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Three ways to introduce hyperreals:

@ Existence proof (Model Theory)
@ Axiom systems
® Ultrapower construction




Many ways to motivate hyperreals:

@ History of calculus
@ Infinitesimal intuitions &

@ Formal eplstemology B
® Philosophy of science
® & Much more &

We will get back to our last topic
of the first tutorial:
Hyperreals and 0.999...

But first, we examine the
underlying topic:
Infinitesimals and null-sequences



Infinitesimals and

null-sequences

In classical analysis:
The sequence

(0.1, 0.01, 0.001, ...,10M, ...)
converges to 0; it’s a null-sequence.

Can NSA teach us something about
the common intuition that this
sequence is a non-zero infinitesimal?

Yes, that is exactly what NSA does.

Introduction ®

The ultrapower construction of *R

First, we review the constructions
of R of *QQ




Construction of R

We will review the construction of
R via Cauchy sequences on Q.

There are multiple other constructions
for R starting from Q, including
Dedekind cuts or Weierstrass’
construction.

Construction of R

QN = set of w-sequences of rationals
= { <Q1,Q2,---,qm---> I VneN (qneQ) }

® As such, QY does not form a field

E.g.,{1,0,0,0,...)x(0,1,1,1,...) =¢0,0,0,0,...)

O Look at a particular subset of QN:

C = set of Cauchy sequences in Q©

= { <q19q29“°sqn9”'> I VnEN (anQ) A
Ve>0eQ, INeN, Vn,m>N: |q,,—q,|<¢€ }




Construction of R

® Define equivalence relation ~ on C:

<qn> ~ <sn> N
Ve>0eQ, INeN, Vn>N: |g,—s,|<¢

© Define equivalence classes on C:

[<qn>]~ = { <sn> I <qn> ~ <Sn> }

O Now, we can define R:
R={[ay).l(a,yeC}

“set of equivalence classes”
= Cl~ “quotient ring”

® Embed Q inR:VqeQ, 9 =[(q,9,9,...)).

Construction of R

Question:

Could we have considered a different
kind of equivalence relation, defined
on all of QN?

Answer:

Yes, we will see an example of this:
the ultrapower construction of *Q.



Construction of *Q

O Start from a// sequences of rational
numbers, QN

@® Define equivalence relation on Q":
First, fix a free ultrafilter, U, on N
Then, define equivalence under U

(An) ~u (Sp) &
{nla,=s,}eU

We will come back to the definition of a free
ultrafilter soon;, it defines ‘large’ index sets.

Construction of *QQ

® Define equivalence classes on QM

(O] = {(S0) | (Gn) ~u (S0}

® Now, we can define *Q:

Q= { [<qn>]~u I <qn>EQN }

“set of equivalence classes”
=QN/~y “quotient ring”

© Embed Q in *Q:
quQ, q= [<q9qaq’>]~ru




Construction of *R

At this point, it is easy to construct *R:

Just follow the recipe for *Q,

but start from all sequences of real
numbers RN (instead of QV).

Filters

filter, U, on N

Uc=P(N)
OeU ANeU “proper, non-empty
A,Be'U=ANnBelUl “closureunder

finite meets”
Ac'Ul = VBoA, Be'U “upper set”




Filters

ultrafilter, U, on N

UcP(N)

OeU ANeU
A,Bell=> AnBeU
Ae'll = VBoA,Bel

VACN (Ag U = A° (= M\A)eU)

Filters

principal ultrafilter, ‘U, on N
(or fixed)

Uc=P(N)

OeU ANelU

A,Bell=> AnBeU
Ae'll= VBoA,Bel

VACN (Ag U= A° (=N\A)eU)
dneN, YVAeU: neA



Filters

Non-principal ultrafilter, ‘U, on N
(or free)

UcP(N)

OeU ANeU

A,Bell=> AnBeU

Ae'll = VBoA,Bel

VACN (Ag U= A® (=N\A)eU)
ZneN, VAeU: neA

Filters

Non-principal ultrafilter, ‘U, on N
(or free)

UcP(N)

OeU ANelU

A,Bell=> AnBeU

Ac'll= VBoA, Be'U

= VACN (Ag U= AS (=N\A)eU
Trichotomy on *R

= |ntersection of all setsin U=




Filters

Remark: The existence of a free
ultrafilter requires Zorn’s Lemma,
which is equivalent to the Axiom of
Choice (Tarski, 1930).

The first model of NSA only used a
Fréchet filter (filter of all cofinite
sets), which is free but not ultra.
This gives a weaker theory, which is
still interesting for constructivists.

When the Choice is mine. | go wich

Robinson Free Ulcrafilzers.

Analysts agree...

More robust than
Frechet Filters

Source: Matthew Bond,

http://bondmatt.wordpress.com




Back to:
Hyperreals and 0.999...
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Hyperreals and 0.999...

In classical analysis:

“0.999...” is exactly equal to (or just
a different notation for) “1.000...”

Can NSA teach us something about
the common intuition that 0.999... is
infinitesimally smaller than unity?




Hyperreals and 0.999...

InR:
(0.9,0.99,0.999, ..)~{1,1,1, ...
Hence, 0.999... =1.000...

In *Q (or *R):
(0.9,0.99,0.999, ...) +,{1,1,1, ...)
Hence, [(0.9, 0.99, 0.999, ...)] _ =1

Be careful! The number [(0.9, 0.99, "‘>]~u
is not equal to the real number 0.999...

Itis a hyperreal number with standard part
1; the number itself is smaller than 1 by an
infinitesimal: [(0.1,0.01, ..., 10, “'>]~u'

Hyperreals and 0.999...

Visualizing 0.999...




Hyperreals and 0.999...

Beating The Error Margin

Errormargin (e)

1.00075
1.0005
1.00025

1.
0.99975
0.9995
0.99925
0.999

.999... falls with-in error margin

3. 3.2 3.4 3.6 3.8 4, o)

Hyperreals and 0.999...

T —1-107

The Infinitesimal Difference

Infinitely small
difference (h)

Zoomto infinitely | of T
small dimension h |
L ————r——
,/ v |
4 I
i 0.999...= 1

’ in our dimension




Paradoxes of infinity

Cardinality versus \
numerosity

Counting

Two principles for comparing sets:

Euclidean part-whole principle
If Ais aproper subset of B,
then A is strictly smaller than B.

Humean one-to-one correspondence
If there is a 1-1 correspondence between A
and B, then A and B are equal in size.

© For finite sets, these principles lead
to equivalent ways of counting



Counting

Two principles for comparing sets:

Euclidean part-whole principle
If Ais a proper subset of B,
then A is strictly smaller than B.

Humean one-to-one correspondence
If there is a 1-1 correspondence between A
and B, then A and B are equal in size.

® For infinite sets, these principles
are incompatible

Cardinality

Cantor preserved one principle:

Humean one-to-one correspondence
If there is a 1-1 correspondence between A
and B, then A and B are equal in size.

This is the basis for ‘counting’ infinite sets,
according to Cantor’s cardinality theory



Cardinal numbers

A recent paper by Mancosu asks:
“Was Cantor’s theory of infinite
number inevitable?”




Numerosity

Can we preserve the other principle?

Euclidean part-whole principle
If Ais a proper subset of B,
then A is strictly smaller than B.

The answer is “Yes”: this is the basic idea of
Benci’s numerosity theory.

Numerosity

Axioms Benci, Forti, Di Nasso (2006)
A numerosity function is a function num:
P(Ond) — A (ordered semi-ring) taking
nonnegative values, which satisfies:
[Half Humean] If nhum(A) = num(B),

then Ais in 1-1 correspondence with B
[Unit] V o € Oxd, num({o}) =1
[Sum] If AnB =0,

then num(AuUB) = num(A) + num(B)
[Product] If T is a O-tile, then V A c 1,

V B <6 <02, num(A ®_B) = num(A).num(B)

Consequence: part-whole principle holds



Numerosity

l Assume N = {1,2,3,...} and num(N) = o
Basic examples
Then: num(N\{1}) = a-1

num(Z) = 2o0.+1
num(NxN) = o2
num({1,...,n}) =n

Numerosity can be regarded as the ideal
value of a real-valued o-sequence (some
type of non-Archimedean limit).

This idea is developed further in Alpha-
theory, an axiomatic approach to NSA.

Probability

Can infinitesimals
help us to build
regular probability
functions?




p Infinitesimals
and probability

My initial motivation for Regularity

- Probability theory starts from
determining possible outcomes
(7.e., fixing a sample space).

- It seems odd that the distinction
between possible and impossible
can get lost once we start
assigning probability values.

- Yet, it does in standard probability
theory (with countable additivity).

Infinitesimals
and probability

My initial motivation for NSA:

Can we get regular probability
functions using infinitesimals?

As it turned out, this idea was not
new: Skyrms (1980), Lewis (1980).




Infinitesimals
and probability

Problems of interest:

- drawing a random number from N
(de Finetti’s infinite lottery) and
conditionalizing on an even number,
or on a finite subset;

- throwing darts at [0,1]; and
conditionalizing on [0,1],;

- afully specific outcome (e.g., ‘all
heads’) of an w-sequence of tosses
with a fair coin.

Infinitesimals
and probability
Four categories of Here
probability theories: (D?a;;,_‘ ,

Domain Standard
Range

Standard Kolmogorov ' Loeb
(R) /
Non-standard

(*Q or *R)

Legend: Standard
Non-standard: internal
Non-standard: external




p Infinitesimals
and probability

Observe:
None of the existing approaches
can describe a fair lottery on N or Q
(or any countably infinite sample
space).

Moreover:
None of the existing approaches
can describe a fair lottery on a
standard infinite sample space (of
any cardinality) in a regular way.

p Infinitesimals
and probability

Four categories of
probability theories:

Domain Standard Non-standard
Range

.
Non-standard
(*Q or *R)

“Non-Archimedean Probability”
Together with Vieri Benci and Leon Horsten




Non-Archimedean
Probability (NAP)

NAPO Domain & Range

Probability is a function P,
from 2(Q) to [0,1]y with R a superreal field

NAP1 Positivity
V AcP(Q), P(A)=>0
NAP2 Normalization & Regularity
VAe?(Q), P(A)=1<A=Q
NAP3 Finite Additivity (FA)
V A,Be2(Q), AnB = () = P(AUB) = P(A)+P(B)

NAP4 Non-Archimedean Continuity
3 algebra homomorphism J: F(%,(Q),R) > R
such that V Ae2(Q), P(A)=J(p(A]-))
VAeP;(OND, p(A|AL)=P(ANL)/P(A) e R

Non-Archimedean
Probability (NAP)

NAP functions:

- Areregular;

- Allow conditionalization on any
possible event (i.e., not on ¢);

- Are defined on the full sample
space of any standard set of any
cardinality (7.e., no non-measurable sets),

- Obey an infinite addutuvutyprmcuple
(not CA);

- Are external objects.




Non-Archimedean
Probability (NAP)

In the special case of a fair lottery,
NAP theory is closely related to numerosity:

If

V,,0,€Q, P({w4}) = P({wy}), “fair”
then

VACQ, P(A) = num(A) | num(Q)

What’s the cost?

We claim that we can assign
infinitesimal probabilities to fully
specific outcomes of an infinite
sequence of coin tosses = 1/num(2").

What about Williamson’s argument?




What’s the cost?

Remember these two principles?

Euclidean part-whole principle
If A is a proper subset of B, = Regularity
then A is strictly smaller than B.

Humean one-to-one correspondence
If there is a 1-1 correspondence between A
and B, then A and B are equal in size.

= Translation symmetry

® For infinite sets, you can’t have both

Non-Archimedean
Probability (NAP)

Many problems in the foundations of
probability theory can be solved

(or at least better understood),

if we allow the probability function to
have a non-Archimedean range.




Formal epistemology
Can infinitesimals

help us to formalize
the Lockean Thesis?__ ol |
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Lockean Thesis

“It is rational to believe statement x
if the probability of that statement
P(x) is sufficiently close to unity”

Usual formalization:
thresholds (not compatible with CP)

My idea, interpret LT as follows:
“It is rational to believe x
if P(x) is indistinguishable
from 1 (in a given context)”
+ Formalize this using ‘relative analysis’




tive analysis

Rela

Relative analysis

8 axioms introduce new predicate ‘level’
on the domain of the real numbers:
(1) V A € P4,(R), 3 coarsest level V,
s.t. Vx € A, xis observable at level V

(2) V two levels (V,, V,), we can say which level is
at least as fine as the other (‘V, 2V,’ or 'V, 2V,’)

(3) V level V, 3 x R\{0}: x is ultrasmall compared to V

(4) Neighbor Principle
(5) Closure Principle
(6) Stability Principle
(7) Definition Principle
(8) Density of levels




Relative analysis

Example: level of a bucket of sand

Grain Bucket Beach
<1mm ~1dm >1 km
Microscopic Mesoscopic Macroscopic

%};f W
Negligibly small Appreciable size Inconceivably large
Ultrasmall Ultralarge
. Bglatlye Standard Relatively infinite
infinitesimal

Lockean Thesis

In relative analysis it is easy to define
this indistinguishability relation:
Vr,s eR: BB
Jdu e R such thatr=s+uand
u is ultrasmall compared to V

We can use this relation to formalize
LT in a soritic, context-dependent way:

LT formalized with levels:
B(X) = RV = P(X) zV 1



Lockean Thesis

LT formalized with levels:
B(X) & RV Sems P(X) zV 1

This model is called “Stratified belief”

The aggregation rule for this model is

the “Stratified conjunction principle”:

- the conjunction of a standard
number of rational beliefs is rational;

- not necessarily so for an ultralarge
number of conjuncts.

- I The importance of
university of ° ° ° ° .
groningen relative infinitesimals

faculty of philosoph

A drop I’ll
give you
for free

How much
for a drop of
lemonade?




s The importance of

university of

groningon relative infinitesimals

faculty of philosoph

Canlgeta
cupful of

Philosophy of science 1/2

Rethinking
the continuum




[[R Infinitesimals and
the continuum

We often use “the continuum” as a
synonym for the standard reals.

However, this is but one formalization
of the concept of a continuum.

Hyperreals form an alternative
formalization of the concept.

Katz et al. propose to refer to *R as a
“thick continuum” (R).

Are infinitesimals chunky?

Like the standard reals,
hyperreals are infinitely divisible.
In particular: infinitesimals are
infinitely divisible.

Important distinction 1:

Like a finite set, hyperfinite grids
do contain a smallest non-zero
element. = Chunky




ey Are infinitesimals chunky?

Important distinction 2:

Besides the hyperreals, there are
other systems to model infinitesimals,
but which have different properties.

- Archimedes, Zeno, et af
Infinitesimals as dimensionless

points.

- SIA (Bell):
Nilsquare infinitesimals

Infinitesimals and

(*)R? )
the continuum

But do we need the continuum -
beitR or *R - at all?

In particular, do we need it in the
empirical sciences?




Dispensing with
the continuum

Sommer and Suppes, 1997
ERNA: an axiomatic approach to NSA.

Much of physics does not rely on the
existence of a completed continuum;
for this, the structure of *QQ suffices.

Let’s trade the axiom of completeness
for an axiom that states the existence
of infinitesimals: more constructive +
better match to geometric intuitions.

Dispensing with
the continuum

Possible objection:
Irrational numbers, such as V2 and =,
are common in physics, but do not
exist in *Q.
However, there are elements in *Q that
have the same decimal places as
these numbers. Hence, R and *Q are
observationally equivalent.
This notion of empirical
indistinguishability touches upon the
very essence of ‘infinitesimals’.




Philosophy of science 2/2

NN

Hyperfinite models
and determinism

ity

Hyperfinite models

Differential equations and stochastic
analysis with a hyperfinite time line.

T ={0, At, 2At, ..., 1- At, 1}
with At a positive infinitesimal

Typically use non-standard measure
theory (Albeverio et al), but this is not
really necessary (Benci et al.):

“In many applications of NSA, only
elementary facts and techniques
seem necessary.”




(In-)determinism

Peano’s existence theorem (PET)

Vv f:[0,1]xR — R continuous & bounded
Y ugeR
JFu:[0,1] >R
such that: | du(t)/dt =f(t, u(t))
u(0)=u,
Observe:
- The solution typically is not unique:
indeterminism;

- in the standard proof one such solution
is constructed.

(In-)determinism

Peano’s existence theorem (PET)

Vv f:[0,1]xR — R continuous & bounded
V u,eR
Ju:[0,1] >R
such that: | du(t)/dt =f(t, u(t))
u(0)=u,
Observe:
- Taken as functions of hyperreal numbers
on a hyperfinite grid, the solution

obtained in the proof of PET would be
unique.



(In-)determinism

Example { du(t)/dt = 3u?3
u(0)=0
This generates a family of solutions
(“Peano broom”):
vae[0,1] { u(t)=0 O<t<a
u(t)=(t-a)? ast<1
One way to obtain all the solutions:
(1) Allow for infinitesimal perturbations of
the initial condition and/or the ODE.
(2) For each perturbation, follow the

construction of a solution in the PET proof.
(3) Take the standard part.

(In-)determinism

Norton’s dome: a failure of
determinism in classical mechanics.
Same phenomenon as before, here
with a 2" order ODE.

Hyperfinite model of the dome:
is deterministic!

Hyperfinite model and standard model

are empirically indistinguishable

= Determinism is model-dependent
Cf. Werndl, 2009
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