MODEL THEORETIC CONCEPTS IN MODAL LOGIC

Standard deontic logic (SDL) is a special case of propositional modal logic. We introduce it by presenting the latter. We rely on the textbook Boxes and Diamonds by Richard Zach (abbreviated $B \& D$) which is freely available and part of the Open Logic Project. In the tutorial, we will work more closely on SDL.

1 Language

The language of standard deontic logic is generated by:

- atomic sentences (p, q, r, etc.) together with the propositional constant \perp
- Boolean connectives (\& , $\vee, \neg, \rightarrow, \leftrightarrow)$
- Unary deontic operators:
(for obligation)
\mathbf{P} (for permission)
F (for prohibition)
Note 1: we use p, q, r for the atomic sentences of our language, A, B, C, \ldots etc. as variables ranging over sentences; S, T as variables ranging over sets of sentences.
Note 2: the founding assumption of standard deontic logic is that \bigcirc works like the \square of modal logic and \mathbf{P} works like the \diamond. (But if you are not familiar with this notation don't worry!).

2 Core Equivalences

These are standardly assumed equivalences between the three deontic operators. The table below expresses the row items in terms of the column items and negation.

	$\bigcirc A$	$\mathbf{P} A$	$\mathbf{F} A$
$\bigcirc A$		$\bigcirc A \leftrightarrow \neg \mathbf{P} \neg A$	$\bigcirc A \leftrightarrow \mathbf{F} \neg A$
$\mathbf{P} A$	$\mathbf{P} A \leftrightarrow \neg \bigcirc \neg A$		$\mathbf{P} A \leftrightarrow \neg \mathbf{F} A$
$\mathbf{F} A$	$\mathbf{F} A \leftrightarrow \bigcirc \neg A$	$\mathbf{F} A \leftrightarrow \neg \mathbf{P} A$	

We could use these equivalences to 'define operators away' or simply as design principles that any adequate deontic logic ought to deliver.

Exercise 1. Use $\bigcirc A \leftrightarrow \neg \mathbf{P} \neg A$ and $\mathbf{F} A \leftrightarrow \bigcirc \neg A$ to derive all the other equivalences.

3 Kripke Models for Modal Logic

Models for modal logic (and deontic logic in particular) are triples $\langle W, R, V\rangle$ with

- W a non-empty set of worlds
- R an accessibility relation over W
- V a valuation function (i.e. a function mapping atomic sentences of the language to sets of worlds).

In deontic logic specifically, the accessibility relation R is typically given an informal interpretation roughly like the following two.

Interpretation one: $w R v$ iff v is ideal from the point of view of w
Interpretation two: $w R v$ iff every (salient) norm that prevails in w is satisfied in v
In the tutorial, we will think about the particular shape that the accessibility relation must take for deontic logic. The central assumption is that it needs to be at least serial: that is, every world must access some world.

Exercise 2. Try to work informally (but abstractly) on these interpretations.

- what would it mean for a world w to be related to itself (i.e. $w R w$)?
- and what would it mean if world v was accessed by w (i.e. $w R v$) but did not access itself (i.e. it is not the case that $v R v$?)

4 Semantics for Modal Logic

The semantic module centers around an account of truth in a model \mathcal{M} at a particular world w. When A is true in \mathcal{M} at w, we write $\mathcal{M}, w \vDash A$.

Preliminary notes:

one: This definition is recursive (meaning that we start with the atomic sentences and we build up to more complex sentences).
two: We typically use the "compressed" notation \mathcal{M} to refer to a model $\langle W, R, V\rangle$. When we want to talk about, say, the valuation function of \mathcal{M} we write $V^{\mathcal{M}}$.
three: We only do some of the cases and leave the others as exercises.

Truth at a model-world pair. (cf. B\&D, def 1.6)

Clause 0. Suppose A is \perp. Then $\mathcal{M}, w \not \vDash \perp$.
Clause 1. Suppose A is atomic. Then: $\mathcal{M}, w \vDash A$ iff $w \in V^{\mathcal{M}}(A)$
Clause 2. Suppose $A=B \wedge C$. Then $\mathcal{M}, w \vDash B \wedge C$ iff $\mathcal{M}, w \vDash B$ and $\mathcal{M}, w \vDash C$
Clause 3. Suppose $A=\neg B$. Then $\mathcal{M}, w \vDash \neg B$ iff $\mathcal{M}, w \not \vDash B$
Clause 4. Suppose $A=\bigcirc(B)$. Then $\mathcal{M}, w \vDash \bigcirc B$ iff for all v with $w R v, \mathcal{M}, v \vDash B$
Using the interdefinability of boolean connectives, we can uses clauses 2 and 3 to derive the clauses for \vee, \rightarrow and \leftrightarrow
Using the interdefinability of \bigcirc and \mathbf{P} we can use clause 4 to derive the truth-conditions of permission claims. Recall that $\mathrm{P} A \leftrightarrow \neg \bigcirc \neg A$. So then you can reason:

$$
\mathcal{M}, w \vDash \mathbf{P} A
$$

iff $\mathcal{M}, w \vDash \neg \bigcirc \neg A \quad$ ["definition"]
iff $\mathcal{M}, w \notin \bigcirc \neg A$
[clause 3]
iff it's not the case that for all v with $w R v, \mathcal{M}, v \vDash \neg A$
[unpacking clause 4]
iff there is a world v with $w R v$ such that $M, v \vDash A \quad$ [basic logic in the metalanguage]

Exercise 3. Derive, or in any case identify, the clauses for disjunction, conditional, biconditional and prohibition.

5 Other Semantic Concepts

The previous definition characterizes what it is to be true in a model at a world w. Other semantic concepts are also important in the project of characterizing modal validity.

5.1 Global Model Constraints

True everywhere. A is true everywhere in \mathcal{M} iff for every world v in $W^{\mathcal{M}}, \mathcal{M}, v \vDash A$
True somewhere. A is true somewhere in \mathcal{M} iff for some world v in $W^{\mathcal{M}}, \mathcal{M}, v \vDash A$
Where S is a set of sentences we can also say:

- S is true somewhere in \mathcal{M} iff for some world v in $W^{\mathcal{M}}$, and for every sentence A in S, $\mathcal{M}, v \vDash A$

Important! For S to be true somewhere, all of S has to be true in the same world.
Exercise 4. Diagram a model with two worlds, making $p \vee q$ true everywhere while all of $p, \neg p, q, \neg q$ are true somewhere in the model.

5.2 Frames

Each model $\mathcal{M}=\langle W, R, V\rangle$ is associated with a frame $\mathcal{F}_{\mathcal{M}}=\langle W, R\rangle$.
Intuitively: the frame is the model "without" the valuation function.
Note: there is a many-one relation between models and frames (each model determines a frame, but there are many models corresponding to each frame).
$\operatorname{models}_{\mathcal{F}}=$ the class of all models built on frame \mathcal{F}.
Valid on a frame. A sentence A is valid on a frame \mathcal{F} iff for all models \mathcal{M} in models $_{\mathcal{F}}$, A is true everywhere in \mathcal{M}.

Big, if slightly mysterian, idea. You'll make a big leap in modal logic if you start thinking of sentences as constraints on frames.

6 Standard model theoretic analyses of logical concepts

Satisfiability

A single sentence A (/a set of sentences S) is satisfiable in a class \mathcal{C} of models iff there is a model \mathcal{M} in \mathcal{C} such that A (/the entire set S) is true somewhere in \mathcal{M}

Note: Satisfiability is a model theoretic analogue of consistency.

Validity (cf. B\&D §1.7)

A single sentence A is valid in a class \mathcal{C} of models iff for every model \mathcal{M} in \mathcal{C}, A is true everywhere in \mathcal{M}

Exercise 5. B\&D singles out two propositions about validity. One: if $\mathcal{C}^{\prime} \subseteq \mathcal{C}$ and A is valid in \mathcal{C}, then \mathcal{A} is valid in \mathcal{C}^{\prime}. Two: if A is valid in \mathcal{C}, then $\square A$ is valid in \mathcal{C}.

Entailment (cf. B\&D §1.10, but modified)

An argument with premises in S and conclusion A is an entailment in a class \mathcal{C} of models iff $S \cup\{\neg A\}$ is not satisfiable in \mathcal{C}.

