MODEL THEORETIC CONCEPTS IN MODAL LOGIC

Standard deontic logic (SDL) is a special case of propositional modal logic. We introduce it by presenting the latter. We rely on the textbook *Boxes and Diamonds* by Richard Zach (abbreviated B&D) which is freely available and part of the Open Logic Project. In the tutorial, we will work more closely on SDL.

1 Language

The language of standard deontic logic is generated by:

- atomic sentences (p,q,r, etc.) together with the propositional constant \perp
- Boolean connectives (& , \lor , \neg , \rightarrow , \leftrightarrow)
- Unary deontic operators:

 \bigcirc (for obligation)

- **P** (for permission)
- **F** (for prohibition)

.....

Note 1: we use *p*,*q*,*r* for the atomic sentences of our language, *A*,*B*,*C*,... etc. as variables ranging over sentences; *S*,*T* as variables ranging over sets of sentences.

Note 2: the founding assumption of standard deontic logic is that \bigcirc works like the \square of modal logic and **P** works like the \diamondsuit . (But if you are not familiar with this notation don't worry!).

2 Core Equivalences

These are standardly assumed equivalences between the three deontic operators. The table below expresses the row items in terms of the column items and negation.

	$\bigcirc A$	PA	FA
$\bigcirc A$		$\bigcirc A \leftrightarrow \neg \mathbf{P} \neg A$	$\bigcirc A \leftrightarrow \mathbf{F} \neg A$
PA	$\mathbf{P}A \leftrightarrow \neg \bigcirc \neg A$		$\mathbf{P}A \leftrightarrow \neg \mathbf{F}A$
FA	$\mathbf{F}A \leftrightarrow \bigcirc \neg A$	$\mathbf{F}A \leftrightarrow \neg \mathbf{P}A$	

We could use these equivalences to 'define operators away' or simply as design principles that any adequate deontic logic ought to deliver.

Exercise 1. Use $\bigcirc A \leftrightarrow \neg \mathbf{P} \neg A$ and $\mathbf{F}A \leftrightarrow \bigcirc \neg A$ to derive all the other equivalences.

3 Kripke Models for Modal Logic

Models for modal logic (and deontic logic in particular) are triples $\langle W, R, V \rangle$ with

- *W* a non-empty set of worlds
- *R* an accessibility relation over *W*
- *V* a valuation function (i.e. a function mapping atomic sentences of the language to sets of worlds).

......

In *deontic* logic specifically, the accessibility relation *R* is typically given an informal interpretation roughly like the following two.

Interpretation one: *wRv* iff *v* is ideal from the point of view of *w*

Interpretation two: wRv iff every (salient) norm that prevails in w is satisfied in v

In the tutorial, we will think about the particular shape that the accessibility relation must take for deontic logic. The central assumption is that it needs to be at least *serial*: that is, *every world must access some world*.

Exercise 2. Try to work informally (but abstractly) on these interpretations.

- what would it mean for a world *w* to be related to itself (i.e. *wRw*)?
- and what would it mean if world *v* was accessed by *w* (i.e. *wRv*) but did not access itself (i.e. it is not the case that *vRv*?)

4 Semantics for Modal Logic

The semantic module centers around an account of truth in a model \mathcal{M} at a particular world w. When A is true in \mathcal{M} at w, we write $\mathcal{M}, w \models A$.

Preliminary notes:

one: This definition is recursive (meaning that we start with the atomic sentences and we build up to more complex sentences).

two: We typically use the "compressed" notation \mathcal{M} to refer to a model $\langle W, R, V \rangle$. When we want to talk about, say, the valuation function of \mathcal{M} we write $V^{\mathcal{M}}$.

three: We only do some of the cases and leave the others as exercises.

Truth at a model-world pair. (cf. B&D, def 1.6) Clause 0. Suppose *A* is \perp . Then $\mathcal{M}, w \not\models \perp$. Clause 1. Suppose *A* is atomic. Then: $\mathcal{M}, w \models A$ iff $w \in V^{\mathcal{M}}(A)$ Clause 2. Suppose $A = B \land C$. Then $\mathcal{M}, w \models B \land C$ iff $\mathcal{M}, w \models B$ and $\mathcal{M}, w \models C$ Clause 3. Suppose $A = \neg B$. Then $\mathcal{M}, w \models \neg B$ iff $\mathcal{M}, w \not\models B$ Clause 4. Suppose $A = \bigcirc(B)$. Then $\mathcal{M}, w \models \bigcirc B$ iff for all v with $wRv, \mathcal{M}, v \models B$

Using the interdefinability of boolean connectives, we can uses clauses 2 and 3 to derive the clauses for \lor , \rightarrow and \leftrightarrow

Using the interdefinability of \bigcirc and **P** we can use clause 4 to derive the truth-conditions of permission claims. Recall that **P***A* $\leftrightarrow \neg \bigcirc \neg A$. So then you can reason:

$\mathcal{M}, w \models \mathbf{P}A$	
iff $\mathcal{M}, w \models \neg \bigcirc \neg A$	["definition"]
iff $\mathcal{M}, w \not\models \bigcirc \neg A$	[clause 3]
iff it's not the case that for all <i>v</i> with $wRv, M, v \models \neg A$	[unpacking clause 4]
iff there is a world v with wRv such that $M, v \models A$	[basic logic in the metalanguage]

Exercise 3. Derive, or in any case identify, the clauses for disjunction, conditional, biconditional and prohibition.

5 Other Semantic Concepts

The previous definition characterizes what it is to be true in a model at a world w. Other semantic concepts are also important in the project of characterizing modal validity.

5.1 Global Model Constraints

True everywhere. *A* is *true everywhere* in \mathcal{M} iff for every world *v* in $W^{\mathcal{M}}$, $\mathcal{M}, v \models A$ **True somewhere.** *A* is *true somewhere* in \mathcal{M} iff for some world *v* in $W^{\mathcal{M}}$, $\mathcal{M}, v \models A$

Where *S* is a set of sentences we can also say:

• *S* is true somewhere in \mathcal{M} iff for some world v in $W^{\mathcal{M}}$, and for every sentence A in *S*, $\mathcal{M}, v \models A$

Important! For *S* to be true somewhere, all of *S* has to be true in the same world.

Exercise 4. Diagram a model with two worlds, making $p \lor q$ true everywhere while all of $p, \neg p, q, \neg q$ are true somewhere in the model.

5.2 Frames

Each model $\mathcal{M} = \langle W, R, V \rangle$ is associated with a *frame* $\mathcal{F}_{\mathcal{M}} = \langle W, R \rangle$.

Intuitively: the frame is the model "without" the valuation function.

Note: there is a many-one relation between models and frames (each model determines a frame, but there are many models corresponding to each frame).

.

models_{\mathcal{F}} = the class of all models built on frame \mathcal{F} .

Valid on a frame. A sentence *A* is valid on a frame \mathcal{F} iff for all models \mathcal{M} in **models**_{\mathcal{F}}, *A* is true everywhere in \mathcal{M} .

ţ_____

Big, if slightly mysterian, idea. You'll make a big leap in modal logic if you start thinking of sentences as constraints on frames.

6 Standard model theoretic analyses of logical concepts

Satisfiability

A single sentence A (*/a set of sentences S*) is *satisfiable* in a class C of models iff there is a model M in C such that A (*/the entire set S*) is true somewhere in M

Note: Satisfiability is a model theoretic analogue of consistency.

Validity (cf. B&D §1.7)

A single sentence A is *valid* in a class C of models iff for every model M in C, A is true everywhere in M

.....

Exercise 5. B&D singles out two propositions about validity. One: if $C' \subseteq C$ and A is valid in C, then A is valid in C'. Two: if A is valid in C, then $\Box A$ is valid in C.

Entailment (cf. B&D §1.10, but modified)

An argument with premises in *S* and conclusion *A* is an *entailment* in a class *C* of models iff $S \cup \{\neg A\}$ is not satisfiable in *C*.