (Def~) may be unfa-
miliar to you. However, it is not difficult to see why (Def~) works. 
Since  indicates a contradiction,  is always false. By the truth table 
for material implication, Aç  is true (T) iff either A is false (F) or 

 is T. But, as we said,  cannot be T. Therefore Aç  is T iff A is F. 
So the truth table for Aç  corresponds exactly to the truth table for 
negation.

The notion of an argument is fundamental to logic. In this book, an 
argument H / C is composed of a list of sentences H, which are called the 
hypotheses, and a sentence C called the conclusion. In the next section, 
we will introduce rules of proof for arguments. When argument H / C is 
provable (in some system), we write ‘H  C’. Since there are many differ-
ent systems in this book, and it may not be clear which system we have 
in mind, we subscript the name of the system S (thus: H S C) to make 
matters clear. According to these conventions, p, ~qç~p / q is the argu-
ment with hypotheses p and ~qç~p and conclusion q. The expression ‘p, 
~qç~p K q’ indicates that the argument p, ~qç~p / q has a proof in 
the system K.

1.2. Natural Deduction Rules for Propositional Logic: PL

Let us begin the description of K by introducing a system of rules called 
PL (for propositional logic). We will use natural deduction rules in this 
book because they are especially convenient both for presenting and 
finding proofs. In general, natural deduction systems are distinguished 
by the fact that they allow the introduction of (provisional) assumptions 
or hypotheses, along with some mechanism (such as vertical lines or 
dependency lists) for keeping track of which steps of the proof depend on 
which hypotheses. Natural deduction systems typically include the rules 
Conditional Proof (also known as Conditional Introduction) and Indirect 
Proof (also known as Reductio ad Absurdum or Negation Introduction). 
We assume the reader is already familiar with some natural deduction 
system for propositional logic. In this book, we will use vertical lines to 
keep track of subproofs. The notation:

A

B
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indicates that B has been proven from the hypothesis A. The dots indi-
cate intervening steps, each of which follows from previous steps by one 
of the following five rules. The abbreviations for rule names to be used in 
proofs are given in parentheses.

The System PL

Hypothesis

A new hypothesis A may be added to a proof
at any time, as long as A begins a new subproof.

A

Modus Ponens

This is the familiar rule Modus Ponens.
It is understood that A, AçB, and B must
all lie in exactly the same subproof.

A

AçB

------

B (MP)

Conditional Proof

When a proof of B is derived from the hypothesis A,
it follows that AçB, where AçB lies outside
hypothesis A.

A

:
 B

AçB (CP)

Double Negation
~~ A The rule allows the removal of double

negations. As with (MP), ~~A and A
A (DN) must lie in the same subproof.

Reiteration

Sentence A may be copied into a new subproof.
(In this case, into the subproof headed by B.)

A

:
B

:

 A    (Reit)

These five rules comprise a system for propositional logic called PL. The 
rules say that if you have proven what appears above the dotted line, then 
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you may write down what appears below the dotted line. Note that in 
applying (MP) and (DN), all sentences involved must lie in the same sub-

proof. Here is a sample proof of the argument pçq, ~q / ~p, to illustrate 
how we present proofs in this book.

 pçq

~q

 qçƒ (Def~)

 p
 pçq (Reit)

 q (MP)

 qçƒ (Reit)

 ƒ (MP)

 pçƒ (CP)

 ~p (Def~)

The proof begins by placing the premises of the argument (namely, pçq 
and ~q) at the head of the outermost subproof. Then the conclusion (~p) 
is derived from these using the five rules of PL. Since there are no rules 
concerning the negation sign, it is necessary to use (Def~) to convert 
all occurrences of ~ into ç and  as we have done in the third and last 
steps. We do not bother writing the name (Hyp) where we have used the 
hypothesis rule. That the (Hyp) rule is being used is already clear from 
the presence of the subproof bracket (the horizontal “diving board” at 
the head of a subproof).

Most books use line numbers in the justification of steps of a proof. 
Since we only have four rules, the use of line numbers is really not neces-
sary. For example, when (CP) is used, the steps at issue must be the begin-
ning and end of the preceding subproof; when (DN) is used to produce A, 
it is easy to locate the sentence ~~A to which it was applied; when (MP) 
is used to produce B, it is easy enough to find the steps A and AçB to 
which (MP) was applied. On occasion, we will number steps to highlight 
some parts of a proof under discussion, but step numbers will not be part 
of the official notation of proofs, and they are not required in the solu-
tions to proof exercises.

Proofs in PL generally require many uses of Reiteration (Reit). That 
is because (MP) cannot be applied to A and AçB unless both of these 
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sentences lie in the same subproof. This constant use of (Reit) is annoy-
ing, especially in longer proofs, so we will adopt a convention to leave 
out the (Reit) steps where it is clear that an official proof could be con-
structed by adding them back in. According to this more relaxed policy, 
the proof just given may be abbreviated as follows:

 pçq

~q

 qçƒ (Def~)

p

 q (MP)
 ƒ (MP)

 pçƒ (CP)

 ~p (Def~)

We will say that an argument H / C is provable in PL (in symbols: H 

PL C) exactly when it is possible to fill in a subproof headed by mem-
bers of H to obtain C.

 H

 C
:

It is possible to prove some sentences outside of any subproof. These sen-
tences are called theorems. Here, for example, is a proof that pç(qçp) 
is a theorem.

 p
q

 p (Reit)

 qçp (CP)

pç(qçp) (CP)

EXERCISE 1.2 Prove the following in PL.

a) pçq / (qç )ç(pç )
b) pçq, pç(qç ) / pç
c) Show (pçq)ç(~qç~p) is a theorem of PL.
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1.3. Derivable Rules of PL

PL is a complete system for propositional logic. Every valid argu-
ment written in the language of propositional logic has a proof in PL. 
However, proofs involving the abbreviations ~, &, ñ, and ≠ may be 
very complicated. The task of proof finding is immensely simplified by 
introducing derivable rules to govern the behavior of the defined con-
nectives. (A rule is derivable in a system iff it can be proven in the 
system.) It is easy to show that the rule Indirect Proof (IP) is derivable 
in PL. Once this is established, we may use (IP) in the future, with the 
understanding that it abbreviates a sequence of steps using the original 
rules of PL.

Proof of Derivability:

~A ~A
::

ƒ ƒ
------ -------

A (IP) ~Açƒ (CP)

~~A (Def~)

A (DN)

The (IP) rule has been stated at the left, and to the right we have indi-
cated how the same result can be obtained using only the original rules of 
PL. Instead of using (IP) to obtain A, (CP) is used to obtain ~Aç . This 
by (Def~) is really ~~A, from which we obtain A by (DN). So whenever 
we use (IP), the same result can be obtained by the use of these three 
steps instead. It follows that adding (IP) to PL cannot change what is 
provable.

We may also show derivable a rule ( In) that says that  follows from 
a contradictory pair of sentences A, ~A.

Proof of Derivability:

A A
~A ~A
----- -----
ƒ (ƒIn) Açƒ (Def~)

ƒ (MP)
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Once (IP) and ( In) are available, two more variations on the rule of 
Indirect Proof may be shown derivable.

Proof of Derivability:

~A ~A

:     :
 B  B
:     :

~B ~B

------- --------
A (~Out) ƒ (ƒIn)

A (IP)

EXERCISE 1.3 Show that the following variant of Indirect Proof is also 
derivable. (Feel free to appeal to ( In) and (IP), since they were previously 
shown derivable.)

 A
:
 B
:

~B

-------

~A     (~In)

With (~Out) available it is easy to show the derivability of (~~In), a var-
iant of Double Negation.

Proof of Derivability:

A             A

---- ----

~~A (~~In) A

 
(DN)

A (Reit)

~~A (~Out)

~A
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Now it is easy to prove the rule of Contradiction (Contra), which says 
that from a contradiction anything follows:

Proof of Derivability:

ƒƒ
---- ----

A (Contra) ~A
 (Reit)

A (IP)

It is possible to show that the standard natural deduction rules for the 
propositional connectives &, ñ, and ≠ are also derivable.

A A&B A&B
B ----- -----
----- A (&Out) B (&Out)
A&B (&In)

AA �B

----- ----- A

A�B A�B  (�In)(�In) �
C

B

�
�C
�����
C  (�Out)

A�B A�B A�B

B�A --------- --------

-------- A�B  (�Out) B�A��(�Out)

A�B  (�In)

B

(It is understood that all steps in these derivable rules must lie in the same 
subproof.) The hardest demonstrations of derivability concern (&Out) 
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and (ñOut). Here are derivations for (ñOut) and (one half of) (&Out) to 
serve as models for proofs of this kind. You will show derivability of the 
other rules in the next exercise.

(�Out)

A�B

A
�

�C

B
�
�C

--------

A�C (CP)  (first subproof)

B�C (CP)  (second subproof)

�A�B�� (Def�) (first line)

�C

A
�C (MP)
�C (Reit)
�A (�In)
�B (MP)
�C (MP)
� (�In)

C (IP)

(&Out)

A&B

---------

~(Aç~B) (Def&)

~B

 A
~B  (Reit)

 Aç~B (CP)
~(Aç~B) (Reit)

B (~Out)



1.3 Derivable Rules of PL 13

EXERCISE 1.4 Show that (&In), the other half of (&Out), (ñIn), (≠In), 
and (≠Out) are all derivable. You may use rules already shown to be deriv-
able ((~Out) and (~In) are particularly useful), and you may abbreviate 
proofs by omitting (Reit) steps wherever you like. (Hint for (&Out). Study the 
proof above. If you still have a problem, see the discussion of a similar proof 
below.)

The following familiar derivable rules: Modus Tollens (MT), Contra-
position (CN), De Morgan’s Law (DM), and (çF) may also come in 
handy during proof construction. (Again it is assumed that all sentences 
displayed in these rules appear in the same subproof.) Showing they are 
derivable in PL provides excellent practice with the system PL.

AçB AçB
~B --------
-------- ~Bç~A (CN)
~A (MT)

~(A√B) ~(A&B)
------------ -----------
~A&~B (DM) ~A√~B (DM)

~(AçB) ~(AçB)
----------- -----------
A (çF) ~B (çF)

To illustrate the strategies for showing these are derivable rules, the proof 
for (çF) will be worked out in detail here. (It is similar to the proof for 
(&Out).) We are asked to start with ~(AçB) and obtain a proof of A. 
The only strategy that has any hope at all is to use (~Out) to obtain A. To 
do that, assume ~A and try to derive a contradiction.

1. ~(AçB)

------------

2. ~A

A (~Out)
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The problem is to figure out what contradiction to try to prove to com-
plete the subproof headed by ~A. There is a simple principle to help 
guide the solution. When choosing a contradiction, watch for sentences 
containing ~ that have already become available. Both ~A and ~(AçB) 
qualify, but there is a good reason not to attempt a proof of the contradic-
tion A and ~A. The reason is that doing so would put us in the position 
of trying to find a proof of A all over again, which is what we were trying 
to do in the first place. In general, it is best to choose a sentence different 
from the hypothesis for a (~In) or (~Out). So the best choice of a contra-
diction will be ~(AçB) and its opposite AçB.

1. ~(AçB)

------------

2. ~A

 AçB

~(AçB) 1 (Reit)

A (~Out)

The remaining problem is to provide a proof of AçB. Since (CP) is the 
best strategy for building a sentence of this shape, the subproof necessary 
for (CP) is constructed.

1. ~(AçB)

------------

2. ~A

 A
  ????
  B

 AçB (CP)
~(AçB) 1 (Reit)

A (~Out)

At this point the proof looks near hopeless. However, that is simply a 
sign that (~Out) is needed again, this time to prove B. So a new sub-
proof headed by ~B is constructed with the hope that a contradiction can 
be proven there. Luckily, both A and ~A are available, which solves the 
problem.
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1. ~(AçB)

--------

2. ~A

3. A
4. ~B
5.   A 3 (Reit)
6.  ~A 2 (Reit)

7.   B 5 6 (~Out)
8.  AçB 7 (CP)
9.

 
1 (Reit)

10. A 8 9 (~Out)

~(AçB)

EXERCISE 1.5. Show that (MT), (CN), (DM), and the second version of 
(çF) are derivable rules of PL.

In the rest of this book we will make use of these derivable rules 
without further comment. Remember, however, that our official system 
PL for propositional logic contains only the symbols ç and , and the 
rules (Hyp), (MP), (CP), (Reit), and (DN). Given the present collection 
of derivable rules, constructing proofs in PL is a fairly straightforward 
matter.

Proofs involving ñ tend to be difficult. However, they are often sig-
nificantly easier if (ñOut) can be used in the appropriate way. Let us 
illustrate by proving pñq / qñp. We make pñq a hypothesis and hope to 
derive qñp.

�p�q

��q�p
�

At this point many students will attempt to prove either p or q, and 
obtain the last step by (ñIn). This is a poor strategy. As a matter of fact, 
it is impossible to prove either p or q from the available hypothesis pñq. 
When faced with a goal of the form AñB, it is a bad idea to assume the 
goal comes from (ñIn), unless it is obvious how to prove A or B. Often 
when the goal has the shape AñB, one of the available lines is also a dis-
junction. When this happens, it is always a good strategy to assume that 
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the goal comes from (ñOut). In our example, we have pñq, so we will use 
this step to get our goal qñp using (ñOut).

�p�q

  q�p
�

(�Out)

If qñp follows from pñq by (ñOut), we will need to complete two sub-
proofs, one headed by p and ending with qñp and the other headed by q 
and ending with qñp.

�p�q

p
�

�q�p

q
�
�q�p

�q�p (�Out)

Now all we need to do is complete each subproof, and the goal qñp will 
be proven by (ñOut). This is easily done using (ñIn).

 p√q

p
 q√p (√In)

q
 q√p (√In)

 q√p (√Out)

In order to save paper, and to see the structure of the (ñOut) process 
more clearly, I suggest that you put the two subproofs that are introduced 
by the (ñOut) rule side by side:

 p√q

p q

 q√p (√In) q√p (√In)
q√p (√Out)
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This way of notating proofs will play an important role in showing paral-
lels between proofs and the truth tree method in Section 7.1.

EXERCISE 1.6 Prove the following using the (ñOut) strategy just described. 
Place the paired subproofs introduced by (ñOut) side by side to save space.

a) pñq, pçr, qçs / rñs
b) pñ(q&r) / (pñq)&(pñr)
c) ~pñ~q / ~(p&q)
d) pñ(qñr) / (pñq)ñr

1.4. Natural Deduction Rules for System K

Natural deduction rules for the operator ∫ can be given that are eco-
nomical and easy to use. The basic idea behind these rules is to introduce 
a new kind of subproof, called a boxed subproof. A boxed subproof is a 
subproof headed by ∫ instead of a sentence:

��

One way to interpret a boxed subproof is to imagine that it prefixes each 
sentence it contains with ∫. For example, suppose A is proven in a sub-
proof headed by ∫:

��
�
�

This means that ∫A has been proven outside that subproof.
Given this understanding of boxed subproofs, the following (∫Out) 

and (∫In) rules seem appropriate.

�A ���
��

� �A
-------- 

�A       (�Out) �A        (�In)
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The (∫Out) rule says that when we have proven ∫A, we may put A in a 
boxed subproof (which indicates that A prefixed by a ∫ is proven). The 
(∫In) rule says that once we have proven A in a boxed subproof (indicat-
ing that A prefixed by ∫ is proven), it follows that ∫A is proven outside 
that subproof. (∫Out) and (∫In) together with natural deduction rules 
for PL comprise the system K.

System K = PL + (∫Out)+ (∫In).

There is an important difference between boxed and ordinary subproofs 
when it comes to the use of (Reit). (Reit) allows us to copy a sentence 
into the next-deepest subproof, provided the subproof is headed by a 
sentence B.

A

B

:

 A    (Reit)

But the (Reit) rule does not allow A to be copied into a boxed sub-
proof:

A

�
�

�A    (INCORRECT USE OF (REIT))

This is incorrect because it amounts to reasoning from A to ∫A, which is 
clearly fallacious. (If A is so, it doesn’t follow that A is necessary, obliga-
tory, etc.) So be very careful when using (Reit) not to copy a sentence 
into a boxed subproof.

Strategies for finding proofs in K are simple to state and easy to use. 
In order to prove a sentence of the form ∫A, simply construct a boxed 
subproof and attempt to prove A inside it. When the proof of A in that 
boxed subproof is complete, ∫A will follow by (∫In). In order to use a 
sentence of the form ∫A, remove the box using (∫Out) by putting A in 
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a boxed subproof. The following proof of ∫p&∫q  ∫(p&q) illustrates 
these strategies.

1. ��p��q
2. ��p (�Out) [1]
3. ��q (�Out) [2]
4. �� [4]
5. ��p (�Out)� [6]

6. �q (�Out)�� [7]
7. �p�q (�In) [5]
8. �(p�q) (�In) [3]

The numbers to the right in square brackets are discovery numbers. They 
indicate the order in which steps were written during the process of proof 
construction. Most novices attempt to construct proofs by applying rules 
in succession from the top of the proof to the bottom. However, the best 
strategy often involves working backwards from a goal. In our sample, 
(&Out) was applied to line 1 to obtain the conjuncts: ∫p and ∫q. It is 
always a good idea to apply (&Out) to available lines in this way.

1. ��p��q
2. ��p (�Out) [1]
3. ��q (�Out) [2]

Having done that, however, the best strategy for constructing this proof 
is to consider the conclusion: ∫(p&q). This sentence has the form ∫A. 
Therefore, it is a good bet that it can be produced from A (and a boxed 
subproof) by (∫In). For this reason a boxed subproof is begun on line 4, 
and the goal for that subproof (p&q) is entered on line 7.

1.  ∫p&∫q
2. ∫p (&Out) [1]
3.  ∫q (&Out) [2]
4.  ∫ [4]
5.
6. 
7.   p&q [5]
8. ∫(p&q) (∫In) [3]
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The proof is then completed by applying (∫ Out) to lines 2 and 3, from 
which p&q is obtained by (&In).

EXERCISE 1.7 Prove the following in K (derivable rules are allowed):

a) ∫p / ∫(pñq)
b) ∫(pçq) / ∫pç∫q
c) ∫(p&q) / ∫p&∫q
d) ∫(pñq), ∫(pçr), ∫(qçr) / ∫r
e) ∫pñ∫q / ∫(pñq) (Hint: Set up (ñOut) first.)

1.5. A Derivable Rule for ∂

In most modal logics, there is a strong operator (∫) and a corresponding 
weak one (∂). The weak operator can be defined using the strong opera-
tor and negation as follows:

(Def∂) ∂A =df ~∫~A

(∂A may be read ‘diamond A’.) Notice the similarities between (Def∂) 
and the quantifier principle xA ≠ ~ x~A. (We use  for the universal 
and  for the existential quantifier.) There are important parallels to be 
drawn between the universal quantifier  and ∫, on the one hand, and 
the existential quantifier  and ∂ on the other. In K and the systems 
based on it, ∫ and ∂ behave very much like  and , especially in their 
interactions with the connectives ç, &, and ñ. For example, ∫ distributes 
through & both ways, that is, ∫(A&B) entails ∫A&∫B and ∫A&∫B 
entails ∫(A&B). However, ∫ distributes through ñ in only one direction, 
∫Añ∫B entails ∫(AñB), but not vice versa. This is exactly the pattern of 
distribution exhibited by . Similarly, ∂ distributes through ñ both ways, 
and through & in only one, which mimics the distribution behavior of . 
Furthermore, the following theorems of K:

∫(A ç B) ç (∫A ç ∫B)

and

∫(A ç B) ç (∂A ç ∂B)

parallel important theorems of quantificational logic:
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x(Ax ç Bx) ç ( xAx ç xBx)

and

x(Ax ç Bx) ç ( xAx ç xBx).

To illustrate how proofs involving ∂ are carried out, we will explain 
how to show ∫(pçq) ç (∂pç∂q) is a theorem. The strategies used 
in this proof may not be obvious, so it is a good idea to explain them 
in detail. The conclusion is the conditional, ∫(pçq) ç (∂pç∂q), so 
the last line will be obtained by (CP), and we need to construct a proof 
from ∫(pçq) to ∂pç∂q. Since the latter is also a conditional, it will be 
obtained by (CP) as well, so we need to fill in a subproof from ∂p to ∂q. 
At this stage, the proof attempt looks like this:

1. ��(p�q) [1]
2. ��p [3]

�q
�p��q (CP) [4]

�(p�q)�(�p��q) (CP) [2]

Since we are left with ∂q as a goal, and we lack any derivable rules for 
∂, the only hope is to convert ∂q (and the hypothesis ∂p) into ∫ using 
(Def∂).

1. ��(p�q) [2]
2. ��p [4]
3. �����p (Def�) [6]

������
�����q [7]
���q (Def�) [5]
�p��q (CP) [3]

�(p�q)�(�p��q) (CP) [1]

At this point there seems little hope of obtaining ~∫~q. In situations 
like this, it is a good idea to obtain your goal with (~Out) or (~In). In our 
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case we will try (~In). So we need to start a new subproof headed by ∫~q 
and try to derive a contradiction within it.

1. ��(p�q) [2]
2. ��p [4]
3. �����p (Def�) [6]
4. ����q [8]

���������

�����q (�In) [7]
���q (Def�) [5]
�p��q (CP) [3]

�(p�q)�(�p��q) (CP) [1]

The most crucial stage in finding the proof is to find a contradiction to fin-
ish the (~In) subproof. A good strategy in locating a likely contradiction 
is to inventory steps of the proof already available that contain ~. Step 3 
(namely, ~∫~p) qualifies, and this suggests that a good plan would be to 
prove ∫~p and reiterate ~∫~p to complete the subproof.

1. �(p�q) [2]

2. ��p [4]
3. �����p (Def�) [6]
4. ����q [8]

���������
����p [10]
�����p (Reit) [9]

�����q (�In) [7]
���q (Def�) [5]
�p��q (CP) [3]

�(p�q)�(�p��q) (CP) [1]

At this point our goal is ∫~p. Since it begins with a box, (∫In) seems the 
likely method for obtaining it, and we create a boxed subproof and enter 
~p at the bottom of it as a new goal.
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1. ��(p�q) [2]
2. �� [p 4 ]
3. ���p (Def�) [6]
4. ����q [8]

�� [11]

�p [12]

��p (�In) [10]
���p (Reit) [9]

���q (�In) [7]
��q (Def�) [5]
�p��q (CP) [3]

�(p�q)�(�p��q) (CP) [1]

But now it is possible to use (∫Out) (and (Reit)) to place pçq and ~q 
into the boxed subproof, where the goal ~p can be obtained by (MT), 
Modus Tollens. So the proof is complete.

1. � [2]
2. ��p [4]
3. ���p (Def�) [6]
4. ����q [8]

�� [11]
5. �p�q 1 (�Out) [13]

6. �q 4 (����) [14]
7. �p 5, 6 (MT) [12]
8. ��p 7 (�In) [10]
9. ���p 3 (Reit) [9]

10. ���q 8, 9 (�In) [7]
11. ��q 10 (Def�) [5]

12. �p��q 11 (CP) [3]

13. �(p�q)�(�p��q) 12 (CP) [1]

EXERCISE 1.8 Show that the following sentences are theorems of K by 
proving them outside any subproofs:

a) ∫(p&q) ≠ (∫p&∫q)
b) (∫pñ∫q) ç ∫(pñq)
c) (∂pñ∂q) ≠ ∂(pñq)
d) ∂(p&q) ç (∂p&∂q)
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As you can see from Exercises 1.8c–d, proofs in K can be rather com-
plex when ∂ is involved. We have no rules governing ∂, and so the only 
strategy available for working with a sentence of the form ∂A is to trans-
late it into ~∫~A by (Def∂). This introduces many negation signs, which 
complicates the proof. To help overcome the problem, let us introduce a 
derivable rule called (∂Out).

�A

�
A
�
�B

-------
�B������(�Out)

EXERCISE 1.9 Showthat (∂Out) is a derivable rule of the natural deduc-
tion formulation for K. (Hint: From the two subproofs use (CP) and then (∫In) 
to obtain ∫(AçB). Now use the strategy used to prove ∫(pçq)ç(∂pç∂q) 
above.)

To illustrate the use of this rule, we present a proof of problem d) of 
Exercise 1.8: ∂(p&q) ç (∂p&∂q). Since this is a conditional, a subproof 
headed by ∂(p&q) is constructed in hopes of proving ∂p&∂q. This lat-
ter sentence may be obtained by (&In) provided we can find proofs of 
∂p and ∂q. So the proof attempt looks like this so far:

�(p�q)

��p

��q
��p��q (�In)

�(p�q)���(�p��q) (CP)

The (∂Out) rule comes in handy whenever a sentence of the shape ∂A 
is available, and you are hoping to prove another sentence of the same 
shape. Here we hope to prove ∂p, and ∂(p&q) is available. To set up the 
(∂Out), subproofs headed by ∫ and p&q must be constructed, within 
which p must be proven. But this is a simple matter using (&Out).
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1. ��(p�q)
2. �
3. p�q
4. �p 3 (�Out)
5. ��p 1, 4 (�Out)

��q
��p��q (�In)

�(p�q)���(�p��q) (CP)

Using the same strategy to obtain ∂q completes the proof.

1. �(p�q)

2. �
3. p�q
4. �  (�Out)
5. ��p 1, 4 (�Out)
6. �
7. p�q
8. �

p 3

q 7 (�Out)
9. ��q 1, 8 (�Out)

��p��q 5, 9 (�In)

11.��(p�q)���(�p��q) 10 (CP)

Since we will often use (∂Out), and the double subproof in this rule is 
cumbersome, we will abbreviate the rule as follows:

���A
�
�B

�A

------

�B���������(�Out)

Here the subproof with ∫, A at its head is shorthand for the double 
subproof.

�
���A A

�abbreviates: �
�B �B
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We will call this kind of abbreviated subproof a world-subproof. This 
abbreviation is a special case of the idea that we will adopt for arguments, 
namely, that a sequence of subproofs can be abbreviated by listing the 
hypotheses in a single subproof. For example, instead of writing

A
B

C

we may write:

A, B, C

instead.
Given the world-subproof abbreviation, it should be clear that (∫Out) 

can be applied to a boxed sentence ∫A to place A into a world-sub-
proof directly below where ∫A appears. Using world-subproofs, we may 
rewrite the last proof in a more compact format.

��(p�q)
���p�q
p (�Out)

��p (�Out)
���p�q

�q (�Out)
��q (�Out)
��p��q (�In)

�(p�q)���(�p��q) (CP)

EXERCISE 1.10

a) Redo Exercise 1.8c using (∂Out) with world-subproofs.
b) Show that the following useful rules are derivable in K:

~∫A ~∂A
------- -------
∂~A (~∫) ∫~A (~∂)

c)  Using the rules (~∫) and (~∂) and other derivable rules if you like, prove 
∫~∫p / ∫∂~p and ∂~∂p / ∂∫~p.
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1.6. Horizontal Notation for Natural Deduction Rules

Natural deduction rules and proofs are easy to use, but presenting them 
is sometimes cumbersome since it requires the display of vertical sub-
proofs. Let us develop a more convenient notation. When sentence A is 
proven under the following hypotheses:

 B
∫
 C

D
 ∫
:

 A

we may first abbreviate it as follows:

�B,��, C,�D,��
�
A

This can in turn be expressed in what we will call horizontal notation as 
follows:

B, �, C, D, ��A

Notice that B, ∫, C, D, ∫ is a list of the hypotheses (in order) under 
which A lies, so we can think of B, ∫, C, D, ∫ / A as a kind of argument. 
Of course, ∫ is not strictly speaking a hypothesis, since hypotheses are 
sentences, but we will treat ∫ as an honorary hypothesis nevertheless, to 
simplify our discussion. When we write ‘B, ∫, C, D, ∫  A’, we mean that 
there is a proof of A under the hypotheses B, ∫, C, D, ∫, in that order. We 
will use the letter ‘L’ to indicate such lists of the hypotheses, and we will 
write ‘L  A’ to indicate that A is provable given the list L. Notice that 
L is a list; the order of the hypotheses matters. Given this new notation, 
the rules of K may be reformulated in horizontal notation. To illustrate, 
consider Conditional Proof.

A
:

 B
-----------
AçB (CP)
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This rule may be applied in any subproof, so let L be a list of all the hypoth-
eses under which AçB lies in the use of this rule. Then the conclusion of 
this rule may be expressed in horizontal notation as L  AçB. To indicate 
the portion of the rule above the dotted line we consider each sentence 
that is not a hypothesis. In this case, the only such sentence is B. Now B 
lies under the hypothesis A, and all hypotheses L under which AçB lies. 
So the horizontal notation for this line is L, A  B. Putting the two results 
together, the horizontal notation for the rule (CP) is the following:

L, A ÷ B
--------------
L ÷ A ç B

In similar fashion, all the rules of K can be written in horizontal notation. 
A complete list follows for future reference.

Horizontal Formulation of the Rules of K

Hypothesis L, A �A (Hyp)

Reiteration L �A
----------
L, B �A (Reit)

(Note that B in the conclusion is the head of the subproof into which A
is moved.)

Modus Ponens L �A
L �A�B
-------
L �B (MP)

Conditional Proof L, A �B
-------
L �A�B (CP)

Double Negation L ���A
-------
L �A (DN)

�In L, ��A
----------
L ��A (�In)
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EXERCISE 1.11 Express (&Out), (IP), and (∂Out) in horizontal notation.

Instead of presenting proofs in subproof notation, we could also write 
them out in horizontal notation instead. For each line A of the proof, one 
constructs the list L of all hypotheses under which A lies, and then writes 
L  A. In the case of a hypothesis line A, the sentence A is understood to 
lie under itself as a hypothesis, so the horizontal notation for a hypothesis 
always has the form L, A  A. When several sentences head a subproof, 
like this:

 p
 q
 r

it is understood that this abbreviates three separate subproofs, one for 
each sentence. Therefore, the horizontal notation for these steps is given 
below:

 p p ÷ p
q p, q ÷ q

r p, q, r ÷ r

For example, here is a proof written in subproof form on the left with 
the horizontal version to the right.

��p��q �p��q������p��q (Hyp)
��p (�Out) �p��q������p (�Out)
��q (�Out) �p��q������q (�Out)

�
�p (�Out) �p��q,�������p (�Out)

�q (�Out) �p��q,�������q (�Out)
�p�q (�In) �p��q,�������p�q (�In)
�(p�q) (�In) �p��q�������p�q� (�In)

EXERCISE 1.12 Convert solutions to Exercises 1.7c–d into horizontal 
notation.

�Out L ��A
----------
L, ��A (�Out)
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When proofs are viewed in horizontal notation, it becomes appar-
ent that the rules of K apply to arguments L / C. In all proofs, the 
(Hyp) rule first introduces arguments of the form L, A  A (where 
L is empty in the first step), and then rules are applied to these argu-
ments over and over again to create new provable arguments out of 
old ones. You are probably more familiar with the idea that rules of 
logic apply to sentences, not arguments. However, the use of subproof 
notation involves us in this more general way of looking at how rules  
work.

1.7. Necessitation and Distribution

There are many alternative ways to formulate the system K. Using boxed 
subproofs is quite convenient, but this method had not been invented 
when the first systems for modal logic were constructed. In the remain-
der of this chapter, two systems will be presented that are equivalent to 
K, which means that they agree with K exactly on which arguments are 
provable. The traditional way to formulate a system with the effect of 
K is to add to propositional logic a rule called Necessitation (Nec) and 
an axiom called Distribution (Dist). We will call this system TK, for the 
traditional formulation of K.

System TK = PL + (Nec) + (Dist).

�A ��(A�B)�(�A��B) (Dist)
-------
��A (Nec)

The rule of Necessitation may appear to be incorrect. It is wrong, 
for example, to conclude that grass is necessarily green (∫A) given 
that grass is green (A). This objection, however, misinterprets the con-
tent of the rule. The notation ‘  A’ above the dotted line indicates that 
sentence A is a theorem, that is, it has been proven without the use of 

any hypotheses. The rule does not claim that ∫A follows from A, but 
rather that ∫A follows when A is a theorem. This is quite reasonable. 
There is little reason to object to the view that the theorems of logic 
are necessary.
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The derivation of a sentence within a subproof does not show it to be a 
theorem. So Necessitation does not apply within a subproof. For example, 
it is incorrectly used in the following “proof”:

1.  p
2.  ∫p 1 (Nec)  INCORRECT USE!  (Line 1 is in a subproof.)

3.   pç∫p (CP)

We surely do not want to prove the sentence pç∫p, which says that if 
something is so, it is so necessarily. The next proof illustrates a correct use 
of (Nec) to generate an acceptable theorem.

1.  p
2.  p√q        (√In)

3. pç(p√q)     (CP)

4. ∫(pç(p√q))  3 (Nec)     CORRECT USE (Line 3 is not in 
                  a subproof.)

It is easy enough to show that (Nec) and (Dist) are already available 
in K. To show that whatever is provable using (Nec) can be derived 
in K, assume that  A, that is, there is a proof of A outside of all 
hypotheses:

:
A

For example, suppose A is the theorem pç(pñq), which is provable as 
follows:

 p
 p√q         (√In)

pç(p√q)     (CP)

The steps of this proof may all be copied inside a boxed subproof, and 
(∫In) applied at the last step.

��
�
�A
�A (�In)
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The result is a proof of ∫A outside all hypotheses, and so we obtain  
 ∫A. In the case of our example, it would look like this:

��
�p

p�q  ���� (�In)
p�(p�q) (CP)

�(p�(p�q)) (�In)

To show that (Dist) is also derivable, we simply prove it under no 
hypotheses as follows:

�(A�B)
�A
�

�A����� (�Out)
�A�B (�Out)
�B����� (MP)

��B (�In)
��A��B (CP)

�(A�B)�(�A��B) (CP)

1.8. General Necessitation

K can also be formulated by adding to PL a single rule called General 
Necessitation (GN). Let H be a list of sentences, and let ∫H be the list 
that results from prefixing ∫ to each sentence in H. So, for example, if H 
is the list p, q, r, then ∫H is ∫p, ∫q, ∫r.

H �A
-------------
�H ��A (GN)

The premise of General Necessitation (GN) indicates that A has a proof 
from H. The rule says that once such an argument is proven, then there 
is also a proof of the result of prefixing ∫ to the hypotheses and the 
conclusion.
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General Necessitation can be used to simplify proofs that would other-
wise be fairly lengthy. For example, we proved ∫p, ∫q  ∫(p&q) above 
in eight steps (Section 1.4). Using (GN), we can give a much shorter proof, 
using horizontal notation. Simply begin with p, q  p&q (which is prov-
able by (Hyp) and (&In)), and apply (GN) to obtain the result.

p �p (Hyp)
p, q �p (Reit)
p, q �q (Hyp)
p, q �p&q (&In)
�p, �q ��(p&q) (GN)

EXERCISE 1.13. Produce “instant” proofs of the following arguments 
using (GN).

a) ∫p  ∫(pvq)
b) ∫p, ∫(pçq)  ∫q
c) ∫(pñq), ∫(pçr), ∫(qçr)  ∫r
d) ∫~p, ∫(pñq)  ∫q
e) ∫(pçq), ∫~q  ∫~p

Now let us prove that (GN) is derivable in PL + (Nec) + (Dist). Since we 
showed that (Nec) and (Dist) are derivable in K, it will follow that (GN) 
is derivable in K. First we show that the following rule (∫MP) is deriv-
able in any propositional logic that contains Distribution.

H ��(A�B)
-------------------
H, �A ��B (�MP)

The proof is as follows:

H ��(A�B) Given
H, �A ��(A�B) (Reit)
��(A�B)�(�A��B) (Dist)
H, �A ��(A�B)�(�A��B) (Reit) (many times)
H, �A ��A��B (MP)
H, �A ��A (Hyp)
H, �A ��B (MP)



The System K: A Foundation for Modal Logic34

To show that (GN) is derivable, we must show that if H  A, then 
∫H  ∫A for any list of sentences H. This can be shown by cases 
depending on the length of H. It should be clear that (GN) holds when 
H is empty, because in that case, (GN) is just (Nec). Now suppose 
that H contains exactly one sentence B. Then the proof proceeds as  
follows:

B �A Given
�B�A (CP)
��(B�A) (Nec)
�B ��A (�MP)

In case H contains two members B1 and B2, the proof is as follows:

B1, B2 �A Given
�B1�(B2�A) (CP) (two times)
��(B1�(B2�A)) (Nec)
�B1, �B2 ��A (�MP) (two times)

EXERCISE 1.14. Now carry out the same reasoning in case H contains 
three members B1, B2, and B3.

(GN) can be shown in general when H is an arbitrary list B1, . ., Bi using 
the same pattern of reasoning.

B1, . . , Bi �A Given
�B1�. . (Bi�A) (CP) (i times)
��(B1�. . (Bi�A)) (Nec)
�B1, . . , �Bi ��A (�MP) (i times)

This completes the proof that (GN) is derivable in K. It follows that any-
thing provable in PL + (GN) has a proof in K. In Section 9.4 it will be 
shown that whatever is provable in K is provable in PL + (GN). So PL + 
(GN) and K are simply two different ways to formulate the same notion 
of provability.
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1.9. Summary of the Rules of K

Rules of PL

Hypothesis Reiteration

A    (Hyp) A

:
B

:

 A    (Reit)

Modus Ponens       Conditional Proof Double Negation

 A A ~~A
 AçB --------
--------  B A   (DN)
 B    (MP) -------

AçB    (CP)

Derivable Rules of PL

 ~A A
: ~A -----
ƒ ----- ~~A    (~~In)

------ ƒ   (ƒIn)

A     (IP)

~A A
: :

 B  B
: :

~B ~B

------- --------

A    (~Out) ~A    (~In)

A

AA &B A&B

B ------ -----

----- A  (&Out) B  (&Out)

A&B  (&In)
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� A�B

----- ----- A B

A�B ��
�� A�B  (�In) � �
C  C

------

C    (�Out)

A� AB �B A�B

B�A ----- -----

----- A�B    (�Out) B�A  (�Out)

A�B    (�In)

A� AB �B

�B --------

----- �B��A    (CN)

�A    (MT)

�(A�B) �(A�B)

------- --------

�A��B    (DM) �A��B    (DM)

�(A�B) �(A�B)

-------- --------

A    (�F) �B    (�F)

K=PL+(�Out)+(�In)

� ���
��

� �
���������

����� �������
��
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Derivable Rules of K

�A

���A
�
 B

------

�B     (�Out)

��A ��A

----- -----

��A    (��)��������������������A    (��)

General Necessitation

H���A
--------

�H����A    (GN)

The Traditional Formulation of K: tK=PL+(Nec)+(Dist)

Necessitation

Distribution

��A
------

���A    (Nec)

���(A�B)�(�A��B)    (Dist)
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2.1. Modal or Alethic Logic

A whole series of interesting logics can be built by adding axioms to the 
basic system K. Logics for necessity and possibility were the first systems 
to be developed in the modal family. These modal (or alethic) logics are 
distinguished from the others in the modal family by the presence of the 
axiom (M). (M stands for ‘modal’.)

(M) �A�A

(M) claims that whatever is necessary is the case. Notice that (M) would 
be incorrect for the other operators we have discussed. For example, (M) 
is clearly incorrect when ∫ is read ‘John believes’, or ‘it was the case that’ 
(although it would be acceptable for ‘John knows that’). The basic modal 
logic M is constructed by adding the axiom (M) to K. (Some authors call 
this system T.) Notice that this book uses uppercase letters, for example: 
‘M’ for systems of logic, and uses the same letter in parentheses: ‘(M)’ for 
their characteristic axioms. Adding an axiom to K means that instances 
of the axiom may be placed within any subproof, including boxed sub-
proofs. For example, here is a simple proof of the argument ∫∫p / p in 
the system M.

1. ��p
2. ���p��p (M)
3. ��p�� 1, 2 (MP)
4. ��p�p (M)

5. �p 3, 4 (MP)

2

Extensions of K
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Line 2: ∫∫pç∫p counts as an instance of (M) because it has the 
shape ∫AçA. (Just let A be ∫p.) Proof strategies in M often require 
using complex instances of (M) in this way.

Any interesting use of an axiom like (M) pretty much requires the use 
of (MP) in the next step. This can make proofs cumbersome. To make 
proofs in M shorter, it is useful to introduce the following derivable rule, 
which we will also call (M).

�A
------

A (M)

With this rule in hand, the proof of ∫∫p / p is simplified.

1. ��p

2. ��p�� 1 (M)
3. �p 2 (M)

In the future, whenever axioms of the form AçB are introduced, it will 
be understood that a corresponding derived rule of the form A / B with 
the same name is available.

EXERCISE 2.1 

a) Prove Aç∂A in M. (Hint: Use the following instance of (M): ∫~Aç~A.)
b) Prove ∫Aç∂A in M.
c) Prove (M): ∫AçA in K plus Aç∂A.

The rule (M) allows one to drop a ∫ from a formula whenever it is the 
main connective. You might think of this as an elimination rule for ∫. 
Exercise 2.1c shows that the system M may be formulated equivalently 
using Aç∂A in place of (M), or by adopting a ∂ introduction rule that 
allows one to prefix any proven formula with a ∂. This corresponds to the 
intuition that A must be possible if it is true.

Many logicians believe that M is too weak, and that further principles 
must be added to govern the iteration, or repetition, of modal operators. 
Here are three well-known iteration axioms with their names.

(4) ∫Aç∫∫A
(B) Aç∫∂A
(5) ∂Aç∫∂A
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EXERCISE 2.2 Write an essay giving your reasons for either accepting or 
rejecting each of (4), (B), and (5).

To illustrate the use of these axioms (and their corresponding rules), here 
are some sample proofs that appeal to them. Here is a proof of ∫p / 
∫∫∫p that uses (4).

1. ��p
2. ��p�����p (4)

3. ���p�� 1, 2 (MP)

4. ���p������p (4)

5. ����p 3, 4 (MP)

Using the derived rule (4), the proof can be shortened.

1. �p
2. ���p�� 1 (4�
3. ����p 2 (4�

Next we illustrate a somewhat more complex proof that uses (B) to prove 
the argument p / ∫∂∂p.

1.  p
2.  ∂p Solution to Exercise 2.1a

3.  ∫∂∂p 2 (B)

Note that we have taken advantage of the solution to Exercise 2.1a to 
save many steps in this proof. Feel free to do likewise in coming exercises. 
Finally, here is a proof that uses (5) to prove ∂p / ∫∫∂p.

1. �p

2. ���p 1 (5)

� �
3. ��p�� 2�(�Out)
4. ���p 3 (5)

5. ���p 4 (�In)

You can see that strategies for proof finding can require more creativity 
when the axioms (4), (B), and (5) are available.

Although names of the modal logics are not completely standard, the 
system M plus (4) is commonly called S4. M plus (B) is called B (for 
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Brouwer’s system) and M plus (5) is called S5. The following chart reviews 
the systems we have discussed so far.

System M = K + (M): ∫AçA.
System S4 = M + (4): ∫Aç∫∫A.
System B = M + (B): Aç∫∂A.
System S5 = M + (5): ∂Aç∫∂A.

It would be more consistent to name systems after the axioms they con-
tain. Under this proposal, S4 would be named M4 (the system M plus (4)), 
and S5 would be M5. This is, in fact, the common practice for naming systems 
that are less well known. However, the systems S4 and S5 were named by 
their inventor, C. I. Lewis, before systems like K and M were proposed, and 
so the names ‘S4’ and ‘S5’ have been preserved for historical reasons.

EXERCISE 2.3 Prove in the systems indicated. You may appeal to any 
results established previously in this book or proven by you during the com-
pletion of these exercises. Try to do them without looking at the hints.

a) ∫∫A≠∫A in S4. (Hint: Use a special case of (M) for one direction.)
b) ∫∫~A / ∫~~∫~A in K.
c) ∂∂A≠∂A in S4. (Hint: Use the solution to Exercise 2.1a for one direc-

tion, and use 2.3b for the other.)
d) ∫∂∂A≠∫∂A in S4. (Hint: Use (GN) with the solution for 2.3c.)
e) ∫∂A≠∂A in S5. (Hint: Use a special case of (M) for one direction.)
f) (B) in S5. (Hint: Use the solution to Exercise 2.1a.)
g) ∫~∫~~A / ∫~∫A in K.
h) ∂∫AçA in B. (Hint: Use this version of B: ~Aç∫∂~A, and the previous 

exercise.)
i) ∂∫A≠∫A in S5. (Hint: In one direction, use Exercise 2.1a. In the other, 

use (~∫) (see Exercise 1.10b), this instance of (5): ∂~Aç∫∂~A, and the 
solution to g.)

The scheme that names a system by listing the names of its axioms is 
awkward in another respect. There are many equivalent ways to define 
provability in S5. All of the following collections of axioms are equivalent 
to S5 = M+(5).

M+(B)+(5)
M+(4)+(5)
M+(4)+(B)+(5)
M+(4)+(B)
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By saying S5 is equivalent to a collection of rules, we mean that the 
arguments provable in S5 are exactly the ones provable using the rules 
in that collection. For example, consider M+(B)+(5). This is equivalent 
to S5, because we showed in Exercise 2.3f that (B) is provable in S5. 
Therefore, (B) adds nothing new to the powers of S5. Whenever we have 
a proof of an argument using (B), we can replace the use of (B) with its 
derivation in S5.

EXERCISE 2.4 

a) Prove (4) in S5. (Hint: First prove ∫Aç∫∂∫A (a special case of (B)) and 
then prove ∫∂∫Aç∫∫A using the solution to Exercise 2.3i.)

b) Using the previous result, explain why S5 is equivalent to M+(4)+(5), and 
M+(4)+(B)+(5).

c) Prove S5 is equivalent to M+(4)+(B) by proving (5) in M+(4)+(B). (Hint: 
Begin with this special case of (B): ∂Aç∫∂∂A. Then use (4) to obtain 
∫∂∂Aç∫∂A.)

It is more natural to identify a formal system by what it proves rather than 
by how it is formulated. We want to indicate, for example, that M+(5) and 
M+(4)+(B) are really the same system, despite the difference in their 
axioms. If we name systems by their axioms, we will have many different 
names (‘M5’, ‘MB5’, ‘M45’, . . and so on) for the same system. For a system 
like S5, which has many equivalent formulations, it is just as well that 
there is a single name, even if it is somewhat arbitrary.

Exercise 2.3 was designed to familiarize you with some of the main 
features of S4 and S5. In S4, a string of two boxes (∫∫) is equivalent to 
one box (∫). As a result, any string of boxes is equivalent to a single box, 
and the same is true of strings of diamonds.

EXERCISE 2.5 Prove ∫∫∫A≠∫A, ∂∂∂A≠∂A, and ∫∫∫∫A≠∫A 
in S4, using the strategies employed in Exercises 2.3a and 2.3c.

The system S5 has stronger principles for simplifying strings of modal 
operators. In S4 a string of modal operators of the same kind can be 
replaced for the operator, but in S5 strings containing both boxes and 
diamonds are equivalent to the last operator in the string. This means 
that one never needs to iterate (repeat) modal operators in S5, since the 
additional operators are superfluous.
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EXERCISE 2.6 Prove ∂∫∂A≠∂A and ∫∂∫A≠∫A in S5.

The following chart reviews the iteration principles for S4 and S5.

S4: ∫∫ . . ∫ = ∫ ∂∂ . . ∂ = ∂
S5: 00 . . ∫ = ∫ 00 . . ∂ = ∂, where 0 is ∫ or ∂

The axiom (B): Aç∫∂A raises an important point about the inter-
pretation of modal formulas. (B) says that if A is the case, then A is nec-
essarily possible. One might argue that (B) should always be adopted 
in modal logic, for surely if A is the case, then it is necessary that A is 
possible. However, there is a problem with this claim that can be exposed 
by noting that ∂∫AçA is provable from (B). (See Exercise 2.3.h.) So 
∂∫AçA should be acceptable if (B) is. However, ∂∫AçA says that if 
A is possibly necessary, then A is the case, and this is far from obvious.

What has gone wrong? The answer is that we have not been careful 
enough in dealing with an ambiguity in the English rendition of Aç∫∂A. 
We often use the expression ‘if A then necessarily B’ to express that the 
conditional ‘if A then B’ is necessary. This interpretation of the English 
corresponds to ∫(AçB). On other occasions we mean that if A, then 
B is necessary: Aç∫B. In English, ‘necessarily’ is an adverb, and since 
adverbs are usually placed near verbs, we have no natural way to indicate 
whether the modal operator applies to the whole conditional, or to its 
consequent. This unfortunate feature creates ambiguities of scope, that is, 
ambiguities that result when it is not clear which portion of a sentence is 
governed by an operator.

For these reasons, there is a tendency to confuse (B): Aç∫∂A with 
∫(Aç∂A). But ∫(Aç∂A) is not the same as (B), for ∫(Aç∂A) is a 
theorem of M, and (B) is not. So one must take special care that our posi-
tive reaction to ∫(Aç∂A) does not infect our evaluation of (B). One 
simple way to protect ourselves is to consider the sentence: ∂∫AçA, 
where ambiguities of scope do not arise.

EXERCISE 2.7 Prove ∫(Aç∂A) in M.

One could engage in endless argument over the correctness or incor-
rectness of (4), (B), (5), and the other iteration principles that have been 
suggested for modal logic. Failure to resolve such controversy leads some 
people to be very suspicious of modal logic. “How can modal logic be logic 
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at all,” they say, “if we can’t decide what the axioms should be?” My answer 
is to challenge the idea that we must decide on the axioms in order for modal 
logic to be coherent. Necessity is a many-sided notion, and so we should not 
expect it to correspond to a single logic. There are several viable modal sys-
tems, each one appropriate to a different way in which we understand and 
use the word ‘necessarily’. This idea will be explored in more detail when we 
provide semantics for modal logics in Chapter 3.

2.2. Duals

The idea of the dual of a sentence is a useful notion in modal logic. The 
following pairs of symbols are defined to be mates of each other.

& �
��
��

We have not introduced quantifiers  and  in our logics yet, but we will 
later, and so they are included now for future reference. Let A* be the sen-
tence that results from replacing each symbol in A on the above list with 
its mate. Now we may define the dual for sentences that have the shapes 
AçB and A≠B, provided ç, ≠, and ~ do not appear in A or B. The dual 
of AçB is B*çA*, and the dual of A≠B is A*≠B*. Notice that sentences 
that do not have the shapes AçB or A≠B do not have duals. The best way 
to understand what duals are is to construct a few. The dual of (B): Aç∫∂A 
is (∫∂A)*ç(A)*, that is, ∂∫AçA. The dual of ∫(A&B)ç(∂Añ∂B) is 
(∂Añ∂B)*ç∫(A&B)*. But (∂Añ∂B)* is ∫A&∫B and ∫(A&B)* is 
∂(AñB), and so we obtain (∫A&∫B)ç∂(AñB), which is, therefore, its 
own dual.

EXERCISE 2.8 Find the duals of the following sentences.

a) ∫Aç∫∫A
b) (∫A&∫B)≠∫(A&B)
c) ∂Aç∫∂A
d) ∫(AñB)ç(∫Añ∫B)
e) x∫Ax≠∫ xAx
f) ∫(∫AçA) (trick question)
g) ∫Aç∂A
h) Aç∫∂A

The reason duals are interesting is that adding an axiom to K is equiv-
alent to adding its dual as an axiom. Since sentences with the shape 



2.3 Deontic Logic 45

Aç∫∂A are provable in B, it follows that all sentences of the (dual) 
shape ∂∫AçA are provable in B as well. In fact, we could have used 
∂∫AçA instead of Aç∫∂A to define the system B. Being able to rec-
ognize duals can be very helpful in working out proof strategies and for 
appreciating the relationships among the various modal logics.

EXERCISE 2.9 Using duals, produce alternatives to the axioms (M), (4),  
and (5).

EXERCISE 2.10 To help verify that an axiom is equivalent to its dual, recon-
struct proofs of the following facts:

a) The dual of (M) is derivable in K plus (M). (Exercise 2.1a)
b) The dual of (4) is derivable in K plus (4). (Exercise 2.3c)
c) The dual of (B) is derivable in K plus (B). (Exercise 2.3h)
d) The dual of (5) is derivable in K plus (5). (Exercise 2.3i)

2.3. Deontic Logic

A number of modal logics that are not appropriate for necessity and pos-
sibility can be built from the basic system K. They lack the characteris-
tic axiom of M: ∫AçA. Deontic logics, the logics of obligation, are an 
important example. Deontic logics introduce the primitive symbol O for 
‘it is obligatory that’, from which symbols for ‘it is permitted that’ and ‘it 
is forbidden that’ are defined as follows:

(DefP) PA =df ~O~A
(DefF) FA =df O~A

The symbol ‘O’ in deontic logic plays exactly the same role as ∫ did in 
the system K. A basic system D of deontic logic can be constructed by 
adding the characteristic deontic axiom (D) to the rules of K, with O 
playing the role of ∫.

OOut OIn

OA  O
 :

O «  A
«------
 A   (OOut) OA     (OIn)

(D)    OAçPA

System D = (OOut) + (OIn) + (D).
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Although the principles of K seem reasonable for deontic logic, one 
feature has bothered some people. The rule of Necessitation is derivable 
in K, so OA follows when A is a theorem. For example, since pçp is 
provable in PL, O(pçp) will follow. However, it is odd to say that pçp is 
obligatory (though just as odd, I would think, to deny that pçp is obliga-
tory). Questions about whether A is obligatory do not arise when A is a 
theorem, because the language of obligation and permission applies to 
sentences whose truth values depend on our actions. No matter what we 
do, pçp will remain true, so there is no point in commanding or even 
permitting it.

Even though our feelings about K are, for this reason, neutral, K does 
lead to reasonable results where we do have strong intuitions. For exam-
ple, the theorems about K concerning the distribution of operators over 
the connectives all seem reasonable enough. We will be able to prove that 
O(A&B) is equivalent to OA&OB, that O(AñB) is entailed by OAñOB 
but not vice versa, that P(AñB) is equivalent to PAñPB, that O(AçB) 
entails PAçPB, and so forth. These are widely held to be exactly the 
sort of logical properties that O and P should have. Later, when we learn 
about modal semantics, we will find further support for the view that 
deontic logics can be built on the principles of K.

2.4. The Good Samaritan Paradox

There is a second problem with using K for deontic logic that has been 
widely discussed (Åqvist, 1967). The objection concerns a special case of 
the deontic version of General Necessitation (GN):

A ü B
---------- -

OA ü OB

Now imagine that a Good Samaritan finds a wounded traveler by the 
side of the road. Assume that our moral system is one where the Good 
Samaritan is obliged to help the traveler. Consider the following instance 
of (GN):

1. The Good Samaritan binds the traveler’s wound  the traveler is 
wounded.

2. The Good Samaritan ought to bind the traveler’s wound  the trav-
eler ought to be wounded.

Argument (1) appears to be logically valid, for you can’t fix a person’s 
wounds if the person is not wounded. However, the second argument 
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(2) appears to be invalid. It is true that the Good Samaritan should help 
the traveler, but it is false that the traveler ought to be wounded. So it 
appears we must reject (GN), since it leads us from a valid to an invalid 
argument.

Let us resolve the paradox by symbolizing (1) in deontic logic. Although 
a full analysis requires predicate letters and quantifiers, it is still possible 
to present the gist of the solution to the problem using propositional logic. 
(For a more sophisticated treatment, see Exercise 18.18 in Chapter 18.) 
The central issue concerns how we are to translate sentence (3).

(3) The Good Samaritan binds the traveler’s wound.

Sentence (3) really involves two different ideas: that the traveler is 
wounded, and that the Good Samaritan binds the wound. So let us use 
the following vocabulary:

W = The traveler is wounded.
B = The Good Samaritan binds the wound.

Now arguments (1) and (2) may be represented as an instance of (GN) 
as follows.

W&B ü W
---------- - - - - - - -

O(W&B) ü OW

However, this does not count as a reason to reject (GN), for if it were, 
the argument O(W&B)  OW would need to have a true premise and 
a false conclusion. However, the premise is false. It is wrong to say that 
it ought to be the case that both the traveler is wounded and the Good 
Samaritan binds the wound, because this entails that the traveler ought 
to be wounded, which is false.

One might object that the claim that the Good Samaritan ought to 
bind the traveler’s wound appears to be true, not false. There is, in fact, a 
way to represent this where it is true, namely W&OB. This says that the 
traveler is wounded and the Good Samaritan ought to bind the wound. In 
this version, W does not lie in the scope of the modal operator, so it does 
not claim that the traveler ought to be wounded. But if this is how the 
claim is to be translated, then (1) and (2) no longer qualify as an instance 
of (GN), for in (GN) the O must include the whole sentence W&B.

W&B W
---------- - - - - -
W&OB OW not an instance of (GN)!
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So the Good Samaritan paradox may be resolved by insisting that we 
pay close attention to the scope of the deontic operator O, something 
that is difficult to do when we present arguments in English. Sentence (3) 
is ambiguous. If we read it as O(W&B), we have an instance of (GN), but 
the second argument’s premise is false, not true. If we read (3) as W&OB, 
the premise of that argument is true, but the argument does not have the 
right form to serve as a case of (GN). Either way it is possible to explain 
why the reasoning is unsound without rejecting (GN).

2.5. Conflicts of Obligation and the Axiom (D)

We have already remarked that we do not want to adopt the analogue of 
(M), OAçA, in deontic logic. The reason is that if everything that ought 
to be is the case, then there is no point to setting up a system of obli-
gations and permissions to regulate conduct. However, the basic deon-
tic system D contains the weaker axiom (D), which is the analogue of 
∫Aç∂A, a theorem of M.

(D) OAçPA

Axiom (D) guarantees the consistency of the system of obligations by 
insisting that when A is obligatory, it is permissible. A system that com-
mands us to bring about A, but doesn’t permit us to do so, puts us in an 
inescapable bind.

Some people have argued that D rules out conflicts of obligations. 
They claim we can be confronted with situations where we ought to do 
both A and ~A. For example, I ought to protect my children from harm, 
and I ought not to harbor a criminal, but if my child breaks the law and I 
am in a position to hide him so that he escapes punishment, then it seems 
I ought to turn him in because he is a criminal (OA), and I ought not to 
turn him in to protect him from harm (O~A). However, it is easy to prove 
~(OA&O~A) in D, because (D) amounts to OAç~O~A, which entails 
~(OA&O~A) by principles of propositional logic. So it appears that 
OA&O~A, which expresses the conflict of obligations, is denied by D.

I grant that conflicts of obligation are possible, but disagree with the 
conclusion that this requires the rejection of D. Conflicts of obligation 
arise not because a single system of obligations demands both A and ~A, 
but because conflicting systems of obligation pull us in different directions. 
According to the law, there is no question that I am obligated to turn in 
my son, but according to a more primitive obligation to my children, I 
should hide him. Very often, there are higher systems of obligation that 
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are designed specifically to resolve such conflicts. If O is used to express 
obligation in a higher moral system that says that the law comes first in 
this situation, then it is simply false that I should refrain from turning him 
in, and it is no longer true that both OA and O~A.

Sometimes we have no explicit system that allows us to resolve con-
flicts between different types of obligation. Even so, we still do not have a 
situation where any one system commands both A and ~A. In our exam-
ple, we have two systems, and so we ought to introduce two symbols: 
(say) Ol for legal, and Of for familial obligation. Then OlA is true but 
Ol~A is false, and Of~A is true while OfA is false when A is read ‘I turn 
in my child’. The axiom (D) is then perfectly acceptable for both deontic 
operators Ol and Of, and so the conflict of obligations does not show that 
(D) is wrong.

2.6. Iteration of Obligation

Questions about the iteration of operators, which we discussed for modal 
logics, arise again in deontic logic. In some systems of obligation, we 
interpret O so that OOA just amounts to OA. ‘It ought to be that it ought 
to be’ is just taken to be a sort of stuttering; the extra ‘oughts’ don’t add 
anything. If this is our view of matters, we should add an axiom to D to 
ensure the equivalence of OOA and OA.

(OO) OA ≠ OOA

If we view (OO) as composed of a pair of conditionals, we find that it 
“includes” the deontic analogue OAçOOA of the modal axiom (4), 
∫Aç∫∫A. In system M, the converse ∫∫Aç∫A is derivable, so it 
guarantees the equivalence of ∫∫A and ∫A. But in deontic logic, we 
don’t have (M), and so we need the equivalence in (OO). Once we have 
taken the point of view that adopts (OO), there seems to be no reason 
not to accept the policy of iteration embodied in S5 and simply ignore 
any extra deontic operators. So we would add an equivalence to guaran-
tee the equivalence of OPA and PA.

(OP) PA ≠ OPA

There is another way to interpret O so that we want to reject both 
(OO) and (OP). On this view, ‘it ought to be that it ought to be that A’ 
commands adoption of some obligation that we may not already have. 
This is probably a good way to look at the obligations that come from 
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the legal system, where we generally have legal methods for changing the 
laws and, hence, our obligations. Most systems that allow us to change 
our obligations do so only within limits, and these limits determine the 
obligations that are imposed on us concerning what we can obligate peo-
ple to do. Under this reading, OOA says that according to the system, we 
have an obligation to obligate people to bring about A, that is, that no 
permissible changes in our obligations would release us from our duty 
to bring about A. Similarly, OPA says that we have an obligation in the 
system to permit A, that is, that we are not allowed to change the obliga-
tions so that people aren’t permitted to do A. For example, according to a 
constitutional system, one might be allowed to make all sorts of laws, but 
not any that conflict with the fundamental principles of the constitution 
itself. So a system of law might obligate its citizens to permit freedom of 
speech (OPs), but this would be quite different from saying that the sys-
tem permits freedom of speech (Ps).

If this is how we understand O and P, it is clear that we cannot accept 
(OO) or (OP). If A is obligatory, it doesn’t follow that it has to be that 
way, that is, that it is obligatory that A be obligatory. Also, if A is permit-
ted, it doesn’t follow that it has to be permitted. On this interpretation of 
obligation it is best to use the deontic logic D and drop (OO) and (OP).

There is one further axiom that we may want to add in deontic logics 
regardless of which interpretation we like. It is (OM).

(OM) O(OAçA)

This says that it ought to be the case that if A ought to be the case, then it 
is the case. Of course, if A ought to be, it doesn’t follow that A is the case. 
We already pointed out that OA ç A is not a logical truth. But even so, 
it ought to be true, and this is what (OM) asserts. In almost any system of 
obligation then, we will want to supplement D with (OM).

EXERCISE 2.11 Show that sentences of the following form can be proven 
in D plus (OO): OAçOPA.

2.7. Tense Logic

Tense logics (Burgess, 1984; Prior, 1967) have provoked much less phil-
osophical controversy than have deontic or even modal logics. This is 
probably because the semantics for tense logics can be given in a very 
natural way, one that is hard to challenge. Still there is no one system 


