
MODEL THEORETIC CONCEPTS IN MODAL LOGIC

Standard deontic logic (SDL) is a special case of propositional modal logic. We introduce
it by presenting the latter. We rely on the textbook Boxes and Diamonds by Richard Zach
(abbreviated B&D) which is freely available and part of the Open Logic Project. In the tutorial,
we will work more closely on SDL.

1 Language

The language of standard deontic logic is generated by:

• atomic sentences (p,q, r, etc.) together with the propositional constant ⊥

• Boolean connectives ( & ,∨,¬,→,↔)

• Unary deontic operators:

© (for obligation)

P (for permission)

F (for prohibition)

Note 1: we use p,q, r for the atomic sentences of our language, A,B,C, ... etc. as variables
ranging over sentences; S,T as variables ranging over sets of sentences.

Note 2: the founding assumption of standard deontic logic is that© works like the � of modal
logic and P works like the ^. (But if you are not familiar with this notation don’t worry!).

2 Core Equivalences

These are standardly assumed equivalences between the three deontic operators. The table
below expresses the row items in terms of the column items and negation.

©A PA FA
©A ©A↔¬P¬A ©A ↔ F¬A
PA PA ↔¬©¬A PA ↔¬FA
FA FA ↔©¬A FA ↔¬PA
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We could use these equivalences to ‘define operators away’ or simply as design principles that
any adequate deontic logic ought to deliver.

Exercise 1. Use©A↔¬P¬A and FA ↔©¬A to derive all the other equivalences.

3 Kripke Models for Modal Logic

Models for modal logic (and deontic logic in particular) are triples 〈W,R,V 〉 with

• W a non-empty set of worlds

• R an accessibility relation over W

• V a valuation function (i.e. a function mapping atomic sentences of the language
to sets of worlds).

In deontic logic specifically, the accessibility relation R is typically given an informal interpre-
tation roughly like the following two.

Interpretation one: wRv iff v is ideal from the point of view of w

Interpretation two: wRv iff every (salient) norm that prevails in w is satisfied in v

In the tutorial, we will think about the particular shape that the accessibility relation must
take for deontic logic. The central assumption is that it needs to be at least serial: that is, every
world must access some world.

Exercise 2. Try to work informally (but abstractly) on these interpretations.

• what would it mean for a world w to be related to itself (i.e. wRw)?

• and what would it mean if world v was accessed by w (i.e. wRv) but did not
access itself (i.e. it is not the case that vRv?)

4 Semantics for Modal Logic

The semantic module centers around an account of truth in a modelM at a particular world
w. When A is true inM at w, we writeM,w |= A.

Preliminary notes:

one: This definition is recursive (meaning that we start with the atomic sentences and we
build up to more complex sentences).

two: We typically use the "compressed" notationM to refer to a model 〈W,R,V 〉. When we
want to talk about, say, the valuation function ofM we write VM.
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three: We only do some of the cases and leave the others as exercises.

Truth at a model-world pair. (cf. B&D, def 1.6)

Clause 0. Suppose A is ⊥. ThenM,w 6|=⊥.

Clause 1. Suppose A is atomic. Then:M,w |= A iff w ∈ VM(A)

Clause 2. Suppose A = B∧C. ThenM,w |= B∧C iffM,w |= B andM,w |= C

Clause 3. Suppose A = ¬B. ThenM,w |= ¬B iffM,w 6|= B

Clause 4. Suppose A =©(B). ThenM,w |=©B iff for all v with wRv,M,v |= B

Using the interdefinability of boolean connectives, we can uses clauses 2 and 3 to derive the
clauses for ∨,→ and↔
Using the interdefinability of© and P we can use clause 4 to derive the truth-conditions of
permission claims. Recall that PA↔¬©¬A. So then you can reason:

M,w |= PA

iff M,w |= ¬©¬A ["definition"]

iff M,w 6|=©¬A [clause 3]

iff it’s not the case that for all v with wRv,M,v |= ¬A [unpacking clause 4]

iff there is a world v with wRv such that M,v |= A [basic logic in the metalanguage]

Exercise 3. Derive, or in any case identify, the clauses for disjunction, conditional,
biconditional and prohibition.

5 Other Semantic Concepts

The previous definition characterizes what it is to be true in a model at a world w. Other
semantic concepts are also important in the project of characterizing modal validity.

5.1 Global Model Constraints

True everywhere. A is true everywhere inM iff for every world v in WM,M,v |= A
True somewhere. A is true somewhere inM iff for some world v in WM,M,v |= A

Where S is a set of sentences we can also say:

• S is true somewhere inM iff for some world v in WM, and for every sentence A in S,
M,v |= A
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Important! For S to be true somewhere, all of S has to be true in the same world.

Exercise 4. Diagram a model with two worlds, making p∨ q true everywhere while all
of p,¬p,q,¬q are true somewhere in the model.

5.2 Frames

Each modelM = 〈W,R,V 〉 is associated with a frame FM = 〈W,R〉.
Intuitively: the frame is the model "without" the valuation function.
Note: there is a many-one relation between models and frames (each model determines a
frame, but there are many models corresponding to each frame).

modelsF = the class of all models built on frame F .
Valid on a frame. A sentence A is valid on a frame F iff for all modelsM in modelsF ,
A is true everywhere inM.

Big, if slightly mysterian, idea. You’ll make a big leap in modal logic if you start thinking
of sentences as constraints on frames.

6 Standard model theoretic analyses of logical concepts

Satisfiability

A single sentence A (/a set of sentences S) is satisfiable in a class C of models iff there is a
modelM in C such that A (/the entire set S) is true somewhere inM

Note: Satisfiability is a model theoretic analogue of consistency.

Validity (cf. B&D §1.7)

A single sentence A is valid in a class C of models iff for every modelM in C, A is true
everywhere inM

Exercise 5. B&D singles out two propositions about validity. One: if C′ ⊆ C and A is
valid in C, then A is valid in C′. Two: if A is valid in C, then �A is valid in C.

Entailment (cf. B&D §1.10, but modified)

An argument with premises in S and conclusion A is an entailment in a class C of
models iff S ∪ {¬A} is not satisfiable in C.
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