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0	PREAMBLE

Since	 my	 days	 as	 an	 undergraduate	 and	 then	 a	 graduate	 student	 in
England	 in	 the	period	1968–1974	I	have	been	an	appreciative	consumer
of	Timothy	Smiley’s	work,	though	the	first	time	I	heard	him	referred	to
as	Tim	(or	had	a	chance	to	meet	him	personally)	was	on	the	occasion	of
an	Australasian	Association	 for	Logic	 conference	organized	by	Graham
Priest	at	the	University	of	Western	Australia	in	1983.	At	that	conference,
I	presented	a	version	of	the	paper	abstracted	as	Humberstone	(1984),	on
the	 subject	 of	 the	 unique	 characterization	 of	 connectives,	 which	 is
intimately	 connected	 to	 a	 theme	of	Smiley	 (1962),	pursued	also	 from	a
somewhat	 different	 angle	 in	 another	 classic	 paper	 of	 the	 same	 vintage,
Belnap	(1962).	For	a	BPhil	thesis	at	the	University	of	York,	I	worked	on	a
theme	from	Smiley	(1963),	trying	to	see	how	far	his	idea	could	be	taken,
of	reducing	the	number	of	modal	operators	(broadly	understood)	to	one—
which	 we	 could	 loosely	 think	 of	 as	 expressing	 a	 kind	 of	 absolute
necessity—in	terms	of	which	other	modal	notions	could	be	processed	as
forms	 of	 relative	 necessity	 (absolute	 necessity	 given	 this	 or	 that
statement,	 formally	 represented	 by	 a	 sentential	 constant).	A	 descendant
of	this	work	appeared	as	Humberstone	(1981),	fixing	a	problem	(pointed
out	 by	Kit	 Fine)	 in	my	 early	 efforts	with	 the	 aid	 of	 a	 suggestion	 from
Dana	 Scott	 (my	 supervisor	 for	 yet	 another	 BPhil	 thesis,	 this	 time	 at
Oxford);	 related	 and	 subsequent	 developments	 are	 surveyed	 in
Humberstone	 (2004).	 Some	 ideas	 from	 Smiley	 (1996)	 on	 negation	 and
rejection	 are	 taken	 up	 in	 Humberstone	 (2000b).	 Footnote	 1	 of	 Smiley
(1962),	 concerning	 substitution	 and	 replacement,	 inspired	 much	 of
Humberstone	(in	preparation).
The	 topic	 for	 what	 follows—a	 contrast	 between	 two	 kinds	 of	 rules,
especially	as	rules	appear	in	the	axiomatic	approach	to	logic—was	(to	my
knowledge)	 first	aired	 in	Smiley	(1963).	While	 it	has	occasionally	been
alluded	 to	 in	 subsequent	 years,	 it	 has	 never	 received	 the	 sustained
attention	 it	 deserves.	 Here	 I	 express	 my	 appreciation	 for	 Smiley’s
rewarding	logical	work	by	giving	it	at	least	some	of	that	attention.
	



1	SMILEY	ON	RULES	AND	THE	DEDUCTION	THEOREM

For	a	proof	system	in	the	axiomatic	or	‘Hilbert’	style	for	a	given	logic,	in
which	 certain	 formulas	 are	 laid	 down	 as	 axioms	 and	 certain	 rules	 are
given	 for	 deriving	 theorems	 from	 the	 given	 axioms,	 an	 ancillary
consequence	relation	is	defined,1	often	called	deducibility	and	associated
with	 the	Deduction	Theorem.	 In	 the	 end,	 ‘deducibility’	may	 in	 the	 end
turn	 out	 to	 be	 the	 wrong	 term	 (see	 Note	 20	 below).	 In	 any	 case,	 the
direction	of	 the	 relation	 is	wrong	here:	we	should	say,	more	accurately,
that	the	consequence	relation	in	question	holds	between	a	set	of	formulas
and	an	 individual	formula	when	the	 latter	 is	deducible	from	the	former.
In	 the	 simplest	 case,	 illustrated	 here	 for	 the	 implicational	 fragment	 of
intuitionistic	 propositional	 logic,	 one	 takes	 as	 axioms	 all	 formulas
instantiating	the	following	schemata.
(A1) A	 	(B	 A)
(A2) (A	 (B	 C))	 	((A	 B)	 	(A	 	C))

and	as	 the	sole	 rule,	Modus	Ponens:	A,	A	 	B/B.	 (Premises	before	 the
slash,	 conclusion	 after	 it.)	 One	 then	 defines	 the	 consequence	 relation
alluded	to	above,	 	say,	thus:	 	if	and	only	if	B	can	be	obtained	by
a	series	of	applications	of	the	rule	Modus	Ponens	starting	from	formulas
which	 are	 either	 axioms	 or	 elements	 of	 .	 Finally,	 then	 the	 Deduction
Theorem	for	 	says	that	for	any	set	of	formulas	 	and	any	formulas	A,
B:
	

	
This	result	(originally	due	to	Herbrand	and	Tarski)	is	proved	by	induction
on	 the	number	of	 applications	of	Modus	Ponens	used	 to	obtain	B	 from	

	 together	 with	 the	 axioms.2	 Strangely	 enough	 (A2),	 though
originally	used	as	an	axiom	by	Frege	well	before	the	Deduction	Theorem
was	explicitly	contemplated	 (in	Frege	1879),	 seems	exactly	 tailor-made
for	enabling	the	inductive	step	of	this	proof	to	go	through.
If	we	abbreviate	 	 to	 	(as	suggested	in	Note	1),	then	the	above



definition	 of	 	 has	 the	 expected	 effect	 that	 	 amounts	 to	 the
claim	 that	B	 is	provable	 on	 the	 basis	 of	 the	 above	 axiomatization,	 and
indeed	can	be	taken	as	defining	provability,	since	it	asserts	that	B	can	be
obtained	 by	 some	 number	 of	 applications	 of	 Modus	 Ponens	 from	 the
axioms	 (there	 being	 nothing	 on	 the	 left	 of	 the	 	 to	 appeal	 to).	On	 the
other	hand,	if	we	first	define	provability	in	these	terms,	we	might	go	on
to	characterize	a	consequence	relation,	 	say,	in	the	following	terms,	in
which	‘theorem’	is	used	in	place	of	‘provable	formula’	for	brevity:	
if	 and	 only	 if	B	 can	 be	 obtained	 by	 a	 series	 of	 applications	 of	 the	 rule
Modus	 Ponens	 starting	 from	 formulas	 which	 are	 either	 theorems	 or
elements	 of	 .	 This	 differs	 from	 the	 earlier	 definition	 only	 in	 that	 the
word	‘axioms’	has	been	replaced	by	the	word	‘theorems’.	One	easily	sees
that	for	all	formulas	B	and	sets	of	formulas	 :

	and	only	if	
so	 the	 above	 formulation	 of	 the	 Deduction	 Theorem	 (for	 this	 system)
could	equally	well	be	formulated	with	 	in	place	of	 .
Now,	 as	 is	 well	 known,	 the	 presence	 of	 additional	 logical	 vocabulary
(such	as	connectives	 )	in	the	language,	or	of	additional	axioms—for
instance	giving	 the	vocabulary	concerned	 its	 intuitionistic	properties,	or
giving	that	vocabulary	( 	included)	the	properties	associated	with	it	in
classical	logic—does	not	present	any	obstacle	to	conducting	the	proof	of
the	Deduction	Theorem	for	the	richer	logic.	We	will	soon	be	considering
the	addition	of	a	modal	operator	 	to	the	language.	But	when	it	comes	to
adding	 further	rules	 some	 care	 is	 needed,	 as	 Smiley	 (1963)	 observed.
Alternatively,	since	for	many	purposes	it	is	convenient	to	consider	axiom
schemata	such	as	(A1)	and	(A2)	above	as	0-premise	rules,	one	could	put
this	point	in	terms	of	adding	further	proper	rules,	where	a	proper	rule	is
understood	as	an	n-premise	rule	with	n	 	1.	(On	this	way	of	speaking,	an
axiom	 schema	 is	 a	 0-premise	 sequential	 rule,	 with	 sequentiality	 as
defined	in	 the	following	section.)	For	what	follows,	however,	 it	 is	more
convenient	 to	 exclude	 0-premise	 rules	 and	 the	 word	 ‘proper’	 is
occasionally	used	for	emphasis	only.
Where	 we	 have	 an	 axiomatization	 using	 (proper)	 rules	 in	 addition	 to



Modus	 Ponens	 the	 question	 arises	 as	 to	 what	 it	 would	 be	 for	 the
Deduction	Theorem	to	be	satisfied.	One	way	of	 responding	would	be	 to
keep	the	definition	exactly	as	above,	and	say	the	Deduction	Theorem	for
the	 envisaged	 system	 requires	 that	 when	B	 can	 be	 obtained	 by
applications	of	Modus	Ponens	from	the	axioms	and	the	formulas	in	some
set	 	then	A	 B	can	be	similarly	obtained	from	the	axioms	and	the
formulas	in	 .	A	second	reaction	would	be	to	focus	not	on	the	rule	Modus
Ponens	itself	in	the	original	case	but	on	the	fact	that	this	rule	exhausted
the	set	of	proper	 rules	used	 in	 the	axiomatization,	which	gives	 rise	 to	a
second	 abstraction	 from	 the	 original	 case.	 Now	we	 say	 that	 Deduction
Theorem	 holds	 for	 the	 envisaged	 extended	 system	 provided	 that
whenever	 a	 formula	B	 can	 be	 obtained	 by	 applications	 of	any	 of	 the
primitive	rules	of	 the	system	 from	the	axioms	and	the	formulas	 in	some
set	 	then	A	 B	can	be	obtained,	by	applying	some	of	those	rules,
from	the	axioms	and	the	formulas	in	 .	Let	us	put	this	another	way.	Say
that	a	consequence	relation	 	satisfies	the	Deduction	Theorem	just	in	case
for	 all	 sets	 of	 formulas	 	 and	 formulas	A,	B,	 in	 the	 language	 of	 	we
have:
(DT) If	 ,	A	 B	then	 A	 B

For	 an	 axiomatic	 system	S	 to	 satisfy	 the	 Deduction	 Theorem	 is	 for	 a
certain	 consequence	 relation	 	 associated	 with	S	 to	 satisfy	 (DT);
however,	we	still	use	the	phrase	‘Deduction	Theorem’	even	when	dealing
with	a	consequence	relation	presented	otherwise,	as	long	as	the	condition
(DT)	is	satisfied.3	The	question	is	how	to	pass	from	an	axiomatic	system
to	the	‘associated’	consequence	relation	of	interest.	According	to	the	first
of	the	two	reactions	just	described,	even	when	S	has	primitive	rules	other
than	 Modus	 Ponens,	 the	 relevant	 consequence	 relation	 fixes	 the
consequences	 of	 a	 set	 as	 the	 results	 of	 applying	 only	Modus	Ponens	 to
theorems	of	 the	 logic	 and	 formulas	 in	 the	 set.	According	 to	 the	 second
reaction,	 the	 crucial	 consequence	 relation	 is	 characterized	 instead	 by
replacing	 the	 privileged	 position	 of	 Modus	 Ponens	 and	 allowing
derivability	using	any	of	the	primitive	rules	of	S.
Smiley	 (1963:115)	 discusses	 the	 modal	 logic	 S2,	 axiomatized	 using



various	 schemata	 and,	 alongside	 Modus	 Ponens	 (there	 called	 R1),	 the
further	 rule,	 R2:	 (A	 B)/ ( A	 B).	 In	 defining	 the	 associated
consequence	 relation,	Smiley	allows	only	 the	use	of	Modus	Ponens	and
not	also	of	this	modal	rule,	in	the	definition	of	what	it	is	for	a	formula	to
be	deducible	from	a	set	of	formulas.	He	makes	the	following	remarks,	in
which	the	phrase	‘for	material	implication’	is	a	reminder	of	the	fact	that
the	Deduction	Theorem	makes	reference	to	the	connective	‘ ’	(actually
notated	differently	in	Smiley	1963,	as	 ),	and	the	phrase	‘both	systems’
is	 occasioned	 by	 the	 fact	 that	 Smiley	 is	 discussing	 not	 only	 S2	 but
another	system,	called	by	him	OS2,	the	details	of	which	do	not	matter	for
present	purposes.
An	almost	immediate	consequence	of	these	definitions	is	that	the	deduction	theorem	for	material
implication	 holds	 in	 both	 systems.	 There	 are	 asser	 tions	 in	 the	 literature	 that	 the	 deduction
theorem	 fails	 for	 S2,	 but	 they	 are	 the	 result	 either	 of	 treating	 R2	 as	 a	 straightforward	 rule	 of
inference	(as	in	Moh	1950,	p.	61)	or	else	of	a	mistake.4	(Smiley	1963:115)
At	first	sight,	this	may	seem	to	be	nothing	but	an	endorsement	of	the	first
of	the	two	reactions	distinguished	above:	we	give	a	privileged	position	to
Modus	 Ponens	 in	 fixing	 the	 consequence	 relation	 required	 to	 satisfy
(DT).	This	would	not	be	very	satisfying	as	a	general	account,	placing,	as
it	does,	so	much	emphasis	on	a	particular	rule.	Nor	is	it	in	fact	Smiley’s
position,	as	the	words	‘treating	R2	as	a	straightforward	rule	of	inference’
in	 the	above	quotation	betray.	So	we	have	 to	back	up	a	 little	 in	Smiley
(1963)	and	see	what	this	phrase	means.
On	the	page	before	that	on	which	the	above	passage	occurs,	Smiley	writes
as	follows:
In	 formulating	 OS2	 and	 S2	 in	 this	 way	 it	 is	 intended	 that	 the	 rule	 R2	 is	 not	 to	 be	 used
unrestrictedly,	but	only	in	the	generation	of	further	theorems	from	theorems.	In	this	it	resembles
the	rule	of	substitution	for	propositional	variables,	 the	rule	‘from	A	 infer	 A’	 in	S4,	or	 indeed
the	rule	of	generalisation	in	the	predicate	calculus.	These	might	all	be	called	‘rules	of	proof’	as
opposed	to	proper	‘rules	of	inference’	like	R1.5	(Smiley	1963:114)
As	Smiley	proceeds	 to	explain,	 the	difference	between	 the	 two	kinds	of
rules	 emerges	when	 the	 deducibility	 relation—the	 consequence	 relation
that	 is	pertinent	 to	 the	Deduction	Theorem,	 that	 is—associated	with	 the
axiomatic	system	is	considered.	In	his	own	words:	‘B	 is	deducible	 from
A1,	…,	An	if	there	is	a	sequence	of	formulae	ending	in	B,	of	which	every



member	 either	 is	 one	 of	A1,	 …,	An	 or	 else	 is	 a	 theorem	or	 else	 follows
from	preceding	formulae	by	R1’.	Incorporating	the	rules	of	proof/rules	of
inference	distinction	to	give	a	general	formulation	of	the	idea,	we	have	an
axiomatic	 system	 as	 a	 triple	 	 with	Ax	 a	 set	 of	 formulas	 (the
axioms)	 of	 some	 language,	 and	R	 and	Rinf	 two	 sets	 of	 rules	 whose
premises	 and	 conclusions	 are	 formulas	 of	 that	 language,	 and	 with	

	The	subscript	on	‘Rinf’	is	of	course	intended	to	suggest	‘(rules	of)
inference’;	you	may	call	 the	 rules	 in	R	 ‘rules	of	proof’,	or	alternatively
reserve	 this	 label	 for,	 as	 it	 were,	 rules	 of	 proof	proper	 (‘mere	 rules	 of
proof’,	 we	might	 equally	well	 say):	 those	 in	R	 but	 not	 in	Rinf,	 or	more
formally,	 those	 in	R\Rinf.	 The	 former	 course	 is	 adopted	 here.	 For	

	 the	 theorems	 of	S	 are	 the	 formulas	 derivable	 from	Ax	 by
means	 of	 the	 rules	 in	R,	 while	 the	 deducibility	 consequence	 relation
associated	with	S,	 	 is	defined	by:	 	 just	 in	 case	B	can	be	derived
from	theorems	of	S	together	with	formulas	in	by	the	application	of	rules
in	Rinf.	This	 is	 like	 the	earlier	definition	of	 	 in	 that	 it	 appeals	 to	an
already	 available	 definition	 of	 theoremhood	 or	 provability.	 But	 if	 a
formulation	along	the	lines	given	for	 	above	is	preferred,	it	can	proceed
in	 the	 following	 terms:	 	 if	 and	 only	 if	B	 can	 be	 obtained	 from
formulas	in	 	by	applying	the	rules	in	R	subject	to	the	condition	that
when	premises	figure	in	an	application	of	a	rule	in	R	\	Rinf,	none	of	those
premises	 should	 be	 an	 element	 of	 	 or	 have	 been	 derived	 by	 earlier
applications	of	the	rules	to	a	formula	in	 .	As	Schurz	(1994:387)	puts	it:
the	rules	of	proof	proper	should	be	‘applied	only	to	those	members	of	the
proof	which	do	not	depend	on	premises	in	 ’.6

While	 the	 conceptualization	 of	 axiomatic	 systems	 along	 the	
lines	here	distilled	from	Smiley’s	discussion	 is	occasionally	seen	 in	 the
literature—for	example,	we	find	it	in	Gabbay	(1981:9),	as	the	distinction
between	 ‘consequence	 rules’	 (rules	of	 inference)	and	 ‘provability	 rules’
(rules	 of	 proof)—by	 far	 the	 more	 prevalent	 approach,	 evidenced
especially	in	one	stream	of	Polish	logical	work,	is	quite	different.7	In	this
work,	 such	 a	 system	 is	 conceived	 of	 as	 a	 pair	 	 and	 the	 induced



consequence	 relation	 matches	 the	 second	 way	 of	 characterizing	 the
Deduction	 Theorem	 described	 above:	 use	 of	 any	 of	 the	 rules	 in	R,
together	with	the	formulas	in	Ax,	is	permitted	for	deriving	consequences
according	 to	 this	 consequence	 relation.	 We	 will	 take	 up	 the	 contrast
between	the	Smiley-inspired	and	the	more	widely	prevalent	conception	of
axiomatization	in	the	next	two	sections.
	



2	DERIVABLE/ADMISSIBLE:	ANOTHER	DISTINCTION

Anderson	and	Belnap	(1975),	discussing	the	addition	of	a	modal	operator
( )	 for	necessity	 to	 the	 then	favoured	system	E	of	entailment	(which	is
the	intended	reading	of	‘ ’	for	the	quotation	below),	address	the	rule	of
necessitation	(A	/	 A)	in	the	following	terms:
In	the	first	place	we	are	led	by	a	strong	tradition	to	believe	that	the	necessity	of	any	theorem	(of
a	 formal	 system	 designed	 to	 handle	 the	 notion	 of	 logical	 necessity	 at	 all)	 should	 also	 be	 a
theorem;	 unless	 this	 requirement	 is	 met,	 the	 system	 simply	 has	 no	 theory	 of	 its	 own	 logical
necessities.	For	this	reason	we	would	like	to	have	it	be	true	that,	whenever	A	 is	provable,	 then
necessity	of	A	is	also	provable.	This	condition	could	be	satisfied	by	incoherent	brute	force,	as	it
is	 for	 example	 in	 systems	 like	M	 (Feys–von	Wright),	where	a	 rule	of	necessitation	 is	 taken	as
primitive.	It	could	equally	well	be	satisfied	by	taking	A	 A	as	an	axiom.	Both	courses	are
equally	odious,	the	latter	because	it	destroys	the	notion	of	necessity,	and	the	former	because,	if
A	 A	 is	 neither	 true	 nor	 a	 theorem,	 then	 we	 ought	 not	 to	 have—in	 a	 coherent	 formal
account	of	the	matter—a	primitive	rule	to	the	effect	that	 A	does	after	all	 follow	from	A.	This
constraint	 would	 not	 bother	 us	 if	 we	 were	simply	 trying	 to	 define	 the	 set	 of	 theorems	 of	E
recursively	in	such	a	way	that	a	digital	computer,	or	some	equally	intelligent	being,	could	grind
them	out.	But	our	ambitions	are	greater	than	this;	we	would	like	to	have	our	theorems	and	our
primitive	 rules	 dovetail	 in	 such	 a	 way	 that	 if	E	 says	 or	 fails	 to	 say	 something,	we	 don’t
contradict	it	or	violate	its	spirit.	(Note	that	neither	 E	nor	&I	does	so).	Nevertheless	it	should
b e	true,	 as	 a	 lucky	 accident,	 so	 to	 speak,	 that	 whenever	A	 is	 a	 theorem,	 A	 is	 likewise.8
(Anderson	and	Belnap	1975:235f)
It	 doesn’t	 strictly	make	 sense	 to	 say,	 as	 here,	 that	 ‘A	 A	 is	 neither
true	 nor	 a	 theorem’,	 even	when	 a	 particular	 formula	A	 is	 specified,	 but
presumably	 the	 authors	 intend	 the	 (informal)	 claim	 that	 if	 a	 statement
does	not	in	general	entail	its	necessitation—see	the	start	of	§3—then,	 to
pick	 up	 the	 quotation	 verbatim	 ‘we	 ought	 not	 to	 have—in	 a	 coherent
formal	account	of	the	matter—a	primitive	rule	to	the	effect	that	 A	does
after	 all	 follow	 from	A.’	Well,	 perhaps	we	 ought	 not	 to	 have	 a	 rule	 of
inference	to	that	effect,	since	we	are	supposing	that	the	necessitation	of	a
statement	cannot	 in	general	be	 inferred	 from	 that	 statement,	but	how	 is
this	 an	 objection	 to	 taking	 necessitation	 as	 a	 rule	 of	proof?	 Could	 this
passage	from	Anderson	and	Belnap	be	rewritten	so	as	to	take	account	of
Smiley’s	 distinction?	 Would	 the	 principle	 behind	 it,	 given	 that
distinction,	 be	 something	 along	 the	 following	 lines:	 one	 should	 not	 use
rules	 of	 proof	 one	 does	 not	 endorse	 as	 rules	 of	 inference?	 This	 would



mean	 a	 ban	 on	 the	 use	 of	 all	 the	 examples	 in	 Smiley’s	 list	 from	 the
previous	 section:	 not	 just	 Necessitation,	 but	 also	Uniform	 Substitution,
and	generalization-like	rules	in	predicate	logic.	These	last	raise	numerous
complications	 of	 their	 own	 (issues	 about	 free	 variables	 and	 individual
parameters)	which	are	best	avoided.	Indeed	in	Smiley’s	own	more	recent
thoughts	 on	 the	 matter	 there	 is	 considerable	 distaste	 shown	 for	 doing
propositional	 logic	 with	 propositional	 variables	 and	 a	 rule	 of	 Uniform
Substitution.9	Here	we	ignore	this	change	of	heart	and	proceed	with	some
reminders	 as	 to	 the	 semantic	 side	 of	 these	 rules	 (though	 Uniform
Substitution	will	tend	to	take	a	back	seat	in	the	discussion).	This	will	be
attended	 to	 in	§3,	which	presumes	a	basic	 familiarity	with	 the	 (Kripke)
semantics	 for	 normal	 modal	 logics.	 Before	 that,	 there	 is	 more	 to	 say
about	the	passage	from	Anderson	and	Belnap	quoted	above.
The	 concluding	 sentence	 of	 the	 quotation	 says	 that	 despite	 not	wanting
Necessitation	 as	 a	 primitive	 rule,	 ‘Nevertheless	 it	 should	 be	true,	 as	 a
lucky	 accident,	 so	 to	 speak,	 that	 whenever	A	 is	 a	 theorem,	 A	 is
likewise.’	 In	 other	 words,	 the	 rule	 should	 be	admissible	 (i.e.	 the	 set	 of
theorems	 should	 be	 closed	 under	 application	 of	 the	 rule).10	 All	 the
attention	to	whether	the	rule	is	primitive	is	completely	beside	the	point:
the	contrast	that	counts	here	is	between	rules	that	are	derivable	(primitive
or	 derived)	 on	 the	 one	 hand,	 and	 rules	 which	 are	 merely	 admissible
(admissible	 but	 not	 derivable)	 on	 the	 other.11	 Anderson	 and	 Belnap’s
antipathy	 to	 the	 rule	 of	 Necessitation	 should	 be	 expressed	 not	 as	 an
objection	 to	 its	 being	 primitive	 in	 an	 axiomatization,	 but	 to	 its	 being
derivable	at	all.	 (We	return	briefly	 in	§3	to	 the	question	of	whether	 this
objection	is	well-founded.)
Let	 us	 review	 the	 notion	 of	 derivability	 as	 it	 applies	 to	 the	 simple
conception	of	axiomatizations	as	pairs	 .	We	can	think	of	a	rule	as
the	 set	 of	 all	 its	 applications	 and,	 for	 an	n-premise	 rule,	 take	 these
applications	 to	 be	 (n	 +	 1)-tuples	 of	 formulas	 of	 the	 language	 under
consideration,	the	first	n	positions	occupied	by	premise-formulas	and	the
final	position	by	the	conclusion-formula.12	Such	a	rule	is	derivable	on	the
basis	 of	 	 just	 in	case	for	any	application	 	of	the	rule,



we	can	obtain	C	from	 	by	means	of	the	rules	in	R.	(This	is
just	to	say	that	 	 	for	the	consequence	relation	determined	by	

	 in	 the	manner	 described	 in	§1.)	What	becomes	of	 this	notion	on
the	 Smiley	 conception	 of	 axiomatic	 systems	 in	 the	 form	 ,	 in
which	 a	 distinguished	 subset	 of	 the	 rules	 are	 deemed	 to	 be	 rules	 of
inference	and	not	just	rules	of	proof?	A	derivable	rule	of	proof	should	be,
as	in	the	simpler	set-up	just	reviewed,	any	rule	derivable	on	the	basis	of
the	 reduct	 	 of	 .	One	might	 think	 that	correspondingly,	a
derivable	rule	of	inference	should	be	a	rule	derivable	on	the	basis	of	the
reduct	which	discards	rules	of	proof	proper,	 i.e.	on	the	basis	of	
The	 idea	 is	 that	 we	 want	 to	 allow	 chaining	 together	 of	inference	 steps
without	 any	 admixture	 of	proof	 steps	 which	 are	 not	 sanctioned	 as
licensing	inferences	(by	the	given	partition	of	R	into	Rinf	and	R	\	Rinf).	But
the	 proposed	 definition	 does	 not	 implement	 the	 idea	 correctly,	 since	 it
excludes	 the	 use	 of	 rules	 of	 proof	 proper	 in	 yielding	 theorems	 from
which,	 together	 with	 the	 premises	 of	 an	 application	 of	the	 would-be
derived	 rule	of	 inference,	yield	 the	conclusion	with	 the	aid	of	primitive
rules	of	 inference.	 In	 this	case,	 the	 rule	of	proof	 is	not	 itself	 applied	 to
those	 premises	 and	 should	 not	 count	 against	 the	 derivability	 of	 the
envisaged	rule.	Accordingly,	a	correct	definition	of	 the	derivability	of	a
rule	 of	 inference	 	 should	 instead	 have	 it	 that	 the	 conclusion	 of	 any
application	 of	 	 can	 be	 obtained	 from	 its	 premises	 by	 successive
applications	of	rules	in	Rinf	together	with	theorems	provable	on	the	basis
of	 .	We	could	equally	well	say:	provable	on	the	basis	of	
since	 	(and	the	selection	of	a	particular	subset	of	R	 as	Rinf	has	no
bearing	 on	 the	 set	 of	 theorems—only	 on	 the	 induced	 consequence
relation).
Before	passing	 to	a	consideration	of	 the	semantic	side	of	 these	matters,
let	 us	 review	 and	 streamline	 the	 terminology	with	which	we	 have	 been
working.	Let	us	describe	an	axiom	system	or	axiomatization	 	of	the
simple-minded	kind	as	representing	the	undifferentiated	(more	explicitly:
‘rule-undifferentiated’)	approach	 to	 the	subject,	and	a	 system	



in	 the	Smiley-inspired	 style	 as	 representing	 the	differentiated	 approach.
Anything	 that	 can	 be	 done	 on	 the	 former	 approach	 can	 be	 done	 on	 the
latter,	 since	we	allow	the	possibility	 that	R	=	Rinf;	but	 the	 latter	 is	more
flexible	 in	 the	 manner	 already	 described	 as	 to	 how	 to	 associate	 a
consequence	 relation	 with	 an	 axiomatic	 system.	 Although	 one	 usually
speaks	 of	 a	 logic	 (or	 more	 generally	 a	 theory),	 understood	 as	 a	 set	 of
formulas,	 as	 being	 axiomatized	 by	 an	 axiomatic	 basis,	 whether	 of	 the
undifferentiated	 	type	or	of	the	differentiated	type,	it	does	no	harm
to	 speak	 of	 what	 we	 have	 been	 calling	 the	 associated	 consequence
relation	 in	 either	 case	 as	 itself	 axiomatized	 by	 the	 basis	 in	 question.13
Reviewing	the	contrast,	we	say	on	the	undifferentiated	approach	that	the
consequence	 relation	 	 axiomatized	 by	 	 is	 the	 least
consequence	relation	(on	the	language	in	question)	 	such	that:
(1) 	for	all	 	and

(2) 	whenever	for	some	 	for	some	

while	on	the	differentiated	approach	we	say	that	the	consequence	relation	
	axiomatized	 by	 	is	the	least	consequence	relation	(on

the	language	in	question)	 	such	that:
(1)* 	for	all	B	such	that	 	and

(2)* 	whenever	for	some	 	for	some	

Note	that	(1)*	here	invokes	the	definition	provided	by	(1)	and	(2)	for	the	
	 reduct	 of	 the	 given	 .	 It	 provides	 the	 theorems	 of	 the

logic	 axiomatized;	 compare	 the	 characterization	 of	 	 in	§1.
(Occasionally	 below,	the	set	of	such	 theorems	will	be	 referred	 to	as	 the
‘formula	 logic’	 concerned,	 for	 contrast	 with	 logics	 conceived	 of	 as
themselves	 being	 consequence	 relations.)	 An	n-premise	 rule	 	 is
derivable	on	the	basis	of	 	when	for	any	 	we	have	

	 For	 the	 differentiated	 approach	we	 have	 two	 notions,
depending	 on	 whether	 the	 derivability	 of	 	 as	 a	 rule	 of	 proof	 or	 the
derivability	of	 	as	a	rule	of	inference	is	at	issue.	In	the	former	case,	the
definition	 is	 as	 before,	 using	 the	 reduct	 	 of	 the	 axiomatization	



	 in	 question:	 we	 simply	 require	 that	
whenever	 	For	 the	 latter	case,	we	have	 	derivable	as	a
rule	 of	 inference	 provided	 that	 	 whenever	

Digression.	Let	us	pause	to	consider	the	question	of	admissibility.	Since
the	 admissibility	 of	 a	 rule	 is	 a	 matter	 of	 the	 set	 of	 provable	 formulas
being	 closed	 under	 the	 rule,	 one	 naturally	 associates	 admissibility	with
the	 ‘rule	of	proof’	 side	of	 the	picture.	Could	separate	 sense	be	made	of
something’s	being	admissible	as	a	rule	of	inference	on	the	differentiated
approach?	 Well,	 an	 alternative	 (though	 equivalent)	 definition	 of	 the
admissibility	 of	 	 on	 the	 basis	 of	 the	 undifferentiated	 axiomatization	

	 is	 that	 	 and	 	 have	 the	 same	 theorems.	 On	 the
differentiated	 approach	 one	 says	 the	 same	 thing,	 with	Rinf	 as	 an	 idle
parameter:	 	 and	 	 	have	 the	same	 theorems.	This
suggests	a	definition	for	the	admissibility	of	 	on	the	basis	of	 ,
namely	 that	 	 and	 	 axiomatize	 the	 same
consequence	relation.14	We	could	make	such	a	definition,	but	it	does	not
lead	to	anything	of	interest,	since	the	admissible	rules,	so	defined,	would
coincide	with	the	derivable	rules.	End	of	Digression.
The	rules	of	interest	here,	still	keeping	Uniform	Substitution	to	one	side,
are	 all	 of	 them	sequential	 rules	 in	 the	 sense	 of	 o 	 and	Suszko	 (1958),
which	means	that	for	each	rule,	 ,	say,	there	is	a	sequence	of	formulas—
sometimes	 called	 the	skeleton	 of	 	 such	 that	 the
applications	of	are	precisely	those	 	for	which	there	is	some
substitution	s	 with	 	 For	 example,
Modus	 Ponens	 and	 Necessitation	 have	 skeletons	 	 and	
respectively.15	 Note	 that	 for	 an	 axiomatization	 on	 either	 the
differentiated	 or	 the	 undifferentiated	 approach,	 even	 when	 all	 the
primitive	 rules	 (those	 in	R	 or	 just	 those	 in	Rinf)	 are	 sequential,	 the
derivable	rules	are	typically	not	sequential,	since	the	union	of	any	two	n-
premise	derivable	rules	is	a	derivable	rule.	However,	the	derivable	rules
will	 still	 in	 this	 case	 be	 substitution-invariant	 in	 the	 sense	 that	 every



substitution	instance	of	an	application	of	the	rule	is	an	application	of	the
rule.16
Even	when	the	rules	R	are	all	sequential,	so	that	it	is	effectively	decidable
whether	 or	 not	 a	 putative	 application	 of	 one	 of	 them	 is	 indeed	 such	 an
application,	the	additional	requirement	that	the	set	R,	as	well	as	the	set	Ax
of	axioms,	should	also	be	recursive,	is	often	imposed	to	do	justice	to	the
idea	 that	 it	 should	 be	 effectively	 decidable	 whether	 or	 not	 a	 putative
proof	 is	 a	 proof.	 An	especially	 simple	 way	 of	 satisfying	 this	 demand
arises	from	various	notions	of	finiteness	for	an	axiomatization.	Say	that	a
differentiated	axiomatization	 	is	finite	if	the	sets	Ax	and	R	(and
therefore	also	Rinf)	are	finite,	and	that	 	is	schematically	 finite	if
R	 is	 a	 finite	 set	 of	 sequential	 rules	 and	Ax	 is	 the	 set	 of	 all	 substitution
instances	of	a	finite	subset	Ax0	of	Ax.	The	idea	in	the	latter	case	is	that	we
avoid	 the	 use	 of	 uniform	 substitution	 by	 describing	 the	 (in	 general)
infinite	 set	Ax	by	means	of	 finitely	many	axiom-schemata,	arising	from
Ax0	 by	 replacing	 distinct	 propositional	 variables	 occurring	 in	 the
formulas	 thereof	 by	 distinct	 schematic	 letters.	 Since	 these	 definitions
appeal	 only	 to	Ax	 and	R,	 we	 may	 take	 them	 over	 intact	 for
undifferentiated	 axiomatizations	 .	 The	 notion	 of	 schematically
finite	axiomatizations	will	be	employed	in	the	following	section.



3	SEMANTIC	CONSIDERATIONS

Although	 the	 distinction	 between	 rules	 of	 proof	 and	 rules	 of	 inference
was	 introduced	 by	 Smiley	 in	 discussion	 of	 what	 one	 might	 naturally
consider	to	be	a	purely	syntactical	matter,	the	Deduction	Theorem,	there
is	 a	 clear	 semantical	motivation	 revealed	by	 the	choice	of	 terminology.
Informally,	 this	 can	 be	 illustrated	 in	 the	 case	 of	 Necessitation	 by
considering	 an	 argument	 with	 premise,	 ‘John	 F.	 Kennedy	 was	 shot	 in
Dallas’,	say,	and	conclusion	‘It	is	(logically	or	metaphysically)	necessary
that	 John	 F.	 Kennedy	 was	 shot	 in	 Dallas’.	 This	 contrasts	 with	 an
argument	 having	 as	 premises	 a	 conditional	 and	 its	 antecedent,	 and	 as
conclusion	its	consequent.	In	the	latter	case	we	think	of	the	conclusion	as
something	which	 can	 legitimately	be	inferred	 from 	 the	premises,	and	 in
the	former	case	of	 the	conclusion	as	not	being	something	 to	be	 inferred
from	 the	 premise.	 This	 difference	 makes	 it	 natural	 to	 describe	 Modus
Ponens	as	being—and	Necessitation	as	not	being—a	rule	of	inference.	It
is	equally	natural	to	want	to	continue	with	a	gloss	on	the	difference	which
invokes	some	notion	of	truth-preservation	as	characterizing	transitions	in
the	 former	case	and	not	 in	 the	 latter.	 Indeed	a	main	 focus	of	 interest	 in
connection	with	rules	has	always	been	over	differences	in	which	semantic
features	 they	preserve,17	 and	 the	preservation	behavior	 of	 the	 two	 rules
mentioned	 in	 the	 Kripke	 semantics	 for	 normal	 modal	 logics	 is	 well
known:	Modus	Ponens	is	locally	truth-preserving	in	any	model	(preserves
truth	at	any	point—or	‘world’—in	the	model)	while	Necessitation	is	only
globally	 truth-preserving	 (preserving	 the	 property	 of	 being	 truth-at-all-
points	 in	 the	model,	 for	any	model).	Thus	we	can	 refine	 the	connection
between	 inference	 and	 truth-preservation	 implicit	 in	 Smiley’s
classification	 of	 Modus	 Ponens	 and	 Necessitation	 (sometimes
abbreviated	 to	 ‘Nec’	 below)	 as	 positive	 and	 negative	 instances,
respectively,	of	the	‘rule	of	inference’	category,	by	saying	that	it	is	local
truth-preservation	that	matters	for	the	intuitive	idea	of	inferrability.	It	is
well	known18	 that	 since	 the	 local/global	 distinction	 applies	 not	 only	 to
preservation	of	truth	but	also	to	preservation	of	validity,	where	a	formula



is	valid	at	a	point	 in	a	 (Kripke)	 frame	if	 it	 is	 true	at	 that	point	 in	every
model	 on	 the	 frame,	 and	 valid	 on	 a	 frame	 if	 it	 is	 valid	 at	 every	 point
therein,	 what	 we	 end	 up	 with	 here	 is	 a	 fourfold	 distinction.	 Uniform
Substitution	 preserves	 validity	 at	 a	 point,	 and	a	 fortiori	 validity	 on	 a
frame,	but	unlike	Modus	Ponens	it	does	not	preserve	truth	at	a	point,	and
unlike	Necessitation	 it	 does	 not	 preserve	 truth	 throughout	 a	model.	 So,
lacking	the	local	truth-preservation	characteristic,	it	too	gets	classified	in
the	 second	 passage	 quoted	 from	 Smiley	 in	§1	 as	 a	 rule	 of	 proof	which
should	 not	 be	 counted	 as	 a	 rule	 of	 inference.	 In	what	 follows	 attention
will	 be	 specifically	 on	 the	 truth-based	 rather	 than	 the	 validity-based
incarnation	of	the	local/global	contrast.	(Note	also	that	this	summary	has
ignored	 further	 preservation	 characteristics	 arising	 for	 models	 with	 a
distinguished	point	or	set	of	points	used	in	modal	actuality	logic,	various
non-normal	modal	logics,	etc.)
Such	 verdicts	 are	 made	 available,	 but	 are	 not	 made	 inevitable,	 by	 the
differentiated	approach	to	axiomatization.	After	all,	given	R	as	our	set	of
primitive	rules,	we	can	select	as	Rinf,	consistently	with	the	differentiated
approach,	any	subset	of	R,	even	if	on	the	intuitive	grounds	just	rehearsed,
the	rules	in	question	would	not	naturally	be	called	rules	(or	principles)	of
inference.	 For	 example,	 we	 may	 want	 to	 axiomatize	 (in	 the	 sense
explained	 at	 the	 end	 of	§2)	 the	 ‘model	 consequence’	 relation	 of	 global
truth-preservation,	 which	 we	 will	 denote	 by	 superscripting	 a	 turnstile
with	 the	 first	 three	 letters	 of	 ‘global’,	 and	 subscripting	 it	with	 ‘K’,	 the
name	 of	 the	 smallest	 normal	 modal	 logic	 (considered	 as	 a	 set	 of
formulas),	 to	 indicate	 that	no	restriction	 is	 imposed	as	 to	 the	models	of
interest.	That	is,	we	define:

	iff	for	every	Kripke	model	 ,	if	every	formula	in	 	is	true	at	all	points	in	 ,	then	so	is
B.
(Since	 this	 is	a	semantic	characterization	of	 the	consequence	relation	 in
question,	some	may	prefer	to	see	 	in	place	of	 )	A	mild	variation	on
the	 canonical	 model	 method	 (see	 e.g.	 Kracht	 1999:	 Proposition	 3.1.3)
shows	 that	 	 has	 a	 schematically	 finite	 axiomatizaton	 in	 the	 shape	of	

	with	Ax	the	set	of	instances	of	any	finite	set	of	schemata	which



together	with	Modus	Ponens	(or	MP	for	short)	yield	all	 truth-functional
tautologies	along	with	all	instances	of	the	K-schema:
(A	 	B)	 	( A	 B)

and	R	=	Rinf	=	{MP,	Nec}.	We	could	also	supply	a	straightforwardly	finite
axiomatization	of	the	same	consequence	relation	by	taking	as	Ax	a	finite
set	 of	 axioms	 which	 together	 with	 Modus	 Ponens	 and	 US	 (Uniform
Substitution)	 suffice	 for	 the	 truth-functional	 tautologies,	 and	R	=	 {MP,
Nec,	US},	Rinf	=	{MP,	Nec}.
The	result(s)	just	given	can	be	formulated	in	terms	of	rule-soundness	and
rule-completeness:	 the	 derivable	 rules	 of	 inference	 of	 the	 two
axiomatizations	 described	 are	 all	 and	 only	 those	 rules	 which	 preserve
t r u t h	throughout	 an	 arbitrary	 model.19	 If	 we	 took	 the	 second
axiomatization	 and	 pushed	 US	 into	Rinf	 we	 should	 have	 a	 correct	 rule-
soundness	 statement	 for	 arbitrary	 frames:	 all	 derivable	 inference	 rules
preserve	 validity	 on	 an	 arbitrary	 frame.	 But	 the	 corresponding	 rule-
completeness	statement	in	this	case	would	not	be	correct,	in	view	of	the
existence	of	Kripke-incomplete	normal	modal	logics.
The	consequence	relation	 	does	not	satisfy	the	Deduction	Theorem,	of
course,	 since	 for	 example	p	 p	 is	 not	 true	 throughout	 every	model,
even	 though	 p	 is	 true	 throughout	 every	 model	 throughout	 which	p	 is
true,	reflecting	the	distance	we	have	traveled	here	from	Smiley’s	original
conception	 of	 the	 rule	 of	 inference/rule	 of	 proof	 distinction.	 A
rapprochement	is	possible,	however,	if	we	repackage	the	above	points	in
a	 more	 sophisticated	 version	 of	 the	 differentiated	 approach.	 Instead	 of
adding	what	were	rules	of	proof	proper	(i.e.	rules	in	R	\	Rinf)	into	the	‘rule
of	 inference’	 compartment	Rinf,	 we	 could	 drop	 the	 idea	 of	 a	 single
consequence	 relation	 associated	 with	 (‘axiomatized	 by’)	 a	 rule-
differentiated	 basis	 ,	 and	 instead	 distinguish	 the	 induced
inferential	consequence	relation—formerly	just	the	consequence	relation
thereby	axiomatized—from	the	 induced	probatory	consequence	relation,
defined	 similarly	 but	 allowing	 arbitrary	 rules	 from	R,	 rather	 than	 just
those	 in	Rinf,	when	working	out	the	consequences	of	a	set	of	formulas.20



Then	 we	 could	 say,	 concerning	 the	 first	 (schematically	 finite)
axiomatization	described	above,	that	it	has	as	its	probatory	consequence
relation	precisely	the	model	consequence	relation	 .	(This	would	not	be
the	case	for	the	second	axiomatization,	since	US	does	not	preserve	truth
throughout	a	model.	In	the	alternative	terminology,	this	would	make	for	a
failure	of	rule-soundness	with	respect	to	the	class	of	all	models.)
Whichever	version,	naive	or	sophisticated,	of	the	differentiated	approach
is	 taken—and	 from	 now	 on	we	 revert	 to	 the	 naive	 version—we	 should
certainly	 be	 wary	 of	 the	 claim	 of	 Anderson	 and	 Belnap	 quoted	 in	§2.
According	 to	 these	authors,	we	 should	not	have	 ‘a	primitive	 rule	 to	 the
effect	 that	 A	 does	 after	 all	 follow	 from	A’,	 since	 even	 if	 (as	 the
sophisticated	 version	 allows	 us	 to	 say)	 A	 cannot	 be	 inferred	 from	A,
there	 is	 a	 perfectly	 good	 sense—given	 by	 global	 truth-preservation—in
which	 A	does	indeed	follow	from	A.	That	is,	the	truth	of	 A	throughout
a	model	follows	from	the	truth	of	A	 throughout	the	model.	The	situation
in	 this	 respect	 is	 quite	 different	 from	 the	 well-known	 converse	 of
Necessitation,	 Denecessitation,	 i.e.	 the	 sequential	 rule	 with	 skeleton	

	under	which	the	set	of	theorems	of	K	is	also	closed.21	(Of	course
Anderson	and	Belnap	were	not	discussing	K,	but	the	present	point	shows
the	 weakness	 of	 their	 suggestion	 that	 Necessitation	 itself	 should,	 ‘in	 a
coherent	formal	account	of	the	matter’,	have	no	higher	status	than	that	of
an	admissible	rule.)	If	we	threw	this	rule	in	with	Necessitation,	it	would
destroy	 the	 soundness	 half	 of	 the	 rule-soundness	 and	 rule-completeness
result	 mentioned,	 since	 the	 truth	 throughout	 a	 model	 of	 A	 does	 not
imply	that	A	has	this	same	property.
To	 conclude	 this	 section	 we	 illustrate	 the	 convenience	 of	 the
differentiated	 approach	 in	 connection	 with	 the	 local	 analogue	 of	 ,
which	we	naturally	call	 .	That	is,	we	define:

	iff	for	every	Kripke	model	 ,	and	any	point	in	 ,	if	every	formula	in	 	is	true	at	that
point	in	 ,	then	so	is	B.
Note	that	unlike	its	global	counterpart,	with	which	it	agrees	for	 	this
consequence	relation	does	satisfy	the	Deduction	Theorem,22	and	it	relates
	to	B	just	in	case	the	conjunction	of	finitely	many	formulas	in	provably



implies	 B	 in	 the	 formula	 logic	K.	 We	 have	 the	 following	 striking
contrast:
(1)	 	has	no	schematically	finite	undifferentiated	axiomatization,	while
(2)	 	does	have	a	schematically	finite	differentiated	axiomatization.
Part	 (2)	 of	 this	 assertion	 is	 clear	 enough,	 since	we	 have,	 for	 example,	

	 with	Ax	 as	 above	 (apropos	of	 which	 the	 K	schema	 was
mentioned)	 and	R	 comprising	Modus	Ponens	and	Necessitation,	and	Rinf
consisting	 of	 just	Modus	 Ponens.	 For	 (1)	 we	 give	 just	 a	 sketch	 of	 the
proof.	 If	we	 have	 	 as	 a	 schematically	 finite	 axiomatization	of	 ,
wi t h	R	 =	 { 1,	 …,	 m}	 (each	 i	 sequential),	 then	 in	 view	 of	 the
superscripted	 ‘loc’,	 each	 i	 must	 be	 locally	 truth-preserving	 (in	 every
model).	 Where	 i	 has	 skeleton	 	 we	 can	 then	 add	 all	 the
formulas
	
s(C1)	 	(s(C2)	 	…	 	(s(Cn)	 s(D)	…))
	
t o	Ax,	 for	 every	 substitution	s,	 calling	 the	 result	Ax+.	 This	 amounts	 to
adding	all	instances	of	a	schema	with	distinct	schematic	letters	replacing
distinct	 propositional	 variables	 in	 the	 implication	 with	 successive
antecedents	 the	 Cj	 and	 consequent	D.	 So	 	 would	 also	 be	 a
schematically	finite	axiomatization	of	 .	But	that	would	mean	that	this
new	 basis	 would	 provide	 a	 schematically	 finite	 axiomatization	 of	 the
formula	 logic	K,	 and	 a	 minor	 adaptation	 of	 a	 proof	 in	 Lemmon
(1965:302,	Theorem	2)23	shows	that	there	is	no	such	axiomatization	with
Modus	Ponens	as	the	sole	proper	rule.24



4	CLOSING	COMMENTS

The	 prevalence	 of	 the	 undifferentiated	 approach,	 with	 its	 attendant
conflation	 of	 rules	 of	 proof	 with	 rules	 of	 inference,	 has	 had	 some
pernicious	effects,	the	most	recent	of	which	is	perhaps	the	interpretation
of	the	term	normal	as	it	applies	to	consequence	relations	in	modal	logic.
Since	 traditionally	 the	main	 consequence	 relation	 associated	 with	 a
modal	logic	has	been	the	local	(i.e.	locally	truth-preserving)	consequence
relation	(as	is	remarked	in	the	opening	sentence	of	Kracht	1999:	ch.	3),	it
has	been	customary	to	regard	a	consequence	relation	 	on	the	language	of
modal	logic	as	normal	if	whenever	 	we	have	 	(where	 	is	

).	 The	 corresponding	 sequent-to-sequent	 rule	 is	 sometimes
cal led	Scott’s	 rule 	 and	 Scott	 (1974)	 specifically	 inveighed	 against
confusing	 the	 special	 case	 of	 this	 rule	 in	which	 	 is	 empty—a	vertical
transition,	 in	 his	 terminology	 (think	 of	 a	 rule	 display	 with	 sequent-
premise(s)	 above	 and	 sequent	 conclusion	 below	 a	 line)—with	 the
condition	 that	 for	 all	 formulas	A,	 we	 should	 have	 	a	 horizontal
transition.	Yet	 just	 this	 last	 condition	 is	 imposed	 in	work	 by	Blok	 and
Pigozzi	and	others	since	1989	in	abstract	algebraic	logic	(or	‘AAL’)	and
has	 come	 to	 be	 regarded	 as	 defining	 the	 normality	 of	 a	 consequence
relation.25	 I	 take	 this	contrast	between	 the	acceptable	vertical	 transition
and	 the	 unacceptable	 (in	 the	 local	 case)	 horizontal	 transition	 to	 be
Smiley’s	point	again:	Necessitation	is	fine	as	a	rule	of	proof	but	not	as	a
rule	of	 inference.	Like	everyone	else	on	 the	undifferentiated	side	of	 the
fence,	 the	 AAL	 community	 sees	 a	 (formula-to-formula)	 rule	 in	 the
axiomatization	of	a	logic	and	only	knows	one	thing	to	do	with	it:	use	it	to
obtain	 consequences	 of	 arbitrary	 sets	 of	 formulas.	 Giving	 this
inappropriate	 definition	 of	 normality	 (for	 consequence	 relations)	 has
conspired	with	the	fact	that	the	local	consequence	relations	concerned	are
not	(in	general)	algebraizable	by	the	standards	of	Blok	and	Pigozzi	(1989)
to	 make	 them	 very	 much	 second	 class	 citizens	 of	 the	AAL	 world,	 by
comparison	 with	 their	 global	 counterparts.26	 There	 is	 no	 reason	 to	 tie
normality	to	the	global	side	of	the	local/global	division	in	this	way.



Scott’s	 horizontal/vertical	 contrast	 suggests	 a	 notation	 which	 would
decorate	the	skeleton	of	a	sequential	rule	with	information	as	to	the	status
of	 the	 premises	 of	 its	 applications	 (as	 in	 Humberstone	 2008:443):	 a
superscripted	downward	 arrow	 indicates	 a	 vertical	 transition	 from	 that
premise	 and	 a	 superscripted	rightward	 arrow,	 a	 horizontal	 transition.
Thus	Necessitation	as	a	rule	of	proof	would	have	the	decorated	skeleton	

	 while	 for	 Necessitation	 as	 a	 rule	 of	 inference	 (if	 one	 were
interested	 in	 such	 a	 thing—as	 in	 the	 naive	 implementation	 of	 the
differentiated	 strategy	 in	§3)	 the	 skeleton	 would	 be	 	 When	 we
consider	rules	with	more	than	one	premise,	however,	the	binary	division
into	 rules	 of	 proof	 and	 rules	 of	 inference	 loses	 its	 apparent
exhaustiveness,	 since	 the	 premise	 positions	 may	 be	 differently	 tagged.
For	example,	suppose	that	*	is	a	binary	connective	and	consider	the	four
possible	decorations	of	the	rule-skeleton	
	

	
The	first	and	last	of	these	are	straightforwardly	a	rule	of	inference	and	a
rule	 of	 proof	 respectively	 (essentially	 what	 we	 might	 think	 of	 as	and-
introduction	 and	 Adjunction,	 respectively,	 regarding	 *	 as	 representing
conjunction),27	 but	 the	 second	 and	 third	 pair	 defy	 straightforward
classification	 in	 either	 category,	 indicating	 sequent-to-sequent	 rules	 as
given	respectively	below,	with	‘ ’	here	used	as	though	it	were	a	sequent-
separator,	so	as	to	avoid	having	to	introduce	further	notation:
	

	
The	whole	area	of	sequent-to-sequent	rules—as	in	natural	deduction	and
sequent	 calculus—lies	 well	 outside	 the	 boundaries	 of	 the	 present
discussion.	There	is	an	interesting	question	as	to	how	(or	indeed	whether)
to	 apply	 the	 rule	 of	 inference/rule	 of	 proof	 distinction	 to	 them,	 now
thinking	 of	 the	 premises	 for	 an	 application	 of	 a	 rule	 as	 being	 sequents
rather	than	formulas.



Another	 question	 that	would	 deserve	 attention,	 returning	 to	 formula-to-
formula	rules,	concerns	the	closeness	of	 the	link	between	the	Deduction
Theorem	and	 the	 intuitive	 idea	 of	 a	 rule	 of	 inference,	 suggested	 by	 the
discussion	 in	 Smiley	 (1963)	 (and	 also—implicitly—by	 that	 of	 Schurz
1994).	When	 	we	have	A	 B	for	the	associated	consequence
relation	 (the	 associated	 inferential	 consequence	 relation,	 on	 the
sophisticated	 version	 of	 the	 differentiated	 approach),	 but	 should	 we
always	 have	 A	 	 B?	 The	 supervaluational	 semantics	 of	 Thomason
contains	 examples	 suggesting	 a	 negative	 answer,	 taking	B	 as	 ‘it	 is	 true
that	A’	 (1970:273)	 and	 ‘it	 is	 inevitable	 that	A’	 (275),	 though	what	 they
raise	most	acutely	is	the	question	of	the	status	of	what	the	inference	to	a
certain	 conclusion	 is	 an	 inference	 from:	 does	 it	 represent	 a	 mere
supposition,	an	envisaged	piece	of	new	information,	or	what?28	In	the	end
the	 phrase	 ‘rule	 of	 inference’	 may	 itself	 turn	 into	 something	 of	 an
umbrella	term	subsuming	interestingly	different	cases,	much	as	the	term
‘rule’	itself	did	before	Smiley	articulated	the	distinction	between	rules	of
proof	and	rules	of	inference.



NOTES

1.	The	notion	of	a	consequence	relation	is	taken	to	be	familiar	here;	see	p.	15	of	Shoesmith	and
Smiley	(1978)	for	the	defining	conditions	(called	there	Overlap,	Dilution,	and	Cut	for	Sets).	The
usual	notational	liberties	will	be	taken	in	connection	with	a	consequence	relation	 :	for	example
‘ ,	A	 	B’	and	‘ B’	abbreviate	 	and	 	respectively.
2.	For	the	detailed	proof,	see	Kleene	(1952),	§21.	Kleene’s	exposition	is	especially	clear	on	the
precise	 inductive	 structure	 of	 the	 argument.	Despite	 the	 sentence	which	 follows,	 a	 version	 of
(A2)	with	its	two	antecedents	permuted	would	do	equally	well,	and	this	is	the	version	appearing
in	Kleene’s	discussion.	(References	to	the	original	Herbrand	and	Tarski	sources	can	be	found	in
Kleene’s	1952:98.)	In	recent	years	many	generalizations	of	 the	Deduction	Theorem	have	been
considered—see	Czelakowski	(2001:	ch.	2)	for	an	extensive	sampling—but	in	what	follows	we
have	in	mind	just	the	simple	traditional	version	of	the	result.
3.	The	 terminology	 is	 not	wholly	 felicitous	 in	 the	 general	 case	 (as	 remarked	 in	Humberstone
2006a:	46)	but	is	nonetheless	convenient.
4.	 Fn.	 3	 in	 Smiley	 (1963)	 at	 this	 point	 cites	 Barcan	 (1946)	 as	 confusing	 the	 claim	 that	 A
implies	 B	with	the	claim	that	A	 	B.
5.	For	conformity	with	our	notation,	Smiley’s	‘L’	has	been	replaced	by	‘ ’.	The	last	rule,	A	 /	
A,	mentioned	 by	 Smiley	 in	 this	 passage	 is	 the	 rule	 of	Necessitation.	Note	 that	 in	 view	 of	 the
terminological	proposal	made	in	the	passage,	this	should	not	really	be	glossed	(as	Smiley	does)
as	 ‘from	A	 infer	 A’.	 (‘From	A	 to	 A’	 is	better.)	Nor	should	one	formulate	 the	rule	as	‘if	 A
then	 A’:	 this	 is	 rather	 the	 statement	 that	 the	 rule	 in	 question	 is	 admissible	 (and	 no	 rule
should	be	confused	with	a	statement	about	rules	or	indeed	about	anything	else).
6.	For	‘proof’	here,	read	‘deduction’,	this	being	the	term	(after	which	the	Deduction	Theorem	is
named)	for	a	record	of	 the	derivation	of	 the	formula	on	 the	right	of	 the	‘ ’	 from	those	on	 the
left	 (with	 the	help	of	axioms).	Rather	 than	alluding	 to	 rules	of	proof	proper,	Schurz	speaks	of
rules	different	from	Modus	Ponens,	since	he	is	considering	the	(typical)	case	in	which	that	is	the
only	 rule	of	 inference	 (in	Smiley’s	 sense).	Although	deductions	 in	 the	present	 sense	are	often
described	as	sequences	of	formulas,	they	are	better	visualized	as	trees	with	the	deduced	formula
at	 the	 root	 and	 axioms	 and	 elements	 of	 	 at	 their	 leaves.	Each	 non-leaf	 node	 is	 immediately
dominated	 by	 nodes	 labeled	 with	 formulas	 which	 are	 premises	 for	 an	 application	 of	 a	 rule
whose	conclusion	formula	labels	that	node.	A	node	(or	the	occurrence	of	a	formula	labeling	it)
i s	 -dependent	 if	 the	 subtree	 with	 it	 as	 root	 has	 some	 node	 labeled	 with	 an	 element	 of	 .
(Alternatively,	see	the	definition	of	dependence	in	Kleene	1952:99.)
7.	See	e.g.	Pogorzelski	(1971),	Prucnal	(1972),	Wojtylak	(1983),	and	Pogorzelski	and	Wojtylak
(2005).	 It	 should	be	added	 that	 the	ordered	pairs	considered	 in	 this	 literature	come	as	
rather	than	in	the	reverse	order	given	in	the	following	sentence	of	the	main	text,	with	the	axioms
first	(which	is	more	convenient	for	present	purposes).	Such	pairs	are	referred	to	in	various	ways
in	 the	 papers	 just	 cited,	 including	 ‘systems	 of	 propositional	 calculus’	 and	 ‘logical	 systems’.
Even	 those	 who	 do	 not	 make	 explicit	 use	 of	 the	 ordered	 pair	 theme	 for	 identifying
axiomatizations	 implicitly	 operate	 with	 the	 same	 conception	 (in	 §2	 we	 will	 call	 it	 the
undifferentiated	approach)	of	how	such	an	axiomatization	is	 to	induce	a	consequence	relation,
and	 this	 includes	 a	 great	 many	 authors,	 from	 o 	 and	 Suszko	 (1958)	 to	 Blok	 and	 Pigozzi



(1989)	and	beyond.
8.	The	final	sentence	in	the	quotation	actually	starts	a	new	paragraph	in	the	source	text.
9.	This	seems	to	be	at	least	part	of	the	drift	of	Smiley	(1982).
10.	Curiously	Anderson	and	Belnap	do	not	employ	the	notion	of	admissibility	in	the	discussion
on	p.	236,	even	though	they	have	explained	the	notion	on	p.	54;	instead	we	get	 this	nonsense
about	it	being	a	‘lucky	accident’	that	 A	is	provable	whenever	A	is.
11.	 Many	 respectable	 logicians,	 especially	 writing	 before	 the	 mid-1960s,	 simply	 ignore	 this
distinction.	 For	 example	 Kleene	 (1952)	 calls	 all	 admissible	 rules	 derivable	 (or	 derived),	 and
when	 he	 wants	 to	 talk	 about	 derivable	 rules	 (in	 the	 present	 sense)	 uses	 the	 phrase	 ‘directly
derivable’.	Kripke	 (1965)	 uses	 the	 terms	 ‘admissible’	 and	 ‘derivable’	 interchangeably	 (again,
simply	to	mean	admissible).	Kleene	(1952:92)	says	‘A	metamathematical	theorem	of	the	simple
f o rm	 E	 is	 a	 derived	 rule	 of	 the	direct	 type’,	 thereby	 conflating	 (contrary	 to	 the
recommendation	 of	 Note	 5	 above)	 rules	 with	 statements.	 It	 is	 also	 worth	 noting	 that	 his
indifference	 to	 the	 rule	of	proof/rule	of	 inference	distinction	has	 led	 to	cloudy	 formulations	 in
this	and	other	works—see	Kielkopf	(1972).
12.	Since	the	order	of	the	premises	is	immaterial,	a	cleaner	treatment—though	rather	fussier	than
would	 here	 be	 desirable—might	 take	 an	 application	 of	 an	n-premise	 rule	 to	 be	 not	

	but	rather	 	in	which	[B1,…,	Bn]	is	the	multiset	of	the	formulas
concerned.	 Thus	 if	n	 =	 2	 and	B1	 is	 the	 same	 formula	 as	B2,	 this	 is	 a	 multiset	 in	 which	 the
formula	in	question	occurs	twice.
13.	This	 usage	 is	 not	 unheard	 of	 in	 the	 literature.	The	 only	 danger	 is	 that	 of	 confusion	 with
something	more	general,	 as	when	a	proof	 system	with	 initial	 sequents	 and	 sequent-to-sequent
rules	(as	in	the	case	of	the	sequent	calculus	approach)	is	referred	to	as	an	axiomatization	of	the
sequent	 logic—and	 thus	 (except	 in	 the	 substuctural	 logics	 case)	 of	 the	 obviously	 associated
consequence	 relation	 (and	 the	 initial	 sequents	 are	 similarly	 referred	 to	 as	 ‘axioms’).	 In	 the
present	 discussion,	 only	 formulas	 count	 as	 axioms,	 and	 sequent-to-sequent	 rules	 come	 up	 for
discussion	only	in	passing	in	the	final	section.
14.	 Note	 that	 we	 have	 to	 add	 	 to	 the	 set	 of	 rules	 of	 proof	 as	 well	 as	 to	 the	 set	 of	 rules	 of
inference,	since	we	require	the	latter	to	be	a	subset	of	the	former.
15.	We	 suppose	 that	 all	 (sentential)	 languages	 under	 consideration	 have	p1,	p2,	 …,	pn,	…	 as
propositional	variables	(sentence	letters),	and	abbreviate	the	first	two	in	this	list	to	p,	q.	Note	that
as	defined,	there	is	really	no	unique	skeleton	for	a	given	rule,	since	the	propositional	variables
could	 be	 relettered—to	 say	 nothing	 of	 the	 arbitrariness	 of	 the	 order	 in	 which	 the	 premise
formulas	A1,	 …,	An	 in	 a	 skeleton	 	 appear	 (commented	on	 in	Note	12	 above).
Note	 that	we	 speak	 of	 the	substitution	instances	 of	 a	 formula,	 but	 the	instances	 of	 a	 schema.
(Derivatively,	we	 also	 speak	 of	 the	 substitution	 instances	 of	 an	n-tuple	 of	 formulas,	when	 the
same	substitution	is	applied	to	all	of	the	formulas	in	the	n-tuple.)	Note	that	the	sequential	rules
are	those	susceptible	of	schematic	representation	with	the	slash	notation	(in	the	‘A	/	 A’	style).
16.	 o 	and	Suszko	(1958)	called	substitution-invariant	rules	structural,	but	this	makes	for	an
unfortunate	 collision	 with	 the	 terminology	 of	 ‘structural	 rules’	 as	 deployed,	 for	 example	 by
Gentzen,	in	connection	with	sequent-to-sequent	rules	(namely	for	rules	whose	formulation	does
not	 involve	 any	 particular	 logical	 vocabulary).	 The	 same	 authors	 pointed	 out	 that	 uniform
substitution	itself	is	not	(in	the	present	terminology)	a	substitution-invariant	rule.



17.	 Examples	 of	 the	 literature	 in	 this	 vein	 include	 Fagin	 et	 al.	 (1992),	 Brady	 (1994),
Humberstone	(1996).	The	last	reference	concerns	sequent-to-sequent	rules,	however,	rather	than
formula-to-formula	 rules,	 our	 main	 focus	 here.	The	 first	 reference	 describes	 some	 interesting
modal	examples;	see	also	the	first	new	paragraph	on	p.	386	of	Schurz	(1994).
18.	See	Fitting	(1983)	or	van	Benthem	(1985),	for	instance.	Substitution-invariant	or	‘schematic’
versions	of	the	validity-preserving	relations	are	described	in	Fagin	et	al.	(1992).
19.	This	terminology,	though	not	quite	with	the	present	understanding,	can	be	found	in	Belnap
and	Thomason	(1963).
20.	 In	 fact	 it	 is	 this	 consequence	 relation,	 rather	 than	 its	 inferential	 cousin,	 which	 is	 most
commonly	meant	by	talk	of	deducibility	in	practice,	even	though	this	is	not	the	relation	relevant
to	 the	 Deduction	 Theorem	 and	 mentioned	 under	 the	 heading	 of	 ‘deducibility’	 in	 §1.	 For
example,	 the	 two	 occurrences	 of	 ‘interdeducible	 (in	 the	 field	 of	 K)’	 on	 pp.	 577	 and	 581	 of
Hughes	(1980),	appear	in	connection	with	pairs	of	formulas	each	of	which	can	be	derived	from
the	 other	 only	 with	 the	 aid	 of	 US,	 meaning	 that	 these	 derivations	 do	 not	 constitute	 suitable
‘deductions’	in	the	sense	of	the	Deduction	Theorem.
21.	 Schurz	 (1994:386,	 top	 paragraph)	 also	 gives	 this	 example,	 as	 do	 Font	 and	 Jansana
(2001:438).	 Schurz’s	 use	 of	 the	 example	 is	 an	 indication	 of	 how	 misleading	 his	 title	 is:
‘Admissible	versus	Valid	Rules’.	By	‘valid’	 is	here	meant	 locally	 truth-preserving	(in	 the	class
of	models	for	the	logic	in	question):	emphasis	on	the	contrast	between	this	and	admissibility	is
exactly	 the	 mistake	 Anderson	 and	 Belnap	 make.	 But	 Schurz’s	 discussion,	 its	 title
notwithstanding,	 is	 alert	 to	 the	 significance	 of	 derivability	 as	 opposed	 to	 admissibility	 (and
suggests	 that	 he	 would	 have	 been	 happy,	 had	 he	 been	 aware	 of	 it,	 to	 embrace	 Smiley’s
distinction	between	rules	of	proof	and	rules	of	inference).
22.	 This	 point	 does	 not	 depend	 on	 the	 ‘K’	 subscript,	 but	 holds	 for	 the	 local	 and	 global
consequence	relations	corresponding	to	any	normal	modal	logic.	An	extended	discussion	of	the
relations	between	these	two	consequence	relations	for	the	case	of	(an	expressively	impoverished
fragment	 of)	 S5	 appears	 in	 Humberstone	 (2006b).	 For	 more	 general	 considerations	 on	 the
current	local/	global	contrast,	see	the	first	section	of	ch.	3	of	Kracht	(1999).
23.	Or	 see	 the	Corollary	 to	Theorem	7	of	Kripke	 (1965:219).	Lemmon	 (amongst	others)	 calls
what	 are	 here	 called	 schematically	 finite	 axiomatizations	 simply	 finite	 axiomatizations
(intending,	further,	that	the	sole	rule	employed	is	Modus	Ponens).
24.	While	the	contrast	between	(1)	and	(2)	may	initially	seem	impressive,	it	must	be	conceded	to
depend	 in	 large	 part	 on	 the	 specific	 identification	 of	 axiom	 schemata	 with	 zero-premise
sequential	rules,	and	the	way	‘schematically	finite’	captures	the	idea	of	a	finitude	of	schemata,
so	understood.	On	this	reading,	something	like	‘ n(p	 p)’	understood	as	summarizing	 the
prefixing	of	any	number	of	occurrences	of	‘ ’	to	the	formula	‘p	 	p’,	would	not	count	as	an
axiom	schema,	 let	alone	 the	 ‘doubly	schematic’	version	with	 ‘A’	 in	place	of	 ‘p’.	Relaxing	 the
requirement	 so	 as	 to	 admit	 these	 last	 as	 axiom	 schemata	 would	 allow	 the	 inferential
consequence	 relation	 associated	 with	 the	 class	 of	 all	 models	 to	 have	 a	 schematically	 finite
axiomatization	with	Modus	Ponens	as	the	sole	rule,	destroying	the	contrast	between	(1)	and	(2)
in	 the	 text,	 because	 just	 as	 the	 use	 of	 schematic	 formula-letters	 exploits	 the	 fact	 that	 all
applications	 of	 US	 can	 be	 made	 to	 precede	 any	 applications	 of	 MP,	 so	 this	 numerical
schematicity	 exploits	 the	 fact	 that	 all	 applications	 of	 Nec	 can	 be	 made	 to	 precede	 any
applications	of	MP.	This	device	(essentially)	was	employed	in	Fitch	(1973).
25.	 See	 the	 references	 given	 in	 Note	 40	 of	 Humberstone	 (2006a),	 where	 I	 have	 complained



about	 this	 before.	 (The	 text	 to	which	 that	 note	 is	 appended	 contains	 a	misprint:	 ‘Scott’s	 own
recommendations	on	score’	should	read	‘Scott’s	own	recommendations	on	this	score’.)
26.	 Help	 is	 on	 the	 way—indeed,	 has	 already	 arrived—as	 far	 as	 this	 latter	 consideration	 is
concerned:	see	Font	and	Jansana	(2001).
27.	Compare	the	‘Four	forms	of	Modus	Ponens’	in	Scott	(1974),	as	refined	by	the	discussion	in
§6	of	Humberstone	(2000a)	as	well	as	in	Humberstone	(2008).	‘Adjunction’	here	is	the	Hilbert-
style	rule	of	that	name	in	Anderson	and	Belnap	(1975)	and	elsewhere.
28.	For	more	on	the	supposition/update	contrast	just	drawn,	see	Humberstone	(2002:	§3).
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