Standard deontic logic (SDL) is a special case of propositional modal logic. We introduce it by presenting the latter. We rely on the textbook *Boxes and Diamonds* by Richard Zach (abbreviated *B&D*) which is freely available and part of the Open Logic Project. In the tutorial, we will work more closely on SDL.

1 Language

The language of standard deontic logic is generated by:

- atomic sentences \(p, q, r\), etc. together with the propositional constant \(\bot\)
- Boolean connectives \(\&\), \(\lor\), \(\neg\), \(\to\), \(\leftrightarrow\)
- Unary deontic operators:
 - \(\Box\) (for obligation)
 - \(P\) (for permission)
 - \(F\) (for prohibition)

Note 1: we use \(p, q, r\) for the atomic sentences of our language, \(A, B, C,\ldots\) etc. as variables ranging over sentences; \(S, T\) as variables ranging over sets of sentences.

Note 2: the founding assumption of standard deontic logic is that \(\Box\) works like the \(\Box\) of modal logic and \(P\) works like the \(\Diamond\). (But if you are not familiar with this notation don’t worry!).

2 Core Equivalences

These are standardly assumed equivalences between the three deontic operators. The table below expresses the row items in terms of the column items and negation.
We could use these equivalences to ‘define operators away’ or simply as design principles that any adequate deontic logic ought to deliver.

Exercise 1. Use $\Box A \leftrightarrow \neg P \neg A$ and $FA \leftrightarrow \Box \neg A$ to derive all the other equivalences.

3 Kripke Models for Modal Logic

Models for modal logic (and deontic logic in particular) are triples $\langle W, R, V \rangle$ with

- W a non-empty set of worlds
- R an accessibility relation over W
- V a valuation function (i.e. a function mapping atomic sentences of the language to sets of worlds).

In deontic logic specifically, the accessibility relation R is typically given an informal interpretation roughly like the following two.

Interpretation one: wRv iff v is ideal from the point of view of w

Interpretation two: wRv iff every (salient) norm that prevails in w is satisfied in v

In the tutorial, we will think about the particular shape that the accessibility relation must take for deontic logic. The central assumption is that it needs to be at least *serial*: that is, *every world must access some world*.

Exercise 2. Try to work informally (but abstractly) on these interpretations.

- what would it mean for a world w to be related to itself (i.e. wRw)?
- and what would it mean if world v was accessed by w (i.e. wRv) but did not access itself (i.e. it is not the case that vRv)?

4 Semantics for Modal Logic

The semantic module centers around an account of truth in a model M at a particular world w. When A is true in M at w, we write $M, w \models A$.

Preliminary notes:

one: This definition is recursive (meaning that we start with the atomic sentences and we build up to more complex sentences).

two: We typically use the "compressed" notation M to refer to a model $\langle W, R, V \rangle$. When we want to talk about, say, the valuation function of M we write V^M.

2
three: We only do some of the cases and leave the others as exercises.

Truth at a model-world pair. (cf. B&D, def 1.6)

Clause 0. Suppose A is \bot. Then $M, w \not\models \bot$.

Clause 1. Suppose A is atomic. Then: $M, w \models A$ iff $w \in V^M(A)$

Clause 2. Suppose $A = B \land C$. Then $M, w \models B \land C$ iff $M, w \models B$ and $M, w \models C$

Clause 3. Suppose $A = \neg B$. Then $M, w \models \neg B$ iff $M, w \not\models B$

Clause 4. Suppose $A = \square(B)$. Then $M, w \models \square B$ iff for all v with $w R v$, $M, v \models B$

Using the interdefinability of boolean connectives, we can uses clauses 2 and 3 to derive the clauses for \lor, \rightarrow and \leftrightarrow

Using the interdefinability of \square and \lozenge we can use clause 4 to derive the truth-conditions of permission claims. Recall that $PA \leftrightarrow \neg \square \neg A$. So then you can reason:

$M, w \models PA$

iff $M, w \models \neg \square \neg A$ ["definition"]

iff $M, w \not\models \neg A$ [clause 3]

iff it’s not the case that for all v with $w R v$, $M, v \models \neg A$ [unpacking clause 4]

iff there is a world v with $w R v$ such that $M, v \models A$ [basic logic in the metalanguage]

Exercise 3. Derive, or in any case identify, the clauses for disjunction, conditional, biconditional and prohibition.

5 Other Semantic Concepts

The previous definition characterizes what it is to be true in a model at a world w. Other semantic concepts are also important in the project of characterizing modal validity.

5.1 Global Model Constraints

True everywhere. A is true everywhere in M iff for every world v in W^M, $M, v \models A$

True somewhere. A is true somewhere in M iff for some world v in W^M, $M, v \models A$

Where S is a set of sentences we can also say:

- S is true somewhere in M iff for some world v in W^M, and for every sentence A in S, $M, v \models A$
Important! For S to be true somewhere, all of S has to be true in the same world.

Exercise 4. Diagram a model with two worlds, making $p \lor q$ true everywhere while all of $p, \neg p, q, \neg q$ are true somewhere in the model.

5.2 Frames

Each model $\mathcal{M} = \langle W, R, V \rangle$ is associated with a frame $\mathcal{F}_\mathcal{M} = \langle W, R \rangle$.

Intuitively: the frame is the model "without" the valuation function.

Note: there is a many-one relation between models and frames (each model determines a frame, but there are many models corresponding to each frame).

- **models**$\mathcal{F} =$ the class of all models built on frame \mathcal{F}.
- **Valid on a frame.** A sentence A is valid on a frame \mathcal{F} iff for all models \mathcal{M} in **models**\mathcal{F}, A is true everywhere in \mathcal{M}.

Big, if slightly mysterian, idea. You’ll make a big leap in modal logic if you start thinking of sentences as constraints on frames.

6 Standard model theoretic analyses of logical concepts

Satisfiability

A single sentence A (/a set of sentences S) is **satisfiable** in a class \mathcal{C} of models iff there is a model \mathcal{M} in \mathcal{C} such that A (/the entire set S) is true somewhere in \mathcal{M}

Note: Satisfiability is a model theoretic analogue of consistency.

Validity (cf. B&D §1.7)

A single sentence A is **valid** in a class \mathcal{C} of models iff for every model \mathcal{M} in \mathcal{C}, A is true everywhere in \mathcal{M}

Exercise 5. B&D singles out two propositions about validity. One: if $\mathcal{C} \subseteq \mathcal{C}$ and A is valid in \mathcal{C}, then A is valid in \mathcal{C}'. Two: if A is valid in \mathcal{C}, then $\Box A$ is valid in \mathcal{C}.

Entailment (cf. B&D §1.10, but modified)

An argument with premises in S and conclusion A is an **entailment** in a class \mathcal{C} of models iff $S \cup \{\neg A\}$ is not satisfiable in \mathcal{C}.

4