Let \mathcal{L} be a sentential (object) language containing atoms ‘A’, ‘B’, . . . , and two logical connectives ‘$\&$’ and ‘\rightarrow’. In addition to these two logical connectives, \mathcal{L} will also contain another binary connective ‘$\not\sim$’, which is intended to be interpreted as the English indicative. In the meta-language for \mathcal{L}, we will have two meta-linguistic operations: ‘\models’ and ‘\vdash’. ‘\models’ is a binary relation between individual sentences in \mathcal{L}. It will be interpreted as “single premise entailment” (or “single premise deducibility in \mathcal{L}”). ‘\vdash’ is a monadic predicate on sentences of \mathcal{L}. It will be interpreted as “logical truth of the logic of \mathcal{L}” (or “theorem of the logic of \mathcal{L}”). We will not presuppose anything about the relationship between ‘\models’ and ‘\vdash’. Rather, we will state explicitly all assumptions about these meta-theoretic relations that will be required for Gibbard’s Theorem.

Below, I report a new version of Gibbardian Collapse. First, two preliminary remarks: (a) the “if . . . then” and “and” I’m using in the meta-meta-language of \mathcal{L} to state the assumptions of the theorem are assumed to be classical, and (b) these assumptions are all schematic (i.e., they are to be interpreted as allowing any instances that can be formed from sentences of \mathcal{L}).

We begin with seven (7) background assumptions, which are purely formal renditions of some of Gibbard’s presuppositions in his collapse argument. Think of this as a (very weak) background logic for ⟨$\not\sim$, $\&$⟩.

1. $\vdash (p \& q) \not\sim q$

 - (1) is a (right) conjunction-elimination axiom for ⟨$\not\sim$, $\&$⟩. This also holds in all theories of the conditional of which I am aware.

2. If $p \models q$ and $\vdash p$, then $\vdash q$.

 - (2) is a basic assumption about the relationship between \models and \vdash, which says that if p entails q and p is a theorem, then q is a theorem.

3. If $\vdash p \rightarrow q$, then $p \models q$.

 - (3) is one direction of the deduction theorem for the logical conditional \rightarrow.

4. $p \not\sim q \not\models p \rightarrow q$.

 - (4) asserts that the indicative conditional entails the logical conditional. This is one of Gibbard’s main assumptions (that the indicative conditional is at least as strong as the logical conditional).

5. If $\vdash p \rightarrow (q \rightarrow r)$, then $\vdash (p \& q) \rightarrow r$.

 - (5) is a (theoremhood) form of the import law for the logical conditional.

My previous collapse theorems made use of either (a) (full) import-export for the indicative, or (b) merely export for the indicative. That is, they made use (at least) of the following assumption:

6. If $\vdash (p \& q) \not\sim r$, then $\vdash p \not\sim (q \not\sim r)$.

In light of an example due to Paolo Santorio, I got to thinking about whether the following alternative (mixed) principle would suffice for collapse.

7. If $p \& q \vdash r$, then $\vdash p \not\sim (q \not\sim r)$.

(7) asserts that if $p \& q$ entails r, then $p \not\sim (q \not\sim r)$ is a theorem (for the indicative). As it happens, (7) does suffice for collapse, given (1)–(5). That brings us to our new collapse result.

Collapse. $p \rightarrow q \vdash p \not\sim q$.

We have the following theorem (proof omitted).

Theorem. Assuming (1)–(5), (7) entails Collapse.