A New Gibbardian Collapse Theorem for the Indicative Conditional Branden Fitelson October 9, 2020 Let \mathscr{L} be a sentential (object) language containing atoms 'A', 'B', ..., and two *logical* connectives '&' and ' \rightarrow '. In addition to these two *logical* connectives, \mathscr{L} will also contain another binary connective ' \rightsquigarrow ', which is intended to be interpreted as the English indicative. In the meta-language for \mathscr{L} , we will have two meta-linguistic operations: ' \Vdash ' and ' \vdash '. ' \Vdash ' is a binary relation between individual sentences in \mathscr{L} . It will be interpreted as "single premise entailment" (or "single premise deducibility in \mathscr{L} "). ' \vdash ' is a monadic predicate on sentences of \mathscr{L} . It will be interpreted as "logical truth of the logic of \mathscr{L} " (or "theorem of the logic of \mathscr{L} "). We will not presuppose anything about the relationship between ' \Vdash ' and ' \vdash '. Rather, we will state explicitly all assumptions about these meta-theoretic relations that will be required for Gibbard's Theorem. Below, I report a new version of Gibbardian Collapse. First, two preliminary remarks: (a) the "if...then" and "and" I'm using in the meta-meta-language of $\mathscr L$ to state the assumptions of the theorem are assumed to be classical, and (b) these assumptions are all *schematic* (*i.e.*, they are to be interpreted as allowing *any instances* that can be formed from sentences of $\mathscr L$). We begin with seven (7) background assumptions, which are purely formal renditions of some of Gibbard's presuppositions in his collapse argument. Think of this as a (very weak) *background logic* for (----, &). - $1. \vdash (p \& q) \leadsto q$ - (1) is a (*right*) *conjunction-elimination axiom* for $\langle \leadsto, \& \rangle$. This also holds in all theories of the conditional of which I am aware. - 2. If $p \Vdash q$ and $\vdash p$, then $\vdash q$. - (2) is a basic assumption about the relationship between \vdash and \vdash , which says that if p entails q and p is a theorem, then q is a theorem. - 3. If $\vdash p \rightarrow q$, then $p \Vdash q$. - \cdot (3) is one direction of the deduction theorem for the logical conditional \rightarrow . - 4. $p \rightsquigarrow q \Vdash p \rightarrow q$. - (4) asserts that the indicative conditional entails the logical conditional. This is one of Gibbard's main assumptions (that the indicative conditional is *at least as strong as* the logical conditional). - 5. If $\vdash p \rightarrow (q \rightarrow r)$, then $\vdash (p \& q) \rightarrow r$. - (5) is a (theoremhood) form of the *import* law for the logical conditional. My previous collapse theorems made use of either (a) (full) import-export for the indicative, or (b) merely export for the indicative. That is, they made use (at least) of the following assumption: 6. If $$\vdash (p \& q) \leadsto r$$, then $\vdash p \leadsto (q \leadsto r)$. In light of an example due to Paolo Santorio, I got to thinking about whether the following alternative (mixed) principle would suffice for collapse. 7. If $$p \& q \Vdash r$$, then $\vdash p \leadsto (q \leadsto r)$. (7) asserts that if p & q entails r, then $p \leadsto (q \leadsto r)$ is a theorem (for the indicative). As it happens, (7) *does* suffice for collapse, given (1)–(5). That brings us to our new collapse result. **Collapse.** $$p \rightarrow q \Vdash p \rightsquigarrow q$$. We have the following theorem (proof omitted). **Theorem**. Assuming (1)-(5), (7) entails **Collapse**.