MacLogic
A Proof Assistant for First-Order Logic on the Macintosh

MacLogic is a proof assistant for first-order classical, intuitionistic and minimal logic, with or
without equality, and either non-modal or modal (S4 or S5). It runs on any Apple Macintosh™ with at
least 2 Mbyte RAM (an old version for 1Mby is available on request.) It works in two modes: as a
proof checker and as a proof constructor. The proof checker verifies that a proof is indeed correct by
checking it line by line in a “bottom-up” fashion. Proofs are laid out in the style of E.J. Lemmon’s
Beginning Logic. However, the rules are not Lemmon’s, but much closer to Gentzen’s original natural
deduction systems NK, NJ and NM. The proof constructor uses a “top-down” approach, based
essentially on Gentzen’s sequent calculi such as LJ: once a proof has been constructed, it is transformed
mechanically into one laid out in Lemmon’s style:

EOS=—-— " Proof =————0:|
Classical logic. {y
P={0-R) F (P>0)=>(P-R)

1 (1) P=(0-=R) Ass

2 (2) P-=0 Ass

3 {3y P Ass
2,3 (4 0 2,3 »E
1,3 (5) 0-=R 1,3 =E
1,2,3 (6) R 5,4 =E
1,2 (7) P-=R 3,6 =l
1 (8) (P-0)=(P-R) 2,7 =l
well done !

Problems may be entered by the user, read from a library file or read from a window on the
screen. Complete proofs can be saved to disc and can be printed out either from within MacLogic itself,
or by using any word-processor. Complete proofs can also be saved to a window: previous proofs from
the current session can thus be inspected. Solved propositional problems may be kept as theorems for
later use, during either the same or a later run of MacLogic.

Windows can be created, edited, saved, printed and killed as usual. They can be used for editing
problems, constructing libraries of problems, or just making notes. So, MacLogic can be used as a text
editor.

Theorem provers for various logics are included, to warn about attempts at unsolvable problems.
They can be switched off if obtrusive.

An extensive on-line Help system reduces the need for availability of a manual beside the
computer.

A special font, Konstanz, including a wide range of logical constants in addition to the
standard Geneva character set, is included, both in bit-map form and in TrueType and PostScript type
1 format.

Contents

Introduction

1.1 Elementary logic — its scope and purpose
1.2 Proof construction vs presentation
1.3 Directions for use of manual

Getting Started

2.1 Checking a proof
2.2 Constructing a proof

Advanced work

3.1 First-order logic and equality
3.2 Modal logic

3.3 Definition expansion

34 Sequent Introduction

3.5 Use of tautologies

3.6 Cutrule

3.7 The window system

3.8 Using the validity checker

Theoretical background and bibliography

4.1 Introduction

4.2 Natural deduction calculi
4.3 Sequent calculi

44 Automatic theorem proving
4.5 Bibliography

Reference guide

5.1 Installation instructions

5.2 Syntax

53 Rules of first-order logic, as implemented
54 Tactics for first-order logic, as implemented
5.5 Differences between the various logics

5.6 Menus

Acknowledgements, disclaimer, availability and licence

arrangements.

EEN OS]

15
18
19
21
22
23
24
25

26
27
28
30
31

32
40
43
55
61
62

74

A Proof Assistant for the Apple Macintosh MacLogic

1. Introduction

1.1 Elementary logic — its scope and purpose
1.2 Proof construction vs presentation

1.3 Directions for use of manual by
novices, advanced users and teachers

MacLogic is a tool intended to be used by the student learning to construct proofs in elementary logic.
It is not a traditional piece of computer-based learning software, assigning marks for good work and so
on: it is more like a word-processor than like a typing tutor. It has a modest amount of intelligence with
which to warn you about incorrect or unpromising approaches to problems . One of the fascinations of
logic, however, is that there are unsolvable problems: thus, MacLogic is not always able to show you
what to do next!

By using MacLogic carefully and sensibly you will be able to learn a good deal about a variety of
first-order logics. This manual will show you how to use MacLogic, and provides reference information
to which you may refer when the on-line Help system incorporated in MacLogic is inadequate. In many
cases, however, this on-line Help will give you as much information as you need, and thus you should
soon be able to put this manual back on your shelf.

MacLogic is not intended to be, or to replace, an introductory text-book on logic, explaining the
motivation, the notation, etc. Unfortunately, few text books are geared to the kind of computer-based
approach that we espouse. One possible text on logic which can be used alongside MacLogic is that by
Read & Wright: (see the bibliography in Section 4.5).

1.1 Elementary logic — its scope and purpose

By elementary logic, we understand certain aspects of logic which are regarded as fundamental. We
avoid the use of compound terms, such as x +y, and stick to the part of logic concerned with purely
logical rules rather than with rules deriving from mathematical practice, or from some other specific
domain. This restriction allows us to use a fairly simple syntax, and to make certain parts of the
MacLogic program itself fairly efficient.

We stick to zero-order and first-order logic, traditionally known as propositional calculus and
predicate calculus respectively. (We prefer the non-traditional names, to suggest to the discerning reader
that logicians are also interested in higher-order logics.)

MacLogic is a proof assistant, intended as a vehicle for learning about proofs. In our view, proof
theory is fundamental to logic, and the “semantic” aspect of logic, concerning Boolean algebras,
valuations, models, etc, is secondary. Proof theory owes a great deal to Gentzen’s pioneering work in
the 1930s, especially as kept alive by the intuitionists and type theorists such as Girard, Heyting and
Martin-L6f. Some so-called ‘semantic’ techniques are just notational variants of the syntactic notions
we shall encounter.

1.2 Proof construction vs presentation

Many textbooks of logic implicitly aim to teach the art of presenting proofs in a certain format, the
natural deduction style. That is to say, complete proofs are presented, beginning of course with simple
proofs and moving on to more complex proofs. After a short while, the complexity of these proofs

MacLogic A Proof Assistant for the Apple Macintosh

becomes overwhelming, and it is hard to see how they were obtained in the first place. Sometimes hints
are given, of course. More often than not, no complete proofs are given after a certain stage, just
instructions on how one could produce a complete proof if one had to. Some texts even present an even
more forbidding format, the axiomatic style, often ascribed to Hilbert: presentation of complete proofs
then ceases even earlier in the text. This style is convenient if one is going to do meta-logic, but is not
one in which anyone ever constructs (non-trivial) proofs.

Unfortunately, the natural deduction style is, although well-suited for use in the presentation of
complete proofs, also ill-suited to your task of constructing proofs. An alternative style, called the
sequent calculus, is appropriate if you want to prove something for yourself. MacLogic allows you to
work in both styles: in either Check mode or Construct mode, corresponding respectively to the natural
deduction style and the sequent calculus style. Check mode is appropriate if you want to check an
existing natural deduction proof for correctness, and Construct mode is used if you want to construct a
proof for yourself. In fact, the proof constructed is a sequent calculus proof: this can be translated
mechanically, if you wish, by MacLogic, to a natural deduction proof, by the method outlined in section
4.3 below. The translation is fairly transparent.

1.3 Directions for use of manual

Novices should use this manual by skimming the above remarks, and working through the
Getting Started section, referring whenever stuck to the on-line Help about the syntax, the rules, and the
tactics. Advanced users will wish to explore the facilities for working in various logics, and should
therefore read the section on Advanced Work. Teachers will wish to know how to install MacLogic,
how to customise it for their own students, and how to construct problem files for their students to
work on: they should read all sections of the manual, and the file “READ ME” accompanying the
MacLogic application.

In case of difficulty, users of all kinds may need to ensure that MacLogic has been
correctly installed.

A Proof Assistant for the Apple Macintosh MacLogic

2. Getting Started

2.1 Checking a Proof

MacLogic is designed to help you both to check proofs and to construct them. There are two modes in
MacLogic: Check mode, which allows you to check proofs for errors, and Construct mode, which helps
you to build the proofs in a more organised manner. This section will take you through a sample session
with the Check mode of MacLogic. You will meet Construct mode in section 2.2 below.

Suppose you are set the task of proving P=>(Q—-R) F (P=Q)—~>(P—R). Open the MacLogic
application by double clicking on the MacLogic icon. While it is loading, a small cursor containing the
word MALT below a St Andrews cross is shown. After a little while!, the menu bar

® File Edit Logic Problem Options Windows Help

should appear, followed by a modal dialog box such as:

MaclLogic: UVersion Date 17th August 91
MALT project, St Andrews University.

Inquiries, orders & bug reports to:

Dr Roy Dyckhoff
Machine Assisted Logic Teaching project
Division of Comnputational Science

rd@cs.st-and.ac.uk E
||
"

[Reset evaluation space... |

]

[Project members...

Y ou must respond to this dialog box before doing anything else. Just click on Ok, and respond
to the next dialog box in the same way. Note that the latter is telling you that you can start work by
using the Problem menu, and gives instructions on how to interrupt MacLogic if it gets stuck thinking
about whether it can solve your problem by itself.

By clicking on the Options menu header, you can see whether Check mode is on by verifying
that Checking is ticked. If it isn’t, select it by dragging down till Checking is selected, then release the
mouse button:

1 Perhaps as much as 60 seconds on a MacPlus or Mac Classic.

MacLogic A Proof Assistant for the Apple Macintosh

Problem QUALLEN Windows Help
Increase type size
Show keypad menu

Set validity checker...
Alpha conversion
Delta conversion

v Saving to file...
v Saving proofs to window
Saving proofs and derivations to window
v Keeping as theorem

The Logic menu allows you to choose a particular logic. (MacLogic defaults to classical logic.
You can explore the other logics later.) Note that in the Options menu, you can set the modes to save
your proof to a file, to a window, or to keep the problem just solved as a theorem. Make sure all three
of these are ticked, so you can see later what they do, that Classical is ticked in the Logic menu, and
that all other items in that menu are unticked.

You can now start your proof by going into the Problem menu and selecting Dialog... : this is
one of the ways of entering a problem. The other ways are to select a problem from the front window
and to choose one from a problem library.

% File Edit Logic gdgGlilI M Options Windows Help
Dialog...
Front Window

Library

Once you have selected Dialog..., a modeless dialog box will appear looking like this:

Problem Entry
Assumptions: [T

(Separated
by commas)

Goal: A& B

. A

This is the box into which you will type your problem. Note that it is prefilled with a very
simple problem, just to show where things go: you will try something a bit harder! You can use the
mouse or the tab button to move between the Assumptions ficld and the Goal field. If there is more
than one assumption, they should be separated by commas, as in A, B.

First, type P=>(Q—R). (Note that = is, at least on British keyboards, typed as Shift Option Y.)
Press the Tab key — that takes you to the Goal field: now type (P=>Q)—>(P—R). Once you have typed
in the problem, the Problem Entry dialog box should look like this:

A Proof Assistant for the Apple Macintosh

MacLogic

Problem Entry

Assumptions:

(Separated
by commas)

P->(Q->R)

Goal:

(P->0Q) > (P-R)

\

Cancel

vy

At this point, click on Ok. If you have not typed in a well-formed formula, you will be
informed by an error message and must then correct your entries. You are now ready to begin the proof:
the screen displays a Proof window, where your proof will be displayed, and a Next Line dialog box,
into which you enter instructions for forming the next proof line. The screen will look? like this:

% File Edit Prajyiom

Lagic

.

Options Windows Help

Proof

Classical logic.
P-0-RF(P>0)=>P-R

Formula is:

Assn. Nos. :

Rule: Premiss Nos.

Backtrack

=1 O-E O~1 O~E
D&l Q&E O+l OVE
COYl O¥E O O3E
{JAss DN O ...

Your first step is to put in any assumptions you might have. For the present problem, the only
assumption is P>(Q—>R), and so you fill in various parts of the Next Line dialog box like this:

\

Assn. Nos.: Formula is: Rule: Premiss Nos.
O O-FE O~1 O~E
1 |P->|(u->Rl 8&| 8&5 8vl 8VE
gl HE il iE

®AssON O.. ~~ [(ok]Stop)

Remember you may use Tab to move from one field to another (you can also use the mouse, if
you wish). Notice that because no premisses are needed for an assumption, the Premiss Nos. field is
left blank. Once your Next Line dialog box has been completed in this fashion, click on Ok. The Proof

window will change to look like this:

2 The latest version of MacLogic has a Next Line dialog box differing in minor details from that illustrated: it is the name on

the rule-button rather than its position which is important!

MacLogic A Proof Assistant for the Apple Macintosh

Proof
Classical logic.
P-+{0-R) F (P->0)=(P=R)
1 (1) P={0-R) Ass

Your assumption line appears in the Proof window in a standard proof style (that of Lemmon),
provided you have typed everything in correctly. If you haven’t, an appropriate error message will
appear and you must correct the fault. Notice that if your line is correct and it appears in the Proof
window, the Next Line box is cleared, ready for the next line. Now you know the basics of entering
assumptions. You will need two more assumptions (P=>Q, P) for this proof — put them in now, one
by one.

The next step after these assumptions is a use of the =>-Elimination rule. It is abbreviated as
-E in the Next Line box: all these buttons represent the rules which you can use. You will be learning
all of them later: so far you should know Ass, =?E and =1 (=-Introduction). The =E step will look
like this:

® File Edit ig¢gic ¥Prabiem Options Windows Help

Proof

Classical logic.
P-0-R+{P-0)—>P-R

(1) P-=0-R
2 (2) P-0Q Ass
(3 P

Assn. Nos.: Formula is: Rule: Premiss Nos.
=1 ®@->FE O~ O~E

E Q&1 O&E Ol O
OYl O¥E O3 OIE

s GON O ..

You can see that you must now enter references to two premisses, as the =>-Elimination step
uses two previous lines as premisses. The premisses here are lines 2 and 3, and the new line depends on
the assumptions made on lines 2 and 3. [Note that the premisses must be cited in order, with the major
premiss, i.e. the line containing the formula with the '=' being “eliminated”, first. Here this premiss is
line 2. You can enter the assumption numbers, however, in any order.] Now click on Ok.

You can work through this proof line by line, entering them as you have been shown. You need
only use Ass, =E and =1. The proof will continue to appear line by line in the Proof window. Once
you have filled in the middle bit, you will find that entry of the last line looks like this:

A Proof Assistant for the Apple Macintosh MacLogic

® File Edit iggic ¥Prebiem Options Windows Help

Proof

Assn. Nos.: Formula is: Rule: Premiss Nos.
®->1 O-FE O~1 O~E
Gul O¥E O O
Ofss OIN O

When you now press Ok, the proof will be finished and you will be congratulated with a “Well
done!” message. Your completed proof looks like that illustrated on the first page of this manual.

Should you ever want to go back and see the proofs you’ve done in the present session, go to
the Windows menu and select Previous Proofs. You will see the proof you have just completed, as
well as any others you may have saved to the window in this session.

You may print this proof; to do so, select Print visible windows... from the File menu: this
will print all the windows presently on the screen. Remember first to hide any windows on the screen
which you don’t want to print, by clicking in their “close boxes”.

If you make a mistake, note that you can undo it: just click on the Backtrack button in the Next
Line dialog. Repeated clicking on this undoes the lines, one at a time, until you are back at the start.
Note that you can use the Edit menu to copy formulae from the Proof window into the dialog box. You
can’t paste them into the Proof window, lest you construct incorrect proofs! Try all items on the Edit
menu!

If you get tired of doing a proof, you can abandon it by clicking the Stop button. You will be
asked to confirm your decision. Any work you have done on the proof will be lost - but you can always
copy the text in the Proof window to a window such as the Jotter to remind yourself what steps you
took.

MacLogic A Proof Assistant for the Apple Macintosh

2.2 Constructing a Proof

Once you are acquainted with the Check mode of MacLogic, the next matter to tackle is
Construct mode: this mode allows you actually to build a proof (more easily), and not simply to verify
that a proof is correct. It works in what is called a top-down fashion; that is to say, it doesn’t work
forward from the assumptions to the conclusion in the way that we have done so far when working in
Check mode, but requires you to consider the problem as a whole and use some more strategic thinking.
Sometimes you will (in effect) work down from the assumptions, but you can also work backwards
from the conclusion—in general, tactics for elimination rules work down from the assumptions, and
tactics for introduction rules are used to work up from the conclusion.

Because of this difference in approach between Check and Construct mode, you will also notice
a considerable difference in the style in which your work appears on your screen. To emphasize this
difference, we put the record of what you do into a window called Derivation: when all the work is
complete, this is transformed in a mechanical fashion (see section 4.3 for details) into a proof in the
traditional style. You start with a problem consisting of (optional) assumptions leading to a conclusion,
and working on this problem produces a series of sub-problems as you go along, which you must solve
one by one.

Suppose we are set the task of proving P>(Q&R) F (P>Q)&(P—-R). As you have done
before, double-click on the MacLogic icon (unless it is already running), and select the item
Constructing in the Options menu. Select Dialog... from the Problem menu, and fill in the Problem
Entry box as follows:

Problem Entry

Assumptions: |P-> (0 & R)

(Separated
by commas)

Goal: (P> 0)& (P - R)

\. 7

Click on Ok, and you will find that a window called Derivation, another called Current
Problem, and a dialog box called Tactic choice will appear. Derivation will display all the problems
and sub-problems which you are to solve, and Tactic choice has a selection of buttons for tactics which
you use to solve the current problem. (For a more complete description of what all these buttons do,
see section 5.4.) The screen will look like this:

A Proof Assistant for the Apple Macintosh MacLogic
& File

Edit
Tactic choice

O =1 O-E
O~
O &1 O&E
O vi_left

() vI_right

fagie Frabiem Options Windows Help

Derivation

Classical logic.

? P=0&R = (P-0)&(P-R) is the current problem

Current Problem

Using:-
P - Q&R

Derive:-
{(P-0)&(P-R)

(< Auto-Thin

) Gw)

Note that the antecedent formula P = Q&R appears without parentheses: there are some
conventions (see section 5.2 below) about when parentheses can be omitted. Some small spaces are
included (in this case on each side of the '=' symbol, telling you discreetly which operator is the
principal operator of the formula.

Note also that you will always be told, in the Current Problem window, what the current
problem (the sub-problem that you are working on) is. It is just a restatement of information in the
Derivation window, in a more familiar layout style. Also, note the indentation of the current line, in the
Derivation window: it will always show what level of sub-problem you are at. This should become
clearer as you work through the proof.

Your first step is to choose a tactic. You will notice that there is much less typing involved here
than in the Check mode. This is one of the reasons why Construct mode is far better for constructing
proofs; also, you needn’t worry about having explicitly to make assumptions; because of the way in
which Construct mode works, they are made automatically for you, when necessary.

The natural place to start in this problem is with an &-Introduction step — because it is an
introduction rule, it will work backwards on the conclusion. The current problem displayed is to derive
a conjunctive formula (P-Q) & (P~R) from P = Q&R. So the appropriate choice is to use the tactic
for &I to obtain it. The goal formula (P~>Q) & (P-R) will be split up into the two conjuncts, and you
will then have two major sub-problems to solve. Each of the sub-problems will have the same fact-list.
We call the list of formulae (so far there is only one) to the left of =, the fact-list, for it consists of
“facts” from which we are trying to prove the goal. The “facts” consist of assumptions plus what we
derive from assumptions in elimination rules on our way to achieving the goal. We also call this list the
antecedent of the problem.

The &I button is selected as shown, and confirmed by pressing Ok. You now have two sub-
problems, with the same antecedent, arising from the two conjuncts, and we are set to work on the first,
viz P> Q&R = P—>Q. (You will tackle the second, viz P> Q&R = P =R, only after you have
solved the first.). To solve the first, use an = step:

MacLogic A Proof Assistant for the Apple Macintosh

& File Edit

fagit PFrebiem Options Windows Help
Derivation

lassical logic.

P-0&R = (P=0)&(P-R)

Using tactic for &l

? P-0&R = P-0is the current problem
? P20&R = P-R

Current Problem

Using:-
P - Q&R

[X] Auto-Thin

This will bring the formula P back from the goal, P = Q, into the antecedent as an assumption:

Notice that we are still working on the first major sub-problem, and that our second major sub-
problem remains to be solved ahead. Now, if we examine the formulae in the antecedent, we can see that
an =K step is in order. By clicking on =E and then on Ok, we get the following screen:

& File Edit

actic choice

fagic PFrebiem Options Windows Help
Derivation

? P20&R=P-0
-Using tactic for —|

-7 P,P=20&R =0

--Using tactic for =E

--? P,P=>0&R =FPm

--?7 Q&R, P = 01is the current problem
? P20&R =>P-=>R

(< Auto-Thin

The black box M indicates that you have just solved a trivial sub-problem: it is trivial because
the formula, P, to be derived appears as one of the facts (actually, as one of the assumptions).

The next sub-problem consists in deriving Q from Q&R and P. For the first time we have a
formula in our fact-list which is not an assumption, but is derived from the assumption P=>(Q&R) by
>E. This sub-problem is easily solved, using an &-Elimination step to split up the conjunction Q&R:
this will leave us with Q both in the antecedent (on the left of the arrow) and as a goal (on the right): this
sub-problem is now trivial.

A Proof Assistant for the Apple Macintosh MacLogic

& File

actic choice

.

Edit fagic ¥Probiem Options Windows Help

Derivation

Using tactic for &E
? 0,R,P=0m

We have now solved one of the two major sub-problems that we started out with (as indicated
by the indentation on the left). The next sub-problem is almost of the same form, and is solved using the
same steps of =1, 2E and &E. Try this now.

Once you have successfully completed these steps, you will be rewarded with a 'Well done!'
message, as in the Check mode. You will then be asked if you wish to see the derivation transformed

into a natural deduction proof:

A\

Do you want to see the natural deduction m
proof?

Select Yes and the derivation will be mechanically transformed into a Lemmon-style natural
deduction proof, displayed in the Proof window:

MacLogic A Proof Assistant for the Apple Macintosh

fOE==—"-——"o—Proof =——"——0|
Classical logic. 3
Problem is :

P 0&R F (P-0)& (P-R)

1 (1) P-=0&R Ass

2 {2) P Ass
1,2 (3) Q&R 1,2 =E
1,2 {4) 0 3 &E

1 (5) P-=0 2,4 =|
1,2 (6) R 3 &E

1 (7)) P=R 2,6 =l
1 (8) (P-Q)&(P=R) 5,7 &l

|2l<a]

You can now go back and examine the strategy you used in the Derivation window, comparing it with
the proof. As in Check mode, printing may be done using the Print visible windows... item from the
File menu. You can print this proof now, or keep it in the file of proofs for printing later, as before.

A Proof Assistant for the Apple Macintosh MacLogic

3. Advanced Work

3.1 First-order logic and equality
3.2 Modal logic

3.3 Definition expansion

3.4 Sequent Introduction

3.5 Use of tautologies

3.6 Cutrule

3.7 The window system

3.8 Using the validity checker

3.1 First-order logic and equality

The syntax of first-order formulae (in MacLogic) allows the use of variables, @ ... z, as terms. It does
NOT allow compound terms such as X+Y or f(X,y). There is no syntactic distinction between free and
bound variables, nor any division into “constants” and “variables”. No parentheses are needed between
predicate letters, A ... Z, and their arguments.

Free and bound occurrences of variables are defined as usual - see the file “Syntax Help” for
formal details. Vacuous quantification and repeated quantification are prohibited.

Standard inference rules, for introduction and elimination of the universal and existential
quantifier, are provided.

When using inference rules and tactics, it is important to know when two formulae are identical.
(For example, modus ponens, the rule of =-Elimination, operates on two formulae A = C and B, and is
acceptable provided the formulae A and B are the “same”.) We therefore have a precisely defined notion
of identity between formulae. This is routine for zero-order formulae: but it becomes non-trivial when
bound variables are present.

Two conventions are possible. One is that two formulae are identical if (ignoring spaces and
superfluous parentheses) exactly the same characters are used in each, in the same order. The other is
that two formulae are identical if they are what is called, in the lambda calculus, alpha-convertible, i.e.
they differ only in the names used for bound variables. Thus, according to the first convention, the two
formulae (Vx)(Vy)Awxy and (Vy)(Vz)Awyz are not identical, whereas according to the second,
they are identical. Note that neither is identical, under either convention, to (VYw)(Vx)AwwX, since
W in the latter has no free occurrence.

Both conventions are encoded in MacLogic: the choice between them is made from the Options
menu, by ticking or unticking the Alpha conversion item. (Note that the notion of identity actually
includes the possibility of expanding definitions as well - see 3.3 below.)

This has the effect that if alpha conversion is on, the problem of deriving, say, (Vx)(Vy)Awxy
from (Vy)(Vz)Awyz is trivial, whereas if it is off, one has to do two V-elimination steps followed by
two V-introduction steps.

MacLogic A Proof Assistant for the Apple Macintosh

The usual restrictions on variables for the quantifier rules are implemented. In Construct mode,
the choice of the tactic for J-elimination or V-introduction requires the use of a new variable, not
occurring free in the current problem. MacLogic either chooses a new variable for you, or asks you to
choose one from a list, according to whether alpha conversion is on or off. Likewise, the other quantifier
tactics require you to enter a term (actually just a variable, since we have no compound terms or
constants). If alpha conversion is off, this must be free for the bound variable being replaced, and is
rejected if not; if alpha conversion is on, any variable is accepted, and the bound variables are renamed
to avoid capturing the variable in the entered term.

One feature, in Construct mode, of the tactics for quantifiers is a little odd: suppose one is
trying to solve the problem

(Vx)Ax = (Vy)Ay

with alpha conversion off. One obvious way is to replace it by the problem

(Vx)Ax = Ay

and now use the tactic for V-elimination, choosing the term Y to instantiate the bound occurrence of X:
this is transformed to the natural deduction proof

1 (1) (Vx)Ax Ass.
1 (2) Ay 1 VE
1 (3) (Vy)Ay 2 VI

One might also wish to be able to replace the original problem by
Ay = (Vy)Ay

and now use the tactic for V-introduction. This is not allowed, since the new variable y used to replace
the bound occurrence of y on the RHS occurs free in Ay. In fact, it does not occur free in the
assumption (Vx)AX from which Ay was derived, so the use of y is harmless: nevertheless, the sequent
calculus rules forbid use of y as a new variable at this point. This restriction does not however reduce
the range of natural deduction proofs which can be constructed.

Equality may be selected from the Logic menu, in which case the tactics and rules for equality
may be used. (Equations are always acceptable as formulae, even if Equality is not selected in the
Logic menu.) The rules for equality are accessible (in the Next Line dialog box) from the =... radio
button (there isn’t room for them otherwise!) The tactics for equality appear as radio buttons in the
Tactic choice dialog box.

Equality (often, but not in MacLogic, called “identity”) is an equivalence relation, i.e. is reflexive
(everything is equal to itself), symmetric (one thing equals another if the other is equal to the first), and
transitive (whatever equals something equal to a third thing is itself equal to the third thing). But
equality is in a sense the smallest equivalence relation, so if @ and b are equal, then anything true of a is
also true of b - a congruence principle incorporated as the rule =E, in counterpoint to the reflexivity
incorporated as the rule =l. [The symmetry and transitivity can actually be derived from these two
rules, but it is convenient to make them available as if they were primitive rules of the logic.]

Using the rules for equality (in MacLogic’s Check mode) is straightforward. The tactics for
equality (in Construct mode) are straightforward in the case of reflexivity (in fact, any goal of the form
X = X is regarded as trivial, and you are not required to invoke the tactic for =l), symmetry, and

A Proof Assistant for the Apple Macintosh MacLogic

transitivity. That for =E requires more care. The tactic is that if you know an equation S = t, and the
goal is any formula C, you may replace the current problem by two sub-problems - the first of showing
A(s), and the second of showing C from the additional knowledge of A(t), where A(V) is a formula
with one or more occurrences of a free variable v. (If there are no such occurrences, the tactic reduces to
the Cut tactic.) You are required to enter the formula A(V), and to indicate what variable Vv is to be
substituted for, by means of a dialog.

For example, suppose we want to prove that = is symmetric, without using the =SYymm tactic.
Our initial problem (we show formulae parenthesised for clarity) then is, after removal of quantifiers
and use of the tactic for =I:

(x=y)=(y=x)
We now use the tactic for =E, and enter the formula A(V) =g (V = X), with v as designated variable.

(What you actually type inis V = X in one edit field, and the variable Vv in the other.) The new sub-
problems are first to show A(X) from (x=y), and secondly to show (y=x) from A(y) and (x=y), i.e.:

(x=y) = x=x
(y=x),(x=y)=(y=x)

both of which are trivial.

MacLogic A Proof Assistant for the Apple Macintosh

3.2 Modal logic

Any of MacLogic’s basic logics - classical, intuitionistic and minimal - may be extended by rules for
modal operators. The modal operators are ‘0°, where OA means “necessarily A”, ‘¢” where ¢ A means
“possibly A”, and ‘3" where A3B means “A strictly implies B”. MacLogic treats all three as primitive,
although when using a classical base (though not an intuitionistic or modal one) some authors use ‘00’ to
define the others, since classically F (CA < ~O~A) and universally F ((A3B) < O(A-B)).

There are many systems of modal logic, characterising different notions and strengths of
modality. MacLogic implements the two most famous: Lewis’ systems S4 and S5.

The O-Elimination rule is the same in both systems: OE says that A may be inferred from OA,
the assumptions staying the same. Similarly, the rule ¢1 allows ¢A to be inferred from A, and 3E
allows B to be inferred from A3B and A (pooling the assumptions). But when may OA be inferred
from A? Answer: when the assumptions on which A depends are suitably strong. OI has the same form
in both systems, to infer OA from A, the difference lying in the restriction that the assumptions on
which A depends are appropriately modal — S4-modal in the one case, S5-modal in the other. S4- and
S5-modal are defined in Section 5.2. 3I makes similar use of the notion ‘modal’, in line with A 3 B’s
possible definition as O(A - B), while OE uses in addition a notion of comodality, also defined in
Section 5.2.

The rules for ‘0’ and ‘¢’ may usefully be compared with those for ‘¥ and ‘3’ respectively.
For, semantically, OA means that “A is true in all (accessible) possible worlds”, and ¢ A means “A is
true in some (accessible) possible world”.

For further details of these modal logics, see the books (referenced in the bibliography, section
4.5), by Lewis & Langford, Hughes & Cresswell, Zeman and Prawitz.

A Proof Assistant for the Apple Macintosh MacLogic

33 Definition expansion

Definitions are a useful way of increasing the expressive power of a language. If one can define a new
concept in terms of old ones, then all one’s knowledge about the old ones can be applied to the new
concept.

In MacLogic, definitions are used rather sparsely. Definitions of two logical symbols are
available: the definition of negation in terms of implication and contradiction, and of equivalence in
terms of implication and conjunction, detailed below.

One can choose whether or not the definition is applied automatically by MacLogic. One point
of view is that if two formulae are “definitionally equal”, as are for example ~A & B and (A = A)
& B, then the use of one in a context where the other should be used should be acceptable without
comment. The other point of view is that the replacement of a formula by a definitionally equal formula
should involve invocation of the rule “Definition”.

The two views are reflected by adjustments to the item Delta conversion in the Options menu.
If Delta conversion is ticked, then two definitionally equal formulae can be used interchangeably
without comment. If Delta conversion is unticked, then expansion or contraction of formulae using
definitions must be explicitly invoked. We now describe how to do this just in the case where Delta
conversion is unticked. [When it is ticked, there is neither necessity nor possibility of invoking the
definition mechanism.]

In Check mode, suppose we have established a formula P, depending on certain assumptions.
We may now derive a formula Q, depending on the same assumptions, by invoking the rule “Defn.”,
accessed via the ... radio button, and quoting as premiss the line number on which P was established,
provided that P and Q are definitionally equal. [Note that if P and Q are actually the same formula, this
can still be done, but it may look a little odd!]

In Construct mode, suppose we are working on a problem F = A, where F is a formula list and
A is a formula. If we invoke the tactic for “Definition”, accessed via the ... radio button, MacLogic
looks to see whether or not any of the formulae in the problem have a principal symbol which is a
defined symbol, and thus admit a rather simple expansion. If there is only one such formula, the
expansion is done immediately, the move from one line to the next being marked by the comment
“Using tactic for Definition”. If there are several such formulae, you are asked to choose which one is to
be expanded.

Note that there is a restriction here: in Construct mode, you may not (in effect) point at a
formula and say that it is to be replaced by a definitionally equal formula: all you can do is expand a
definition used ‘at the top level’. This avoids the necessity of typing in the new formula.

For example, P©Q can be expanded to (P~Q)&(Q-P), since < is a defined symbol; but
(P« Q) &R cannot be expanded to ((P~Q)&(Q—P)) &R, even though they are definitionally equal.

Note also that if Delta conversion is ticked, you may use the rules for implication in place of
the rules for negation: negation is just a special case of implication. Likewise, equivalences A © B are
just a special case of conjunctions, so the rules for & are applicable. But when Delta conversion is
not ticked, then a formula of the form A « B must be expanded explicitly, as described above, before
its components can be used.

The definitions currently built into MacLogic are that

MacLogic A Proof Assistant for the Apple Macintosh
~A Sef A - A.

AeB =, (A-B)&(B-A).

where A, B range over arbitrary formulae. [=i is a symbol traditionally used between a definiendum,
on the left, and the definiens, on the right.]

A Proof Assistant for the Apple Macintosh MacLogic

34 Sequent Introduction

In practice, few proofs are done just by means of the primitive rules of inference corresponding to the
logical constants: one appeals to previously proved results. MacLogic provides a mechanism for making
such an appeal. It is limited to the use of results from zero-order logic.

For example, suppose you are using classical logic, and have already shown that Av~A is
provable therein: and then you have a problem of deriving C from the two implications B=>C, ~B—C.
You can proceed to use the primitive rules, but it is more natural to quote the result Bv ~B, and then
use v-Elimination. This step of quoting a(n instance of) a previously proved result is called® “Sequent
Introduction” (S.1.).

S.1. can only be used if some theorems are in the database, having been proved already, either in
the same session (and kept) or in a previous session (and loaded). If you try to use it when no theorems
are in the database, you have the opportunity to load some. The mode of use varies according to which
of Check mode and Construct mode you are in.

In Check mode, S.l. is accessed via the ... radio button on the Next Line dialog box. Before
using this button you may wish to look at the Theorems window to see which theorem you are going
to use. There is then a dialog, asking you to choose a theorem. The premisses cited by number in the
Premiss Nos. field must be, in order, the (substitution instances of the) assumptions in the theorem
being used: the formula in the Formula field must be the appropriate instance of the consequent of this
theorem. The assumptions listed in your Assumption Nos. box must be all the assumptions needed in
all the premisses to which you refer.

In Construct mode, suppose your current problem is to prove C from a list F of formulae, and
that a problem G=D has already been solved and kept as a theorem. Then you can construct a
substitution instance G' = D' of this theorem, and then try and solve the new sub-problems of trying
to show, from F, each in turn of the assumptions in G', and then, adding D' to F, of trying to show C. In
many cases, the theorem is chosen to make most of these steps trivial, and one might think the tactic
could be more simple to use: but for completeness, this rather general form is required, alas. The tactic
for S.1. is accessed via the ... button.

Use of the S.l. rule thus gives you the right to use, very much as if it were an extra rule of
inference, any previously proved zero-order result. (Not all correct rules can be represented in this way
- for example, those involving discharge of assumptions cannot be so represented.)

3.5 Use of tautologies

Rather as in the above explanation about the S.1. rule, there is another method for avoiding unnecessary
work: the appeal to a problem’s being obviously solvable. For example, when one is learning the rules
and tactics of first-order logic, it is irritating to have to work with the zero-order rules rather than
concentrating on the first-order difficulties, so one would like to dismiss the zero-order sub-problems as
trivial. One may of course be able to quote an earlier result, but one’s library of theorems is usually

3 So it is called in the book by Lemmon, who distinguishes between sequents in general and those, which have no
assumptions, which he calls "theorems". For us, theorems are provable sequents, and are of two kinds - "categorical", having
no assumptions, and "hypothetical", being based on assumptions. What he calls "Sequent Introduction" would make more
sense if renamed "Theorem Introduction”, except that might confuse devotees of Lemmon's book.

MacLogic A Proof Assistant for the Apple Macintosh

deficient. One therefore often just uses the rule or tactic labelled* “Tautology”, and relies on the
theorem-provers built into MacLogic to check that this is justified.

To use the Tautology rule in Check mode, use the ... button to get at it. The provability (in
zero-order logic) of your conclusion (in the Formula box) from the premisses cited is checked by the
theorem-prover. The assumptions quoted should be all the assumptions on which any of the premisses
depends. See below for details of what the theorem-prover can do: it is good at problems in various
first-order logics, but not allowing the rules for equality or modal operators.

To use the tactic for Tautology in Construct mode, use the ... button to get at it. You must
then enter the precise sequent being appealed to in a dialog box. (The box may be pre-filled with a
suggestion.) This is checked® by the theorem-prover for being provable in zero-order logic: if it is
accepted, its assumptions are taken, one by one, as new goals in the current context, and its conclusion
added to the current context for proving the old goal. Derivations built in this way are transformed to
proofs using the Tautology rule described above.

4 Tautology is a misnomer, for two reasons: traditionally, a tautology is just a formula, rather than a sequent, and it should be
provable by zero-order rules only. The name is also rarely used except in classical logic, since the usual definition is based
on truth-tables. We use the name until we can think of a better substitute, capturing the notion that we regard the current
sub-problem as trivial.

5 Similar remarks to those just given for Check mode describe the limitations of the theorem-provers.

A Proof Assistant for the Apple Macintosh MacLogic

3.6 Cut rule

One important property of many logical systems is that a certain rule, called the “Cut” rule, is
admissible, in the sense that its addition to the system does not extend the range of theorems that can be
proved, but just allows the proofs to be shorter or simpler. Gentzen’s “Hauptsatz’, or “Cut elimination
theorem”, says just this about certain sequent calculus formulations of classical or intuitionistic logic.

In the search for a proof of a sequent, one usually relies on just looking at the formulae involved,
breaking them up syntactically: the tactic corresponding to the Cut rule, however, requires one to have
insight by picking an appropriate formula, the “Cut formula”, out of thin air. This rule’s presence
makes the automatic search for proofs rather hard - so it is better if it is not a necessary part of the
formal system. MacLogic is therefore designed to be used without a Cut rule.

However, no convenient formulation of the modal logic S5 is known to be cut-free. It is therefore
necessary to be able to use the Cut rule (or, rather, its corresponding tactic), when working in S5. There
is therefore a tactic for Cut, accessible via the ... radio button from the Tactic choice dialog.

Technically, the Cut rule is a rule of the sequent calculus. Its use translates into the use of a
natural deduction rule which we call "Substitution", since it corresponds to the substitution of a proof
of the cut-formula A in place of an assumption of A. (The notion of a “Cut” can be defined for natural
deduction, and one can then talk about “Cut-elimination”; we prefer to talk of “proof normalisation”.)

MacLogic A Proof Assistant for the Apple Macintosh

3.7 The window system

MacLogic includes a conventional window system, allowing the creation, opening, saving, and killing of
windows. Some windows, like Derivation and Proof, are created for you: their contents can only be
changed by using the formal systems, to ensure the logical correctness of their contents. Other windows
(from the Jotter downwards in the Windows menu) can be edited freely: you can use them if you like
for creating proofs, but MacLogic will not guarantee the correctness of proofs therein.

Window names should be sensible, and may not conflict with file names: i.e. if you create a file it
should not be given the same name as a window. (The file and window input/output work by reading to
or from a channel, identified just by its name, hence obvious problems if names clash.)

Windows have “close boxes”, at the top left corner: but they continue to be in memory after
being closed, and can be re-opened again, usually by selection of the window’s name in the Windows
menu. Certain windows are part of the help system, and are only opened by selection of appropriate
Help commands.

Text windows always appear in the Konstanz font. You can switch the size of the font
between 9pt and 12 pt.

If you are a teacher using an LCD panel to show MacLogic to a class, you may find it
convenient to put certain windows in bold face: use the Windows menu item Toggle bold.

2 173

The help system works by using five files [“ATP Help”, “Syntax Help”, “Menu Help”,
“Tactics Help” and “Rules Help”]. The first two are displayed directly; the last three are invisible, but
extracts from them are displayed on request. Each of the files is loaded into memory when first needed;
they are all killed if you invoke the command Help/Memory problems (of course, they can be loaded
again if you wish).

Note that the dialogs are actually windows, of a different type: so, some of the commands that
apply to windows, like editing commands, can be used on dialogs as well. One non-obvious feature of
dialogs is that if you move a dialog, it should appear in the same place on the screen next time it is used
- handy if you have a large screen. (Some dialogs, the so-called ‘modal dialogs’ — don’t confuse this
sense of ‘modal’ with ‘modal logic’ — cannot be moved: they must be answered immediately.)

A Proof Assistant for the Apple Macintosh MacLogic

3.8 Using the validity checker

There is a window of information about the “validity checker” (alias “theorem prover’”) accessible on-
line, via Help/ATP. The data in it is loaded from the file “ATP Help”. In brief, MacLogic’s validity
checker is intended to operate quietly in the background when you generate a new problem, and to warn
you if it can’t solve the problem itself. It is believed to be sound, and to be complete for the problems
solvable by zero-order non-modal rules.

The validity checker can be set (via the Options menu) to consider all problems, just the
quantifier-free problems or no problems at all. It will ignore the modal rules and the rules for equality -
taking them into account would slow it down to an unacceptable speed. There is a parameter which you
can adjust to control the complexity of search: set at level 0, it will tackle® all zero-order problems, and
some with quantifiers. Level 1 is adequate for a wide range of first-order problems, but is generally
slower. Level 2 is needed for some deceptively simple problems like (in Classical Logic)

= (@)(Vy)(Fx - Fy)

and should normally be adequate for any problems attempted by your students. Levels 3 to 7 should
rarely be needed.

The validity checker can be used in two ways. First, it can monitor your work: when you start
to tackle a problem, or one of its sub-problems, it can warn you about the problem’s unsolvability.
Second, you can invoke it directly from the Help/Valid menu item: for example, if you want to have a
theorem proved automatically for you and added to the database, or if you are working on a problem
and want to see if MacLogic can solve a similar problem, perhaps in a weaker logic. (Note that if you
invoke the Help/Valid menu item while a process such as the construction of a proof is suspended,
only a modest amount of memory is available for this second process, because of the way
MacPROLOG organises its memory.)

When you use the Help/Valid command, the settings of the validity checker can be adjusted for
the duration of MacLogic’s work on the problem you enter—but this doesn’t affect the settings used
the rest of the time. To adjust those, use the command in the Options menu.

Remember that if you want to keep the theorems that you (or MacLogic) prove(s), ensure that
Keeping as theorem is ticked in the Options menu.

See section 5.1.3.4 below for details of how to add lots of theorems quickly to the database.

6 Of course, there are well-known results on the complexity of theorem proving even for zero-order logic, so this claim is
optimistic. What is meant is that on a large enough machine with a fast enough processor, it will eventually report either
“Valid” or “Invalid”. In contrast, first-order problems may cause any sound and complete theorem prover, however clever, to
run for ever.

MacLogic A Proof Assistant for the Apple Macintosh

4. Theoretical background and biblio-graphy

4.1 Introduction

4.2 Natural deduction calculi
4.3 Sequent calculi

4.4 Automatic theorem proving
4.5 Bibliography

4.1 Introduction

It is of course not at all necessary to understand all the theory behind MacLogic to be able to use it
effectively. But the interested student may (and the teacher must) enquire as to why it is as it is, and
how it works. In this section we try to answer some of these questions.

First, note that with the availability of computers it is now feasible to mechanise most aspects
of the tedious task of checking proofs for correctness. But one may also implement the methods (the
algorithms) for constructing proofs, and then reflect on how much one wants to take away from the
student the task of doing this for herself. Of course, one really wants to provide a variety of levels of
help - from the completely automatic checking that a problem is solvable to sensible assistance to the
student discovering her own proof. The computer’s behaviour should ideally adapt to different levels of
expertise: MacLogic, however, is adaptable rather than self-adapting.

Second, the use of computers has led to a re-evaluation of the use of different formal systems in
proof presentation. On the one hand, some formal systems are now seen as less important, and others
as more important: for example, Gentzen systems are now widely used for presenting the rules about
types in programming languages, and for similar purposes in the study of natural language, whereas
Hilbert-style axiomatic systems are now not commonly used outside certain formal textbooks on logic
for mathematicians. On the other hand, it is clear that even some natural deduction systems are
inconvenient to implement on a computer — and when one looks in detail at why, one finds that the
difficulties are often those which are hard to explain to students. For example, the widely used textbook
by Lemmon presents a system of natural deduction rules, some of which are messy to implement and
hard to explain.

MacLogic began as an attempt to understand the problems involved in implementing a proof
assistant for type theory [as in the work of Martin-L6f], with a view to the correct development of
programs from specifications. Such assistants exist (NuPRL, PICTT, lego, ... - see Bibliography for
details). It acquired an independent life of its own as a teaching package, and is intended (by its authors)
as an introduction to the kind of proof construction that all computer scientists should do when learning
logic, because essentially the same kind of work is involved in programming. But this “art of proof
construction” is essentially that which anyone has to do in constructing proofs, whatever their
discipline. (It is usually not the same as the way machines are programmed to do it automatically.)

We describe therefore in the remaining sections of this chapter what sorts of formal system
MacLogic is really using, and how they are related.

A Proof Assistant for the Apple Macintosh MacLogic

4.2 Natural deduction calculi

Gentzen introduced in his pioneering papers in the 1930s the idea of a natural deduction proof. There
are various notions: one version is that a proof consists of a tree of formulae, where the leaves are
assumptions, and the discharge of an assumption (for a rule such as =1, for example) is indicated by
striking it out. Those assumptions on which the conclusion (the formula at the tree’s root) depends are
just those not struck out.

This is convenient, in the sense of requiring little copying of formulae: but it is often not clear at
a glance what assumptions any formula in the midst of the tree depends on. Gentzen therefore
introduced a so-called “logistic” version of natural deduction, in which the judgments (the objects on
which inference rules operate) are sequents of the form used in MacLogic: a formula list, then a special
symbol such as F, then a formula. Proofs are then defined as trees, where each node is such a sequent,
and is either a leaf node, justified by the rule of Assumption, or is an internal node, justified from its
children (the nodes just above it) by a rule of inference.

The notation we use in presenting proofs in the style of Lemmon is essentially a condensed
version of this. First, the tree is squashed to a graph, to allow maximal sharing of sub-proofs: second,
the graph is stretched out into a linear form, for ease of layout on the page, and third, the references
back to assumptions are by line number rather than by using the formulae themselves.

The rules of natural deduction are generally of two kinds: rules for introducing a logical constant,
and rules for eliminating one. The constants are introduced and eliminated only in the formula on the
right of the turnstile F. (In classical logic, there is an extra rule, DN, not fitting into this pattern, for
removing two negation symbols at once. We avoid calling this rule an “elimination rule”.)

See the monograph by Prawitz, or the survey by Sundholm, for further details of natural
deduction.

MacLogic A Proof Assistant for the Apple Macintosh

4.3 Sequent calculi

The problem with natural deduction is that it is often not clear, even for simple problems, how to
construct proofs. Ideally, you should be guided by your knowledge of the rules and the syntax of the
problem to be solved. Gentzen therefore introduced a related system, called the sequent calculus, in
which there are rules for introduction of the logical constants on the right of the turnstile, and (instead of
elimination rules) rules for introduction of the constants on the left. (For details, see the literature, such
as Gentzen’s original papers, or the survey by Sundholm.)

To understand how MacLogic works, it is vital to recognise that the sequent calculus rules can
be regarded, upside down, as tactics for decomposing problems: and that a sequent calculus proof can be
regarded (at least in the intuitionistic case) as a recipe for constructing a natural deduction proof.

For example, the intuitionistic sequent calculus rule for “&-introduction on the left” is of the
form

F, A, B, G = C
F, A&B, G = C

where F, G are formula lists and A, B, C are formulae. Let us suppose that we can convert the proof
leading to the premiss of this rule instance into a proof of C from the assumptions in F, from A, from B,
and from those in G: we can now see how to construct a proof from the assumptions in F, from A&B
and from those in G: we add A&B as an assumption, derive from it the formulae A, B by the natural
deduction rule &E, and replace the uses (if any) of the assumptions A, B by appeals to A (resp. B)
based on the new assumption of A&B. We therefore see the rule of “&introduction on the left” (in the
sequent calculus) as an instruction to use the rule &E in constructing a natural deduction proof.
Accordingly, the tactics in MacLogic are named, for example, “Tactic for &E”, etc, rather than after the
sequent calculus rules themselves. Below we shall often talk about use of a tactic for a natural deduction
rule rather than naming the appropriate sequent calculus rule.

This view of sequent calculus rules as tactics for use of natural deduction rules works well for
the intuitionistic case: we leave it to the interested reader to work out the correspondence for the other
logical constants as an exercise. Accordingly, it is a simple mechanical task to convert a sequent calculus
proof (as built in the Derivation window, with the root of the tree at the top left and the leaves at
points marked by M) into a natural deduction proof. This is done for you by MacLogic: but you should
try to think, as you perform the simple proofs, just how the tactics you are using could be used to
construct a natural deduction proof as you go along rather than at the end of the process. Note that the
leaves of the derivation turn not into the assumption sequents in the natural deduction proof, but into
the minimal sequents, in the middle of the proof, being (in general) both conclusions of elimination rules
and premisses of introduction rules.

In the classical case, we use not Gentzen’s sequent calculus LK, but that (LJ) for intuitionistic
logic, augmented by a double negation rule (upside down, of course, as a tactic). The translation into a
natural deduction proof is now easy — whereas if we used LK, with sequents having multiple
consequents, the translation into natural deduction is non-trivial. (It is for this reason that MacLogic’s
automatic theorem prover gives no advice about how to solve problems: it is based, in the classical case,
for efficiency, on the LK calculus, and although it could advise on how to solve a problem in the LK
formalism, this is not particularly helpful.)

One very instructive example is the proof of the “Law of Excluded Middle”, Av ~A, in classical
logic. (In the sequent calculus LK, allowing multiple consequents on the right, this is trivial - the proof

A Proof Assistant for the Apple Macintosh MacLogic

takes two lines: the first” step breaks up the disjunction, obtaining = A,~A; the next step breaks up
the negation, obtaining A = A, which is an axiom.)

In the sequent calculus LJ augmented with a double negation rule DN, the first step (using the
tactic for DN) is to pose the more complex problem = ~~(Av~A), now to use ~|, obtaining the
problem ~(Av~A) = A, then ~E, obtaining ~(Av~A) = Av~A, then wvl, obtaining
~(Av~A)=>~A, then ~Il, obtaining A, ~(Av~A) = A, then ~E, obtaining
A, ~(Av~A) = Av~A, and (finally), vl again. (Two trivial sub-problems have been omitted.)

As a sequent calculus proof (in LJ + DN) we have it as

A~(Av~A) = A
A~(Av~A) = Av~A A A=A
A~(Av~A) = A
~(Av~A) = ~A
~(Av~A) = Av-A A=A
~(Av~A) = A
= ~~(Av~A)
= (Av~A)

and as a natural deduction proof, in Lemmon’s notation, we have it as

T (1) ~(Av~A) Ass
2 (2) A Ass
2 (3) Av-A 2 vl
1,2 (4) A 1,3 ~E
1 (5 -~A 2,4 ~I
1 (6) Av-A 5 vl
1T (7)) A 1,6 ~E

8 ~~(Av~A) 1,7 ~I

9) Av-A 8 DN

Note that there is a straightforward translation of the sequent calculus (in LJ + DN) proof into a
natural deduction proof, where no similar translation is available from the proof in LK. Note also that,
in the sequent calculus proof, as we move from the root to the leaves, we have on the left a formula
~(Av ~A), which is broken up using the tactic for ~E, giving us the formula Av ~A on the right (in
the problem on the leftmost branch of the tree) and a trivial problem A = A in the rightmost branch.
But in the problem on the left, we have still the “broken up” formula ~(Av ~A) in the antecedent, and
this is broken up at the point further up the tree where the tree branches again.

This phenomenon, that as we break formulae up we cannot always throw them away, is an
inconvenience of LJ (with or without DN): it adds significantly to the cost of automatic theorem
proving in intuitionistic logic. It does not appear in LK (until we consider the effect of the quantifiers),
which is why it is relatively easy mechanically to decide problems in zero-order classical logic. But it is
also a reason why finding natural deduction proofs in classical logic can be non-trivial, even in the zero-
order case: witness the above example.

7 We are of course reasoning backwards from the goal, as in MacLogic’s Construct mode - so “first” means “nearest to the
root of the proof tree”.

MacLogic A Proof Assistant for the Apple Macintosh

MacLogic’s Construct mode allows you, in two ways, to control whether or not formulae are
thrown away as you break them up. (Clearly, when a formula on the right of the = symbol is broken
up, there is nowhere in the statement of the new sub-problem(s) to put the old formula.) When a
formula on the left is the formula on which the tactic operates, it is removed if

. the Autothin check box in the dialog is checked, and
. the formula?® is not an implication, a negation or a universal quantification.

Autothin’s being checked is a sign to MacLogic that it can remove such formulae; but it will not do so if
the formula is one of the kind to which the above comments about the possibility of their being needed
again apply, i.e. is an implication, is a negation, or is universally quantified. If the formula is not
removed, and you really want to clear it out of the way, then use the Thin tactic, via the ... button on
the dialog.

To repeat: MacLogic’s Construct mode is based on the use of Gentzen’s calculus LJ (perhaps
with a DN rule for classical logic, or perhaps without the A-Intro_left rule—what we call the AE
tactic—for minimal logic), in which the rules are regarded upside down as tactics for building natural
deduction proofs. (The idea is already in the work of Gentzen & Prawitz.)

4.4 Automatic theorem proving

MacLogic’s theorem prover for classical logic is based on the sequent calculus LK of Gentzen. Like the
rest of MacLogic, it is implemented in Prolog. The monograph by Melvin Fitting (see Bibliography) is
an excellent coverage of this kind of approach. Difficulties arise with quantifiers, and we adopt the
tricks involving Skolem functions and unification outlined by Fitting to reduce these difficulties.
Nevertheless, MacLogic’s theorem prover is not complete: but we believe that whatever answer it gives
can be relied on, i.e. it can recognise when it has given an answer which may be wrong, and tells you so.
Changing the level parameter may or may not give you a more informative answer.

Fitting’s book actually outlines the methods of so-called “semantic tableaux”: we regard these as
a notational variant of the sequent calculus, with a trivial translation betwen the two.

For intuitionistic and minimal logic, roughly the same approach is adopted, using Gentzen’s
calculus LJ (or LM for minimal logic). In fact, a variant described elsewhere (see the paper by Dyckhoff
mentioned in the Bibliography) is used instead, to avoid some problems with non-termination arising
with the use of LJ.

The file “ATP Help” gives some more detail of how the automatic theorem prover can be
controlled: access it on-line via the ATP item in the Help menu.

4.5 Bibliography
Burstall, R, ... An interactive proof editor, Computer Science Department, University of Edinburgh, 1986.

Constable, R., ... Implementing Mathematics with the NuPrl Proof Development System, Prentice-Hall, Inc., New
Jersey 1986.

Dyckhoff, R. Contraction-free sequent calculi for intuitionistic logic, Journal of Symbolic Logic 57 (1992),
pp 795-807.

8 We ignore here the presence of modal operators or equality.

A Proof Assistant for the Apple Macintosh MacLogic

Fitting, M.
Gentzen, G.

Hamilton, A.

Hughes, G. E., ...
Lemmon, E.
Lewis, C.1, ...
Martin-Lof, P.

Pollack, R.

Prawitz, D.

Read, S.L. & Wright, C.

Sundholm, G.

Zeman, J.J.

First-order logic and automatic theorem proving, Springer-Verlag, 1990.
Collected papers, ed. M. Szabo, North-Holland 1958.

PicTT - Programming in Constructive Type Theory, Computer Science Dept, University of
Stirling, 1989.

An introduction to modal logic, Methuen, London, 1968.
Beginning Logic, Nelson, London, 1965.

Symbolic Logic, The Century Co., New York & London, 1932.
Intuitionistic type theory, Bibliopolis, Naples, 1984.

Lego - an implementation of the Calculus of Constructions, Computer Science Department,
University of Edinburgh, 1988.

Natural deduction, Almquist & Wiksell, Uppsala, 1965.

FORMAL LOGIC: anintroduction to first-order logic, Logic & Metaphysics Dept, University of
St Andrews, 1989 (& 1990, 1991, 1992, ...)

‘Systems of Deduction’, in Handbook of Philosophical Logic, vol 1, ed. D.Gabbay &
F. Guenthner; D. Reidel Pub. Co., Dordrecht, 1983, pp 133-188.

Modal logic: the Lewis modal systems, Clarendon Press, Oxford, 1973.

MacLogic A Proof Assistant for the Apple Macintosh

5. Reference Guide

5.1 Installation instructions

5.2 Syntax

5.3 Rules of first-order logic, as implemented
5.4 Tactics for first-order logic, as implemented
5.5 Differences between the various logics

5.6 Menus

5.1 Installation instructions

5.1.1 System requirements
5.1.1.1 Hardware and system software
5.1.1.2 Installing the logic fonts
5.1.1.3 Memory management

5.1.2 What files are needed, where

5.1.3 Customisation instructions
5.13.1 MacLogic Settings
5.1.3.2 Changing the Help information
5.1.33 Building and editing problem libraries
5.1.3.4 Building theorem files

5.1.3.5 Foreign language environments

In this section, we explain how to install MacLogic on your Apple Macintosh and how to
customise it for your (or your students’) use. Some difficulties may arise, for example with memory
management: if you experience these, and the information below fails to help you to sort out the
problems, contact those responsible for maintaining the software by e-mail to the address at the end of
this manual.

A Proof Assistant for the Apple Macintosh MacLogic

5.1.1 System requirements

5.1.1.1 Hardware and system software

MacLogic works under System Version 6.0.3, and some earlier versions. It also works under
system 7, but without exploiting the special features thereof such as “Balloon Help”.

Ensure that your MacLogic disc is write-protected. Copy all the files from your MacLogic disc
to either a hard or a floppy disc, and put your MacLogic disc in a safe place.

Under System 6, MacLogic runs on any Macintosh with at least 2 megabyte of RAM. (An older
version runs in just 1Mby, but is no longer supported.)

Under System 7, MacLogic runs on any Macintosh with at least 4Mby of RAM.

You may need to ensure that your RAM cache is switched OFF. If this is not done, there may
be memory allocation problems. To switch the RAM cache off, use the Control Panel from the
(Apple) menu.

If there is not enough free RAM space in your Macintosh, MacLogic may either fail to load, or
will load improperly and not be of any use. It may even load partially, but not have a File menu
allowing you to quit gracefully: in this case, you have to reboot your Macintosh via the “reset switch™:
for details of this procedure, see your Macintosh manual.

If MacLogic won’t load properly, run it on as large a machine as you can find and check (via the
About MacLogic... item in the = menu) that the evaluation space is set as low as possible (24K):
change it to this if necessary, and transfer the copy of MacLogic back to the smaller machine. If there
still are problems, contact us with details by e-mail.

MacLogic is MultiFinder-compatible (and System 7 compatible): a suggested size for the
application memory is 1024Kbytes, but this can be increased if you can afford the space, or decreased a
little if you must. Do this by selecting the MacLogic icon on the desk-top, and calling the Get Info
command from the File menu: then edit the box at the bottom right.

5.1.1.2 Installing the logic fonts

The disc on which MacLogic is supplied contains a folder “Fonts for MacLogic”. This contains

* asuitcase file called “Detroit Fonts”, containing a 12 pt bit-mapped font Detroit, for the menus
and dialogs. Detroit is a copy of Chicago, with extra characters for the logic symbols. Its font
ID is 149.

« versions of the Konstanz font. Konstanz is a copy of Geneva, with the same extra
characters as Detroit. Its font ID is 2500. It is available as 9 and 12 pt bit-maps in a suitcase, in
TrueType format and in PostScript Type 1 format. At least install the bit-maps; install the
others if you want to print MacLogic documents (or this documentation).

For best results, these two fonts should be installed in your System file. How to do this varies
between System 6 and System 7: see your Macintosh manual for details. BEGIN BY DISCARDING
ALL OLD VERSIONS OF KONSTANZ AND DETROIT? IN YOUR SYSTEM FILE. (If you must,
keep copies in a safe place.) Older versions of MacLogic had the fonts attached to the application

9 Copies, if any, of Detroit (New) should be removed at the same time.

MacLogic A Proof Assistant for the Apple Macintosh

MacLogic itself: this still works fairly well, except for some minor problems with MultiFinder. The
recommended method now is to install the fonts in your System file.

Once the fonts are installed, you can of course use them while writing your logic essays with a
word processor.

5.1.1.3 Memory management

When MacLogic has been loaded, you can change the amount of “evaluation space” used. Memory used
by MacLogic is of two kinds - “evaluation space” and “free memory”. You can increase the former,
thereby decreasing the latter, and vice versa: it is best to have them about equal. The changes can be
made from a button on the initial dialog, or from the About MacLogic... item in the = menu. Once it
has been changed, the new setting is saved (on quitting MacLogic, but only if MacLogic is not a read-
only file) in the MacLogic application file as a resource item for use next time. So, when installing
MacLogic on a machine with lots of memory, you may wish to make this change immediately, quit from
MacLogic, and then lock the file to prevent it from being changed (other than temporarily) again. The
minimum setting you can use is 24K, but for serious work you should aim for 64K or more. I use 128K.

Warning: if you increase the setting, and then move that copy of MacLogic
to a different machine, with less memory (or even just increase the size of the
System file), there may be problems. Your original copy of MacLogic should still
be usable, however.

5.1.2 What files are needed, where

MacLogic is distributed as a demonstration version. Details of how to upgrade it to a full working
version are available to licence holders.

The code file necessary for MacLogic to work is
. MacLogic 2.2 the application itself

There are some help files, without which the on-line help system will not be usable. These live
in a folder called HELP, and are called:

. ATP Help about the Automatic Theorem Provers
. Menu Help about all the menu items

. Rules Help about the inference rules

. Syntax Help about the syntax

. Tactics Help about the tactics

See section 5.1.3.2 below for details of how these help files can be edited.

The code file should be kept in a folder, which should also contain the HELP folder. Do not drag
MacLogic onto the desktop and then try to run it: when it comes to looking for the HELP folder, it
expects to find it in the same folder as itself. Leave it in its own folder! (You may find that an

A Proof Assistant for the Apple Macintosh MacLogic

application launching utility such as On Cue™ 1is a useful alternative to having MacLogic on the
desktop. Under system 7, you can of course create an alias and put that on the desktop, or in the
Apple Menu folder.)

There is also a folder of fonts:
. Fonts for MacLogic contains Detroit and Konstanz fonts

As noted above, some of the contents of this folder should be installed in your system file before you
use MacLogic.

The following additional files may be available:

. MacLogic Problems a problem library
. MacLogic Settings menu settings
. MacLogic Theorems consisting of saved theorems

but, if not available, they can be generated quite easily when you run MacLogic.

5.1.3 Customisation instructions

MacLogic can be customised for your own (or your students’) use in various ways. You can create a file
“MacLogic Settings” which records the state of all the options in the Logic menu and the Options
menu, for example if you always prefer to use Construct mode and Classical Logic, and to have your
windows in 9pt. You can also edit the help files, if you don’t like the way in which the rules efc are
explained. You can build libraries of problems of your own. You can save theorems for use with the rule
“Sequent Introduction”. How to do all this is described below.

5.1.3.1 MacLogic Settings

When MacLogic is being loaded, it looks for a file “MacLogic Settings” in its home folder. The file
should contain some code (in Prolog) recording how the various menu options were set when it was last
modified.

If the file is present, and is of the right kind, the contents are interpreted and the menu settings
of MacLogic are reset accordingly.

When you exit from MacLogic, and have changed any of the menu settings, you are asked if you
want to save the settings. If you answer OK, then you can save the settings to a file of whatever name
you like, in any folder or disc to which you have appropriate access. You will need to rename this file to
“MacLogic Settings™ at a later stage, and move it back to MacLogic’s home folder (Note that the correct
name is NOT “MacLogic settings” or “Maclogic Settings”.)

If using System 7, do not put the settings file into the Preferences folder and expect MacLogic to
find it.

(It is not necessary to know anything about Prolog to be able to create or use this file.)

MacLogic A Proof Assistant for the Apple Macintosh

5.1.3.2 Changing the Help information

The HELP folder contains a number of help files, which you are free to edit. Note the format carefully:
only edit the bits in between the comment marks /* and */. Save them as TEXT documents if you use a
word processor to do the editing. The best way is to use MacLogic itself as a text editor, and then the
files are saved as TEXT documents automatically. Ensure that your new versions have the correct
names (as in section 5.1.2 above), with the correct upper case/lower case distinctions. When saving from
MacLogic you will have to use new names like “New Tactics Help” for a while.

5.1.3.3 Building and editing problem libraries

MacLogic comes with a standard library of problems, called “MacLogic Problems”. This is pre-loaded
automatically, if it is kept in the home folder, when MacLogic is loaded. You can create similar problem
libraries for yourself.

Library files are of two kinds: textual and coded. The textual form is in case you want to edit or
print it with a word-processor. The coded form is for speed of use by MacLogic. MacLogic can convert
between the two forms for you.

The format of the textual form is a sequence of lines containing problems. A problem is
. either a formula, or

. a sequence of formulae (separated by commas), then either a turnstile F or a sequent
arrow =, and then a formula.

Any part of a line including and following a % symbol is ignored, so you can include comments
of your own. Blank lines are ignored. Note that a problem must fit on a single line, as indicated by the
Carriage Return character rather than the visual appearance. If a problem is being read for storage in the
library, there is a restriction of its being at most 255 characters long. (Larger problems can be tackled by
MacLogic, so long as the formulae don’t exceed 255 characters, but they can’t be put in the library.)

To create a library file from scratch, use the Create... command from the Windows menu of
MacLogic, and choose a name such as “My Library” for the new window. Type the problems into the
window in the format just described. You can check as you go along that each problem is syntactically
correct, and even whether or not it is solvable, by using the standard features of MacLogic, such as
Valid... from the Help menu. Save the file, using the Save to text file... item in the File menu.

Leave the window as the front window. To convert it to a coded form, use the command Load
library problems... from the File menu, and select the option of loading from the front window. It will
be read by MacLogic, and the information stored in memory, for immediate use. This takes some time,
since the problems you have typed have to be parsed (i.e. converted from textual to coded form). Now
use Save library problems... from the File menu, and save to a new coded file, such as “My Library
Coded”. You may wish to rename this later to “MacLogic Problems”, having first put the old file of that
name in a safe place.

To edit an existing library file, the method depends on whether it is textual or coded. If it is
textual, open it as a text file (Open text file... from the File menu), then edit it, and save it as a text
file. (The steps just described above can be used to parse it into a coded form suitable for future use.) If
it is coded, load it into library (Load library problems... from the File menu), save it as text file, and
proceed as above.

A Proof Assistant for the Apple Macintosh MacLogic

Library files can of course be printed. Text files can be loaded, as just described, and then
printed (Print visible windows... from the File menu.) Coded files can be loaded into memory (Load
library problems... from the File menu), then saved to a text file (Save library problems... from the
File menu), then loaded into a window and printed as just described.

The folder “Problem files” contains several examples of libraries, all in textual form. Some are
routine problems: some are rather hard. Some are unsolvable, being used for testing the automatic
theorem proving facilities.

5.1.3.4 Building theorem files

When you use MacLogic, it is often convenient to appeal to a theorem proved earlier by solving a
problem. So, as you solve problems, you may wish to keep them as theorems for future use. This is
done by ensuring that the item Keeping as theorem in the Options menu is ticked. All zero-order!®
problems that you solve will then be remembered, provided you give them names when prompted to do
SO.

On quitting MacLogic, you are asked if you want to save all your theorems. If you answer Ok,
an appropriate file is created. You may wish to rename this to “MacLogic Theorems”, having first kept
a safe copy of the previous version of the file..

On loading MacLogic, if a file “MacLogic Theorems”, of the right type and with the right
contents, is in the folder to which MacLogic belongs, then it is loaded as a database of theorems.

If you wish to prove lots of theorems rather fast, create a library window containing them all as
problems, ensure that Keeping as theorem is ticked on the Options menu, and use the automatic
mode (using Help/Valid) to solve all the problems one by one, naming them as you go along. Better
still: you’ll find an item in the Problem menu called Test run: if you select this, it attempts to solve all
the problems in the library, reporting in the Jotter window the time taken for each problem. However,
if your theorems are in different logics, this will be inconvenient, and you’ll have to get them proved one
by one, adjusting the logic each time to the most primitive logic in which the result is provable.

10 Remember, this means "of propositional calculus", i.e. without individual variables or quantifiers. There is no reason in
principle why this restriction is imposed, but it is convenient: a later edition of MacLogic will omit the restriction.

MacLogic A Proof Assistant for the Apple Macintosh

5.1.3.5 Foreign language environments

There is no convenient way of customising MacLogic to work in a language other than English. You can
edit the help files, but the dialogs are not editable, being not stored as resources but as Prolog code.

If your Macintosh is organised for languages other than English, it may be necessary to work out
what keystrokes are needed for the different logical symbols. This should be obvious from KeyCaps or
(better) a utility like KeyFinder or PopChar and information about the Syntax is available from the
Help/Syntax menu item or in the file “Syntax Help”—but the assignment therein of keystrokes to
special symbols will have to be worked out for your keyboard. In case all else fails, here are the ASCII
codes for the interesting symbols:

Absurdity A 236 (f [196] also allowed)
Negation ~ 241 (— [194] also allowed)
Disjunction v 235
Conjunction & 38
Implication - 231 (D [250] also allowed)
Equivalence © 234
Equality = 61
Universal Quantifier A 232
Existential Quantifier 3 228
Necessity a 246
Possibility ¢ 215
Strict implication 3 225
Turnstile F 230

MacLogic works best with a British keyboard.

A Proof Assistant for the Apple Macintosh MacLogic

5.2 Syntax
In this section we give the contents of the “Syntax Help” file, which can be seen on-line if you wish.

MacLogic uses a special font called 'Konstanz', which has, inter alia, the following LOGICAL
CONSTANTS:-

- “Shift Option Y” for implication

& “Shift 77 for conjunction

v “Shift Option D” for Disjunction

~ ”Shift Option L” for negation

© ”Shift Option S” for biconditional

E| “Shift Option E” for the Existential quantifier
\ “Shift Option U” for the Universal quantifier
A “Shift Option F” for absurdity (Falsehood)
O “Shift Option N” for Necessity

o “Shift Option V” for possibility

3 “Shift Option 97 for strict implication

= =" for equality!!

F “Shift Option T” for Turnstile

= “Shift Option 2” for Sequent Arrow

MacLogic will also allow you to type

D “Option H” for implication,
- “Option L” for negation, and
f “Option F” for absurdity,

but these will be displayed in proofs as '>','~' and 'A' respectively.

ALPHABETIC characters are interpreted as follows:

a, ..z are INDIVIDUAL letters, standing for “individuals”.
A, .., Z are PREDICATE or PROPOSITION letters, standing for “predicates’.

Individual letters will also be called VARIABLES. We use the Greek letter p schematically
below to indicate a variable. There is no special category of “constants”.

11 Elsewhere often called “identity”).

MacLogic A Proof Assistant for the Apple Macintosh

A TERM consists just of an individual letter. (More powerful logics, but not MacLogic, allow
compound terms.)

An ATOMIC FORMULA consists of a predicate or proposition letter followed by a finite
(possibly, and in propositional logic necessarily, zero) number of terms.

[WELL-FORMED] FORMULAE (i.e. WFFs) are inductively defined as follows:-

(a) any atomic formula is a wff;

(b) A is a wff;

(¢) if A is a wff, then ~A is a wff;

(d) if A and B are wffs, then (A—B) is a wff;

(e) if A and B are wffs, then (A&B) is a wff;

(f) if A and B are wffs, then (AvB) is a wff;

(2 if A and B are wffs, then (A« B) is a wff;

(h) (for Predicate Logic only) let A be a wff containing the variable p, but not

containing a quantification of the form (V) or (3u); then (Vu)A and (Ju)A are wifs. The wif A is
called the SCOPE of the quantification. We say that a quantification, (), or (Vu), BINDs every
occurrence of pu within its scope. These occurrences of variables are called BOUND. (Occurrences of)
variables which are not bound are FREE. A term t is said to be FREE FOR a variable p in A if no
occurrence of p in A lies in the scope of a quantification of the form (Vt) or (It). Loosely, one also
talks of the SCOPE of a quantifier.

Note that rule (h) forbids:

repeated quantification, as in (Vx)(Vx)Fxx,

vacuous quantification, as in (Vx)(3y)Fx, where 'y" is vacuously quantified.
(if Equality is in use)

(1) if s and t are terms, (S = t) is a wff;

(if Modal logic is in use)

(k) if A is a wff, then OA is a wff;
) if A is a wff, then OA is a wff;
(m) if A and B are wffs, then (A 3 B) is a wif.

Definitions of MODAL and COMODAL :

A Proof Assistant for the Apple Macintosh MacLogic
() @) OA, ~0A, (A 3 B)and A are S4-modal;
(i) if A and B are S4-modal, so are
A&B, AvB and (Ju)A;

2) @G OA, OA, A 3 Band A are S5-modal;
(i) if A and B are S5-modal, so are
~A, (A&B), (AvB), (A-B), (Vu)A and (Ju)A.

3 @G OA, ~OA, ~(A3B) and ~ A are S4-comodal;

(i) if A and B are S4-comodal, so are (A&B), (AvB) and
(VU)A;

4) Every S5-modal wff is S5-comodal.

If one is using the modal logic S4, then 'appropriately modal' means S4-modal; similarly in S5.

Parentheses may be omitted in certain cases: one may omit outermost parentheses, and may
drop inner parentheses where possible by virtue of the ranking of propositional connectives: '~' ties
more closely than '&' or 'v', which tie more closely than '-', which ties more closely than '€'. Thus
'P&~Q—R' abbreviates ((P&~Q)—R). The quantifiers rank so that (Vx)Ax&B abbreviates
((Vx)Ax)&B, rather than (Vx)(Ax&B). If in doubt, put the parentheses in.

Also, '=' is right associative, which means that A=>B—C means the same as A~>(B—C); but '&'
and 'v' are left associative, so that A&B&C means the same as (A&B)&C (and similarly for 'v"). '3' is
right associative too. When a formula is displayed by MacLogic, some extra space is put round the
main connective to help you see the structure, as in A&B & C.

Square braces '[', ']’ may be used sensibly instead of parentheses, as in (VX)[Ax&(Bx—Cx)]:
this helps make the formula’s structure more clear. They must occur in matching pairs, and may not be
used around quantifiers, as in [VXx]AX.

MacLogic A Proof Assistant for the Apple Macintosh

5.3 Rules of first-order logic, as implemented

Rules in General:
A proof consists of a succession of consecutively numbered lines, each representing a sequent.

A “sequent” consists of a formula asserted on the basis of certain assumptions (which are, in
turn, formulae) and justified by appeal to a rule of inference (and perhaps the citation of some
premisses, i.e. sequents arising earlier in the proof). The assumptions are referred to by number; so also
are the premisses. For example, the line (number 4 of the proof)

1 (4 A&B 3,4 &l

appearing in a proof represents the sequent “the formula A&B is asserted on the basis of the
assumption of the formula on line 1, and follows from the sequents on lines 3 and 4 by the rule &I”.

Rule of Assumption:

This rule permits us to introduce at any stage of an argument any proposition we choose as an
assumption. No premisses are needed:

1 (1) P Ass
6 (6) ~Q Ass

P and ~Q here each depends on itself as assumption.

Rule of &I:

Given proofs of any two formulae A, B, we can append their conjunction A&B as a conclusion.
The assumptions in the two premisses are pooled to give the assumptions of the conclusion. Note that
the numbers of the premiss lines must be cited in the same order as the formulae themselves appear in
the conjunction:

1 (1) P Ass
2 (2) Q Ass
1,2 (3) Q&P 2,1 &l

Rule of &E:

Given a proof of any conjunctive formula A & B as a premiss, we can prove conjunct A (and
also conjunct B) as a conclusion, depending on the same assumptions as the premiss:

T (1) P&Q Ass
T (2) Q 1 &E
1T (3) P 1 &E

A Proof Assistant for the Apple Macintosh MacLogic

Rule of vI:

Given a proof of any formula as a premiss, we can prove a disjunction consisting of that
formula disjoined with any formula as a conclusion:

1 (1) P Ass
1 (2) QvP 1 vl
1 (3) PvQ 1 vl
1 (4) PP 1 vl

Rule of vE:
Let A, B and C be any three formulae, and suppose

a) that we have a proof of AvB,
b) that on assuming A we can prove C as a conclusion,

c) that on assuming B we can prove C as a conclusion;

then we can draw C as a conclusion from any assumptions on which Av B rests, together with:

1) any assumptions (apart from A itself) on which C rests in its proof from A, and
i) any assumptions (apart from B itself) on which C rests in its proof from B.

1,4 (6) PvQ 5 &E

7 (7) P Ass

3,7 (8) R 3,7 -E

9 (9) Q Ass

2,9 (10) R 2,9 -E

1,2,3,4 (11) R 6,7,8,9,10 vE

Note the strict ordering of the justification lines, the premisses, cited at line 11 - the line containing the
disjunction (6), the assumption of the first disjunct (7), the conclusion drawn from the first disjunct (8),
the assumption of the second disjunct (9), and finally the conclusion drawn from the second disjunct

(10).

Rule of =1:

If some formula B depends on a set X of assumptions, then we may remove the assumption A
from X and obtain the conclusion A—B on the remaining assumptions (if any). The assumption A is
said to be discharged. (If A is not in X then removing A from X leaves X unchanged.)

1 (1) P Ass
2 (2) Q Ass
1,2 (3) P&Q 1,2 &l

1 (4) Q~(P&Q) 2,3 -l

MacLogic A Proof Assistant for the Apple Macintosh

The first premiss cited must be that where the discharged assumption, the antecedent of the conditional,
was assumed, and the second premiss that where the consequent (of the conditional) was proved.

Rule of =E:

Given proofs of a conditional formula A = B, and of the antecedent A of that conditional, we
may obtain the consequent B of the conditional as a conclusion. The assumptions are pooled:

6 (6) P-Q Ass
2 (7) P 2 &E
2,6 (8) Q 6,7 >F

The first premiss cited must be the line containing the conditional itself, and the second that containing
its antecedent.

Rule of ~1:

If from some assumptions X, we can obtain A as a conclusion, then we can remove the
assumption A from X and obtain ~A as a conclusion from the remaining assumptions, if any. (If A is
not in X, then removing A from X leaves X unchanged.) The assumption A is said to be discharged.

1,2 6) Q 1,2 >E
3 7) ~Q 3 &E
1,23 (8 A 7,6 ~E
1,2 (9) ~(P& ~Q) 3,8 ~I

The first premiss cited must be that where the discharged assumption, the formula whose negation is
proved, was assumed, and the second premiss the line where A was proved.

Rule of ~E:

Given a proof of A, and a proof of its negation ~A, we can draw A as a conclusion. The
assumptions are pooled, and the lines at which ~A, A occur are cited (in that order) as the premisses.

1,3 (6) ~pP 4 &E
2,5 (7) P 2,6 -E
1,2,3,5 (8) A 6,7 ~E

Rule of AE:

Given a proof of absurdity, one may obtain any formula whatever as a conclusion. The
conclusion rests on the same assumptions as the premiss.

1,3 (5) A
1,3 (6) P 5 AE

AE is not available in minimal logic. In classical logic it is not regarded as a primitive rule, but as
a rule derivable from the rule DN. The above piece of proof in classical logic would then be:

1,3 (5) A

A Proof Assistant for the Apple Macintosh MacLogic
6 (6) ~P Ass.
1,3 (7) ~~P 5,6 ~I
1,3 (8 P 7 DN

Rule of DN:

Given a proof of the double negation of a formula, we can obtain the formula itself as a
conclusion. Only one premiss is needed for this rule. The conclusion rests on the same assumptions as
the premiss.

1T () ~~A Ass
1T (2) A 1 DN

DN is not available in either intuitionistic or minimal logic.

Rule of VI:

If an arbitrarily selected object, for example 'y', can be shown to have a property, A(y), then
everything must have it, that is, (Vx)A(X), where 'X', 'y' are any variables. Before we apply VI in
passing from a proposition about 'y' to a universal conclusion, we must make sure that the 'y' does not
occur free in any of the assumptions in the premiss:

T (1) (Vx)(Fx=Gx) Ass
2 (2) (¥x)(Gx=Hx) Ass
1 (3) Fx-Gx 1 VE
2 (4) Gx—=Hx 2 VE
1,2 (5) Fx—=Hx 3, 4 S| Hyp Syll
1,2 (6) (Vx)(Fx—=Hx) 5 Vi

Rule of VE:

If everything has a certain property, any particular thing must have it, and so we can pass, for
example, from a proof of (Vx)A(X) to the conclusion A(t), where X is a variable and t is any term,
provided t is free for X in A(X), that is, provided t is not a variable such that X occurs in A(X) within
the scope of a quantifier over t. [If “Alpha-conversion” is enabled, then any occurrences of t inside A(x)
can be renamed at the same time, thus allowing the substitution of t for x without breaking this proviso.]

Only one line is cited as a premiss, that where the formula (VX)A(X) was proved. The
assumptions in the conclusion are the same as those in the premiss.

1,2 (3) (Vx)(3y)(Hx&Gy) 1,2 =»E
1,2 (4) (3y)(Hx&Gy) 1 VE
1,2 (5) (3y)(Hz&Gy) 1 VE
1,2 (6) (3y)(Ha&Gy) 1 VE

Note that we may NOT conclude (3y)(Hy&Gy), for y is not free for x in (Iy)(Hx&Gy). [If alpha-

conversion is enabled, then we may conclude (3z)(Hy&Gz).]

MacLogic A Proof Assistant for the Apple Macintosh

Rule of 31:

If a particular thing has a certain property, then something must have it. Thus 3| permits us to
pass from a derivation of the premiss A(t) to the conclusion (Ix)A(x), where t is any term and X is
any variable.

T (1) (Vx)Hx Ass
1T (2) Ha 1 VE
T (3) (Ix)Hx 2 13l

(Similar reservations about t being free for x in A(x) apply, as in the case of VE.)

Rule of 3E:

If something has a certain property, and if it can be shown that a conclusion C follows from the
assumption that an arbitrarily selected object has that property, then we know that C holds. Thus,
given, for example, (Ix)A(X), we assume a typical instance A(y), and if we can prove C from A(y),
then C will follow from (Ix)A(x). The conclusion C will rest on any assumptions on which (Ix)A(x)
rests, and on any assumptions used to derive C from the corresponding typical instance A(y), apart
from the instance A(Yy) itself.

On the right-hand side, we cite three lines:
i) the line where the existential formula (Ix)A(X) occurs;
ii) the line where the typical instance A(y) is assumed; and

iii) the line where C is drawn as a conclusion from the typical instance A(y) as
assumption.

Note that Y must be chosen so that it is free for X in A(X) [but if alpha-conversion is enabled,
you can rename bound occurrences of y in A(x) to avoid problems]. Note also that the variable Y used
must not occur free in the conclusion C drawn, nor in the assumptions used to derive C from the typical
instance A(y) (although of course it will appear in the assumption A(y) itself), nor in (Ix)A(X),
although it may appear bound in any of these places.

T (1) (Vx)((Fx&Hx)—=>Gx) Ass
2 (2) (Ix)(Fx&Hx) Ass
3 (3) Fx&Hx Ass
1T (4) (Fx&Hx) - Gx 1 VE
1,3 (5) Gx 4,3-E
1,3 (6) (3Ix)Gx 5 3l
1,2 (7) (3Ix)Gx 2,3,6 1E

Rule of =I:

This rule is only available if 'Equality’ is ticked in the Logic' menu. To use '=I' in Check mode
select the '=..." button in the Next Line dialog box and respond to the ensuing dialog.

A Proof Assistant for the Apple Macintosh MacLogic

We may at any time add the fact that t = t, for any term t, to a proof. It rests on no
assumptions:

8) z-=z =1

Rule of =E:

This rule is only available if 'Equality' is ticked in the 'Logic' menu. To use '=E' in Check mode
select the '=..." button in the “Next Line” dialog box and respond to the ensuing dialog.

If we have a proof of S = t and another of A(S) (i.e. A(v) with S in place of some free variable
V), then we may conclude A(t). The assumptions are pooled:

1 (M X=y Ass
2 (2) (Vz)Fxz Ass
1,2 (3) (Vz)Fyz 1,2 =E

A(v) is here (Vz)Fvz; so A(x)is (Vz)Fxz and A(y) is (Vz)Fyz.

Rule of =symm:

This rule is only available if 'Equality’ is ticked in the 'Logic' menu. To use '=symm' in Check
mode select the '=..." button in the Next Line dialog box and respond to the ensuing dialog.

Equality is symmetric so if we have a proof of S = t, where S and t are any terms, then we
may conclude t = S, on the same assumptions :

T (1) a=y Ass
2 (2) y=a 1 =symm

Rule of =trans:

This rule is only available if 'Equality' is ticked in the 'Logic' menu. To use '=trans' in Check
mode select the '=..." button in the “Next Line” dialog box and respond to the ensuing dialog.

Equality is transitive so if we have a proof of S = t and another of t = u, where S, t and U are
any terms, then we may conclude S = U. The assumptions are pooled:

1 (1) a=z=y Ass
2 (2) y=z Ass
1,2 (3) a=z 1,2 =trans

Rule of Sequent Introduction:

This is not itself an extra rule, so much as a metalogical principle for creating further rules. It
permits us to introduce, at any stage of a proof, a substitution instance of any propositional sequent
recorded in a Theorems file (or proved earlier in a session), if that instance’s antecedents have been
obtained earlier in the proof. So, if we have obtained in a proof Al, A2, .., An on various assumptions,

MacLogic A Proof Assistant for the Apple Macintosh

and supposing that A1, A2, .., An F B is a (substitution-instance of a) sequent in the Theorems file, or
for which we already have a proof, then we can draw B as a conclusion on the pool of assumptions on
which A1, A2, .., An rest. We cite on the right the lines on which Al, A2, .., An are proved (in that
order), then 'SI' followed by the name of the sequent proved. Note that we only allow the version of SI
where the sequent belongs to propositional logic, but that the substitution instance may belong to full
predicate logic.

1T (1) (Vz)Raz Ass

(2) Fxv~Fx SI ExMid
1 (3) (Vz)Raz & (Fxv~Fx) 1,2 &l
1 (4) Fx—»(Vz)Raz 1 SI PMI

To use 'Sequent Introduction' in Check mode select the '..." button in the “Next Line” dialog box
and respond to the ensuing dialog.

Rule of Tautology:

If one has proved Al, ..., An, and Al, ..., An F C is a valid sequent of the current logic, then
one may conclude C on the basis of the assumptions on which Al, ..., An rest.

3

To use “Tautology” in Check mode, select the
respond to the ensuing dialog.

... button in the Next Line dialog box and

Rule of Substitution:

If one has proved a formula A, and has also proved a formula C (maybe on the assumption of
A), then one may use the “Substitution” rule to substitute the first proof in place of the assumption (if
any) of A, thus obtaining a proof of C, dependent on those assumptions on which A depends, together
with those on which C depends (apart from A itself).

In sequent notation:

Gammat A A, Delta +C

————————————————————————— Subs
Gamma, Delta + C
Example:
1T (1) A&B Ass.
1 (2) A 1 &E
3 (3) A Ass.
3 (4) A&A 3,3 &l
1T (5 A&A 2,3,4 Subs.

A Proof Assistant for the Apple Macintosh MacLogic

The numbers cited on the right (here, in line 5) refer to the line (here, 2) where “A” is proved,
the line (here, 3) where it is assumed and the line (here, 4) where the other formula “C” is proved.

This rule is especially useful in combination with rules for modal logics. It is a special case of the
S.I. rule; that, in turn can be obtained by several application of this rule.

To use this rule in Check mode, select the “...” button in the “Next Line” dialog box and respond
to the ensuing dialog.

Rule of Definition:

The expression A« B is used as an abbreviation of (A-B) & (B—A). We may expand or
contract all or part of a formula using this definition, and cite the rule “Defn.” in justification. Similarly,
~A is a definitional abbreviation of A = A.

1T (1) P Ass
2 (2 (PVvR)&(P«Q) Ass
2 (3) (PvR)&((P~Q)&(Q~P)) 2 Defn. &
2 4 (P»,Q&(Q-P) 3 &E
2 (5 P-=Q 4 &E
1,2 (6) Q 5,1 >E

or, in the other direction:

1T (1) P-=Q Ass
2 (2) Q-P Ass
1,2 (3) (P~»Q)&(Q-P) 1,2 &l
1,2 (4) PeQ 3 Defn &
To use “Definition” in Check mode, select the ...” button in the “Next Line” dialog box and

respond to the ensuing dialog.

The rule is applicable if the formula being derived is definitionally equal to that in the single cited
premiss, and the assumptions are those of the premiss. Two formulae are definitionally equal if one can
be obtained from the other by a sequence of expansions and contractions of definitional abbreviations.

If “Delta conversion” is enabled, much use of this rule is unnecessary.
Rule of OI:

This rule is only available in the modal logics S4 and S5. To use 'OI' in Check mode select the
..." button in the “Next Line” dialog box and respond to the ensuing dialog.

If some proposition A depends on a set X of assumptions, where all the assumptions in X are
appropriately modal, then we may conclude OA, from the same assumptions:

XFA

MacLogic A Proof Assistant for the Apple Macintosh

————— (all formulae in X are appropriately modal)

X F OA
1 (1) oP Ass
2 (2) P=3R Ass
1T (3) P 2 OE
1,2 (4) R 2,3 3E
1,2 (4) OR 4 0O|

(Note: the rule as implemented in Check mode is more general than the rule stated here. It says
that on every path P from A to a member of X there is an appropriately modal formula C depending on
no assumptions not in X and containing no free occurrence of a variable that is the eigenvariable of an
inference on the path P. For details, see Prawitz’ book “Natural Deduction”, page 79.)

Rule of OFE:

This rule is only available in the modal logics S4 and S5. To use 'OE' in Check mode select the
..." button in the “Next Line” dialog box and respond to the ensuing dialog.

'
Given as a premiss OB, we may conclude B, from the same assumptions:

6 (6) 0OQ Ass
6 (7) Q 6 OE

Rule of O1I:

This rule is only available in the modal logics S4 and S5. To use 'OI' in Check mode select the
..." button in the “Next Line” dialog box and respond to the ensuing dialog.

Given as a premiss B, we may conclude ¢B, from the same assumptions:

T (1) P Ass
2 (2) P-R Ass
1,2 (3) R 2,1 »E
1,2 (4) OR 3 9l

Rule of OE:

[This rule is only available in the modal logics S4 and S5.] To use 'OE' in Check mode select
the '..." button in the “Next Line” dialog box and respond to the ensuing dialog.

If (on the assumption set X) A is possible (i.e. ¢A is true) and from the assumption A (and
some other assumption set Y) we can prove the conclusion B, then we may discharge the assumption A
and prove the conclusion B on the assumption set XyY;

provided that
1) the conclusion B is appropriately co-modal and

ii) all the assumptions in Y are appropriately modal.

A Proof Assistant for the Apple Macintosh MacLogic

In sequent notation:

XFOA A YFB

X, Y FB
Example:
T (1) O(P&~P) Ass
2 (2) P&-~P Ass
2 (3) P 2 &E
2 (4 ~P 2 &E
2 (5 A 4,3 ~E
1T (6) A 1,2,5 OE

(Note: the rule as implemented in Check mode is in fact more general than the rule stated here, in
a manner similar to that described for OI. Here is an example:)

1 @D) O(P&R-Q) Ass
2 (2) A Ass
3 (3) A-OP Ass
4 (4) C Ass
5 (5) C-0OR Ass
2,3 (6) OP 3,2 -E
7 (7) P Ass
1 (8) P&R->Q 1 OE
4,5 9) OR 5,4 -E
4,5 (10) R 9 OE
4,57 (11) P&R 7,10 &l
1,4,5,7 (12) Q 8,11 -E
1,4,5,7 (13) oQ 12 9l
1,2,3,4,5 (14) oQ 6,7,13 OE

Rule of 31:

This rule is only available in the modal logics S4 and S5. To use '3I' in Check mode select the '..."
button in the “Next Line” dialog box and respond to the ensuing dialog.

If some formula B depends on a set Y of assumptions, where all the assumptions in Y, other
than A, are appropriately modal, then we may discharge the assumption A from Y and obtain A3B as
conclusion on the remaining assumptions (if any).

1 @D O0Q&OR Ass
2 (2) P Ass
1 (3) OR 1 &E
1 (4) R 3 OE
1 (4) P3 R 2,4 3l

MacLogic A Proof Assistant for the Apple Macintosh

The first premiss (here, 2) cited must be the line where the antecedent A is assumed, and the
second (here, 4) that where its consequent B is obtained.

See the help about OI for details of how the rule actually implemented in Check mode is more
liberal.

Rule of 3E:

This rule is only available in the modal logics S4 and S5. To use '3E' in Check mode select the
..." button in the “Next Line” dialog box and respond to the ensuing dialog.

1

Given a proof of a strict implication A 3 B, and of the antecedent A of that strict implication,
we may obtain the consequent B of the conditional as a conclusion. The assumptions are pooled:

6 (06) P=3Q Ass
2 (7) P 2 &E
2,6 (8) Q 6,7 3E

The first premiss cited must be that where the strict implication itself was obtained, and the second that
where its antecedent was obtained.

A Proof Assistant for the Apple Macintosh MacLogic

5.4 Tactics for first-order logic, as implemented

Tactics in General
Tactics are used in Construct mode for breaking a problem into sub-problems.

A problem is of the form F = C, where F is a list of formulae, the facts, and C is a formula, the
goal. We write B 1 F to indicate the list with head B, tail F. F is sometimes called the fact-list of the
problem.

Tactic for &I

The tactic for '&I' : replace a problem F = A&B by the two sub-problems F = A and F =
B.

In other words, to prove a conjunction A & B, try to show A and B separately.
Tactic for &E

The tactic for '&E' : if a formula A&B is in F, then the problem F = C is replaced by the
problem A :: B :: F = C. (And, maybe A & B is removed from the list F).

In other words, if you already know A & B, then add A and B to the facts you know.

Tactic for vI_left
The 'vI _left' tactic: replace the problem F = AvB by the problem F = A.
In other words, to show A v B, try to show A.

Tactic for vI_right
The 'vI_right' tactic: replace the problem F = AvB by the problem F = B.
In other words, to show A v B, try to show B.

Tactic for vE

The tactic for 'VE' : if AvB is in F, then the problem F = C is replaced by the problems
A F = CadB i F = C

In other words, if you already know A v B, then first assume A and see whether, with the facts
you already know, you can show C, and then assume B, and see if, from this and the other facts you
know, you can show C.

Tactic for =1

The tactic for '=1': replace a problem F = A—B by the problem A::F = B.

MacLogic A Proof Assistant for the Apple Macintosh

In other words, to prove a conditional A = B, assume A, and try, from the facts you already
know, to prove B.

Tactic for 2E

The tactic for '=E": if a formula A = B is in F, then the problem F = C is replaced by the
sub-problems F = A and B:: F = C.

In other words, if you already know A — B, then see first if you can show A, then add B to
what you know, and try to show C.

Tactic for ~1I
The tactic for '~I': replace the problem F = ~A by the problem A :: F = A.

In other words, in order to show ~A, assume A, and try, with the facts you already know, to
show A.

Tactic for ~E

The tactic for '~E' : if ~A is in F then the problem F = C is replaced by the problems F = A,
and A = F=C.

In other words, if you already know ~A, first try to show A, for then you can add A to what
you know, in order to try to show C.

Tactic for DN

The tactic for 'DN' : either replace the problem F = C by the problem F = ~~C, or, where
~~AisinF,byA: F=>C.

In other words, either work backwards from the goal C by trying to show ~~C, or work
forwards from something of the form ~~A in what you know, by adding A to what you know (by
DN).

Tactic for AE

The tactic for 'AE': if A is in F, then the problem F = C is replaced by the (trivial) problem
C:F=C

Tactic for VI

The tactic for 'VI' : replace the problem F = (Vx)A(X) by the problem F = A(y), where X
and Y are variables and y does not occur free in any formula in F, or in A(X).

In other words, to show the goal (Vx)A(X), try to show A(y), where y does not occur free in
any assumptions or in the goal. [The variable y is chosen automatically by MacLogic if alpha-
conversion is on, otherwise you are asked to choose it.]

A Proof Assistant for the Apple Macintosh MacLogic

Tactic for VE

The tactic for 'VE': if a formula (VX)A(X) belongs to F, then the problem F = C is replaced
by the problem A(t) :: F = C, for some term t supplied by the user.

In other words, if you already know (VXx)A(x), add A(t) to what you know (by VE), and
continue to try to prove the goal C. Note that t is a variable, and must be free for X in A(x) — if alpha-
conversion is off.

Tactic for 31

The tactic for 'I' : replace the problem F = (Ix)A(X) by the problem F = A(t) for some
term t supplied by the user.

In other words, to show (Ix)A(X), try to show A(t) for some term t. Note that t is a variable,
and must be free for X in A(x) — if alpha-conversion is off.

Tactic for JE

The tactic for 'JE' : if a formula (Ix)A(X) belongs to F, then the problem F = C is replaced by
the problem A(y) :: F = C, where y does not occur free in any formula in F nor in C.

In other words, if you already know (Ix)A(x), then assume A(y) for a new variable y, and
then, with A(y) added to the facts you know, try to show the goal C. [The variable y is chosen
automatically by MacLogic if alpha-conversion is on, otherwise you are asked to choose it.]

Tactic for =I

The tactic for '=I' : regard a problem F = t = t , where t is any term, as a trivial problem.
MacLogic does NOT require you to invoke this tactic.

In other words, it is trivially true that t = t, for any term t.

Tactic for =E

The tactic for '=E" if a formula S = t, where S and t are any terms, is in F, then the problem
F = Cisreplaced by the problems F = A(s) and A(t) :: F = C. The formula A(Vv) and the free
variable V to be replaced by S,t are entered by the user.

In other words, if you already know that S = t, and can prove A(S), then you may add A(t) to
the facts usable to prove C.

Tactic for =symm

The tactic for '=symm'": if a formula (S = t), where S and t are any terms, is in F, then the
problem F = C is replaced by the sub-problem (t=s) :: F = C.

In other words, if you already know that S = t, then you know that t = S. This tactic is not
necessary, since it can be derived from '=I' and '=E', but is convenient.

MacLogic A Proof Assistant for the Apple Macintosh

Tactic for =trans

The tactic for '=trans': if the formulac S = t and t = u, where S, t and U are any terms, are in F,
then the problem F = C is replaced by the sub-problem (s = u) :: F = C.

In other words, if you already know that S = t and that t = u, then you know that S = u. This
tactic is not necessary, since it can be derived from '=I' and '=E', but is convenient.

Tactic for Sequent Introduction

The tactic for Sequent Introduction is the tactic corresponding to the rule of Sequent
Introduction (SI). It enables you to use theorems already proved, or saved in a Theorems file, in order to
attain the goal. Use the ... button in the Tactic choice dialog to use this tactic.

If the sequent being appealed to is of the form A1, A2, ... An F D, then you will replace the
problem F = C by the new problems F = A1',F = A2', ..., F = An',and D' :: F = C, where
the primes ' indicate that a substitution has been applied. You are prompted for the details of this
substitution.

Tactic for Tautology

Use the ... button in the Tactic choice dialog to choose this tactic. You are prompted to enter a
sequent, which is checked for validity in propositional logic by the theorem-prover: you then have the
problems of proving all its assumptions, and may add its conclusion to the fact list F of the current
problem F = C. [The validity checker may in fact be a little more generous, in allowing some valid
sequents of first-order logic to be entered. |

Tactic for Definition

'Definition' is the tactic that allows the expansion or contraction of the definition of '€' or of '~'.
Note that the tactic will only rewrite whole formulae of the form A<B [into the form
(A-B)&(B—~A)] or ~A [into the form A=>A] where A, B are any wffs. Use the ... button in the
“Tactic choice” dialog to obtain the use of this tactic.

Tactic for OI

The tactic for 'O1" : replace a problem F = OA by the problem F1 = A, where F1 contains
all the appropriately modal formulae in F.

In other words, to prove that A is necessary use the facts that you know and which the logic
counts as modal, to prove A.

Tactic for OE

The tactic for 'OE": if a formula OA is in F, then the problem F = C is replaced by the sub-
problem A :: F = C.

In other words, if you already know that A is necessary then you know A is true.

A Proof Assistant for the Apple Macintosh MacLogic
Tactic for ¢1
The tactic for 'O1' : replace a problem F = OA by the problem F = A.

In other words, to prove that A is possible use the facts that you know to prove A is true.

Tactic for OF

The tactic for 'OE": if a formula QA is in F, and C is appropriately co-modal, then the problem F
= C is replaced by the sub-problem A = F1 = C where F1 contains all the appropriately modal
formulae in F.

In other words, if you already know that A is possible then you may use A, and other facts that
you know and that the logic permits to be used, to derive certain appropriately co-modal conclusions.

Tactic for 31

The tactic for '3I' : replace a problem F = A3B by the problem A::F1 = B, where F1
contains all the appropriately modal formulae of F.

In other words, to prove a strict conditional A 3 B, assume A, and try, with those facts that
you know and that the logic permits to be used, to prove B.

Tactic for 3E

The tactic for '3E": if a formula A 3 B is in F, then the problem F = C is replaced by the sub-
problems F = A and B:: F = C.

In other words, if you already know A 3 B, then see first if you can show A, then that once
you add B to what you have, you can then show C.

Thinning
"Thin' is the tactic that allows the removal of formulae from the list F in a problem F = C. You

may find it easier to see how to get from the facts you know to the goal, if you remove from the fact list
F, any formulae which you will not need. Use the ... button in the “Tactic choice” dialog to use Thin.

But DO NOT remove formulae which you really need (the validity checker will warn you if you
do - if it is switched on!).

Auto-Thin

'Auto-Thin' automatically removes formulae from the fact list F when certain tactics are used.
For example, using the tactic for '&E', when A and B are added to the fact-list F, the formula A & B is
removed from F. This feature can be switched on and off by means of a check button on the “Tactic
choice” dialog.

MacLogic A Proof Assistant for the Apple Macintosh
Cut

'Cut' is the tactic corresponding to Gentzen’s CUT rule: it allows a problem to be divided into
two parts, as follows. Suppose the problem is F = C, and one applies 'Cut’. One is prompted for a
'Cut formula', A; the problem is then replaced by the two problems F = A and A :: F = C. The tactic
can be avoided entirely in the non-modal systems, in the sense that any proof using the 'Cut' rule can be
mechanically transformed into a cut-free proof. (This is Gentzen’s “Hauptsatz”, or Cut Elimination
Theorem). In the modal systems, Cuts may be necessary (depending on how you interpret the
restrictions on the rules and tactics for modal operators).

A Proof Assistant for the Apple Macintosh MacLogic

5.5 Differences between the various logics

Classical logic we see as an extension of intuitionistic logic, which is in turn an extension of minimal
logic.

Minimal logic lacks the rule AE (Absurdity Elimination, alias “ex falso quodlibet”) of
intuitionistic logic

Classical logic replaces this rule by DN, that of double negation (from which AE is derivable).

The modal rules can be added to each of the three basic kinds of logic: they are formulated to be
independent of a classical or intuitionistic bias.

In constructing proofs, the main difference is that in intuitionistic logic, one has to prove a
formula of the kind A v B directly by choosing (perhaps after all other approaches have failed) one of
A, B and proving it: in classical logic you can use DN, and try proving ~~(AvB) instead. Similarly, in
intuitionistic logic you must prove (Ix)A(X) by (if other approaches fail) choosing a term t for which
you can find a proof of A(t): but in classical logic, you can try proving ~~(Ex)A(x) instead. This
makes the search for proofs in intuitionistic logic more straightforward, in that the tactic for double
negation is not available.

On the other hand, the mechanical check of validity in classical logic can be done much faster
(especially for complex problems) than for the other two logics. However, the calculus LK used for this
purpose in classical logic is rather different from the one in which proofs are traditionally presented.

MacLogic A Proof Assistant for the Apple Macintosh

5.6 Menus

5.6.1 File menu

5.6.2 Edit menu
5.6.3 Logic menu
5.6.4 Problem menu
5.6.5 Options menu
5.6.6 Windows menu

5.6.7 Help menu

MacLogic has the following menus, in addition to the usual menu: File , Edit , Logic, Problem,
Options, Windows , Help. The purpose of this section is to describe the facilities available from each
menu in turn.

The same information is available on-line as described under the item, Menus, in the Help menu.
It is kept in the file “Menu Help” in a special format: provided the format is retained, the file may be
modified with a word processor, or even with MacLogic. (Keep a back-up copy of the original!)

For simplicity, the same format is retained in the following, which consists of a menu name, the
item name, and then details of the menu item. These details are, in the on-line version (but not in this
printed version), stored as a comment, surrounded by /* ... */.

Note that the first two menu names are “File ”, “Edit ” : the spaces are important. Similarly for
the menu name “Windows . The character “...” in menu item names is always a single character,
Option Semicolon, rather than three separate dots.

Only edit the bits of the file in between the comment marks /*, */, and be concise: if the file is
too big (above 32K) then MacLogic will fail to load it properly. The file “Menu Help” must be kept in
the “HELP” folder, which should be in the same folder as MacLogic itself.

The menu contains an item, About MacLogic..., which can be used to find out the date on
which your version of MacLogic was constructed, and to reset the “evaluation space” used by
MacLogic. If you run out of space, while running MacLogic, it may be a good idea to change this. Try
to ensure that the evaluation space is about the same as the free space. (The technically minded may
wish to know that the former is stack space, the latter is heap space.)

A Proof Assistant for the Apple Macintosh MacLogic

5.6.1 File menu

File Open text file...

Open a text file, creating an editable window of the same name as the file. You will be prompted
to identify the file.

The file’s name should not be that of any item in the “Windows” menu.

File Load theorems...

Load theorems from an external 'code' file in order to be used for “Sequent Introduction”. You
will be prompted to identify the file. They can either replace or supplement those already in memory
(as visible in the “Theorems” window).

File Load library problems...

Load a library of problems to be solved. The menu item leads into a sub-menu of choices, for
loading a text file, a coded file, or the front window. The problems can either replace or supplement
those already contained in the Library.

File Remove library problems...

Displays a scrolling menu of problems, as in the current library. To remove one or more select
(maybe using shift-click) those to be removed, and press “Ok”. You will then want to save these library
problems to a file before quitting MacLogic.

File Save to text file...

Save the front window (if any) to a text file. You can choose a new name, so long as it is not the
name of another item in the “Windows” menu.

File Save theorems...

Save theorems (i.e. just proven sequents, not the proofs) for use in future sessions by “Sequent
Introduction”.

The theorems are saved not as text but as code, to discourage you from “proving” theorems with
a word-processor.

File Save library problems...

Save all problems currently in memory to either a text file or a code file. (Use code files for
speed: use text only if you want to look at or edit the problems with a word-processor.)

The file’s name should not be that of any item in the “Windows” menu.

MacLogic A Proof Assistant for the Apple Macintosh

File Page setup...

Set up the page size etc. for printing. Note that page size should normally be A4 for use with
the Apple LaserWriter™.

File Print visible windows...

Print all the visible windows.

File Reset

This may be necessary in extreme circumstances. “Reset” enables various disabled menus and
menu items. (These are disabled during a proof to prevent cheating.)

Don’t use it unless you must!

File Quit

Quit from MacLogic to go back to the desktop. If you confirm this, you are prompted to save
any results proved, any changes made to editable windows, and maybe the current menu settings.

A Proof Assistant for the Apple Macintosh MacLogic

5.6.2 Edit menu

Edit Undo

Undo the last edit action on the front window or dialog box.

Edit Cut
Cut selected text and put on clipboard — this can then be pasted elsewhere, if desired.

Note that some windows are “non-editable”: but, dialogs, the “Jotter” and any windows you
create yourself are “editable” and so can be cut from.

Edit Copy

Copy selected text onto clipboard, without removing it from the screen. This can be done from
any window or dialog box.

Edit Paste
Paste contents of clipboard into current cursor position, replacing whatever is currently selected.

Note that some windows are “non-editable”: but, dialogs, the Jotter and windows you create
yourself are “editable”, and so can be pasted into.

Edit Clear
Clear selected text. Text is NOT put on clipboard.

Note that some windows are “non-editable”: but, dialogs, the Jotter and windows you create
yourself are “editable”, and so can be cleared from.

Edit Balance

Find the bracket that balances with the selected one. Try repeating the action, to find the next
outermost pair of brackets.

Edit Select all

Select all the text in the front window. You can then “Copy” this text, and maybe “Cut”, etc as
well.

MacLogic A Proof Assistant for the Apple Macintosh

5.6.3 Logic menu

Logic Minimal
TICKED: MacLogic will use Minimal logic as the basic system.
UNTICKED: Either Intuitionistic or Classical logic will be the basic system.

Logic Intuitionistic
TICKED: MacLogic will use Intuitionistic logic as the basic system.
UNTICKED: Either Minimal or Classical logic will be the basic system.

Logic Classical
TICKED: MacLogic will use Classical logic as the basic system.
UNTICKED: Either Minimal or Intuitionistic logic will be the basic system.

Logic Quantifiers
TICKED: MacLogic will extend the basic system with rules or tactics for quantifiers.

UNTICKED: no rules or tactics for quantifiers.

Logic Equality
TICKED: MacLogic will extend the basic system with rules or tactics for equality.
UNTICKED: no rules or tactics for equality.

Logic Modal S4
TICKED: MacLogic will extend the basic system with rules or tactics for the Modal logic S4.
UNTICKED: no rules or tactics for the Modal logic S4.
Only one of Modal S4 and Modal S5 may be ticked.

Logic Modal S5
TICKED: MacLogic will extend the basic system with rules or tactics for the modal logic S5.
UNTICKED: no rules or tactics for the modal logic S5.
Only one of Modal S4 and Modal S5 may be ticked.

A Proof Assistant for the Apple Macintosh MacLogic

5.6.4 Problem menu

Problem Dialog...

Prompts you to enter a problem to be solved.

Problem Front Window

If text in the front window is selected, MacLogic tries to parse that either as a sequent or as a
formula. If successful, it will allow you to start solving that problem.

Problem Library
Prompts you to select a problem from the library.

If no problems are loaded, then you will be asked to find a problem file. (On startup, MacLogic
looks for a code file called “MacLogic Problems” and pre-loads this if it is there.)

Problem Test run

Runs through the library problems, reporting which can be proved in the current logic with the
current validity checker setting. If “Keeping as theorem” is enabled, then you may save propositional
results as theorems, to build up a theorems database.

MacLogic A Proof Assistant for the Apple Macintosh

5.6.5 Options menu

Options Increase type size

Increases the type size of all windows to 12pt.

Options Decrease type size

Decreases the type size of all windows to 9pt.

Options Show keypad menu

Adds a menu “Keypad”, with submenus: this can be used to get text into a window without
using the keyboard at all. Especially useful if you have some tear-off menu software.

Options Hide keypad menu
Hides the menu “Keypad”.

Options Set validity checker...

MacLogic can think about problems that you try to solve, and may warn you of attempts to
solve any that it can’t itself solve. Use this menu item to control how much of this MacLogic should do.

Use the “ATP” item in the “Help” menu for more details.

Options Alpha conversion

TICKED: MacLogic will treat formulae which differ only in the names of bound variables as
identical.

UNTICKED: MacLogic will treat formulae which differ in the names of bound variables as
different.

Options Delta conversion

TICKED: MacLogic will implicitly use the definitions
~A SEf A_)A
AeB = (A-B)&(B—A).

UNTICKED: MacLogic will force you to expand these definitions explicitly.

Options Lots of parentheses
TICKED: When displaying formulae, MacLogic will use lots of parentheses.
UNTICKED: When displaying formulae, MacLogic will use as few parentheses as possible.

(Both kinds of syntax are allowed when formulae are being read by MacLogic.)

A Proof Assistant for the Apple Macintosh MacLogic

Options Saving to file...

TICKED: Completed proofs and derivations (but not necessarily the results) will be saved to a
text file as you go along.

UNTICKED: Completed proofs and derivations are not saved to a text file.

Options Saving proofs to window

TICKED: Completed proofs are copied to the “Previous Proofs” window, to be viewed later in
the current session.

UNTICKED: Completed proofs are not copied to the “Previous Proofs” window.

Options Saving proofs and derivations to window

TICKED: Completed proofs and derivations are copied to the “Previous Proofs and
Derivations” window, to be viewed later in the current session.

UNTICKED: Completed proofs and derivations are not copied to the “Previous Proofs and
Derivations” window.

Options Keeping as theorem

TICKED: Propositional results (i.e. assumptions and conclusion) are remembered, for use in the
current session with “Sequent Introduction”. They can be viewed in the “Theorems” window.

UNTICKED: Theorems are not remembered.

Options Checking
TICKED: Proofs will be checked in a “bottom-up” style.

UNTICKED: Derivations are to be constructed in a “top-down” style: when complete, the
corresponding natural deduction proof will (if you wish) be displayed.

Options Constructing

TICKED: Derivations are to be constructed in a “top-down” style: when complete, the
corresponding natural deduction proof will (if you wish) be displayed.

UNTICKED: Proofs will be checked in a “bottom-up” style.

MacLogic A Proof Assistant for the Apple Macintosh

5.6.6 Windows menu

Windows Create...
Create a new (editable) window.

You must choose a name distinct from that of any item in the “Windows” menu.

Windows Refresh

Force the “Derivation” window to be redrawn, if, after being covered temporarily by a dialog
window, it isn’t properly refreshed by the Macintosh system.

Windows Toggle Bold

If the front window is a text window, then it is put into (or taken out of) Bold face. This feature
is intended for those using MacLogic in the class room with an LCD panel and an overhead projector.

Windows Hide

Hide the front window. (You could use its “close box” instead.)

Windows Kill...
Kills the front window, if it is one you have created yourself.

You can cancel if you change your mind.

Windows Previous Proofs and Derivations

Make the “Previous Proofs and Derivations” window the front window, so that you can see the
work you have done (and saved in this window) in the current session.

Windows Previous Proofs

Make the “Previous Proofs” window the front window, so that you can see the proofs you have
done (and saved in this window) in the current session.

Windows Theorems

Make the “Theorems” window the front window. This window shows all the theorems which
may be used in “Sequent Introduction”.

Theorems can be loaded from a file if required: see the “File” menu.

A Proof Assistant for the Apple Macintosh MacLogic

Windows Derivation

Make the “Derivation” window (i.e. the window that is used to show the derivation in
Construct mode) the front window.

Windows Current Problem

Make the “Current Problem” window (i.e. the window that is used to show the current problem
in Construct mode) the front window.

Windows Proof

Make the “Proof” window the front window.

Windows Jotter
Make the “Jotter” window the front window.

This is a window for you to use as you wish: for example, it’s handy for typing complex
problems into, getting the brackets right (using Edit/Balance), etc. It is editable, but can’t be killed.

MacLogic A Proof Assistant for the Apple Macintosh

5.6.7 Help menu

Help Syntax

Help about the syntax, e.g. which symbols are used, etc. (The information is held in a text file
called “Syntax Help” , which must be in the HELP folder in the same folder as MacLogic.)

Help Rules

Help about the inference rules, for use in Check mode. (The information is held in a text file
called “Rules Help” , which must be kept in the HELP folder in the same folder as MacLogic.)

Help Tactics

Help about the tactics, for use in Construct mode. (The information is held in a text file called
“Tactics Help” , which must be kept in the HELP folder in the same folder as MacLogic.)

Help ATP

Exposes a window of information about the Automatic Theorem Proving component of
MacLogic.

Help Menus

All other menu items will now give help about themselves. Switch help off by reselecting
“Help/Menus.”

Help Valid

Checks whether a problem is solvable in first-order logic, without using the modal or equality
rules.

The problem can be entered either via a dialog or as the text selected in the front window.

Help Identical

Lets you check whether two formulae are identical, i.e. convertible according to whatever
conversion rules (alpha-conversion and delta-conversion) are enabled in the Options menu.

Help Modal
Checks whether a formula is appropriately modal for the modal systems S4 and SS5.
(See Help/Syntax for the definition.)

A Proof Assistant for the Apple Macintosh MacLogic

Help Co-modal
Checks whether a formula is co-modal for the modal systems S4 and S5.

(See Help/Syntax for the definition.)

Help Font problems

If you have problems when MacLogic dialogs and menus don’t show the logic symbols
properly, this will tell you what to do.

Help Interruption

This tells you how to interrupt MacLogic: use Command Period. It is useful if you see the
validity checker getting stuck, or you accidentally try to read some junk as a formula.

Help Memory problems

If you have problems with MacLogic running out of memory, this will tell you what to do.

MacLogic A Proof Assistant for the Apple Macintosh

6. Acknowledgements, disclaimer, availability and licence
arrangements

MacLogic was created at the University of St Andrews, Fife, Scotland, under the MALT (Machine
Assisted Logic Teaching) Project, a project for the encouragement of computerised logic teaching,
funded from 1987 to 1989 by the United Kingdom’s University Grants Committee through its
Computers in Teaching Initiative.

Those with some direct responsibility for the program are:

Roy Dyckhoff, Bob Hale, Neil Leslie, Brenda Rapley, and Stephen Read

MacLogic was awarded First Prize in the 1989 Philosophy Software Competition, organised by
the Philosophy Documentation Center, Bowling Green State University, Ohio, USA.

DISCLAIMER

MacLogic was developed using LPA!2 MacPROLOG™, and includes the MacPROLOG Runtime Software, all
copyright and industrial rights therein being owned by LPA Ltd. No warranty is given as to the merchantable quality or
fitness for any particular purpose of this software, and no liabilities of any kind are accepted either by LPA, the MALT
project, St Andrews University, the distributors, or anyone else whatsoever. In particular, no guarantee is given that the
implementation of any particular logic is consistent and complete.

MacLogic is distributed for at a non-commercial charge on condition that comments are reported
to the authors. Licences to use it are available for purchase: for details write (or send e-mail) to the
address below. A demonstration copy is available by anonymous file transfer.

No charge is made to students at an institution with a site licence. They are free to use
MacLogic on the institution’s machines, and on their own, on condition that they use it only for
learning about logic.

Contact:

Dr Roy Dyckhoff,

Machine Assisted Logic Teaching Project,
Computational Science Division,
University of St Andrews,

St Andrews, Fife, SCOTLAND, UK.

[J +44-334-76161 ext 8134/8262
FAX: +44-334-77068

e-mail: rd@dcs.st-and.ac.uk

12 Logic Programming Associates Ltd, Studio 4, Royal Victoria Patriotic Building, Trinity Road, London, SW18 3SX,
England, tel 081 871 2016, fax 081 874 1449.

