% Gibbardian collapse input file --- prover9 syntax % collapse entails import-export --- relative to our background theory % e(X,Y) := X entails Y (where X,Y are sentences) % t(X) := X is a logical truth (or, a theorem) % h(X,Y) := X hook Y (logical conditional) % i(X,Y) := X -> Y (indicative conditional) % a(X,Y) := X & Y (conjunction) clear(auto). set(prolog_style_variables). clear(print_given). set(hyper_resolution). set(input_sos_first). assign(max_proofs,1). assign(max_weight,1). set(breadth_first_hints). formulas(hints). e(a(A,B),A). t(h(A,h(B,A))). t(h(a(a(h(A,B),C),A),B)). t(h(a(A,B),B)). t(h(a(c1,c2),c3)) | t(i(c1,i(c2,c3))). e(A,h(B,A)). e(a(a(h(A,B),C),A),B). e(a(A,B),B). e(A,a(h(B,A),h(C,A))). e(a(A,B),a(A,B)). e(a(A,B),a(B,A)). e(a(A,B),a(a(A,B),B)). e(a(a(h(A,B),C),A),a(a(a(h(A,B),C),A),B)). t(i(a(a(h(A,B),C),A),B)). t(i(a(h(A,B),A),B)). t(h(a(h(A,B),A),B)). e(a(h(A,B),A),B). t(i(A,h(B,A))). t(i(i(A,B),h(C,h(A,B)))). t(i(h(A,B),h(C,i(A,B)))). t(h(i(A,B),h(C,h(A,B)))). t(h(h(A,B),h(C,i(A,B)))). t(h(a(i(A,B),C),h(A,B))). t(h(a(h(A,B),C),i(A,B))). e(a(i(A,B),C),h(A,B)). e(a(h(A,B),C),i(A,B)). e(a(i(A,B),C),a(a(i(A,B),C),h(A,B))). e(a(h(A,B),C),a(a(h(A,B),C),i(A,B))). t(i(a(i(A,B),C),h(A,B))). t(i(a(h(A,B),C),i(A,B))). t(i(a(A,i(B,C)),h(B,C))). t(i(a(A,h(B,C)),i(B,C))). t(h(c1,h(c2,c3))) | t(i(c1,i(c2,c3))). t(h(c1,i(c2,c3))) | t(h(c1,h(c2,c3))). e(c1,i(c2,c3)) | t(h(c1,h(c2,c3))). e(c1,a(h(A,c1),i(c2,c3))) | t(h(c1,h(c2,c3))). t(i(c1,h(c2,c3))) | t(h(c1,h(c2,c3))). t(h(c1,h(c2,c3))). e(c1,h(c2,c3)). t(h(a(c1,c2),c3)). e(c1,a(h(A,c1),h(c2,c3))). e(a(c1,c2),c3). t(i(c1,i(c2,c3))). e(a(c1,c2),a(a(c1,c2),c3)). t(i(a(c1,c2),c3)). end_of_list. formulas(sos). % our background theory t(h(a(A,B),A)) # label(ax1). t(i(a(A,B),B)) # label(ax5). -t(h(A,h(B,C))) | t(h(a(A,B),C)) # label(ax2). t(h(A,h(B,C))) | -t(h(a(A,B),C)) # label(ax2). -t(i(A,B)) | t(h(A,B)) # label(ax4). -e(A,B) | -e(A,C) | e(A,a(B,C)) # label(ax6). -t(h(A,B)) | e(A,B) # label(ax7). -e(A,B) | -e(B,A) | -t(i(A,C)) | t(i(B,C)) # label(ax8). % Gibbardian collapse e(i(A,B),h(A,B)). e(h(A,B),i(A,B)). % denial of import-export t(i(c1,i(c2,c3))) | t(i(a(c1,c2),c3)). -t(i(c1,i(c2,c3))) | -t(i(a(c1,c2),c3)). end_of_list.