

A *paradox* is an argument that:

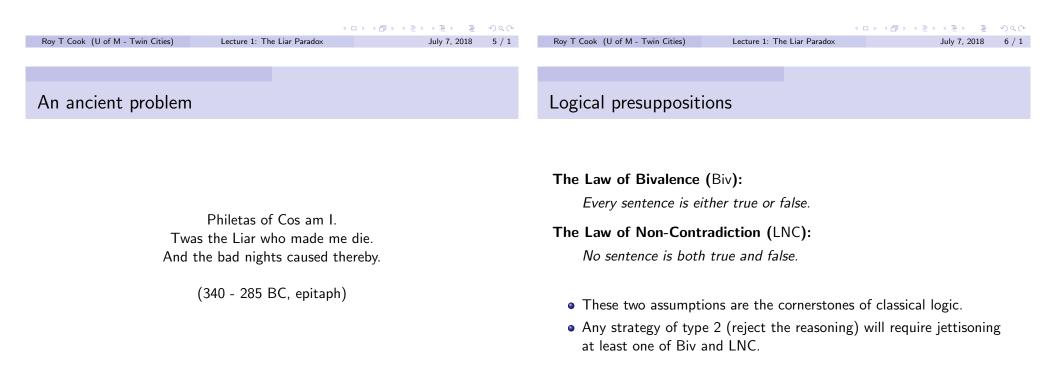
- Begins with apparently unobjectionably true premises.
- Proceeds via apparently unobjectionable reasoning.
- Ends with a conclusion that is contradictory, false, or otherwise absurd or inappropriate.

Four options for 'solving' paradoxes:

- Reject one or more premises.
- Q Reject the reasoning.
- Accept the conclusion.
- Reject the central concept.

Theorem	Theorem (Explosion, or <i>Ex Falso Quolibet</i>):									
Proof:	Proof: $\Phi \land \neg \Phi \vdash_{C} \Psi$									
		1	$\Phi \wedge \neg \Phi$	Assumption						
		2	Φ	1, \land Elimination.						
		3	$\Phi \vee \Psi$	2, \lor Introduction.						
		4	$\neg \Phi$	1, \land Elimination.						
		5	Ψ	3, 4, Disjunctive Syllogism.						

Note: This also holds for intuitionistic logic H, so that's no help here!


The Liar paradox

- **Premise**₁: The Tarskian T-schema (informally): Any meaningful, declarative sentence is *true* if and only if *what it says is the case*.
- Premise₂: The Liar sentence: This sentence is false. is a genuine, meaningful declarative sentence.

Conclusion: Contradiction.

The argument (informally)

- By the law of bivalence, the Liar sentence is either true or false.
- If the Liar sentence is true, then what it says must be the case. The Liar sentence says that it is false. So the Liar sentence must be false. But then the Liar sentence is both true and false. This violates the *law of non-contradiction*!
- If the Liar sentence is false, then, since it says that it is false, what it say is the case. So the Liar sentence is true. Hence, again, the Liar sentence is both true and false. And again, this violates the *law of non-contradiction*!
- Contradiction!

More formally

The Tarskian T-schema:

For every sentence Φ :

$$T(\ulcorner Φ \urcorner) \leftrightarrow Φ$$

The Liar Sentence:

There exists a sentence λ such that:

 $\lambda \leftrightarrow \neg \mathsf{T}(\ulcorner \lambda \urcorner)$

[Where $\lceil \Phi \rceil$ is an appropriate name of the sentence Φ]

The argument formally

The Derivation:

- $\mathsf{T}(\ulcorner\lambda\urcorner)\leftrightarrow\lambda$ T-schema. 1
- 2 $\lambda \leftrightarrow \neg \mathsf{T}(\ulcorner \lambda \urcorner)$ Liar sentence.
- 3 $\mathsf{T}(\ulcorner\lambda\urcorner) \leftrightarrow \lnot\mathsf{T}(\ulcorner\lambda\urcorner)$ 1, 2, logic.

Note on defining "contradiction"

- *Syntactic*: A contradiction is a formula of the form $\Phi \land \neg \Phi$.
- Semantic: A contradiction is a formula that cannot be true (as a matter of logic).

	 < □ > < □ > < : 	自补 长度补 小臣。	$\mathcal{O} \mathcal{Q} \mathcal{O}$			・ロト ・四ト ・日ト ・日・	うくで
Roy T Cook (U of M - Twin Cities) Lecture 1:	The Liar Paradox	July 7, 2018	9 / 1	Roy T Cook (U of M - Twin Cities)	Lecture 1: The Liar Paradox	July 7, 2018	10 / 1
Other versions				The Liar Game			
				The rules:			
					hill and a \$20 hill		
				• I will give you a \$10			
Question:	Command:			 The next slide will the 	nen have a single senten	ce on it.	
Is the answer to this question	Do not obey this	command!		 The sentence is either 	er true or false.		
"no"?				 If the sentence is tru \$10 bill. 	e, you must give me the	e \$20 bill and keep the	9
				 If the sentence is fall \$20 bill. 	se, you must give me th	e \$10 bill and keep the	e

12 / 1

The Sentence:

What went wrong?

Answer:

Either you will give me the \$10 bill, or you will give me \$1,000,000.

is equivalent to:

Either this sentence is false, or you will give me \$1,000,000.

which is, in classical logic, also equivalent to: If this sentence is true, then you will give me \$1,000,000.

This is a version of the Curry paradox.

	< □ ▶ < ₫	→ < = > < = > =	9 Q C				< □ >	 ▲ (□) → (□	900
Roy T Cook (U of M - Twin Cities)	Lecture 1: The Liar Paradox	July 7, 2018	13 / 1	Roy T Cook (U of M - Tu	vin Cities)	Lecture 1: Th	ne Liar Paradox	July 7, 2018	14 / 1
The Curry Paradox				The Curry pa	aradox f	ormally			
The Curry Sentence (<i>C</i>)									
If this sentence is the	rue, then the moon is made	of green chee	se.			$C \leftrightarrow (T(r))$	$^{\neg}C^{\neg}) \rightarrow \Phi)$		
Theorem				1	C		Assumption		
Using the Curry sentence	above, we can prove:			2		¬) → Φ	1, Df. of C		
The mo	on is made of green chee	se		3	T(ΓC	[¬])	1, T-schema		
Proof.				4	Φ		2, 3, Modus Pc	onens	
	en what it says must be the case. e of green cheese. It is true. So t			5	'T(□C□)	$ ightarrow \Phi$	1 - 4, Conditior	nal Proof.	
green cheese.	ů.			6	С		5, Df. of C		
	ounts to a proof that, if C is true this is just what C says. So C m			7	$T(\ulcorner C\urcorner)$		6, T-schema.		
	he moon is made of green cheese			8	Φ		5, 7, Modus Po	onens.	
	-						${}^{\bullet} \Box {}^{\bullet}$	▲御 → ▲ 臣 → ▲ 臣 → 二 臣	5

Either you will give me the \$10 bill,

or you will give me \$1,000,000.

Generalizing

Note:

• There is nothing special about:

The moon is made of green cheese

• Along similar lines, we can use:

If this sentence is true, then 1 + 1 = 5.

If this sentence is true, then grass is pink.

If this sentence is true, then 1 + 1 = 2.

to prove:

1 + 1 = 2.

Roy T Cook (U of M - Twin Cities) Lecture 1: The Liar Paradox July 7, 2018 17/1

The Curry Paradox and Conditionals

Some Thoughts:

- The Curry paradox involves neither falsity nor negation (i.e. "not").
- The Curry paradox does, of course, still involve talk of truth (just like the Liar paradox).
- Instead, the Curry paradox seems to involve the conditional that is, phrases of the form:

If ...then ...

• Thus, a solution to the Curry paradox will likely involve giving up one or more of our basic intuitions about "If...then ...".

Clarification: Of course, our proof that the Curry sentence generates a paradox does involve talk of falsity. The point is that the Curry sentence itself contains no mention of falsity.

Bonus Question

Question: Is there anything wrong with using:

If this sentence is true, then
$$1 + 1 = 2$$
.

to prove:

$$1 + 1 = 2$$

After all, unlike:

The moon is made of green cheese.

it turns out that:

1 + 1 = 2.

is true!

		${}^{\bullet} \square {}^{\bullet}$	<⊡>	* 王	► < E > .	2	うくで
Roy T Cook (U of M - Twin Cities)	Lecture 1: The Liar Paradox				July 7, 201	18	18 / 1

Defining Negation In Terms of the Conditional

Definition

Let \perp be an abbreviation of your favorite contradiction. Then: "It is not the case that Φ " =_{df} "If Φ then \perp ".

So the Liar sentence:

This sentence is false.

is just a special case of the Curry paradox:

If this sentence is true, then \perp .

Some (informal) definitions

Definition

- A sentence Φ (or set of sentences Σ) is paradoxical if and only if there is no way to coherently assign it a truth value (or to assign the sentences contained in it truth values).
- A sentence Φ (or set of sentences Σ) is <u>determinate</u> if and only if there is a unique way to coherently assign it a truth value (or to assign the sentences contained in it truth values).
- A sentence Φ (or set of sentences Σ) is <u>indeterminate</u> if and only if there is more than one way to coherently assign it a truth value (or to assign the sentences contained in it truth values).

Note: This terminology violates the point I made earlier about paradoxes being arguments, not sentences. It's technical terminology, unfortunately, and there's nothing we can do about it.

Lecture 1: The Liar Paradox

イロト イポト イヨト イヨ

Julv 7.

The plan for the rest of this section

We are going to:

Roy T Cook (U of M - Twin Cities)

- Briefly talk about strategies of types:
 - Accept the conclusion
 - eject the central concept
- Set up the main approaches addressed in the remaining sections:
 - Reject a premise
 - 2 Reject the reasoning.

Examples

Given a background of classical logic:

• The Liar sentence: This sentence is false.

is paradoxical.

• The tautology-teller:

This sentence is either true or false.

is determinate.

• The (badly named!) truth-teller sentence:

This sentence is true.

is indeterminate.

Note: Whether or not a sentence falls into one of these categories is dependent on the background logic!

▶ 臣	うべつ			(웹) 《문) 《문) (き うくぐ
, 2018	21 / 1	Roy T Cook (U of M - Twin Cities)	Lecture 1: The Liar Paradox	July 7, 2018	22 / 1

Strategy 4: Reject the concept

Idea: There is something wrong with the notion of *truth*. Hence, we need to either reject it altogether or replace it with a different concept. But:

- Rejecting truth altogether seems (to me at least) too extreme.
- Especially given the rich extant work along the lines of the other options!
- Nevertheless, in general this option should always be kept in mind:
 - For example, we might think that the Russell paradox shows that there just aren't such things as *extensions*!
 - Kevin Scharp's idea: Replace truth with two notions ascending truth and descending truth, where:

 $\Phi \to T_A(\ulcorner Φ \urcorner).$ $T_D(\ulcorner Φ \urcorner) \to \Phi.$

イロト イポト イヨト イヨト 一日

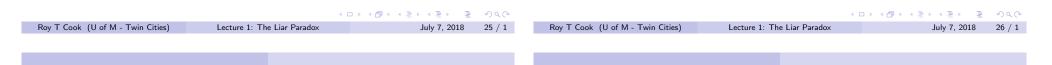
SOR

Strategy 3: Accept the conclusion

In other words, accept that the Liar sentence really is *both true and false* at the same time. But:

- This amounts to accepting a contradiction!
- Thus, we need some means by which to block *explosion*!
- As a result, we *still* need to formulate a non-classical logic!
- So, adopting strategy 3 in this case requires also adopting strategy 2!
- We'll talk more about strategy 3 in later lectures.

Strategy 1: Reject a premise: Attempt 1


Idea:

Give up Tarski's T-schema (in its fully general form).

Hence, adopt some form of the restricted Tarskian T-Schema: For every sentence Φ of some special sort:

 $T(\ulcorner Φ \urcorner) \leftrightarrow Φ$

Or, replace the T-schema with some other collection of axioms for truth. We'll spend a lot of time on these sorts of approaches later today.

Strategy 1: Reject a premise: Attempt 2

Idea: Give up the claim that the Liar sentence is a meaningful sentence.

- Historically, this has been the traditional response to the problem.
- The thought is that the circularity present in the Liar sentence is somehow *bad*, and the sentence is thereby somehow faulty.
- But Gödel's theorems and recursion theory rely on exactly the same sort of self-reference as is found in (some versions of) the Liar paradox!
- In addition, there are variants of the Liar paradox that seem to be devoid of circularity (although they have other weird properties). For example, the Yablo paradox (two slides from now!)
- It has turned out to be extremely difficult to formulate a criterion for "goodness" that rules out the stuff we don't want (i.e. the paradoxes and other pathological constructions) while retaining the stuff we do want (e.g. the Gödel sentence).

Kripke on rejecting the Liar

Self-referential sentences just *are* meaningful!

A simpler, and more direct, form of self-reference uses demonstratives or proper names: Let "Jack" be a name of the sentence 'Jack is short', and we have a sentence that says of itself that it is short. I can see nothing wrong with "direct" self-reference of this type. If 'Jack' is not already a name in the language, why can we not introduce it as a name of any entity we please? In particular, why can it not be a name of the (uninterpreted) finite sequence of marks 'Jack is short'? (would it be permissible to call this sequence of marks "Harry", but not "Jack"? Surely prohibitions on naming are arbitrary here.) There is no vicious circle in our procedure, since we need not interpret the sequence of marks 'Jack is short' before we name it. Yet if we name it "Jack", it at once becomes meaningful and true. (Kripke 1975: 693)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

SOR

イロト イポト イヨト イヨト 一日

The Yablo Paradox

Very New: Discovered by Stephen Yablo and Albert Visser in 1980s!

 $\begin{array}{rl} S_1 : \mbox{ For all } n > 1, S_n \mbox{ is false.} \\ S_2 : \mbox{ For all } n > 2, S_n \mbox{ is false.} \\ S_3 : \mbox{ For all } n > 3, S_n \mbox{ is false.} \\ \vdots & \vdots & \vdots \\ S_m : \mbox{ For all } n > m, S_n \mbox{ is false.} \\ S_{m+1} : \mbox{ For all } n > m+1, S_n \mbox{ is false.} \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{array}$

Note: I wrote an entire book on this paradox!

	<.	미 🛛 🖉 🕨 🖉 🖢 🖉 🔁 👘 🖻	500				· · · · · · · · · · · · · · · · · · ·
Roy T Cook (U of M - Twin Cities)	Lecture 1: The Liar Paradox	July 7, 2018	29 / 1	Roy T Cook (U of M - Twin Cities)	Lecture 1: The Liar Paradox	July 7, 2018	30 / 1
No circularity!				Strategy 2: Reject t	he reasoning		

The Argument

Non-Contradiction.

Theorem

Proof.

- The Yablo paradox does not contain any sentence of the form: This sentence is ...
- Instead, each sentence in the Yablo sequence is of the form: Those sentences are ...
- Of course, the Yablo construction does trade *circularity* for *ungroundedness*! (That is, there is no circularity, but there is an *infinitely descending* chain of reference!)

The Idea: Adopt a *non-classical logic* where some inference crucial to the Liar reasoning turns out to be invalid.

The Yablo sequence of sentences (plus Bivalence, the Law of Non-contradiction, and the T-schema) entail a contradiction.

Assume S_n is true. Then, by the T-Schema, what it says must be the case. S_n

false. This is exactly what S_{n+1} says. So, by the T-schema, S_{n+1} is true. Hence

 $m \in \mathbb{N}$, S_m is false. This entails that S_1 is false. But this also entails that, for every m > 1, S_m is false. But this is exactly what S_1 says. So, by the T-schema,

says that, for every m > n, S_m is false. So, for every m > n, S_m is false. This entails that S_{n+1} is false. But this also entails that, for any m > n + 1, S_m is

 S_{n+1} is both true and false. This violates the Law of Non-Contradiction. So S_n cannot be true. Thus, S_n is false. But *n* was arbitrary. So, for every

 S_1 is true. Hence, S_1 is both true and false. This violates the Law of

Let S_n be any sentence in the Yablo sequence.

- General approach 1 (Gaps): Give up the law of bivalence. So some sentences are *neither true or false*.
- *General approach* 2 (Gluts): Give up the law of non-contradiction. So some sentences are *both truth and false*.
- *The Big Question*: How do we know that such logics will evaluate all sentences correctly (or even coherently)?
- *The Bigger Question*: What if there are sentences that can't be any of true, false, or neither (or true, false, or both)?

The rest of the day in more detail

Roy T Cook (U of M - Twin Cities)

- Part II will be devoted to examining the most well-known *reject a premise* solution to the Liar paradox and related puzzles: *Tarski's hierarchy*.
- Part III will then look more closely at a number of *reject the reasoning* approaches to the Liar paradox obtained via *many-valued logics* (including both "gap" and "glut" approaches).
- Part IV will then return to the *reject a premise* approach, looking at a more recent *axiomatic* approaches to truth.
- If there is time, Part V will look more closely at the formal details of the many-valued logics discussed in Part III.

Part III: Many Valued Logics, Informally

Part III: Many Valued Logics, Informally

Roy T Cook

CLA Scholar of the College and John M. Dolan Professor Department of Philosophy University of Minnesota - Twin Cities Minneapolis, MN 55455, USA

cookx432@umn.edu

July 7, 2018

Part III: Many Valued Logics, Informally

July 7, 2018

3/1

	< = > < A	★ 문 ★ 문 ★ 문	500	<ロ> (同) (言) (言) (言) (言) (言) (言) (言) (言) (言) (言
Roy T Cook (U of M - Twin Cities)	Lecture 1: The Liar Paradox	July 7, 2018	33 / 1	Roy T Cook (U of M - Twin Cities) Part III: Many Valued Logics, Informally July 7, 2018 1
The Plan:				Classical Logic
	oduction to many-valued logics. tion to the <i>revenge problem</i> .			 Bivalence: Every sentence is either true or false. Law of Non-Contradiction: No sentence is both true and false. Negation (not): "not: Φ" is true if and only if "Φ" is false.
				Conjunction (and): " Φ and Ψ " is true if and only if " Φ " is true and " Ψ " is true.
				Disjunction (or): " Φ or Ψ " is true if and only if " Φ " is true or " Ψ " is true.
	< □ > < @	> < 글 > < 글 > □ 글	৩১৫	· ㅁ > 《쿱 > 《혼 > 《혼 > · 동 · 양·

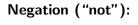
July 7, 2018

2 / 1

Roy T Cook (U of M - Twin Cities)

Classical Truth Tables

Validity


An argument with $P_1, P_2, \ldots P_n$ as premises, and C as conclusion – that is:

$$\frac{P_1, P_2, \dots P_n}{C}$$

is logically valid if and only if it is impossible for $P_1, P_2, \ldots P_n$ to all be true and C fail to be true.

Logical Truth:

A sentence is a logical truth if and only if it is impossible for it to fail to be true.

Conjuction ("and"):

 \wedge

Т

F

V	T	F
T	T	Т
F	T	F

Disjunction ("or"):

	۲ 🗆	> < @ > < ≥ > < ≥ > = 3	500		4	□ > <i>▲ 레</i> > <i>▲</i> 볼 > <i>▲</i> 볼 > _ 볼	৩৫৫
Roy T Cook (U of M - Twin Cities)	Part III: Many Valued Logics, Informally	July 7, 2018	4 / 1	Roy T Cook (U of M - Twin Cities)	Part III: Many Valued Logics, Informally	July 7, 2018	5 / 1
Classically Valid Ar	guments and Logical	Truths		First-Degree Entail	ment (FDE)		
-					· · · ·		
Disjunctive Syllogism:							
$\frac{not:\Phi, \Phi \text{ o}}{\Psi}$	rΨ –	$\Phi, \Phi \lor \Psi$		Give Up Bivalence:			
Ψ		Ψ		•	n be neither true nor false.		
Explosion:				Give Up the Law of N			
				Some sentences ca	n be both true and false.		
<u>not</u> : Φ and	<u>Φ</u>	$\neg \Phi \land \Phi$		Historical Note:			
Ψ		Ψ		The logic of First-l	Degree Entailment was inti	roduced by Alan	
Excluded Middle:				Anderson and Nue	l Belnap.		
Φ or <i>not</i> : Φ)	$\Phi \lor \neg \Phi$					
	4 🗆	→ < @ > < E > < E > < E	-				~ ~
Roy T Cook (U of M - Twin Cities)	Part III: Many Valued Logics, Informally	July 7, 2018	-	Roy T Cook (U of M - Twin Cities)	Part III: Many Valued Logics, Informally	July 7, 2018	7 / 1

More FDE

Reword Validity:

An argument with $P_1, P_2, \ldots P_n$ as premises, and C as conclusion – that is:

 $\frac{P_1, P_2, \dots P_n}{C}$

is logically valid if and only if it is impossible for P_1, P_2, \ldots, P_n to all be true (or both) and C fail to be true (or both).

Reword Logical Truth:

A sentence is a logical truth if and only if it is impossible for it to fail to be true (or both).

The Connectives:

Negation (not):

not: Φ (i.e. $\neg \Phi$) is true if and only if Φ is false. not: Φ (i.e. $\neg \Phi$) is false if and only if Φ is true.

Conjunction (and):

 Φ and Ψ (*i.e.* $\Phi \land \Psi$) is true if and only if Φ is true and Ψ is true. Φ and Ψ (*i.e.* $\Phi \land \Psi$) is false if and only if Φ is false or Ψ is false.

Disjunction (or):

 Φ or Ψ (i.e. $\Phi \lor \Psi$) is true if and only if Φ is true or Ψ is true. Φ or Ψ (i.e. $\Phi \lor \Psi$) is false if and only if Φ is false and Ψ is false.

		< 四 > < 回 > < □ > <	(ロ) (夏) (夏) (夏) (夏) (夏) (夏) (夏) (夏) (夏) (夏
Roy T Cook (U of M - Twin Cities)	Part III: Many Valued Logics, Informally	/ July 7, 2018 8 / 1	Roy T Cook (U of M - Twin Cities) Part III: Many Valued Logics, Informally July 7, 2018 9 / 1
FDE Truth Tables			Validity and Logical Truth in FDE:
			Disjunctive Syllogism:
			$\frac{not:\Phi, \Phi \text{ or } \Psi}{\Psi} \qquad \qquad \frac{\neg\Phi, \Phi \lor \Psi}{\Psi}$
Negation:	Conjunction:	Disjunction:	This is not valid in FDE (just let Φ be both true and false, and Ψ be false).
Φ ¬Φ	$\land T B N F$	$\lor T B N F$	Explosion:
	T T B N F		
BB	B B B F F	B T B T B	$\underline{not: \Phi \text{ and } \Phi} \qquad \underline{\neg \Phi \land \Phi}$
			Ψ Ψ
			This is not valid in FDE (just let Φ be both true and false, and Ψ be false).
	F F F F F	F T B N F	
			Excluded Middle:
			Φ or <i>not</i> : Φ $\forall \neg \Phi$
		< □ > < @ > < ≧ > < ≧ > ≧ → ○< @	This is not a logical truth in FDE (just let Φ be neither true nor false) = , (=) = $\Im \circ \circ$
Roy T Cook (U of M - Twin Cities)	Part III: Many Valued Logics, Informally	/ July 7, 2018 10 / 1	Roy T Cook (U of M - Twin Cities) Part III: Many Valued Logics, Informally July 7, 2018 11 / 1

Logic of Paradox (LP)

LP Truth Tables

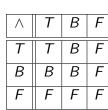
Accept Bivalence:

Every sentence is either true or false.

Give up Law of Non-Contradiction:

Some sentences can be both true and false.

Note:


This sort of logic is often described as glutty.

Note:

This logic has been extensively studied by Graham Priest.

Negation:								
	Φ	¬Ф						
	T	F						
	В	В						
	F	T						

Conjunction:

V	Т	В	F
T	T	Τ	Т
В	Т	В	В
F	Т	В	F

Disjunction:

< □	□ >	590			< □ > < @ > <	(E) < E) E	৩৫৫
Roy T Cook (U of M - Twin Cities) Part III: Many Valued Logics, Informally	July 7, 2018	12 / 1	Roy T Cook (U of M - Twin Cities)	Part III: Many Valued Logi	cics, Informally	July 7, 2018	13 / 1
Validity and Logical Truth in LP			Strong Kleene Log	ic (K3)			
Disjunctive Syllogism:							
$\frac{not: \Phi, \Phi \text{ or } \Psi}{\Psi}$	$\frac{\neg \Phi, \Phi \lor \Psi}{\Psi}$		Give Up Bivalence: Some sentences ar	e neither true nor	false.		
This is not valid in LP (just let Φ be both true and false, ar Explosion:	Ψ be faise).		Accept Law of Non-C		alse.		
$\frac{not:\Phi \text{ and }\Phi}{\Psi}$	$\frac{\neg \Phi \land \Phi}{\Psi}$		Note: This sort of logic i	s often described a	as gappy.		
This is not valid in LP (just let Φ be both true and false, ar Excluded Middle:	nd Ψ be false).		Note: This logic has been	n extensively studi	ied by Stephen Kl	leene.	
Φ or <i>not</i> : Φ	$\Phi \vee \neg \Phi$						
This is a logical truth in LP. Note: In fact, every logical truth in classical logic is a logica	al,truth,in LR! 🕞 🕞	৩৫৫			< • > < # > · ·	(문) (문) 문	পৎ
Roy T Cook (U of M - Twin Cities) Part III: Many Valued Logics, Informally	July 7, 2018	14 / 1	Roy T Cook (U of M - Twin Cities)	Part III: Many Valued Logi	gics, Informally	July 7, 2018	15 /

K3 Truth Tables

Validity and Logical Truth in K3

 $not: \Phi, \Phi \text{ or } \Psi$

Disjunctive Syllogism: Disjunctive Syllogism:

			$\frac{hot}{\Psi}$	$\frac{\neg \Psi, \Psi \lor \Psi}{\Psi}$
Negation:	Conjunction:	Disjunction:	This is valid in K3.	
$ \begin{array}{c c} \Phi & \neg \Phi \\ \hline T & F \\ \hline N & N \\ \hline F & T \end{array} $		\vee T N F T T T T N T N N F T N F	Explosion: <u>not : Φ and Φ</u> Ψ This is valid in K3. Excluded Middle:	$\frac{\neg \Phi \land \Phi}{\Psi}$
			Φ or <i>not</i> : Φ	$\Phi \lor \neg \Phi$
		< ロ > < 同 > < 言 > < 言 > 、 言 > うへぐ	This is not a logical truth in K3 (just let Φ be ne Note: In fact, no sentence is a logical truth in K3	
Roy T Cook (U of M - Twin Cities)	Part III: Many Valued Logics, Inform		Roy T Cook (U of M - Twin Cities) Part III: Many Valued Logic	
Do we have to ch	oose?		Summing up the Liar paradox: Ta (Informally)	arski's Theorem
Logical Pluralism:	e logic that describes co one logic that describes		Proposition Given a classical base language \mathcal{L}_0 (i.e. a terms of the classical truth values $\{\top, \bot\}$ by adding expressive resources sufficient to "is true" and "is false"). Then: This sentence is false.), extend the language \mathcal{L}_0 to \mathcal{L}_1

Part III: Many Valued Logics, Informally

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○</td>

 Ily
 July 7, 2018
 18 / 1

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - の々で

 $\neg \Phi$, $\Phi \lor \Psi$

Revenge

Add a third truth-value ρ_1 !

Note: At the moment we don't care if this is a "glut" or a "gap".

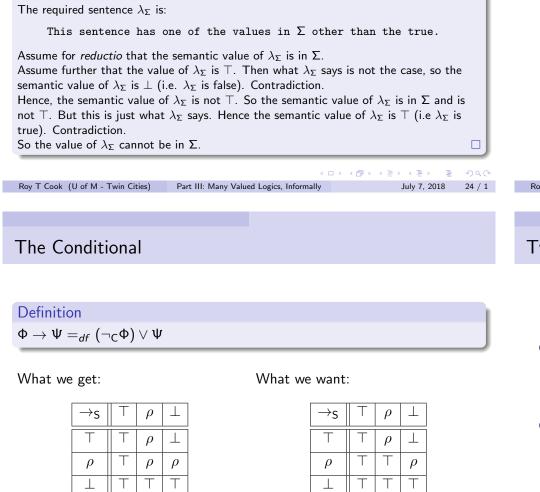
Proposition

Extend the language \mathcal{L}_1 to \mathcal{L}_2 by adding expressive resources sufficient to characterize the pathological value ρ_1 (i.e. add "is pathological₁"). Then:

This sentence is false or $pathological_1$.

cannot receive either of the values $\{\top, \bot, \rho_1\}$.

	< • > < A	→ E→ < E→ E	590		< □ ▶ < ₫	A E → A E → E	9 Q P
Roy T Cook (U of M - Twin Cities)	Part III: Many Valued Logics, Informally	July 7, 2018	20 / 1	Roy T Cook (U of M - Twin Cities)	Part III: Many Valued Logics, Informally	July 7, 2018	21 / 1
The Obvious Move	?			Super-revenge			
				Proposition			
Ade	d a fourth truth-value $ ho_2!$			characterize the pathole	$_2$ to \mathcal{L}_3 by adding expressive responses \mathcal{L}_3 by adding expressive responses of \mathcal{L}_3 (i.e. add "is pathological or pathologica	ological ₂ "). Th	
				cannot receive either of	f the values $\{\top, \bot, \rho_1, \rho_2\}$.		


・ロト・日本・モト・モー・ モー・ つくで

The Ultimate Revenge

Theorem

Given any definite collection of exclusive semantic values Σ , there is a sentence λ_{Σ} that cannot receive any of the values in Σ .

Proof.

Again, for "revenge" reasons we can't have the second conditional.

Negations strong, weak, and choice

Φ	$\neg_{S}\Phi$	¬ _W Φ	$\neg_{C} \Phi$
T	\perp		
ρ		Т	ρ
	Т	Т	Т

• LP and K3 only work if we use *choice* negation (for reasons we might see more formally later).

	< 1		୬୯୯
Roy T Cook (U of M - Twin Cities)	Part III: Many Valued Logics, Informally	July 7, 2018	25 / 1
Two Options			

- Cut our losses, and accept that at some point our linguistic resources fall short of expressing all of these 'pathological' semantic notions (and, in particular, accept that there is some definite set of exclusive semantic values Σ such that λ_{Σ} is not expressible).
- Accept the picture just sketched, and *embrace revenge* as an inherent feature of semantic theorizing itself, and of the language(s) within which we carry out such endeavors.

July 7, 2018

26 / 1

・ロト ・ 個 ト ・ ヨ ト ・ ヨ ・ りへぐ