Notes for Week 3 of Noncognitivism

Branden Fitelson

September 23, 2016

(Revised & Extended Version)

1 Preamble: Semantic vs. Epistemic Explananda

I think it will be helpful to begin by stating several explananda (or key questions) that have been floating around (both in the Schroeder readings and in the Dreier readings). There seem to me to be two kinds of explananda in play in this literature: semantic and epistemic. I will follow the conventions I’ve been using in my handouts so far. \( \Phi \equiv \phi \text{ing} \) is wrong; \( \Psi \equiv \psi \text{ing} \) is wrong. To make things concrete, we can (e.g.) stipulate that \( \phi \text{ing} \equiv \text{lying} \), and \( \psi \text{ing} \equiv \text{getting my brother to lie} \). Now for the explananda.

Three Semantic Explananda/Questions.

1. Why are certain sets of statements inconsistent? For instance, why is \{\( \Phi, \Phi \rightarrow \Psi, \neg \Psi \)\} inconsistent?
2. Why does \( \Phi (\Psi) \) have the same meaning when it occurs in isolation vs. when it appears as part of a complex sentence (e.g., as part of the conditional \( \Phi \rightarrow \Psi \))?
3. What, exactly, does \( \Phi (\Psi) \) mean (i.e., what, precisely, is the selfsame meaning of \( \Phi (\Psi) \) when it occurs in isolation vs. when it appears as part of a complex sentence)?

Note that each of these three semantic questions is stronger than its predecessor. That is, if one can answer \( (S_1) \), then (presumably) one will have an answer to \( (S_2) \), and if one can answer \( (S_2) \), then (presumably) one will have an answer to \( (S_1) \). But, the converses of these conditionals do not (generally) hold. Dreier uses the label “Weak” in connection with \( (S_1) \), and he uses the label “Strong” in connection with \( (S_2) \) and \( (S_3) \). His paper is about the prospects of offering “minimalist” answers to these semantic questions with differing strengths. In this handout, I will (largely) set aside those questions. Instead, I would like to discuss some epistemic explananda/questions that are also important in this overall dialectic (as we saw in Schroeder).

Two Epistemic Explananda/Questions.

1. Why are certain combinations of attitudes incoherent? For instance, why is it incoherent to accept both of the following claims \{\( \Phi, \neg (\Phi \lor P) \)\}, where \( P \) is some simple factual claim?
2. Under what conditions is it irrational to accept a particular claim, where the claim in question may be normative (e.g., \( \Phi \)), non-normative/factual (e.g., \( P \)), or mixed (e.g., \( \Phi \lor P \)).

It is important to note that cognitivists can offer elegant, unified explanations/answers to both kinds of questions. Here is one such unified cognitivist story. Both normative and non-normative (simple) claims (at least, the simple claims we’re talking about in this dialectic) have truth-conditions. These truth-conditions — which just are what the simple claims mean — do not vary, depending on whether the claims occur in isolation or within complex statements. That allows us to give a compositional semantics (once we provide the usual semantics for the logical particles, etc.). And, in this way, we can provide (unified, truth-conditional) answers to all three semantic questions. Moreover, agents can believe both simple and complex claims. When one believes a claim \( p \), one is representing things as being such that \( p \). If things are not such that \( p \), then any agent who believes that \( p \) is (thereby) believing incorrectly/inaccurately. Rationality does not require having accurate beliefs (per se). But, it does require that one’s beliefs maximize expected accuracy (from the point of view of one’s credence function). This implies that it is irrational for one to believe anything that is improbable (from the point of view of one’s credence function). In this way, we can provide unified answers to both epistemic questions. Our answer to \( E_1 \) is that it is it is incoherent to accept all claims in some set \( S \) if there is no probability function that probabilifies all members of \( S \). And, our answer to \( E_2 \) is that it is irrational for an agent to accept \( p \) if \( b(p) < 1/2 \), where \( b(\cdot) \) is the agent’s credence function. To make things simple and concrete, I will adopt this simple, unified story as my “cognitivist account;"
and, I will adopt Gibbard’s non-cognitivist story as my “non-cognitivist account.” We actually haven’t seen Gibbard’s non-cognitivist story yet. We’ve seen Schroeder’s Gibbard-ish story, which is explicitly designed to be able to answer both the semantic and the epistemic questions in a unified way. In the next section, I’ll set out Gibbard’s (actual) semantical framework (and then discuss some epistemic problems that it raises).

2 Gibbard’s Semantic & Epistemic Accounts

The traditional cognitivist may provide a simple possible-world semantics. For each p (be it normative, factual, or mixed), there will be some set of possible worlds \([p]\) at which \(p\) is true. We can give the usual (recursive, compositional, truth-conditional) semantics, as follows. Note: \(W\) is the appropriate universal set of possible worlds (we assume a common set of possible worlds, for our factual and normative semantics).

Atomic Case. \([p]\) \(\equiv \{w \mid \text{\(p\) is true at \(w\)}\]

Negation. \([\neg p]\) \(\equiv W - [p]\)

Disjunction. \([p \lor q]\) \(\equiv [p] \cup [q]\)

The semantics of the remaining Boolean connectives can be defined in terms \(\neg\) and \(\lor\) in the usual way.

For Gibbard, the meaning of a non-normative (viz., factual) claim \(f\) reduces to the standard, cognitivist semantics (like the naive one above). But, his definitions are more complex, for both factual and normative claims. His semantics uses world-norm pairs rather than worlds alone. Here’s how the formal system looks. Each simple/atomic normative claim \(\Phi\) (viz., \(\Phi\)ing is wrong) gets assigned a set \([\Phi]\) of world-norm pairs. Specifically, \([\Phi]\) contains those world-norm pairs \((w,N)\) such that \(N\) forbids \(\Phi\)ing at \(w\).\(^1\) Then, he gives clauses for the connectives, which mimic the clauses from the traditional semantics (where \(N\) is the appropriate universal set norms, and so \(W \times N\) will be our universal set of world-norm pairs).

Atomic Case (normative). \([\Phi]\) \(\equiv \{(\text{\(\Phi\)ing is wrong}) \mid \text{\(N\) forbids \(\Phi\)ing at \(w\)}\]

Negation (normative). \([\neg p]\) \(\equiv (W \times N) - [p]\)

Disjunction (normative). \([p \lor q]\) \(\equiv [p] \cup [q]\)

Factual claims are also given extensions in terms of world-norm pairs. But, for factual claims \(f\), the norm dimension is vacuous (i.e., it’s just a dummy variable which does not constrain the semantics of \(f\)). Here’s how the factual clauses look (they reduce to the simple world clauses above).

Atomic Case (factual). \([p]\) \(\equiv \{(w,N) \mid \text{\(p\) is true at \(w\)}\]

Negation (factual). \([\neg p]\) \(\equiv (W \times N) - [p]\)

Disjunction (factual). \([p \lor q]\) \(\equiv [p] \cup [q]\)

Now, for the general case. Let \(P, Q, \ldots\) be atomic factual sentences, and let \(\Phi, \Psi, \ldots\) be atomic normative sentences. And, let \(\text{Ext}(p)\) assign extensions to arbitrary statements. Here the general definition of \(\text{Ext}(p)\).

Pure Factual Case. \(\text{Ext}(f) \equiv [f]\), for pure factual \(f\).\(^2\)

Pure Normative Case. \(\text{Ext}(n) \equiv [n]\), for pure normative \(n\).

Mixed Disjunction. \(\text{Ext}(n \lor f) = \text{Ext}(f \lor n) \equiv [n] \cup [f]\)

Mixed Negation. \(\text{Ext}(\neg m) \equiv (W \times N) - \text{Ext}(m)\), for mixed \(m\).

\(^1\)I don’t know exactly what it is for a norm to “forbid an action at a world.” I’ll just take that to be a primitive notion. The key is that each \((w,N)\) is normatively complete — it determines, for each \(\Phi\), whether \(\Phi\)ing is obligatory, impermissible, or permissible.

\(^2\)A pure factual (normative) statement \(p\) it one that is truth-functionally equivalent to some \(f (n)\), which contains only factual (normative) atoms + connectives. If a statement is neither pure factual nor pure normative, then it is mixed.
With these three sets of rules in hand, we can determine the extension \( \text{Ext}(p) \) of any (truth-functional) claim \( p \) (be it pure or mixed). And, the logic determined by \( \text{Ext}(\cdot) \) will have a classical (viz., Boolean) structure. Finally, the natural way to define inconsistency of an arbitrary set of statements \( S \) is as follows.

**Inconsistency.** \( S \) is inconsistent \( \iff \bigcap_{s \in S} \text{Ext}(s) = \emptyset \)

It can be shown that the **Inconsistent** sets will correspond (exactly) to the classical logically inconsistent sets. So, Gibbard has offered us a way to (generally) answer our first semantic question (\( S_1 \)) above. Moreover, he has also offered answers to the stronger questions (\( S_2 \) and \( S_3 \)). The (extensional) meaning of a (simple) normative claim \( \Phi \) will be the set of world-norm pairs \( \langle w, N \rangle \) such that \( N \) forbids \( \Phi \) at \( w \). And, this meaning will be the same, whether \( \Phi \) appears in isolation or as part of a more complex (Boolean) statement. Moreover, Gibbard’s semantics has many of the formal virtues of classical truth-conditional semantics (i.e., it’s compositional, recursive, etc.). So, it would seem that Gibbard’s approach is pretty good, from a semantic point of view (i.e., with respect to our semantic questions).\(^3\) What about the epistemic questions/explananda? It seems to me that if Gibbard is going to try to give a story that is analogous to the cognitivist story I sketched above, then he’s going to have to complete (i.e., solve for \( X \)) the following analogy.

\[ \text{truth/accuracy/veridicality} \quad \frac{\text{factual assertion/belief/thought}}{X} \quad \frac{\text{normative assertion/acceptance/thought}}{\text{rationality norms involving probabilities of beliefs/statements. It would be nice to be able to say something analogous about normative (or mixed) statements and the conditions under which asserting/accepting/thinking them is (ir)rational. For instance, suppose some factual claim \( P \) is highly probable (both subjectively and objectively — and one knows all of this about \( P \)). It shouldn’t be irrational to believe \( P \). Furthermore, it would seem (naïvely, intuitively) that it shouldn’t be irrational to believe the mixed claim \( P \vee \Phi \) either. It is interesting how Schroeder cast everything in terms of (sets of) mental states, disagreement, etc. Those seem more well suited to answering our weak epistemic question (\( E_2 \)). But, even Schroeder’s story doesn’t seem to provide a (systematic, general) answer to our strong epistemic question (\( E_2 \)), especially for mixed statements/thoughts. His account does imply that “self-contradictory” or “intrapersonally-disagreeing” normative thoughts are irrational. But, it would seem that there are more cases of irrational normative (or mixed) thought than this. For instance, suppose some factual claim \( P \) is highly improbable (both subjectively and objectively — and I know all of this about \( P \)). It would seem irrational for me to believe that \( P \), and it would also seem irrational for me to believe the mixed conjunction \( P \& \Phi \). It would be nice to be able to explain why that is (or at least why it seems plausible).

Prior to giving these sorts of explanations (regarding the rationality of full beliefs), the expressivist will have to first explain why an agent’s degrees of confidence should be probabilities. The cognitivist gives various justifications of probabilism (the claim that rationality requires an agent’s credences to conform to the probability calculus). Some of these justifications are explicitly based on the accuracy of credences (i.e., Joyce-style arguments), and some are based on the pragmatic consequences of having non-probabilistic credences (i.e., Dutch Books/money pump arguments). But, all of those existing arguments presuppose factual states (i.e., states of the world that can be accurately described via factual claims that have truth conditions). It is formally possible to define probability functions \( \text{Pr}(\cdot) \) over Gibbardian semantic points of evaluation.\(^4\) But, it is unclear how such \( \text{Pr}(\cdot) \)’s should be interpreted. For factual claims \( f \), \( \text{Pr}(f) \) can be interpreted in the usual ways (e.g., as an agent’s degree of confidence/credence in the proposition that \( f \) is true). But, for normative or mixed claims \( P \), it is unclear how to interpret \( \text{Pr}(P) \). Perhaps we should interpret \( \text{Pr}(p) \) as ‘the degree to which \( p \) is assertible (for the agent in question).’ In any case, whatever interpretation is chosen, there still remains the problem of justifying probabilism (under said interpretation).

\(^3\)Interestingly, Gibbard no longer seems confident that his approach and the traditional cognitivist approach can be clearly distinguished. This relates to the papers on minimalism we’re reading. Here, I assume Gibbard’s earlier (“no truth value”) view.

\(^4\)The relation \( \text{Ext}(p) = \text{Ext}(q) \) is an equivalence relation, which can be used to construct a Boolean algebra, over which one can define a probability measure. Another (formally equivalent) way to do this is to assign basic measure to each “state description” in the mixed language, and then define probabilities in the usual way — as sums (and ratios of sums) of these basic measures.