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Overview 
Three ways to introduce hyperreals: 
 

 Existence proof  (Model Theory) 

 Axiom systems 

 Ultrapower construction 

 

 
 



Overview 
Many ways to motivate hyperreals: 
 

 History of  calculus 

 Infinitesimal intuitions 

 Paradoxes of  infinity 

 Formal epistemology 

 Philosophy of  science 

 & Much more 

Applications 
We will get back to our last topic 

of  the first tutorial: 

 Hyperreals and 0.999… 

 

 

 

But first, we examine the 

underlying topic: 

Infinitesimals and null-sequences 



Infinitesimals and 

null-sequences 
In classical analysis: 
The sequence 
 

 0.1, 0.01, 0.001, …, 10-n, … 
 

converges to 0; it‟s a null-sequence. 

 

Can NSA teach us something about 

the common intuition that this 

sequence is a non-zero infinitesimal? 

 

Yes, that is exactly what NSA does. 

The ultrapower construction of  * 
 

First, we review the constructions 
of   of  * 
 

Introduction  

 



Construction of   

We will review the construction of  
 via Cauchy sequences on . 
 

There are multiple other constructions 
for  starting from , including 

Dedekind cuts or Weierstrass‟ 

construction. 

 = set of  -sequences of  rationals 

 = { q1,q2,...,qn,…  | n (qn) } 
 

 As such,  does not form a field 
E.g., 1,0,0,0,…  0,1,1,1,… = 0,0,0,0,… 

 
 Look at a particular subset of  : 
 

C = set of  Cauchy sequences in  

C = { q1,q2,...,qn,…  | n (qn)  

     0, N, n,mN: |qmqn| } 

Construction of   



 Define equivalence relation  on C: 

qn  sn  
       0, N, nN: |qnsn| 

 Define equivalence classes on C: 

[qn] = { sn | qn  sn } 
 

 Now, we can define : 

  = { [qn] | qnC } 

         “set of  equivalence classes” 

     = C/       “quotient ring” 
 

 Embed  in : q, q = [q,q,q,…] 

Construction of   

Question: 
 

Could we have considered a different 

kind of  equivalence relation, defined 
on all of  ? 

 

Answer: 
 

Yes, we will see an example of  this: 
the ultrapower construction of  *. 

Construction of   



 Start from all  sequences of  rational 
numbers,  

 
 Define equivalence relation on : 

First, fix a free ultrafilter, U, on  

Then, define equivalence under U 

qn U sn  
       { n | qn = sn }U 
 
We will come back to the definition of  a free 
ultrafilter soon; it defines „large‟ index sets. 

Construction of  * 

 Define equivalence classes on  

[qn]U = {sn | qn U sn } 

 
 Now, we can define *: 

 * = { [qn]U | qn
 } 

         “set of  equivalence classes” 

       = /U   “quotient ring” 

 
 Embed  in *: 

 q, q = [q,q,q,…]U 

Construction of  * 



At this point, it is easy to construct *: 

 
Just follow the recipe for *, 

but start from all sequences of  real 
numbers  (instead of  ). 

Construction of  * 

Non-principal ultrafilter, U, on  

 
 UP()    

 U   U      “proper, non-empty” 

 A,BU  ABU “closure under  

       finite meets” 

 AU  BA, BU  “upper set” 

Filters 



Non-principal ultrafilter, U, on  

 
 UP() 

 U   U 
 A,BU  ABU 

 AU  BA, BU 
 

 A (AU  AC (= \A)U) 

Filters 

Non-principal ultrafilter, U, on  

  (or fixed) 
 

 UP() 

 U   U 
 A,BU  ABU 

 AU  BA, BU 
 

 A (AU  AC (= \A)U) 
 

 n, AU: nA 

Filters 



Non-principal ultrafilter, U, on  

     (or free) 
 

 UP() 

 U   U 
 A,BU  ABU 

 AU  BA, BU 
 

 A (AU  AC (= \A)U) 
 

 n, AU: nA 

Filters 

Non-principal ultrafilter, U, on  

     (or free) 
 

 UP() 

 U   U 
 A,BU  ABU 

 AU  BA, BU 
 
 A (AU  AC (= \A)U) 

 
 Intersection of  all sets in U =  

Filters 

Equivalence relation on  

Trichotomy on * 

  * 



Remark: The existence of  a free 

ultrafilter requires Zorn‟s Lemma, 

which is equivalent to the Axiom of  

Choice (Tarski, 1930). 

 

The first model of  NSA only used a 

Fréchet filter (filter of  all cofinite 

sets), which is free but not ultra. 

This gives a weaker theory, which is 

still interesting for constructivists. 

Filters 

Infinitesimals and 

null-sequences 

Source: Matthew Bond, 

http://bondmatt.wordpress.com 



Applications 
Back to: 

 Hyperreals and 0.999… 

Hyperreals and 0.999… 

In classical analysis: 
“0.999…” is exactly equal to (or just 

a different notation for) “1.000…” 

 
Can NSA teach us something about 

the common intuition that 0.999… is 

infinitesimally smaller than unity? 



Hyperreals and 0.999… 

In : 

   0.9, 0.99, 0.999, …  1, 1, 1, …  

   Hence, 0.999… = 1.000… 
 

In * (or *): 

   0.9, 0.99, 0.999, … U 1, 1, 1, …  

   Hence, [0.9, 0.99, 0.999, …] U
  1 

 

Be careful! The number [0.9, 0.99, …]U  

is not equal to the real number 0.999… 

It is a hyperreal number with standard part 

1; the number itself  is smaller than 1 by an 

infinitesimal: [0.1, 0.01, …, 10-n, …]U . 

Hyperreals and 0.999… 



Hyperreals and 0.999… 

Hyperreals and 0.999… 



Applications 
Paradoxes of  infinity 

 

Cardinality versus 

numerosity 

Counting 
Two principles for comparing sets: 
 

Euclidean part-whole principle 
If  A is a proper subset of  B, 

then A is strictly smaller than B. 
 

Humean one-to-one correspondence 
If  there is a 1-1 correspondence between A 

and B, then A and B are equal in size. 

 

 For finite sets, these principles lead 

to equivalent ways of  counting 



Counting 
Two principles for comparing sets: 
 

Euclidean part-whole principle 
If  A is a proper subset of  B, 

then A is strictly smaller than B. 
 

Humean one-to-one correspondence 
If  there is a 1-1 correspondence between A 

and B, then A and B are equal in size. 

 

 For infinite sets, these principles 

are incompatible 

Cardinality 
Cantor preserved one principle: 
 

Euclidean part-whole principle 
If  A is a proper subset of  B, 

then A is strictly smaller than B. 
 

Humean one-to-one correspondence 
If  there is a 1-1 correspondence between A 

and B, then A and B are equal in size. 

 
This is the basis for „counting‟ infinite sets, 

according to Cantor‟s cardinality theory 



Cardinal numbers 
A recent paper by Mancosu asks:  

“Was Cantor‟s theory of  infinite 

number inevitable?” 

 

The road least taken 
Can we preserve the other principle? 



Numerosity 
Can we preserve the other principle? 

 

Euclidean part-whole principle 
If  A is a proper subset of  B, 

then A is strictly smaller than B. 
 

Humean one-to-one correspondence 
If  there is a 1-1 correspondence between A 

and B, then A and B are equal in size. 
 

The answer is “Yes”: this is the basic idea of  

Benci‟s numerosity theory. 

Numerosity 
Axioms      Benci, Forti, Di Nasso (2006) 

A numerosity function is a function num : 
P(Ord)  A (ordered semi-ring) taking 

nonnegative values, which satisfies: 

[Half  Humean] If  num(A) = num(B), 

   then A is in 1-1 correspondence with B 

[Unit]  o  Ord, num({o}) = 1 

[Sum] If  AB =, 

   then num(AB) = num(A) + num(B) 

[Product] If   is a -tile, then  A  , 

    B    , num(A  B) = num(A).num(B) 
 

Consequence: part-whole principle holds 



Numerosity 
Assume  = {1,2,3,…} and num() =  

Basic examples 
Then: num(\{1}) = -1 

  num() = 2+1 

  num() = ² 

  num({1,…,n}) = n 
 

Numerosity can be regarded as the ideal 

value of  a real-valued -sequence (some 

type of  non-Archimedean limit). 

This idea is developed further in Alpha-

theory, an axiomatic approach to NSA. 

Applications 
Probability 

 

Can infinitesimals 

help us to build 

regular probability 

functions? 



Infinitesimals 

and probability 
My initial motivation for Regularity 
 

- Probability theory starts from 

determining possible outcomes 

(i.e., fixing a sample space). 

- It seems odd that the distinction 

between possible and impossible 

can get lost once we start 

assigning probability values. 

- Yet, it does in standard probability 

theory (with countable additivity). 

Infinitesimals 

and probability 
My initial motivation for NSA: 
 

Can we get regular probability 

functions using infinitesimals? 
 

As it turned out, this idea was not 

new: Skyrms (1980), Lewis (1980). 



Infinitesimals 

and probability 
Problems of  interest: 
 

- drawing a random number from  

(de Finetti‟s infinite lottery) and 

conditionalizing on an even number, 

or on a finite subset; 

- throwing darts at [0,1] and 

conditionalizing on [0,1]; 

- a fully specific outcome (e.g., „all 

heads‟) of  an -sequence of  tosses 

with a fair coin. 

Infinitesimals 

and probability 
Four categories of 

probability theories: 

 

 

 

 

 
 

Legend: Standard 

  Non-standard: internal 

  Non-standard: external 

Domain 

Range 

Standard Non-standard 

Standard 
() 

Kolmogorov Loeb 

Non-standard 
(* or *) 

Nelson 



Infinitesimals 

and probability 
Observe:  

None of  the existing approaches 
can describe a fair lottery on  or  

(or any countably infinite sample 

space). 
 

Moreover: 

None of  the existing approaches 

can describe a fair lottery on a 

standard infinite sample space (of  

any cardinality) in a regular way. 

Infinitesimals 

and probability 
Four categories of 

probability theories: 

 

 

 

 

 

 
“Non-Archimedean Probability” 

   Together with Vieri Benci and Leon Horsten 

Domain 

Range 

Standard Non-standard 

Standard 
() 

Kolmogorov Loeb 

Non-standard 
(* or *) 

NAP Nelson 



Non-Archimedean 

Probability (NAP) 
NAP0 Domain & Range 
   Probability is a function P, 

   from P() to [0,1]R with R a superreal field 
 

NAP1 Positivity 
    AP(), P(A)  0 
 

NAP2 Normalization & Regularity 
    AP(), P(A) = 1  A =  

NAP3 Finite Additivity (FA) 
    A,BP(), AB =   P(AB) = P(A)+P(B) 
 

NAP4 Non-Archimedean Continuity 
    algebra homomorphism J: F(Pfin(),R)  R 
   such that  AP(), P(A) = J( p( A |  ) ) 
       Pfin()\ ,  p(A | ) = P(A) / P()  R 

Non-Archimedean 

Probability (NAP) 
NAP functions: 
 

- Are regular; 

- Allow conditionalization on any 

possible event (i.e., not on ); 

- Are defined on the full sample 

space of  any standard set of  any 

cardinality (i.e., no non-measurable sets); 

- Obey an infinite additivity principle 

(not CA); 

- Are external objects. 



Non-Archimedean 

Probability (NAP) 
In the special case of  a fair lottery, 

NAP theory is closely related to numerosity: 

 

If 

     1,2, P({1}) = P({2}), “fair” 

then 

     A, P(A) = num(A) / num() 

What‟s the cost? 

We claim that we can assign 

infinitesimal probabilities to fully 

specific outcomes of  an infinite 

sequence of  coin tosses = 1/num(2). 

 

What about Williamson‟s argument? 

 

 



Remember these two principles? 
 

Euclidean part-whole principle 
If  A is a proper subset of  B, 

then A is strictly smaller than B. 
 

Humean one-to-one correspondence 
If  there is a 1-1 correspondence between A 

and B, then A and B are equal in size. 

 

 

 For infinite sets, you can‟t have both 

 Regularity 

 Translation symmetry 

What‟s the cost? 

Non-Archimedean 

Probability (NAP) 
Many problems in the foundations of  

probability theory can be solved 

(or at least better understood), 

if  we allow the probability function to 

have a non-Archimedean range. 

=  



Applications 
Formal epistemology 

 

Can infinitesimals 

help us to formalize 

the Lockean Thesis? 

Lockean Thesis 

“It is rational to believe statement x 

if  the probability of  that statement 

P(x) is sufficiently close to unity” 
 

Usual formalization: 

thresholds (not compatible with CP) 
 

My idea, interpret LT as follows: 

“It is rational to believe x 

if  P(x) is indistinguishable 

from 1 (in a given context)” 

+ Formalize this using „relative analysis‟ 



Relative analysis 

Image by: Christiane Beauregard  

Relative analysis 
8 axioms introduce new predicate „level‟ 

on the domain of  the real numbers: 
 

(1)  A  Pfin(),  coarsest level V, 

 s.t.  x  A, x is observable at level V 
 

(2)  two levels (V1, V2), we can say which level is 

     at least as fine as the other („V1 ⊇ V2‟ or „V2 ⊇ V2‟) 
 

(3)  level V,  x \{0}: x is ultrasmall compared to V 
 

(4) Neighbor Principle 
 

(5) Closure Principle 
 

(6) Stability Principle 
 

(7) Definition Principle 
 

(8) Density of  levels 



Relative analysis 

Grain 
< 1 mm 

Microscopic 

 

 

 

 

 

 

 
 

Negligibly small 

Ultrasmall 

Relative 

infinitesimal 

Beach 
> 1 km 

Macroscopic 

 

 

 

 

 

 

 
 

Inconceivably large 

Ultralarge 
 

Relatively infinite 

Bucket 
~ 1 dm 

Mesoscopic 

 

 

 

 

 

 

 
 

Appreciable size 

 
 

Standard 

Example: level of  a bucket of  sand 

Lockean Thesis 

In relative analysis it is easy to define 

this indistinguishability relation: 
 

 r, s  :    r V s  

 u   such that r = s + u and 

u is ultrasmall compared to V 
 

We can use this relation to formalize 

LT in a soritic, context-dependent way: 
 

LT formalized with levels: 

B(x)  RV  P(x) V 1 



Lockean Thesis 

LT formalized with levels: 

B(x)  RV  P(x) V 1 
 

This model is called “Stratified belief” 

 
The aggregation rule for this model is 

the “Stratified conjunction principle”: 

- the conjunction of  a standard 

- number of  rational beliefs is rational; 

- not necessarily so for an ultralarge 

- number of  conjuncts. 

How much 

for a drop of  

lemonade? 

A drop I‟ll 

give you 

for free 

The importance of 

relative infinitesimals 



The importance of 

relative infinitesimals 

Can I get a 

cupful of  

drops? 

Applications 
Philosophy of  science 1/2 

 

Rethinking 

the continuum 



Infinitesimals and 

the continuum 
We often use “the continuum” as a 

synonym for the standard reals. 

 

However, this is but one formalization 

of  the concept of  a continuum. 

 

Hyperreals form an alternative 

formalization of  the concept. 
Katz et al. propose to refer to * as a 

“thick continuum” (   ). 

Like the standard reals, 

hyperreals are infinitely divisible. 

In particular: infinitesimals are 

infinitely divisible. 

 

Important distinction 1: 

Like a finite set, hyperfinite grids 

do contain a smallest non-zero 

element.    Chunky 

Are infinitesimals chunky? 



Are infinitesimals chunky? 

Important distinction 2: 
Besides the hyperreals, there are 

other systems to model infinitesimals, 

but which have different properties. 
 

- Archimedes, Zeno, et al: 
Infinitesimals as dimensionless 

points. 
 

- SIA (Bell): 

Nilsquare infinitesimals 

Infinitesimals and 

the continuum 
But do we need the continuum – 
be it  or *  – at all? 

 

In particular, do we need it in the 

empirical sciences? 

(*)? 



Dispensing with 

the continuum 
Sommer and Suppes, 1997 
 

ERNA: an axiomatic approach to NSA. 
 

Much of  physics does not rely on the 

existence of  a completed continuum; 
for this, the structure of  * suffices. 
 

Let‟s trade the axiom of  completeness 

for an axiom that states the existence 

of  infinitesimals: more constructive + 

better match to geometric intuitions. 

Dispensing with 

the continuum 
Possible objection: 

Irrational numbers, such as 2 and , 

are common in physics, but do not 
exist in *. 
 

However, there are elements in * that 

have the same decimal places as 
these numbers. Hence,  and * are 

observationally equivalent. 

This notion of  empirical 

indistinguishability touches upon the 

very essence of  „infinitesimals‟. 



Applications 
Philosophy of  science 2/2 

 

Hyperfinite models 

and determinism 

Hyperfinite models 

Differential equations and stochastic 

analysis with a hyperfinite time line. 
 

 = {0, t, 2t, …, 1- t, 1} 

with t a positive infinitesimal 
 

Typically use non-standard measure 

theory (Albeverio et al.), but this is not 

really necessary (Benci et al.): 
“In many applications of  NSA, only 

elementary facts and techniques 

seem necessary.” 



(In-)determinism 

Peano‟s existence theorem (PET) 
 

 f:[0,1]   continuous & bounded 

 u0 

 u:[0,1]   

   such that: du(t)/dt = f( t, u(t) ) 

   u(0)= u0 

Observe: 
- The solution typically is not unique: 

indeterminism; 

- in the standard proof  one such solution 

is constructed. 

Peano‟s existence theorem (PET) 
 

 f:[0,1]   continuous & bounded 

 u0 

 u:[0,1]   

   such that: du(t)/dt = f( t, u(t) ) 

   u(0)= u0 

Observe: 
- Taken as functions of  hyperreal numbers 

on a hyperfinite grid, the solution 

obtained in the proof  of  PET would be 

unique. 

(In-)determinism 



Example  du(t)/dt = 3u2/3 

   u(0)= 0 

This generates a family of  solutions 

(“Peano broom”): 

a[0,1]  u(t)=0  0  t  a 

   u(t)=(t-a)³ a  t  1 

One way to obtain all the solutions: 
(1) Allow for infinitesimal perturbations of  

the initial condition and/or the ODE. 

(2) For each perturbation, follow the 

construction of  a solution in the PET proof. 

(3) Take the standard part. 

(In-)determinism 

Norton‟s dome: a failure of  

determinism in classical mechanics. 

Same phenomenon as before, here 

with a 2nd order ODE. 
 

Hyperfinite model of  the dome: 

 is deterministic! 
 

Hyperfinite model and standard model 

are empirically indistinguishable 

 Determinism is model-dependent 

     Cf. Werndl, 2009 

(In-)determinism 
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