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Abstract. First, a brief historical trace of the developments in confirmation the-
ory leading up to Goodman’s infamous “grue” paradox is presented. Then, Good-
man’s argument is analyzed from both Hempelian and Bayesian perspectives.
A guiding analogy is drawn between certain arguments against classical deduc-
tive logic, and Goodman’s “grue” argument against classical inductive logic. The
upshot of this analogy is that the “New Riddle” is not as vexing as many com-
mentators have claimed (especially, from a Bayesian inductive-logical point of
view). Specifically, the analogy reveals an intimate connection between Good-
man’s problem, and the “problem of old evidence”. Several other novel aspects
of Goodman’s argument are also discussed (mainly, from a Bayesian perspective).

1. Prehistory: Nicod & Hempel

In order to fully understand Goodman’s “New Riddle,” it is useful to place it
in its proper historical context. As we will see shortly, one of Goodman’s central
aims (with his “New Riddle”) was to uncover an interesting problem that plagues
Hempel’s [17] theory of confirmation. And, Hempel’s theory was inspired by some
of Nicod’s [25] earlier, inchoate remarks about instantial confirmation, such as:

Consider the formula or the law: A entails B. How can a particular propo-
sition, [i.e.] a fact, affect its probability? If this fact consists of the pres-
ence of B in a case of A, it is favourable to the law . . . on the contrary, if it
consists of the absence of B in a case of A, it is unfavourable to this law.

By “is (un)favorable to,” Nicod meant “raises (lowers) the inductive probability of”.
In other words, Nicod is describing a probabilistic relevance conception of confir-
mation, according to which it is postulated (roughly) that positive instances are
probability-raisers of universal generalizations. Here, Nicod has in mind Keynesian
[21] inductive probability (more on that later). While Nicod is not very clear on
the logical details of his probability-raising account of instantial confirmation (stay
tuned for both Hempelian and Bayesian precisifications/reconstructions of Nicod’s
remarks), three aspects of Nicod’s conception of confirmation are apparent:

• Instantial confirmation is a relation between singular and general proposi-
tions/statements (or, if you will, between “facts” and “laws”).
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• Confirmation consists in positive probabilistic relevance, and disconfirma-
tion consists in negative probabilistic relevance (where the salient probabil-
ities are inductive in the Keynesian [21] sense).

• Universal generalizations are confirmed by their positive instances and dis-
confirmed by their negative instances.

Hempel [17] offers a precise, logical reconstruction of Nicod’s naïve instantial ac-
count. There are several peculiar features of Hempel’s reconstruction of Nicod. I
will focus presently on two such features. First, Hempel’s reconstruction is com-
pletely non-probabilistic (we’ll return to that later). Second, Hempel’s reconstruc-
tion takes the relata of Nicod’s confirmation relation to be objects and universal
statements, as opposed to singular statements and universal statements. In mod-
ern (first-order) parlance, Hempel’s reconstruction of Nicod can be expressed as:

(NC0) For all objects x (with names x), and for all predicate expressions φ and ψ:
x confirms [(∀y)(φy ⊃ ψy)\ iff [φx &ψx\ is true, and
x disconfirms [(∀y)(φy ⊃ ψy)\ iff [φx &∼ψx\ is true.1

As Hempel explains, (NC0) has absurd consequences. For one thing, (NC0) leads to
a theory of confirmation that violates the hypothetical equivalence condition:

(EQCH ) If x confirms H, then x confirms anything logically equivalent to H.

To see this, note that — according to (NC0) — both of the following obtain:

• a confirms “(∀y)(Fy ⊃ Gy),” provided a is such that Fa &Ga.

• Nothing can confirm “(∀y)[(Fy & ∼Gy) ⊃ (Fy & ∼Fy)],” since no object
a can be such that Fa &∼Fa.

But, “(∀y)(Fy ⊃ Gy)” and “(∀y)[(Fy & ∼Gy) ⊃ (Fy & ∼Fy)]” are logically
equivalent. Thus, (NC0) implies that a confirms the hypothesis that all Fs are Gs
only if this hypothesis is expressed in a particular way. I agree with Hempel that this
violation of (EQCH ) is a compelling reason to reject (NC0) as an account of instantial
confirmation.2 But, I think Hempel’s reconstruction of Nicod is uncharitable on
this score (more on that later). In any event, my main focus here will be on the
theory Hempel ultimately ends-up with. For present purposes, there is no need
to examine Hempel’s [17] ultimate theory of confirmation in its full logical glory.
For our subsequent discussion of Goodman’s “New Riddle,” we’ll mainly need just
the following two properties of Hempel’s confirmation relation, which is a relation
between statements and statements, as opposed to objects and statements.3

1Traditionally, such conditions are called “Nicod’s Criteria”, which explains the abbreviations.
Historically, however, it would be more accurate to call them “Keynes’s Criteria” (KC), since Keynes
[21] was really the first to explicitly endorse the three conditions (above) that Nicod later championed.

2Not everyone in the literature accepts (EQCH ), especially if (EQCH ) is understood in terms of
classical logical equivalence. See [28] for discussion. I will simply assume (EQCH ) throughout my
discussion. I will not defend this assumption (or its evidential counterpart, which will be discussed
below), which I take to be common ground in the present historical dialectic.

3(NC) is clearly a more charitable reconstruction of Nicod’s (3) than (NC0) is. So, perhaps it’s most
charitable to read Hempel as taking (NC) as his reconstruction of Nicod’s remarks on instantial confir-
mation. In any case, Hempel’s reconstruction still ignores the probabilistic aspect of Nicod’s account.
This will be important later, when we discuss probabilistic approaches to Goodman’s “New Riddle”.
At that time, we will see an even more charitable (Bayesian) reconstruction of Nicod’s remarks.
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(NC) For all constants x and for all (independent) predicate expressions φ, ψ:
[φx &ψx\ confirms [(∀y)(φy ⊃ ψy)\ and
[φx &∼ψx\ disconfirms [(∀y)(φy ⊃ ψy)\.

(M) For all constants x, for all (consistent) predicate expressions φ, ψ, and for
all statements H: If [φx\ confirms H, then [φx &ψx\ confirms H.

As we will see, it is far from obvious whether (NC) and (M) are (intuitively) correct
confirmation-theoretic principles (especially, from a probabilistic point of view!).
Severally, (NC) and (M) have some rather undesirable consequences, and jointly
they face the full brunt of Goodman’s “New Riddle,” to which I now turn.

2. History: Hempel & Goodman

Generally, Goodman [14] speaks rather highly of Hempel’s theory of confirma-
tion. However, Goodman [14, ch. 3] thinks his “New Riddle of Induction” shows
that Hempel’s theory is in need of rather serious revision/augmentation. Here is
an extended quote from Goodman, which describes his “New Riddle” in detail:

Now let me introduce another predicate less familiar than “green”. It is
the predicate “grue” and it applies to all things examined before t just in
case they are green but to other things just in case they are blue. Then at
time t we have, for each evidence statement asserting that a given emerald
is green, a parallel evidence statement asserting that that emerald is grue.
And the statements that emerald a is grue, that emerald b is grue, and
so on, will each confirm the general hypothesis that all emeralds are grue.
Thus according to our definition, the prediction that all emeralds subse-
quently examined will be green and the prediction that all will be grue are
alike confirmed by evidence statements describing the same observations.
But if an emerald subsequently examined is grue, it is blue and hence not
green. Thus although we are well aware which of the two incompatible
predictions is genuinely confirmed, they are equally well confirmed ac-
cording to our present definition. Moreover, it is clear that if we simply
choose an appropriate predicate, then on the basis of these same observa-
tions we shall have equal confirmation, by our definition, for any predic-
tion whatever about other emeralds—or indeed about anything else. . . . We
are left . . . with the intolerable result that anything confirms anything.

Before reconstructing the various (three, to be exact) arguments against Hempel’s
theory of confirmation that are implicit in this passage (and the rest of the chap-
ter), I will first introduce some notation, to help us keep track of the logic of the
arguments. Let Ox Ö x is examined before t, Gx Ö x is green, Ex Ö x is an
emerald. Now, Goodman defines “grue” as follows: Gx Ö Ox ≡ Gx.4 With these
definitions in hand, we can state the two salient universal statements (hypotheses):

(H1) All emeralds are green. More formally, H1 is: (∀x)(Ex ⊃ Gx).

4Here, “≡” is the material biconditional. I am thus glossing the detail that unexamined-before-
t grue emeralds are blue on Goodman’s official definition. This is okay, since all that’s needed for
Goodman’s “New Riddle” (at least, for its most important aspects) is the assumption that unexamined-
before-t grue emeralds are non-green. Quine [26] would have objected to this reconstruction on the
grounds that “non-green” is not a natural kind term (and therefore not “projectible”). Goodman did
not agree with Quine on this score. As such, there is no real loss of generality here, from Goodman’s
point of view. In any event, I could relax this simplification, but that would just (unnecessarily) com-
plicate most of my subsequent arguments. In the final section (on Goodman’s “triviality argument”), I
will return to this “blue vs non-green” issue (since in that context, the difference becomes important).
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(H2) All emeralds are grue. More formally, H2 is: (∀x)(Ex ⊃ Gx).
Even more precisely, H2 is: (∀x)[Ex ⊃ (Ox ≡ Gx)].

And, we can state three salient singular (evidential) statements, about an object a:

(E1) Ea &Ga. [a is an emerald and a is green]

(E2) Ea & (Oa ≡ Ga). [a is an emerald and a is grue]

(E) Ea &Oa &Ga. [a is an emerald and a is both green and grue]

Now, we are in a position to look more carefully at the various claims Goodman
makes in the above passage. At the beginning of the passage, Goodman considers
an object a which is examined before t, an emerald, and green. He correctly points
out that all three of E1, E2, and E are true of such an object a. And, he is also
correct when he points out that — according to Hempel’s theory of confirmation —
E1 confirms H1 and E2 confirms H2. This just follows from (NC). Then, he seems
to suggest that it therefore follows that “the observation of a at t” confirms both
H1 and H2 “equally.” It is important to note that this claim of Goodman’s can
only be correct if “the observation of a at t” is a statement (since Hempel’s rela-
tion is a relation between statements and statements, not between “observations”
and statements) which bears the Hempelian confirmation relation to both universal
statements H1 and H2. Which instantial, evidential statement can play this role?
Neither E1 nor E2 can, since Hempel’s theory entails neither that E1 confirms H2

nor that E2 confirms H1. However, the stronger claim E can play this role, since:

(†) E confirms H1 and E confirms H2.

That Hempel’s theory entails (†) is a consequence of (NC), (M), and the following
evidential equivalence condition, which is also a consequence of Hempel’s theory:

(EQCE) If E confirms H, then anything logically equivalent to E also confirms H.

Figure 1, below, contains a visually perspicuous proof of (†) from (NC), (M), and
(EQCE). The single arrows in the figure are confirmation relations (annotated on
the right with justifications), and the double arrows are entailment relations.

(∀x)(Ex ⊃ Gx) (∀x)[Ex ⊃ (Ox ≡ Gx)]

Ea &Ga Ea & (Oa ≡ Ga)

(Ea & (Oa ≡ Ga)) &Oa(Ea &Ga) &Oa

Ea &Oa &Ga = E

↑ ↑(NC) (NC)

⇑ ⇑
!!

(M) (M)

(EQCE)

Figure 1. A Proof of (†) from (NC), (M), and (EQCE).

Of course, the following weaker claim follows immediately from (†):

(‡) E confirms H1 if and only if E confirms H2.
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Goodman is not only attributing the qualitative confirmation claim (‡) to Hempel’s
theory. He is also attributing the following quantitative (or comparative) claim:

(?) E confirms H1 and H2 equally.

Let’s call Goodman’s argument concerning (‡) his qualitative “grue” argument, and
the argument concerning (?) his quantitative argument. There is also a third argu-
ment toward the end of the above passage, which is Goodman’s triviality argument.
I will spend most of the rest of the paper discussing the qualitative argument,
which I take to be the most important and interesting argument of the three.5 Be-
cause I am most interested how Goodman’s argument bears on probabilistic con-
ceptions of confirmation, the remainder of the paper will largely be concerned with
Bayesian confirmation theory (of various flavors). After giving careful Hempelian
and Bayesian reconstructions of Goodman’s qualitative argument in section 3, I
will return to the quantiative argument (this time, just from a Bayesian point of
view) in section 4. In section 5, I will conclude with a (more brief) discussion of
Goodman’s triviality argument, from both Hempelian and Bayesian perspectives.

3. Goodman’s Qualitative Argument

3.1. Prelude: Logic vs Epistemology in Goodman’s Qualitative Argument. Good-
man is right, of course, that (‡) is entailed by Hempel’s theory of confirmation.6

And, Goodman seems to think that (‡) is intuitively false. Specifically, he seems to
think that E confirms H1 but E does not confirm H2. As such, even this first argu-
ment (which comes before the quantitative and triviality arguments) is supposed
to show that Hempel’s theory of confirmation has some unintuitive consequences.
On reflection, however, it’s not clear precisely what is supposed to be unintuitive
about (‡). After all, Hempel’s confirmation relation is a logical relation. Is Good-
man’s worry here really a logical one? It seems to me that Goodman’s worry here is
really epistemic, rather than logical.7 That is, I take it that Goodman’s intuition here
is really that E is evidence for H1 for epistemic agents S in “grue” contexts, but E
is not evidence for H2 for epistemic agents S in “grue” contexts. Notice that this
intuition is about an epistemic relation (evidential support) in “grue” contexts, not
a logical relation (the Hempelian confirmation relation). Understood in this way,
Goodman’s argument is enthymematic — it’s missing a crucial premise to serve as

5In his initial paper on “grue” [13], Goodman’s arguments do not involve universal hypotheses
at all (i.e., in [13], Goodman’s discussion is purely instantial). I will not discuss those early purely
instantial arguments here (although, in my discussion of his later “triviality” argument in the final
section of this paper, some instantial confirmation-theoretic considerations will arise). I’m focusing
here on Goodman’s later arguments (which happen to primarily involve universal hypotheses) for
two reasons. First, Goodman is much clearer in [14] about his methodology and aims, i.e., on what
the argument is supposed to show and how it is supposed to show it (see fn. 7). Second, the purely
instantial arguments in [13] are flawed in some elementary ways that have nothing to do with where
I think the deep and important problems with Goodman’s underlying methodology and aims lie.

6As for (?), Hempel’s theory [17] does not have quantitative or comparative consequences, so it
is neutral on (?). However, it can be shown that Hempel & Oppenheim’s quantitative extension of
Hempel’s qualitative theory [19] does imply (?). I omit the details of this in order to conserve space.
But, I will analyze (?) from a Bayesian point of view (in some detail) in section 4, below.

7Goodman [14, pp. 70–72] makes it quite clear that what’s at stake here are the principles of
inductive logic (in the sense intended by Hempel). But, Goodman’s methodology for rejecting such
principles is one that appeals to epistemic intuitions. This is most clear at [14, pp. 72–73], when
Goodman discusses an example that is a prelude to “grue”. There, he says (concerning an instantial
E and a universal H) that E “does not increase the credibility of” H “and so does not confirm” H.
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a bridge principle connecting the logical relation of confirmation with the epistemic
relation of evidential support.8 Here, it is helpful to consider an analogy.

A (naïve) “relevance logician” might be tempted to offer the classical logician the
following “reductio”9 of classical deductive logic (viz., a “paradox of entailment”):

(1) For all sets of statements X and all statements p, if X is logically inconsis-
tent, then p is a logical consequence of X.

(2) If an agent S’s belief set B entails a proposition p (and S knows that B î p),
then it would be reasonable for S to infer/believe p.10

(3) Even if S knows that their belief set B is inconsistent (and, on this basis,
they also know that B î p, for any p), there are (nonetheless) some p’s such
that it is not the case that it would be reasonable for S to infer/believe p.

(4) Therefore, since (1)–(3) lead to absurdity, our initial assumption (1) must
have been false — reductio of the classical “explosion” rule (1).

Of course, a classical logician need not reject (1) in response to this argument. As
Harman’s [15] and Macfarlane’s [22] discussions suggest, the classical logician may
instead choose to reject premise (2). It is premise (2) that plays the role of bridge
principle, connecting the logical concept (entailment) and the epistemic concept (in-
ference, or reasonable belief) that feature in the relevantist’s argument. Without
such a bridge principle, there is no way to get classical logic to have the unde-
sirable “epistemic consequences” that seem to be worrying the relevantist. The
Harman-esque strategy here for responding to the relevantist is to argue that (2) is
implausible, in precisely the sort of cases that are at issue in the argument. If an
agent’s beliefs B are inconsistent (and they know this), the proper response may
be to reject some of the members of B, rather than inferring anything (further)
from B. For the remainder of the paper, I will use this Harman-esque approach as
a guiding analogy. In fact, I will argue that this strategy is in some ways even more
effective in the inductive case, for two reasons. First, in the inductive case, the wor-
ries are even more clearly epistemic in nature. And, second, there is a sense (to be
explained below) in which Goodman’s qualitative argument (against Bayesianism)
relies even more heavily on a bridge principle that the Bayesians should reject for
independent reasons. Before applying this analogy to the Bayesian case (which will
be my main focus here), I will begin with a brief discussion of what form it might

8I borrow the term “bridge principle” from John MacFarlane [22], who also takes an epistemic
stance with respect to arguments of this kind. In the case of deductive logic (the so-called “paradoxes
of entailment”), MacFarlane [22] offers epistemic reconstructions much like the ones I am using here.

9Of course, relevantists don’t like reductio arguments, but the aim of this argument is to convince
a classical logician who does accept reductio. I’ll assume this is dialectically kosher.

10Note: this is just a “straw man” bridge principle. The point of the deductive example is merely to
set-up an analogy with the inductive case. Of course, to make the deductive analysis more interesting,
we’d have to consider much more subtle bridge principles [22]. That’s not the point of this paper.
Where we will need to take greater care is in the inductive case. That’s what we aim to do, below. That
said, I should also note that in contexts where S’s beliefs are inconsistent, I doubt that any deductive
bridge principle (no matter how sophisticated) will serve the relevantist’s purposes. Specifically, I
suspect the relevantist faces a dilemma: Any bridge principle will either be false (while perhaps being
strong enough to make their reductio classically valid), or it will be too weak to make their reductio
classically valid (while perhaps being true). The naïve bridge principle (2) stated above falls under the
first horn of this dilemma. More plausible bridge principles will (I bet) not yield a valid reductio.



GOODMAN’S “NEW RIDDLE” 7

take with respect to Goodman’s qualitative argument against Hempelian confir-
mation theory. Here is an analogous (albeit somewhat sketchy) reconstruction of
Goodman’s qualitative argument against Hempelian confirmation theory:

(1′) Hempel’s theory of confirmation [specifically, property (‡)].

(2′) Some bridge principle connecting Hempelian confirmation and evidential
support. Presumably, it will say something like: if E Hempel-confirms H,
then (ceteris paribus11) E is evidence for H for S in C.

(3′) E is evidence forH1 for an agent S in a “grue” context, but E is not evidence
for H2 for an agent S in a “grue” context.

(4′) Therefore, since (1′)–(3′) lead to absurdity, our initial assumption (1′) must
have been false — reductio of Hempelian inductive logic (1′)/(‡).

Perhaps a Hempelian could try to save their confirmation theory by blaming (2′)
for the unintuitive (apparent) “epistemic consequences” brought out by Good-
man’s qualitative argument. In the end, I don’t think this Harman-esque strat-
egy is very promising for the Hempelian confirmation theorist.12 But, I won’t
dwell on the (dim) Hempelian prospects of responding to Goodman’s qualitative
argument, Harman-style. Instead, I will focus on Goodman’s qualitative argu-
ment, as reconstructed from a Bayesian point of view. As we will see shortly, all
Bayesian confirmation-theorists face a powerful (prima facie) qualitative challenge
from Goodman, but one that can be parried (or so I will argue) Harman-style.

3.2. The Bayesian Conception of Confirmation — Broadly Construed. Like Nicod,
contemporary Bayesians explicate confirmation in terms of probabilistic relevance.
But, unlike Nicod, most contemporary Bayesians (a notable exception being Patrick
Maher [23]) don’t use inductive (or logical) probabilities in their explication of con-
firmation. Rather, contemporary Bayesians tend to use credences or epistemically
rational degrees of belief, which are assumed to obey the probability calculus. As it
turns out, this difference makes no difference for Goodman’s qualitative argument
(properly reconstructed), since the qualitative argument will go through for any
probability function whatsoever (independently of its origin or interpretation). As
such, for the present discussion (of the qualitative argument13), I will work with the
following very broad characterization of Bayesian confirmation theory, which will
apply to basically any approach that uses probabilistic relevance of any kind (this
includes just about every plausible flavor that’s been on the market since Keynes).

E confirms H, relative to K iff Pr(H | E & K) > Pr(H | K), where Pr(· | ·) is
some “confirmation-theory suitable” conditional probability function.

Notice how the Bayesian confirmation relation is explicitly three-place (at least,
once a “suitable” Pr is fixed), whereas Hempel’s was two-place. In fact, Hempel’s

11Depending on one’s epistemological scruples, one will require various ceteris paribus conditions
to be satisfied here. For instance, one might require that S knows that E Hempel-confirms H in C,
and/or that S possesses E as evidence in C, etc. I will say more about such ceteris paribus conditions
on the Bayesian side, below. This sketchy Hempelian story is just a prelude to the Bayesian analysis.

12This is because (a) Hempel does not even seem to realize he needs a bridge principle in order
to apply his confirmation theory, and (as a result) there is little indication as to how such a prin-
ciple would or should have been formulated, and (b) Hempel’s theory entails (M), which makes the
formulation of any remotely plausible bridge principles quite difficult (by Hempel’s own lights [6]).

13As we’ll see below, even the quantitative argument is less sensitive to the choice of confirmation-
theoretic probability function Pr than one might have thought (or than some seem to think).
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relation can be understood as three-place as well, but it would not make a substan-
tive difference to his theory. This is because Hempel’s theory (which is based on
entailment properties of E) has no way to distinguish the following two types [6]:

• Conditional Confirmation: E confirms H, relative to K.
• Conjunctive, Unconditional Confirmation: E &K confirms H (relative to >).

Bayesian confirmation theory, which — unlike its Hempelian predecessor — is non-
monotonic in both E and K (more on this below), treats these two types of confirma-
tion claims in radically different ways. This is why its confirmation relation must
be defined as explicitly three-place. Before we give a precise, Bayesian reconstruc-
tion of Goodman’s qualitative argument, it’s worthwhile to reconsider the crucial
(controversial) Hempelian conditions (NC) and (M), from a Bayesian perspective.

3.3. The Hempelian Properties (NC) and (M) from a Bayesian Point of View. In a
Bayesian framework, neither (NC) nor (M) is generally true. Let’s focus on (NC) first.
I.J. Good [11] was the first to describe background corpora K relative to which (e.g.)
Ea &Ga does not confirm (∀x)(Ex ⊃ Gx). Here’s a Good-style example:

Let the background corpus K be: Exactly one of the following two
hypotheses is true: (H1) there are 100 green emeralds, no non-
green emeralds, and 1 million other things in the universe [viz.,
(∀x)(Ex ⊃ Gx)], or (∼H1) there are 1,000 green emeralds, 1 blue
emerald, and 1 million other things in the universe. And, let E1 Ö
Ea &Ga, where a is an object randomly sampled from universe.

In such a case (assuming a standard random sampling model Pr):

Pr(E1 |H1 &K) = 100
1000100

<
1000

1001001
= Pr(E1 | ∼H1 &K)

So, in such a context, the “positive instance” Ea&Ga actually disconfirms
the corresponding universal generalization (∀x)(Ex ⊃ Gx).

This seems to show that (NC) is false, from a Bayesian point of view. But, in
Hempel’s response to Good’s paper [18], he explains that (NC) was always meant to
be interpreted in a way that would rule-out such corpora K as illegitimate. Specifi-
cally, Hempel [18] suggests that the proper understanding of (NC) is as follows:

(NC>) For all constants x and for all (independent) predicate expressions φ, ψ:
[φx &ψx\ confirms [(∀y)(φy ⊃ ψy)\ relative to a priori corpus K>, and
[φx &∼ψx\ disconfirms [(∀y)(φy ⊃ ψy)\, relative to K>.

The idea behind (NC>) is that the salient confirmation relations here are supposed
to be relations between evidence and hypothesis in the absence of any other (em-
pirical) evidence. And, since Good’s example presupposes a substantial amount of
other (background) empirical evidence, this is supposed to undermine Good’s ex-
ample as a counterexample to (NC). I have discussed this dialectic between Hempel
and Good elsewhere [6], and I won’t dwell on it too much here. To make a long story
short, Hempel’s (NC>)-challenge to Good has recently been met by Patrick Maher,
who shows [23] that even (NC>) is not generally true from a Bayesian perspec-
tive. Maher’s counterexample to (NC>), which makes use of Carnapian inductive
probabilities, is similar in structure to an example described by Good [12] in his
original response to Hempel. The details of this dispute about (NC) and (NC>) are
not important for our present purposes. What’s important for us is that (NC) is
not sacrosanct from a Bayesian point of view. Specifically, the two crucial Bayesian
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morals here are: (i) whether a “positive instance” confirms a universal generaliza-
tion will depend sensitively on the background corpus relative to which it is taken,
and (ii) “positive instances” need not confirm universal generalizations even rela-
tive to “tautological” or “a priori” background corpora. I will return to these crucial
morals shortly, when I discuss Goodman’s claim (‡). But, first, I will briefly discuss
the (im)plausibility of (M), from a Bayesian point of view.

The Hempelian monotonicity property (M) is even more suspect than (NC). In-
deed, Hempel himself had some compelling intuitions about confirmation that ran
counter to (M)! In his original resolution (or dissolution) of the raven paradox [17]
(and in his response to Good [18], discussed above), Hempel appeals to an intu-
itive feature of confirmation (or inductive support) that directly contradicts (M). I
have discussed this inconsistency in Hempel’s writings on the raven paradox in
detail elsewhere [6]. The salient point for our present purposes is that there are
reasons to reject (M) that are independent of Goodman’s “New Riddle” — reasons
that Hempel himself would have seen as compelling. Moreover, as in the case of
(NC), there are also compelling Bayesian reasons for rejecting (M). Bayesian coun-
terexamples to (M) are quite easy to come by. And, to my mind, counterexamples
to (M) are much simpler and more compelling than counterexamples to instantial
principles, such as (NC). Here’s one: let Bx Ö x is a black card, let Ax Ö x is the ace
of spades, and let Jx Ö x is the jack of clubs. Assuming (K) that we sample a card
a at random from a standard deck (thus, we take Pr to be the standard probability
function for such a model), we have the following probabilistic facts:

• Ba confirms Aa, relative to K, since Pr(Aa |Ba&K) = 1
26 >

1
52 = Pr(Aa |K).

• Ba & Ja disconfirms (indeed, refutes!) Aa, relative to K, since:

Pr(Aa | Ba & Ja &K) = 0 <
1
52
= Pr(Aa |K)

It seems pretty clear (and nowadays uncontroversial) that (M) is an undesirable
property for a confirmation relation to have (and Hempel himself was sensitive to
this in his discussions of the raven paradox [6]). Moreover, (M) is highly implausible
for reasons that seem to be independent of Goodman’s “New Riddle”.

In the next section, I will discuss Goodman’s central qualitative confirmation-
theoretic claim (‡), from a Bayesian point of view.

3.4. Goodman’s Claim (‡) from a Bayesian Point of View.

3.4.1. What are “Positive Instances” Anyway? Before we start thinking about Good-
man’s (‡) from a Bayesian perspective, it is useful to re-think the notion of “positive
instance” that has been at work (historically) in this instantial confirmation liter-
ature. So far, we have been talking about conjunctions [φa & ψa\ as “positive
instances” of universal generalizations [(∀y)(φy ⊃ ψy)\. But, from a logical
point of view, instances of [(∀y)(φy ⊃ ψy)\ are conditionals [φa ⊃ ψa\. So,
let’s add the two salient conditional claims to our stock of singular statements:

(E3) Ea ⊃ Ga. [either a is not an emerald or a is green]

(E4) Ea ⊃ (Oa ≡ Ga). [either a is not an emerald or a is grue]

From a logical point of view, then, it is E3 not E1 that is an instance of H1, and it is
E4 not E2 that is an instance of H2. Interestingly, Hempel’s theory also entails that
E3 confirms H1 and that E4 confirms H2. So, from a Hempelian point of view, both
conjunctions [φa &ψa\ and conditionals [φa ⊃ ψa\ are confirming instances of
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universal generalizations [(∀y)(φy ⊃ ψy)\. From a Bayesian point of view, how-
ever, only the conditionals are guaranteed to be confirming instances of universal
generalizations, relative to all background corpora K and all (regular14) probability
functions Pr. This is because (i) universal claims entail their conditional-instances,
but they do not entail their “conjunction-instances”, and (ii) if H entails E, then H
and E will be positively correlated under any (regular) probability function. This
explains why it is possible to generate Good-style counterexamples to (NC). If by
“positive instance” the historical commentators on confirmation theory had meant
conditional statements of the form [φa ⊃ ψa\, then no Bayesian counterexamples
to (NC) would have been (logically) possible. This shows just how important (and
strong!) assumption (M) is. Assumption (M) is so strong that the conjunction of (M)
and (NC) is equivalent to the conjunction of (M) and the following, innocuous (from
a Bayesian stance) instantial principle of confirmational relevance:

(NC⊃) For all constants x and for all (independent) predicate expressions φ, ψ:
[φx ⊃ ψx\ confirms [(∀y)(φy ⊃ ψy)\, and
[φx &∼ψx\ disconfirms [(∀y)(φy ⊃ ψy)\.15

I suspect that some of the perplexity raised by Goodman’s discussion arises out of
unclarity about precisely what a “positive instance” is. And, I think this unclarity in
the writings of Hempel and Goodman is caused mainly by their implicit acceptance
of evidential montonicity (M), which obscures the distinction between conditional-
instances vs conjunctive-instances of universal statements.16 Be that as it may,
let’s continue on with our (Bayesian) scrutiny of Goodman’s claim (‡).

3.4.2. Bayesian Scrutiny of Goodman’s Claim (‡). Goodman’s claim (‡) says that E
confirms H1 iff E confirms H2. While it is true that Hempel’s theory entails (‡), it
is not true that Bayesian confirmation theory — broadly construed — entails (‡).
In fact, using a technique similar to I.J. Good’s [11], we can describe background
corpora K (and probability functions Pr) relative to which E confirms H1, but E
disconfirms H2. Here is one such Good-style, Bayesian counter-example to (‡):

Let the background corpus K be: Exactly one of the following two
hypotheses is true: (H1) there are 1000 green emeralds 900 of
which have been examined before t, no non-green emeralds, and
1 million other things in the universe [viz., (∀x)(Ex ⊃ Gx)], or
(H2) there are 100 green emeralds that have been examined before
t, no green emeralds that have not been examined before t, 900

14Here, I am assuming that all evidential and hypothetical statements (all E’s and H’s) receive
non-extreme unconditional probability on all salient probability functions (a reasonable assumption
here). Hereafter, I will assume that we’re talking about regular probability functions in this sense.
The importance of this regularity assumption will become clear when we get to “old evidence”, below.

15Notice how Nicod’s three principles are consequences of Bayesian confirmation theory, if “pos-
itive instance” is understood in the conditional sense (as opposed to the conjunction sense). This
provides a much more charitable reading of Nicod (as a Bayesian) than Hempel’s reconstruction of
Nicod (as a deductivist). Moreover, these considerations provide further reason to worry about (M).

16My conjecture is that this insidious adherence to (M) is a vestige of Hempel’s uncharitable
“objectual” reconstruction (NC0) of Nicod’s instantial confirmation principle. If one thinks of objects
or observations (rather than statements) as doing the confirming, one can easily be led into thinking
that (M) makes sense. For instance, one might start saying things like “observations of green emeralds
are observations of emeralds, therefore anything confirmed by the observation that a is an emerald
is also confirmed by the observation that a is a green emerald.” Such (monotonic) inferences are
(intuitively) not cogent in general. Fallacies like this underlie many errors in confirmation theory.
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non-green emeralds that have not been examined before t, and 1
million other things in the universe (viz., (∀x)[Ex ⊃ (Ox ≡ Gx)]).
Let E Ö Ea&Oa&Ga, for a randomly sampled from the universe.17

In such a case (assuming a suitable sampling model Pr — see fn. 17):

Pr(E |H1 &K) = 900
1001000

>
100

1001000
= Pr(E |H2 &K)

Since H1 and H2 are mutually exclusive and exhaustive (given K), it
follows that E confirms H1, but disconfirms H2 (relative to K).

Of course, all this shows is that there is a possible background corpus K/probability
function Pr relative to which E confirms H1 and disconfirms H2. That is enough to
show that (unlike Hempel’s theory) Bayesian confirmation theory — broadly con-
strued — does not entail (‡). But, it is also true that Bayesian confirmation theory
is consistent with (‡). As we will see shortly, there are also corpora K/probability
functions Pr relative to which E does confirm H1 if and only if it confirms H2.

At this point in the dialectic, a Hempelian might implore the Bayesian (as Hempel
[18] did to Good [11], in the context of the raven paradox) to determine whether or
not (‡) is true relative to a priori background corpus K> and “a priori” probability
function Pr>. But, only those Bayesians (like Patrick Maher [23]) who believe in
inductive probabilities (as Nicod did) are likely to take such a challenge seriously.
Most modern Bayesians do not have a theory of “confirmation relative to a priori
background” to appeal to here.18 But, historically — i.e., at the time Hempel and
Goodman were thinking about “grue” — almost everyone who used probability to
explicate the concept of confirmation used inductive or logical probability (as op-
posed to subjective or epistemic probability) for this explication. So, it is important
to try to work out what the Bayesian confirmation relations look like, when induc-
tive probabilities are used in “impoverished” Goodmanian contexts (i.e., assuming a
priori background K>). Interestingly, like (NC>), (‡) is not a consequence of (later19

Carnapian) confirmation theories based on salient accounts of “inductive” or “log-
ical” probability. By emulating the structure of my Good-style counterexample to
(‡) above in later Carnapian models (with three families of predicates), it can be
shown that (‡) is not a consequence even of a “Carnapian” theory of confirmation,

17Here, to make things concrete, assume the following. For each object in the universe, there is a
slip of paper on which is inscribed a true description of the object in terms of whether it exemplifies
the properties E, O, and G. Imagine an urn containing all the slips. Assume a standard random
sampling model Pr of the process, and suppose the slip that reads “Ea &Oa &Ga” is thus sampled.

18Although Timothy Williamson does propose something like this in his [29, ch. 9]. See below.
19The early Carnapian systems of [2] and [3] do entail (NC>) and (‡). However, the later Carnapian

systems (e.g., those discussed in [23] and [24]) do not entail (NC>) or (‡). Maher’s [23] counterexam-
ple shows that (NC>) can fail in later Carnapian systems. And, examples similar to my Good-style
counterexample to (‡) above can be emulated in later (e.g., [24]) Carnapian systems (details omitted).
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based on “inductive” or “logical” probabilities.20 In this sense, Goodman’s argu-
ment seems to be even weaker than the relevantist’s (even if we replace the “straw
man” bridge principle (2) with a real contender), since it will have to lean more
heavily on its “bridge principle”. In any event, as we’ll see next, even if (‡) were a
consequence of such a theory, Goodman’s qualitative argument would remain un-
sound from a “logic-Bayesian” (or any other Bayesian) point of view, because it (still)
rests on an independently implausible bridge principle. That brings us (finally) to
our (Harman-style) Bayesian reconstruction of Goodman’s qualitative argument.

3.5. A Proper Bayesian Reconstruction of Goodman’s Qualitative Argument. Be-
fore we give a precise reconstruction of Goodman’s qualitative argument against
Bayesian confirmation theory (in “reductio” form, as above), we need one more in-
gredient — a bridge principle to connect the formal/logical concept of confirmation
and the epistemic concept of evidential support. The requisite bridge principle can
be found in Carnap’s work on applied inductive logic. Carnap was an advocate of
what we might call logic-Bayesianism. Like Hempel, Carnap thought that confir-
mation (now, understood as probabilistic relevance) was a logical relation between
statements. Unlike Hempel, Carnap realized that in order to apply confirmation in
actual epistemic contexts C, we need a bridge principle that tells us when confir-
matory statements constitute evidence for hypotheses (for agents S in C). Carnap
[2] discusses several bridge principles of this kind. The most well-known of these
(and the one needed for Goodman’s argument) is stated by Carnap as follows:

The Requirement of Total Evidence. In the application of inductive logic
to a given knowledge situation, the total evidence available must be taken
as a basis for determining the degree of confirmation.

Most modern Bayesians have (usually only implicitly, and without argument) ac-
cepted the following precisification of Carnap’s requirement of total evidence:

(RTE) E evidentially supports H for an epistemic agent S in a context C if and only
if E confirms H, relative to K, where K is S’s total evidence21 in C.

This principle (RTE) plays a crucial role in Goodman’s qualitative argument against
Bayesian confirmation theory, which we can now carefully reconstruct, as follows:

(i) E confirmsH, relative to K iff Pr(H|E&K) > Pr(H|K), for some “suitable” Pr.
[The “reductio” assumption: the formal Bayesian account of confirmation.]

(ii) E evidentially supports H for an epistemic agent S in a context C if and only
if E confirms H, relative to K, where K is S’s total evidence in C. [(RTE)]

(iii) Agents S in Goodmanian “grue” contexts CG have Oa as part of their total
evidence in CG . [i.e., S’s total evidence in CG (K) entails Oa.]

20This is a subtle issue, since Maher [24] argues that all of the existing Carnapian theories of
inductive probability for three families of predicates (viz., for multiple properties) are inadequate.
As such, Maher probably wouldn’t endorse such Carnapian counterexamples to (‡). However, the
existence of these Carnapian counterexamples to (‡) seems to have little or nothing to do with the
reasons why Maher rejects the latest Carnapian theories of inductive probability for multiple prop-
erties. Moreover, there are intuitive analogues of these formal Carnapian counterexamples to (‡) [for
instance, the Good-style counterexample to (‡) that I describe above]. I think these considerations
have the effect of shifting the burden of proof back to the Hempelian/Goodmanian defender of (‡).

21I will not offer an analysis of “S’s total evidence in C” here. One might think of this as S’s
background knowledge in C, where this is distinct from the evidence S possesses in C. Or, one might
follow Williamson [29] and identify an agent’s knowledge in C with the evidence they possess in C.
I’ll remain neutral on this question here, but I’ll stick with Carnap’s locution (for historical reasons).
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(iv) If K î Oa, then—ceteris paribus22—E confirms H1 relative to K iff E con-
firms H2 relative to K, for any Pr-function. [i.e., if K î Oa, then (‡).]

(v) Therefore, E evidentially supports H1 for S in CG if and only if E eviden-
tially supports H2 for S in CG .

(vi) E evidentially supports H1 for S in CG , but E does not evidentially support
H2 for S in CG .

• Therefore, since (i)–(vi) lead to absurdity, our assumption (i) must be false
— reductio of Bayesian confirmation theory (broadly construed)?

This argument is valid. So, let’s examine each of its premises, working backward
from (vi) to (ii). Premise (vi) is based on Goodman’s epistemic intuition that, in
“Grue” contexts, E evidentially supports H1 but not H2. I will just grant this as-
sumption here (although, I think it could be questioned). Premise (v) follows log-
ically from premises (i)–(iv). Premise (iv) is a theorem of the probability calculus.
Premise (iii) is an assumption about the agent’s background knowledge that’s im-
plicit in Goodman’s set-up. Premise (ii) is (RTE). It’s the bridge principle, akin to (2)
in the relevantists’ “reductio”. This is the premise on which I will focus.

Intuitively, some precisification of Carnap’s requirement of total evidence should
be correct. The question at hand, however, is whether (RTE) is correct.23 While
many Bayesians have implicitly assumed (RTE), there are good reasons to think it
must be rejected by Bayesian confirmation-theorists — reasons that are indepen-
dent of “grue” considerations. There are various reasons for Bayesian confirmation-
theorists to reject (RTE). I will only discuss what I take to be the most important
of these here. As Tim Williamson [29, ch. 9] explicitly points out, (RTE) must be
rejected by Bayesian confirmation theorists because of the problem of old evidence
[10, 5]. This (now infamous) problem arises whenever E is already part of (entailed
by) S’s total evidence in C. In such a case, we will have Pr(E | K) = 1, for any Pr.
As a result, E will be powerless to confirm any H, relative to K — for any flavor
of Bayesian confirmation theory. Thus, all Bayesian confirmation theorists must
reject (RTE), on pain of having to say something absurd: that nothing that is part
of S’s total evidence can evidentially support any H for S. From this perspective, it
can now be seen that Goodman’s (qualitative) “grue” problem and the old evidence
problem are related in the following way. In both “grue” and old-evidence contexts
C, the agent’s total evidence K is such that some undesirable evidential support
relation is entailed (assuming only logic and probability theory) by (RTE).24 Various

22 Strictly speaking, premise (iv) also requires the following additional ceteris paribus condition:
Pr(Ea | H1 & K) = Pr(Ea | H2 & K). This assumption is standardly made by Bayesians who analyze
“grue” [27]. I will assume it also. I am focusing on the role that K î Oa plays in the argument, since
I think that’s where the action is. Some Bayesians assume something stronger: K î Ea & Oa [27]. I
resist making this additional assumption here, since (a) it forces (†) to be true as well, and (b) it also
makes Goodman’s intuition (vi) seem far less intuitive (indeed, I would say it makes (vi) seem false).

23It is important to note that Carnap only endorsed (RTE) in connection with what he called
“confirmation as firmness” — a different conception of confirmation, according to which E confirms
H, relative to K iff Pr(H | E & K) > r , for some threshold value r . Carnap never explicitly endorsed
(RTE) for “confirmation as increase in firmness” (his name for the probabilistic relevance conception).
Indeed, Carnap never explicitly endorsed any precise bridge principle for the relevance conception.
However, he did say some things that naturally suggest a different principle. I discuss this below.

24On the surface, it might seem as if old evidence cases and grue cases constitute counterexam-
ples to different directions of (RTE). After all, old evidence cases are normally described as cases of
support without confirmation, but grue cases are normally described (assuming Goodman is right,
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ways of responding to the old evidence problem have been floated in the literature
[5]. And, one might hope that some of these responses to old evidence could be ap-
plied to “grue”. Unfortunately, most of the existing responses to the old evidence
problem will not help with “grue”. Something more radical is needed. What we
need is a reformulation of (RTE) that avoids “grue”, old evidence, and other related
problems in one fell swoop. One approach that is suggested by the work of Carnap
[2, p. 472] and Williamson [29, ch. 9] is to radically reformulate the (RTE), and to
revert to a priori background/probability function K>/Pr> in the definition of con-
firmation itself. This would bring confirmation theory back to something more like
the original (two-place) ideas that Nicod and Hempel had. Carnap called this sort
of confirmation relation initial confirmation, which I will state as follows.25

E initially-confirms H iff Pr>(H | E & K>) > Pr>(H | K>), where Pr>(· | ·) is
some “a priori” conditional probability function, and K> is a priori.

Williamson suggests the following radical reformulation of (RTE) to go along with
(his flavor of26) the Carnapian initial-confirmation relation:

(RTE>) E evidentially supports H for S in C iff S possesses E (as evidence) in C,
and E initially-confirms H.

Richard Fumerton [9] discusses a similar approach, but he (being an epistemo-
logical internalist, unlike Williamson) also requires that S have some “epistemic
access” to E, and to the fact that E initially-confirms H. These are fascinating re-
cent developments in formal epistemology, but (owing to considerations of space)
I won’t be able to dwell on them further here.

Another approach (similar to some subjective Bayesian responses to the old ev-
idence problem) would be to maintain the original Bayesian explication of confir-
mation (as inherently three-place, where the “suitable” probability function is just
the agent’s credence function at the time they are assessing the evidential support
relations in question), and non-radically reformulate (RTE) so that it doesn’t rela-
tivize to all of the agent’s background knowledge K in C. The tricky thing about
this sort of response is that it is very difficult to specify a proper part K′ ï K of S’s
total evidence in C that can avoid all the varieties of confirmational indistinguisha-
bility that one finds in the literature. One can think of all of these approaches as
groping toward something like the following (seemingly useless) “bridge principle”:

(RTE′) E evidentially supports H for S in C iff E confirms H, relative to K′, where
K′ is the logically strongest statement such that: (a) S’s total evidence in C
entails K′ [K î K′], and (b) no undesirable evidential support relations are
derivable from (RTE′) using logic and probability theory alone.

of course) as cases of confirmation without support. In fact, however, this apparent asymmetry is
merely apparent, because the grue case can equally legitimately be described (assuming Goodman is
right) as a case in which ∼H2 is supported (by E, for S, in CG ) but not confirmed (by E, relative to K).

25I am writing both Pr> and K> here to emphasize that nothing a posteriori (other than E) is
allowed to be conditionalized on, when we’re using Pr> for confirmation-theoretic purposes. Here, I
am following Carnap, who used the symbol “t” rather than “K>” for similar purposes.

26It may be somewhat unfair to saddle Williamson with a Carnapian view of the “suitable” proba-
bility function. Perhaps Williamson’s “evidential probability function” is not exactly the sort of thing
Carnap had in mind (e.g., it may be more dynamic and have a slightly more psychologistic flavor). In
any event, I think it’s more appropriate to lump Williamson in with this sort of approach, as opposed
to the sort of approach to old-evidence advocated by subjective Bayesians (discussed below).
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The project of formulating a useful rendition of (RTE′) is one of the “holy grails”
of contemporary subjective Bayesian confirmation theory. I’m not optimistic about
the prospects for such an (RTE′). I think something more radical is needed. How-
ever, I also think that the Carnapian “initial confirmation” approach is unlikely to
succeed, because it is unlikely that any adequate theory of “logical” or “inductive”
probability is forthcoming. I suspect that we need a different conception of in-
ductive logic altogether. Once inductive logic is properly reformulated, a sensible
alternative to (RTE), (RTE>) and (RTE′) may be possible. I have some ideas about
how to begin such a project, but they are beyond the scope of this paper.27

In the next section, I will examine Goodman’s quantitative argument [for (?)],
from a Bayesian perspective.

4. Goodman’s Quantitative Argument

4.1. Goodman’s “Equal Confirmation” Claim. Goodman claims that formal theo-
ries of confirmation are stuck not only with (‡), but also with the implication that
E confirms H1 and H2 “equally.” In this section, I will simply grant (arguendo)
that (‡) is true, and I will focus on the (independent) plausibility of the “equally”
claim. I will interpret Goodman’s “equally” claim as a comparative or relational
confirmation claim. Specifically, I will read this “equal” claim as follows:

(?) c(H1,E | K) = c(H2,E | K), where c(H, E | K) is some Bayesian relevance
measure of the degree to which E confirmsH, relative to K (c will be defined
in terms of some “suitable” confirmation-theoretic probability function Pr).

Of course, what’s really at issue here (as in the qualitative case above) is whether

(C) E evidentially supports H1 and H2 equally strongly, for S in CG .

As in the qualitative case, (C) cannot be established by confirmation theory alone.
We also need a quantitative bridge principle, connecting quantitative confirmation,
and quantitative evidential support. Presumably, the naïve principle would be:

(RTEc) The degree to which E evidentially supports H for S in C is c(H, E | K),
where c is some (appropriate) relevance measure of degree of confirmation
(defined in terms of a “suitable” confirmation-theoretic probability function
Pr), and K is S’s total evidence in C.

As above, it is only if we assume (RTEc) that (C) can be established. Moreover,
whether (C) can be so established will also depend on which measure c is used.

As it turns out, there are various Bayesian relevance measures c of degree of
confirmation, and they tend to disagree radically on comparative (or relational)
claims of the form c(H1,E | K) ≥ c(H2,E | K). I have discussed this disagreement
in detail elsewhere [7]. Rather than attempting a general survey here, I will just
say something about how the two most popular Bayesian relevance measures (for
comparisons of this kind) behave with respect to Goodman’s “New Riddle.” The
first measure I will discuss is the ratio measure r(H, E | K) = Pr(H|E&K)

Pr(H|K) . When
it comes to relational confirmation claims of this kind, the behavior of r is very
simple, because r satisfies the so-called “Law of Likelihood” (see [7] for discussion):

(LL) c(H1, E |K) ≥ c(H2, E |K) iff Pr(E |H1 &K) ≥ Pr(E |H2 &K).

27In my [8], I sketch some preliminary ideas about how one might proceed here. I plan a much
more extensive treatment of my preferred reformulation of inductive logic in a future monograph.
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For this reason, I will refer to the r -perspective on (C) as the Likelihoodist perspec-
tive. From a Likelihoodist perspective, the question about Goodman’s (?) reduces
to a question about the likelihoods Pr(E | H1 & K) and Pr(E | H2 & K). And, once
we assume (RTEc), (C) is guaranteed — from a Likelihoodist perspective — by the
assumption that S’s total evidence in C entails Oa. This was premise (iii) in the
qualitative argument, which I have already granted to Goodman as part of the set-
up of his example. It is easy to show that (RTEc), (LL), and (iii) jointly entail (C). This
is because, if K entails Oa, then (ceteris paribus28) Pr(E |H1 &K) = Pr(E |H2 &K).
So, Likelihoodists who adopt a naïve bridge principle such as (RTEc) are stuck with
Goodman’s quantitative claim (C). Indeed, this is just the position that Sober [27]
— a Likelihoodist who also endorses (RTEc) — finds himself in. At this point, I
could rehearse the various independent reasons (e.g., the old evidence problem)
why Bayesians should reject naïve bridge principles such as (RTEc). But, since I
have already covered that issue in the qualitative case, I won’t (in the interest of
space) bother going over it again here (although, there are some other issues that
arise here, which are somewhat more subtle than the qualitative case). Instead, I
will simply assume (for the rest of this section) that (RTEc) is adopted, and I will
focus on the measure-sensitivity of the above derivation of (C), given (RTEc).

Interestingly, not all Bayesian confirmation theorists are Likelihoodists. As a
result, even if one accepts (RTEc) and (iii), one need not accept (C). Moreover, as I
have argued elsewhere [7], Likelihoodism (LL) has some undesirable consequences.
For instance, (LL) is incompatible with the following condition, which seems to me
to be almost constitutive of the “provides better evidence for” (or “favors”) relation:

(F) If E provides conclusive evidential support for H1 for S in C, but E provides
non-conclusive evidential support for H2 for S in C, then E favors H1 over
H2 for S in C.29

I discuss this and other reasons for worrying about (LL) at length in my [7]. To make
a long story short, it turns out that, among all the historical Bayesian accounts
of the favoring relation, only one is compatible with (F), assuming (RTEc). This
leading rival to Likelihoodism is based on the likelihood-ratio measure l(H, E |K) =
Pr(E|H&K)

Pr(E|∼H&K) , rather than the measure r . Of course, the likelihood-ratio approach is
non-Likelihoodist, because it does not satisfy the “Law of Likelihood” (LL). But, the
l-based approach to confirmation satisfies the following, closely related condition:

(LLF) If Pr(E |H1 &K) ≥ Pr(E |H2 &K) and Pr(E |∼H1 &K) < Pr(E |∼H2 &K), then
c(H1, E |K) > c(H2, E |K).30

What the l-based approach to confirmation reveals, therefore, is that [assuming
(RTEc)] favoring relations depend not only on the likelihoods of the hypotheses
being contrasted Pr(E |H1 &K) and Pr(E |H2 &K), but also on the likelihoods of the
negations of the hypotheses being contrasted Pr(E |∼H1 &K) and Pr(E |∼H2 &K).

28As I explained above (fn. 22), this (strictly speaking) also requires the ceteris paribus condition:
Pr(Ea |H1 &K) = Pr(Ea |H2 &K), which is assumed by Bayesians who analyze “grue”. Many Bayesians
assume something stronger: K î Ea &Oa, which entails Pr(E |H1 &K) = Pr(E |H2 &K) = 1 [27].

29In the background, here, I am assuming that if E entails H (and S knows this in C, and S
possesses E in C, etc.), then E provides conclusive evidence for H for S in C. See [7] for discussion. In
light of my present “Harmanian attitude,” I need to be very careful here about this sort of principle
(which looks like a bridge principle Harman would reject!). For the purposes of the present discussion,
let’s assume that we’re not talking about contexts in which “paradox of entailment” type issues arise.

30Note: this is only a sufficient condition for favoring [assuming (RTEc)], not a necessary condition.
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I will call this second set of likelihoods catch-alls. Because of the dependence of
favoring relations on catch-alls, a proper Bayesian analysis of Goodman’s claim (C)
requires not only checking to see if Pr(E |H1 &K) = Pr(E |H2 &K), but also looking
at the relationship between the catch-alls Pr(E | ∼H1 & K) and Pr(E | ∼H2 & K) in
Goodmanian contexts. This means we must think about our negations:

(∼H1) Some emeralds are non-green.

(∼H2) Some emeralds are non-grue. That is, some emeralds are either (i) exam-
ined prior to t and non-green or (ii) unexamined prior to t and green.

What if we could somehow motivate the claim that Pr(E|∼H1&K) < Pr(E|∼H2&K),
for a “suitable” confirmation-theoretic probability function Pr? Then, so long as
we’re not Likelihoodists, we could argue that — even if Goodman’s qualitative
claim (†) is granted — E favors the green hypothesis over the “grue” hypothesis.
While this wouldn’t undermine the main thrust of Goodman’s argument (which is
qualitative), it might be seen to “soften the impact” of the paradox by showing that
E provides better evidence for H1 than it does for H2 in “grue” contexts. At this
point in the dialectic, those sympathetic to Goodman’s quantitative argument [27]
will be quick to point out that the only way we can have both

• Pr(E |H1 &K) = Pr(E |H2 &K), and
• Pr(E | ∼H1 &K) < Pr(E | ∼H2 &K)

is if Pr(H1 | K) > Pr(H2 | K) is also true. Indeed, this is just a theorem of the
probability calculus, and so it holds for all Pr. What this means is that any such
non-Likelihoodist attempt to deny Goodman’s quantitative claim (in the “intuitive”
direction) will boil-down to a claim that H1 is more probable “a priori” (prior to
E) than H2. As Sober [27] explains, this does not seem like a very satisfying way
of denying Goodman’s quantitative claim (C). On such a story, the evidence E is
not playing any real role in the differential confirmation that E provides for H1

vs H2. What we seem to have here is simply some sort of “a priori” prejudice
against “grue” hypotheses enshrined in Bayesian formalism.31 This wouldn’t be
much different (in spirit) than Goodman’s own “entrenchment” line on the paradox,
and it wouldn’t be very illuminating either.

Having said all that, I should remind you that I have already argued that Bayesians
should reject the (RTE) — in both its qualitative and quantitative forms32 — for
reasons that are independent of “grue”. As such, while the above discussion of
the quantitative argument has some interesting wrinkles, I don’t think it takes any-
thing away from the diagnosis/resolution I’ve already offered Bayesians above. In
the next section, I will briefly discuss Goodman’s “triviality” argument — the third
and last argument implicit in that infamous passage from Fact, Fiction & Forecast.

5. Goodman’s “Triviality” Argument

Goodman does not stop with the two confirmation-theoretic claims (†) and (?).
He goes on (in the passage quoted above) to claim that, in the context of Hempel’s

31In this sense, Goodman’s quantitative problem is far more difficult for the Bayesian to solve
than the quantitative versions of the ravens paradox. See [6] for a novel quantiative approach to the
ravens paradox that is much more promising than anything one can say (quantitatively) about “grue”.

32If one rejects (RTE), then one must also reject (RTEc). After all, the qualitative (positive) confir-
mation relation just corresponds to some inequality constraint on c. Thus, (RTEc) entails (RTE).
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theory of confirmation, (†) leads to the absurd result that “anything confirms any-
thing”. The most charitable rendition of Goodman’s “triviality argument” that I
have been able to come up with has the following (high-level) form:

¬ E confirms both H1 and H2. [i.e., (†)]

 ∴ E confirms both Gb and Bb. [where b = “the first emerald examined
after t” (assuming one exists), and G and B are incompatible properties.]

® ∴ E confirms anything.

¯ ∴ Mutatis mutandis, anything confirms anything.

First, I will analyze this argument from a Hempelian point of view, and then from a
Bayesian point of view. From a Hempelian point of view, premise (¬) must be true,
since it is a logical consequence of Hempel’s theory. Having established that E
confirms both that all emeralds are green and that all emeralds are grue, Goodman
says that this implies that E confirms both that “the first emerald examined after t
will be green” and that “the first emerald examined after t will be blue”. Let’s just
assume (arguendo) that there will be a first emerald observed after t (and that it
was not observed before t). Let’s call this emerald b.33 So, Goodman’s claim seems
to be that it is a consequence of Hempel’s theory that () E confirms both that Gb
and that Bb, where G and B are incompatible properties (say, Bx is equivalent to
∼Gx&φx, for some φ). This step from (¬) to () cannot be correct, however, since
(as Hempel proves in [16]) Hempel’s theory satisfies the consistency condition:

(CC) If E confirms H1 and E confirms H2, then H1 and H2 are logically consistent
(provided only that E is self-consistent).

So, if isn’t true that Hempel’s theory implies that E confirms both Gb and Bb
(where these are incompatible statements about an individual), then what is true?
One “nearby” truth is that Hempel’s theory entails E confirms both of the condi-
tional claims ∼Ob ⊃ Gb and ∼Ob ⊃ Bb. Indeed, Hempel’s theory even entails that
E confirms (∀x)Ox!34 And, while it might be tempting to infer from this that the
conjunction E & ∼Ob must therefore confirm both Gb and Bb, even this is not a

33If we stick with a definite description “the first emerald examined after t” rather than a constant
“b”, then this just makes Goodman’s “triviality argument” worse. This is because “the first emerald
examined after t is green” and “the first emerald examined after t is non-green” aren’t even mutually
exclusive (much less logical opposites). And, some sort of logical conflict is assumed here. See below.

34It is surely an odd consequence of Hempel’s theory that E confirms (∀x)Ox. But, it is not the
triviality goodman wants. Note: it would not be odd to say that Oa confirms (∀x)Ox, since Oa is
entailed by (∀x)Ox. The problem is that Hempel’s theory implies (M), which forces him to say this
same thing about any observation statement (i.e., any statement that entails Oa). (M) strikes again!
Furthermore, because Hempel’s theory also implies (SCC) (see below) we can derive another “odd con-
sequence” from this one — that E confirms any universal claim about unexamined objects. Moreover,
this will apply to any observation statement of the form [Oa &φa\, for any predicate expression φ.
And, so, we have the ultimate “odd consequence” of Hempel’s theory of confirmation: (OC) any obser-
vation statement confirms any universal generalization about unexamined objects. However, (OC) does
not imply (nor is it true) that we can get simultaneous Hempel-confirmation of inconsistent claims. So,
we still do not get the triviality Goodman wanted. Note, also, that we can derive (OC) from the three
properties (NC), (M), and (SCC) of Hempel’s theory. We do not need to fiddle with “grue-ifications” of
the antecedents of universal claims, such as Goodman’s “emerose” construction — see fn. 36.
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consequence of Hempel’s theory.35 Hence, Goodman’s “triviality” argument against
Hempel’s theory of confirmation seems to fall short of its mark right here.36

Interestingly, however, this seems to be the only gap in Goodman’s “triviality”
argument against Hempel’s theory. That is, all of the other steps in the argument
would go through, if only this one did. Specifically, the step from () to (®) is OK
(for a Hempelian), since Hempel’s theory entails both of the following principles:

(&) If E confirms H1 and E confirms H2, then E confirms H1 &H2.

(SCC) If E confirms H1, and H1 entails H2, then E confirms H2.

It is easy to see that (), (&), and (SCC) jointly entail (®). And, once we have (®)
in place, we can then get something very close to (¯) in the following way. For
any observation statement E of the form [Oa & φa\, for any predicate expres-
sion φ, it will follow from Hempel’s theory that E confirms both [(∀x)φx\ and
[(∀x)(φx ≡ Ox)\. Then, by (¬)–(®) mutatis mutandis, E will confirm anything.
Thus, we have the claim that any observation statement confirms any hypothesis,
which is (basically) what Goodman meant by (¯).

To sum up: there are two senses in which Goodman’s triviality argument “al-
most” works, when aimed against Hempel’s theory of confirmation. First, except
for Goodman’s (false) suggestion () that Hempel’s theory allows for simultaneous
confirmation of inconsistent claims, the rest of his triviality argument concerning
Hempel’s theory goes through. Second, while his triviality argument fails to estab-
lish the desired conclusion that every observation statement Hempel-confirms ev-
ery statement, it can be shown that every observation statement Hempel-confirms
every universal statement about unexamined objects. However, this can be shown
in a more direct way than Goodman’s remarks suggest, simply by appealing to
properties (NC), (M), and (SCC) of Hempel’s theory (see fn. 34 and fn. 36).

From a Bayesian point of view, however, the “triviality” argument is a non-
starter. First, as we have already discussed above, (¬) is not a logical consequence
of Bayesian confirmation theory (even in its “Carnapian” flavors). But, even if (¬)
were true, premise () would not follow (for any Bayesian). Interestingly, however,
this step is not blocked by (CC), since Bayesian confirmation theory does not sat-
isfy (CC).37 The following example shows that (CC) is false from a Bayesian point of
view. Let Rx Ö x is a red card, let Ax Ö x is the ace of diamonds, and let Jx Ö x

35See Hooker’s excellent paper [20] for a very careful analysis, which explains why even this does
not follow in Hempel’s theory. I discovered Hooker’s paper after I had completed my own analysis
of Goodman’s “triviality argument”. I highly recommend Hooker’s paper, which goes into great detail
about Goodman’s argument (and which seems not to be as widely read as it should be). I have omitted
lots of technincal details from my discussion here, since Hooker’s paper covers them all beautifully.

36Some of Goodman’s other remarks seem to suggest a different way of getting to (®), without
going through (). In a footnote, Goodman introduces the predicate “emerose” (E). Let Rx Ö x is a
rose, and let our new predicate “emerose” be defined as follows: Ex Ö (Ex&Ox)∨(Rx&∼Ox). Now,
let H′ be the hypothesis that all emeroses are grue [(∀x)(Ex ⊃ Gx)]. It is a consequence of Hempel’s
theory that E also confirms H′. And, by fiddling with our antecedent and consequent predicates
in clever ways such as these, we can get E to Hempel-confirm all kinds of weird universal gener-
alizations. Specifically, we can get E to Hempel-confirm any universal statement about unexamined
objects. But, since this does not imply Hempel-confirmation of incompatible claims about individual
unexamined objects, this just boils down to the “odd consequence” (OC) already discussed in fn. 34.

37For a Bayesian, the step from (¬) to () is blocked because Bayesian confirmation theory does
not imply (SCC). See below. Since Hempel’s theory implies (SCC), he needs (CC) to block this step.
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is the jack of hearts. Assuming (K) a card a is sampled at random from a standard
deck (and assuming that Pr obeys the standard random card draw model):

• Ra confirms Aa, relative to K, since Pr(Aa |Ra&K) = 1
26 >

1
52 = Pr(Aa |K).

• Ra confirms Ja, relative to K, since Pr(Ja |Ra&K) = 1
26 >

1
52 = Pr(Ja |K).

Is this a bad thing? That is, is it a bad thing for a theory of confirmation to have the
consequence that some evidential propositions confirm each of a pair of contradic-
tory hypotheses? It seems clear to me that the answer is “No!”. After all, we are
often faced with multiple contradictory competing scientific hypotheses, and in at
least some of these cases we think some of our evidence confirms (even provides
some positive evidential support for) more than one of these competing hypothe-
ses at the same time. So, intuitively, it seems to me that (CC) is false. I think it
would be a bad thing if our confirmation theory allowed there to be cases in which
E confirms both H and ∼H. But, neither the Hempelian nor the Bayesian theory of
confirmation violates the following weaker version of the consistency condition:

(CC′) If E confirms both H1 and H2, then H1 and H2 are not logical opposites.

Moving on through the argument now, even if premise () were true in Goodma-
nian contexts (from a Bayesian point of view), (®) would not follow. But how can
Bayesian confirmation theory manage to avoid the absurd consequence that some
evidential statements will confirm every other statement? After all, if it’s possible
for E to confirm both members of an inconsistent pair of statements, then won’t it
follow that E will confirm anything, since anything follows logically from a logically
inconsistent set? No. This reasoning presupposes the two principles (&) and (SCC)
above. While (&) and (SCC) are true from a Hempelian point of view, they are false,
from a Bayesian point of view. Here’s a simple Bayesian counterexample to (SCC).
Let Rx Ö x is a red card, let Ax Ö x is the ace of diamonds, and let Sx Ö x is some
ace. Assuming (K) that we sample a card a at random from a standard deck:

• Ra confirms Aa, relative to K, since Pr(Aa |Ra&K) = 1
26 >

1
52 = Pr(Aa |K).

• Ra doesn’t confirm Sa, rel. to K, since Pr(Sa|Ra&K) = 2
26 = 4

52 = Pr(Sa|K).
The ingredients of our counterexample to (CC) above can be used to construct a
counterexample to (&) in the following way. Let Rx Ö x is a red card, let Ax Ö x is
the ace of diamonds, and let Jx Ö x is the jack of hearts. Then, we have:

• Ra confirms Aa, relative to K, since Pr(Aa |Ra&K) = 1
26 >

1
52 = Pr(Aa |K).

• Ra confirms Ja, relative to K, since Pr(Ja |Ra&K) = 1
26 >

1
52 = Pr(Ja |K).

• Ra does not confirm Aa & Ja, relative to K, since:

Pr(Aa & Ja | Ra &K) = 0 = Pr(Aa & Ja |K)
Thus, while Goodman’s triviality argument does reveal several “odd conseqeunces”
of Hempel’s theory of confirmation, it is powerless, when aimed against Bayesian
confirmation theory. Indeed, Bayesian confirmation theory does not have any of
the odd consequences we saw (fns. 34 & 36) in connection with Hempel’s theory.38

38For instance, it is not a consequence of Bayesian confirmation theory that E (or any other ob-
servation statement) confirms arbitrary universal generalizations about unexamined objects [it does
not even follow from Bayesian confirmation theory that E confirms (∀x)Ox]. Moreover, using Good-
man’s “emerose” construction (fn. 36) does not reveal any odd consequences of Bayesian confirmation
theory either, since Bayesian theory (unlike Hempel’s) does not entail (NC), (M), or (SCC).
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6. Conclusion

Goodman’s “New Riddle” does reveal some “odd” consequences of Hempel’s
confirmation theory (especially, in the “triviality” part of the argument — see
fn. 34). But, one does not need fancy “grue” predicates to cast serious doubt
on the adequacy of Hempel’s theory.39 As we have seen, almost all of the “bad”
things Goodman (correctly) demonstrates concerning Hempel’s theory of confir-
mation can be established more directly, using only properties like (NC), (M), and
(SCC). Indeed, I think (M) in particular is the ultimate cause of many of the problems
Goodman and others have had with Hempel’s theory. Even Hempel himself would
have recognized (M) as a shortcoming of his theory — if only it had been brought
to his attention (see my [6] for more on this lacuna). Moreover, even though Good-
man’s arguments do reveal some “oddities” in Hempelian confirmation theory, they
do not reduce Hempel’s theory to triviality as Goodman suggested (see also [20]).

On the other hand, if we adopt a proper Bayesian theory of confirmation —
which is superior to Hempel’s theory in many ways that are independent of Good-
manian considerations — then Goodman’s “New Riddle” loses much of its force.
Our analogy with the relevantists’ “reductio” of classical deductive logic suggests
that what Goodman’s qualitative and quantitative arguments really reveal is that
Bayesians should not accept very naïve versions of Carnap’s requirement of total
evidence like (RTE). This won’t come as a surprise to contemporary Bayesians, most
of whom have already seen independent reasons to reject (RTE), such as the prob-
lem of old evidence. Moreover, alternatives to (RTE) that can avoid both the old
evidence problem and the “grue” problem have been suggested both in Carnap’s
work [2], and (more explicitly) in the recent formal epistemology literature (e.g., by
Tim Williamson [29, ch. 9]). Finally, while Goodman’s “triviality” argument reveals
some rather odd properties of Hempel’s theory of confirmation (see fn. 34 and
fn. 36), it is simply a non-starter from a Bayesian (inductive-logical) point of view.

In this paper, I have left open (specifically) what I think Bayesian inductive logic
(viz., confirmation theory) should look like, in light of Goodman’s “grue” prob-
lem. I have also left open (specifically) what I think Bayesians should say about
the (epistemic) evidential support relations in “grue” contexts. I suspect that these
omissions (especially, the epistemic ones) will be disappointing to some readers.
My main aim in this paper has been merely to try to re-orient the dialectic concern-
ing the bearing of Goodman’s “New Riddle” on the very possibility of (classical)
inductive logic. Here, I have made use of an analogy with the “paradoxes of entail-
ment”, and a “Harman-style” response to them. I have shown how an analogous
Harman-style response to Goodman’s “grue” paradox (on behalf of Bayesian induc-
tive logic/confirmation theory) might go. Not only does this analogy reveal a novel
Bayesian response to Goodman’s arguments (as arguments against Bayesian induc-
tive logic), it also suggests avenues for further elaboration and clarification of both
the inductive-logical and the epistemic sides of Bayesianism. I plan to address both
the inductive-logical and the epistemic issues raised by Goodman’s “New Riddle”
more fully in a future monograph on pure and applied confirmation theory.

39“Grue” predicates are also not needed to establish cases of evidential underdetermination or
confirmational indistinguishability of the kind supposedly embodied in Goodman’s (†) and (?). Of
course, I’m not the first to make this point. A.J. Ayer [1, p. 84], and others, made this point long ago.
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