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Overview

Hyperreal numbers are an extension of the real numbers, which contain
infinitesimals and infinite numbers. The set of hyperreal numbers is denoted
by ∗R or R∗; in these notes, I opt for the former notation, as it allows us
to read the ∗-symbol as the prefix ‘hyper-’. Just like standard analysis (or
calculus) is the theory of the real numbers, non-standard analysis (NSA) is
the theory of the hyperreal numbers. NSA was developed by Robinson in
the 1960’s and can be regarded as giving rigorous foundations for intuitions
about infinitesimals that go back to Leibniz (at least).

This document is prepared as a handout for two tutorial sessions on
“Hyperreals and their applications”, presented at the Formal Epistemology
Workshop 2012 (May 29–June 2) in Munich. It is set up as an annotated
bibliography about hyperreals. It does not aim to be exhaustive or to be
formally precise; instead, its goal is to direct the reader to relevant sources
in the literature on this fascinating topic. The document consists of two
parts: sections 1–3 introduce NSA from different perspectives and sections
4–9 discuss applications, with an emphasis on topics that may be of interest
to formal epistemologists and to philosophers of mathematics or science.
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Part 1: Introducing the hyperreals

Abstract

NSA can be introduced in multiple ways. Instead of choosing one
option, these notes include three introductions. Section 1 is best-suited
for those who are familiar with logic, or who want to get a flavor
of model theory. Section 2 focuses on some common ingredients of
various axiomatic approaches to NSA, including the star-map and the
Transfer principle. Section 3 explains the ultrapower construction of
the hyperreals; it also includes an explanation of the notion of a free
ultrafilter.

1 Existence proofs of non-standard models

1.1 Non-standard models of arithmetic

The second-order axioms for arithmetic are categoric: all models are iso-
morphic to the intended model ⟨N, 0,+1⟩. Dedekind was the first to prove
this [Dedekind, 1888b]; his ‘rules’ for arithmetic were turned into axioms a
year later by Peano, giving rise to what we now call “Peano Arithmetic”
(PA) [Peano, 1889].

The first-order axioms for arithmetic are non-categoric: there exist non-
standard models ⟨∗N, ∗0, ∗+∗1⟩ that are not isomorphic to ⟨N, 0,+1⟩. Skolem
proved this based on the Compactness property of first-order logic (FOL)
[Skolem, 1934]. With the Löwenheim-Skolem theorem, it can be proven that
there exist models of any cardinality. ∗N contains finite numbers as well as
infinite numbers. We now call ∗N a set of hypernatural numbers.

For a discussion of the order-type of countable non-standard models
of arithmetic, see e.g. [Boolos et al., 2007, Chapter 25, p. 302–318] and
[McGee, 2002]. More advanced topics can be found in this book: [Kossak
and Schmerl, 2006].

1.2 Non-standard models of real closed fields

The second-order axioms for the ordered field of real numbers are categoric:
all models are isomorphic to the intended model ⟨R,+,×,≤⟩.

A “real closed field” (RCF) is a field which has the same first-order
properties as R. Robinson realized that Skolem’s existence proof of non-
standard models of arithmetic could be applied RCFs too. He thereby
founded the field of non-standard analysis (NSA) [Robinson, 1966]. The ax-
ioms for RCFs (always in FOL) are non-categoric: there exist non-standard
models ⟨∗R, ∗+, ∗×, ∗ ≤⟩ that are not isomorphic to ⟨R,+,×,≤⟩. With the
Löwenheim-Skolem theorem it can be proven that there exist models of any
cardinality; in particular, there are countable models (cf. Skolem ‘paradox’
[Skolem, 1922]).
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For the standard real numbers the Archimedean property holds:

∀a ∈ R
(
a > 0 → ∃n ∈ N

(
1

n
< a

))
In particular, ⟨R,+,×,≤⟩ is the only complete Archimedean field.

Non-standard models do not have such a property. ⟨∗R, ∗+, ∗×, ∗ ≤⟩ is a
non-Archimedean ordered field. In other words: ∗R contains infinitesimals.
∗R contains finite, infinite and infinitesimal numbers; we call ∗R a set of
hyperreal numbers.

1.3 Other non-standard models

Analogous techniques can also be applied to the first-order formalization of
the rational numbers to obtain non-standard models; see e.g. [Skyrms, 1980,
Appendix 4, p. 177–187].

1.4 Meaning of non-standard models

On the one hand, non-standard models can be regarded as a sign of the
relative weakness of FOL. On the other hand, they can be regarded as a
fruitful new tool for mathematical discovery or interesting new objects of
study in their own right. Some discussion along these lines can be found in
[Gaifman, 2004] and [McGee, 2002].

2 Axiom systems

The original presentation of NSA by Robinson relied on advanced logic,
which does not help to make the topic accessible to many. According to
Luxemburg:

“[F]rom the beginning Robinson was very interested in the for-
mulation of an axiom system catching his non-standard method-
ology. Unfortunately he did not live to see the solution of his
problem by E. Nelson presented in the 1977 paper entitled ‘In-
ternal Set Theory’.” [Luxemburg, 2007, p. xi]

Nowadays, there exist many different axiom systems for NSA, although
they differ in strength and scope. This is a non-exhaustive list of some of
the approaches:

• Nelson’s Internal Set Theory (IST) [Nelson, 1977];

• Hrbáček’s axiomatic foundations [Hrbacek, 1978];

• Keisler’s axioms for hyperreals [Keisler, 1963];
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• Sommer & Suppes’ elementary recursive nonstandard analysis (ERNA)
[Sommer and Suppes, 1997];

• Benci & Di Nasso’s alpha-theory [Benci and Di Nasso, 2003a];

• Hrbáček’s relative or stratified analysis [Hrbacek, 2007, Hrbacek et al.,
2010].

Various axiom systems may be suggestive of rather different applications
and we will return to some of them in Part 2.

Instead of looking into the details of a particular axiom system, we look
at some tools that are important in (nearly) all axiom systems. For this
section, we follow a structure similar to that of [Benci et al., 2006a, section 1],
which is very general and applies to many approaches to NSA. See also:
[Cutland, 1983, section 1.2]. We do not mention saturation here, but check
the final remark at the end of section 3.

2.1 Universe

By a universe, we mean a non-empty collection of mathematical objects,
such as numbers, sets, functions, relations, etc.—all of which can be defined
as sets by working in ZFC. This collection is assumed to be closed under
the following relations and operations on sets: ⊆, ∪, ∩, \, (·, ·), ×, P(·), ··.
Furthermore, we assume that the universe contains R and that it obeys tran-
sitivity (i.e., elements of an element of the universe are themselves elements
of the universe).

In particular, we are interested in the standard universe, which is the
superstructure V (R), and a non-standard universe, ∗V (R).

2.2 Star-map

The star-map (or hyperextension) is a function from the standard universe
to the non-standard universe.

∗ : V (R) → ∗V (R)

A 7→ ∗A

We assume that ∀n ∈ N(∗n = n) and that N ̸= ∗N.

2.3 Internal and external objects

It is important to realize that the star-map does not produce all the objects
in the superstructure of ∗R; it only maps to the internal objects, which live
in ∗V (R) ( V (∗R).

In the tutorial, I illustrate the internal-external distinction with a bio-
logical analogy (comparing caterpillar versus butterfly on the one hand, to
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Figure 1: Schematic representation of the standard and non-standard su-
perstructures considered in NSA. Image source: [Cutland, 1983, p. 538].

N versus ∗N on the other hand), but I am too embarrassed to put this into
writing. See Figure 1 instead.
Some examples of internal objects (∈ ∗V (R)):

• any element of ∗R, so in particular any element of N or R;

• any hyperfinite set, such as {1, . . . , N} with N ∈ ∗N (which can be
obtained via the hyperextension of a family of finite sets);

• the hyperextensions of standard sets, such as ∗N and ∗R;

• the hyperpowerset of a standard set, A: ∗P(A), which is the collection
of all internal subsets of ∗A.

Some examples of external objects (∈ V (∗R) \ ∗V (R)):

• elementwise copies of standard, infinite sets (notation for the elemen-
twise copy of A in the nonstandard universe: σA), such as σN or σR
(due to the embedding of N and R in ∗R, the σ-prefix is often dropped);

• the complements of previous sets, such as ∗N \ σN and ∗R \ σR;

• the ‘halo’ or ‘monad’ of any real number, r: hal(r) = {R ∈ ∗R | |r −
R| is infinitesimal}—in particular hal(0), which is the set of all in-
finitesimals;

• the standard part function st (also known as the shadow), which maps
a (bounded) hyperreal number to the unique real number that is in-
finitesimally close to it [Goldblatt, 1998, section 5.6];
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• the full powerset of the hyperextension of a standard, infinite set, A:
P(∗A), which is the collection of all subsets of ∗A, both internal and
external.

2.4 Transfer principle

Consider some standard objects A1, . . . , An and consider a property of these
objects expressed as an ‘elementary sentence’ (a bounded quantifier formula
in FOL): P (A1, . . . , An). Then, the Transfer Principle says:

P (A1, . . . , An) is true ⇔ P (∗A1, . . . ,
∗An) is true.

Observe: this is an implementation of Leibniz’s “Law of continuity” in NSA
(cf. section 5).

Example 1: well-ordering of N Consider the following sentence: “Ev-
ery non-empty subset of N has a least element.” Transfer does not apply to
this, because the sentence is not ‘elementary’. Indeed, we can find a coun-
terexample in ∗N: the set of infinite hypernatural numbers, ∗N\N, does not
have a least element. (Of course, this is an external object.)

If we rephrase the well-ordering of N as follows: “Every non-empty ele-
ment of P(N) has a least element”, then we can apply Transfer to this. The
crucial observation to make here is that ∗P(N) ( P(∗N).

Example 2: completeness of R Consider the following sentence: “Every
non-empty subset of R which is bounded above has a least upper bound.”
Again, Transfer does not apply to this, for the same reason as in Example
2. A counterexample in ∗R is hal(0), the set of infinitesimals. (Again, an
external object.)

If we rephrase the completeness property of R as follows: “Every non-
empty element of P(R) which is bounded above has a least upper bound”,
then we can apply Transfer to it. Similar as before, the crucial remark is
that ∗P(R) ( P(∗R).

3 Ultrapower construction of the hyperreals

Before we consider the construction of ∗R, we first review the constructions
of R and ∗Q, since these procedures are analogous to a large extent. To
emphasize the analogy, we focus on the construction of R from Cauchy
sequences of rational numbers. (This construction is due to Cantor [Cantor,
1872], whereas Dedekind constructed the reals based on cuts [Dedekind,
1888a].)
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3.1 Construction of R

QN is the set of all functions N → Q; in other words, it is the set of all
rational-valued ω-sequences. We refer to a particular sequence in QN by its
initial elements ⟨q1, q2, q3, . . .⟩ or by its general element (at position n) ⟨qn⟩.

We could try to regard each element of QN as a new number. Suppose
that we endow QN with addition and multiplication, by defining these oper-
ations element-wise starting from the corresponding operations on Q. Then,
we would obtain, for instance:

⟨0, 1, 1, 1, . . .⟩ × ⟨1, 0, 0, 0, . . .⟩ = ⟨0, 0, 0, 0, . . .⟩,

which demonstrates that the notion of a multiplicative inverse is not well-
defined on QN and hence that QN fails to form a field. Although QN does
form a ring, this is insufficient for it to be regarded as a collection of numbers.

The construction of R starts from a subset of QN and proceeds in five
steps:

1. Consider a particular subset of QN:

C =set of Cauchy sequences in QN

={ ⟨qn⟩ | ∀n ∈ N(qn ∈ Q)∧
∀ϵ > 0 ∈ Q, ∃N ∈ N, ∀n,m > N ∈ N (|qm − qn| < ϵ)}.

2. Define the following equivalence relation ∼ on C:

∀⟨qn⟩, ⟨sn⟩ ∈ C :⟨qn⟩ ∼ ⟨sn⟩ ⇔
∀ϵ > 0 ∈ Q, ∃N ∈ N, ∀n > N ∈ N (|qn − sn| < ϵ).

3. Define the equivalence classes on C based on equivalence relation ∼:

∀⟨qn⟩ ∈ C : [⟨qn⟩]∼ = { ⟨sn⟩ ∈ C | ⟨qn⟩ ∼ ⟨sn⟩}.

4. Define R as the set of equivalence classes on C:

R = { [⟨qn⟩]∼ | ⟨qn⟩ ∈ C}.

This can be written in quotient ring notation as follows: R = C/ ∼.

5. As a final step, we embed Q in R:

∀q ∈ Q : q = [⟨q, q, q, . . .⟩]∼.
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3.2 Construction of ∗Q

The previous construction of R may make us wonder whether it is possible
to consider a different kind of equivalence relation, defined on all of QN. The
answer is “yes”, as we will now see in the construction of ∗Q.

The construction of ∗Q proceeds in five steps, analogous to the construc-
tion of R:

1. Consider all of QN.

2. Fix a free ultrafilter on N, U (see section 3.2.1), and define the following
equivalence relation ∼U on QN:

∀⟨qn⟩, ⟨sn⟩ ∈ QN :⟨qn⟩ ∼U ⟨sn⟩ ⇔
{n | qn = sn} ∈ U .

3. Define the equivalence classes on QN based on equivalence relation ∼U :

∀⟨qn⟩ ∈ QN : [⟨qn⟩]∼U = { ⟨sn⟩ ∈ QN | ⟨qn⟩ ∼U ⟨sn⟩}.

4. Define ∗Q as the set of equivalence classes on QN:

∗Q = { [⟨qn⟩]∼U | ⟨qn⟩ ∈ QN}.

This can be written in quotient ring notation as follows: ∗Q = QN/ ∼U .

5. As a final step, we embed Q in ∗Q:

∀q ∈ Q : q = [⟨q, q, q, . . .⟩]∼U .

3.2.1 Free ultrafilter on N

In the above construction, we needed a free (non-principal) ultrafilter on N;
we will define this important concept now.

Intuitively, a (proper) filter on a set X is a collection of subsets of X
that are “large enough”. The meaning of “large enough” is given by its
formal definition:

F is a filter on X ⇔
F ⊂ P(X) ∧
∅ /∈ F ∧ (‘proper’)

X ∈ F ∧ (‘non-empty’)

A,B ∈ F ⇒ A ∩B ∈ F ∧ (‘closed under finite meets’)

(A ∈ F ∧B ⊇ A) ⇒ B ∈ F . (‘upper set’)
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Now we define an ultrafilter:

F is an ultrafilter on X ⇔
F is a filter on X ∧
∀A ⊆ X(A /∈ F ⇒ AC(= X \A) ∈ F).

A filter F is principal (or ‘fixed’) if: ∃x0 ∈ X, ∀A ∈ F(x0 ∈ A). A filter
F is free if it is not principal, or equivalently: if the intersection of all the
sets in F is empty.

For an infinite set X, its Fréchet filter is the filter that consists of all
the cofinite subsets of X. Such a filter is free, but it is not an ultrafilter.

Finally, we define a free ultrafilter:

F is a free ultrafilter on X ⇔
F is an ultrafilter on X ∧
F is free.

Given the ultrafilter condition, the last condition implies that F contains
no finite sets, which means that it does contains all cofinite sets; in other
words: an ultrafilter is free if and only if it contains the Fréchet filter.

The existence of a free ultrafilter can be proven using Zorn’s lemma; so
the ultrapower construction crucially depends on the Axiom of Choice. For
a further discussion of filters, including free ultrafilters, see e.g. [Goldblatt,
1998, p. 18–21] and [Cutland, 1983, section 1.1]. For an introduction to the
meaning and application of ultrafilters, see [Komjáth and Totik, 2008].

3.3 Construction of ∗R

Replacing each instance of “Q” in the preceding construction of ∗R by “R”
yields the construction of ∗R.

The ultrapower construction of ∗R is very important in NSA and there
are many good sources for it. For this construction, including a discussing
of free ultrafilters, see e.g. [Loeb and Wolff, 2000, p. 7–10]. The construction
can also be found in: [Goldblatt, 1998, p. 23–27]. More basic introductions
to this construction can be found in [Hoyle, 2007a,b] and in the handouts
by Jensen [Jensen, 2007]. A more technical presentation can be found in
[Luxemburg, 1973, section 3].

Some remarks:

• The ultrapower construction of ∗Q or ∗R can equivalently be expressed
in terms of a Boolean prime ideal, which is the dual notion of a free
ultrafilter.

• To see how the ultrapower construction is related to the existence proof
of non-standard models using the Compactness theorem (section 1),
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observe that one way to prove the Compactness theorem is based on
the notion of an ultraproduct (cf. [Goldblatt, 1998, p. 11]).

• The ultraproduct construction is a general method in model theory:
see [Keisler, 2010] (including the references in the introduction) for
more information.

• Not every hyperreal number system can be obtained from an ultra-
power construction, but every hyperreal number system is isomorphic
to a limit ultrapower [Keisler, 1963].

• The first construction in this style used a Fréchet filter on N rather
than a free ultrafilter [Schmieden and Laugwitz, 1958]. Unlike a free
ultrafilter, the existence of a Fréchet filter does not require any choice
axiom. Therefore, it is still of interest for constructive approaches to
NSA [Palmgren, 1998] (although in strictly constructivist approaches
the framework of classical logic as used in [Schmieden and Laugwitz,
1958] also has to be replaced by intuitionist logic [Martin-Löf, 1990]).
For an accessible introduction to a weak system of NSA based on
Fréchet filters, see also: [Tao, 2012].

• In the construction of ∗Q and ∗R, we have used a free ultrafilter on
N. This is sufficient to obtain a model with countable saturation. It
is possible to fix a free ultrafilter on an infinite index set of higher
cardinality. In particular, by choosing ‘good’ ultrafilters, it is possible
to arrive at the desired level of saturation in a single step [Keisler,
2010, section 10]. See [Hurd and Loeb, 1985, p. 104–108] for more on
saturation.
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Part 2: Selected applications

Abstract

In section 4, we give an overview of the areas of applications of
NSA. We return to a selection of them in the subsequent sections.
Section 5: history of the calculus; section 6: intuitions about infinitesi-
mals; section 7: paradoxes of infinity; section 8: probability and formal
epistemology; and section 9: physics and philosophy of science.

4 Applications

Hyperreals can be applied in many branches of science, often with an inter-
esting philosophical dimension. In this section, we give a brief overview of
some of them; the next section looks into a selection of applications in more
detail.

4.1 In mathematics

The first and still most important application of NSA is to make proofs
about standard analysis shorter, easier, or both—mainly by alleviating
epsilon-delta management [Tao, 2007]. An early expression of this can be
found with Lagrange, as cited in [B laszczyk et al., 2012, p. 29]. Recent
examples are given by Terence Tao in his blog posts [Tao, 2007–2012].

Hyperreals can help us to reevaluate the history of the calculus: see
section 5.

A related role of NSA is in the didactics of calculus. Keisler started us-
ing infinitesimals in beginning U.S. calculus courses in 1969 (source: [Stroyan,
2007, p. 369]) and he was the first to write a textbook for calculus based on
NSA [Keisler, 1976a,b]. An empirical study with the teaching of high school
students based on Keisler’s book was conducted by Sullivan, who writes:

“Any fears on the part of a would-be experimenter that students
who learn calculus by way of infinitesimals will achieve less mas-
tery of basic skills have surely been allayed. And it even appears
highly probable that using the infinitesimal approach will make
the calculus course a lot more fun both for the teachers and for
the students.” [Sullivan, 1976, p. 375]

Stroyan has a book-length treatise on NSA for teaching calculus is based
on Keisler’s earlier work [Stroyan, 2003]; see also [Stroyan and Luxemburg,
1976, Chapter 5] and [Stroyan, 2007]. Also the relative or stratified anal-
ysis approach to NSA [Hrbacek, 2007] is strongly motivated by didactical
concerns [O’Donovan, 2007, Hrbacek et al., 2010]. Despite all the efforts of
various authors, however, NSA still has very little impact on the current
didactics of calculus [Artigue, 1991, section 1.4].
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NSA can be used to analyze common intuitions concerning infinitesi-
mals; see section 6. Whereas the history of the calculus is dominated by the
concept of infinitesimals, NSA can also shed more light on problems related
to the infinitely large. See section 7.

Another well-established application of NSA is that of non-standard
measure theory. Seminal contributions were obtained by [Bernstein and
Wattenberg, 1969] and [Loeb, 1975]. A good overview of this topic up to the
1980’s can be found in [Cutland, 1983]. Since the subject of probability is
of special interest to formal epistemologists, it is covered in further detail in
section 8.

4.2 In physics

Physicists have continued to speak of infinitesimal quantities since the devel-
opment of the calculus, seemingly not bothered by the foundational issues
that were on the minds of the mathematicians. Therefore, the combination
of physics and NSA seems to be a very natural one: it allows physicists to
continue their appeal to the intuitive notion of infinitesimals, now knowing
that there is a rigorous mathematical basis for this concept.

Many applications of NSA in physics are related to differential equa-
tions and stochastic equations. Examples covered in [Albeverio et al.,
1986] include Lévy Brownian motion, Markov processes, and Sturm-Liouville
problems. The applications are often embedded in the framework of non-
standard measure theory, but this complication is not strictly necessary, as
is illustrated by [Benci et al., 2010].

NSA has been applied to quantum mechanics in multiple ways, includ-
ing Feynman path integrals and quantum field theory [Albeverio et al., 1986].
Moreover, it seems to be a very natural idea to reexamine the quantum-
classical limit in this framework, by considering ~ as an infinitesimal, as has
indeed been done in the literature [F.Werner and Wolff, 1995]. It is not
known to me whether the relativistic-classical limit has also been studied in
this way, i.e., by taking 1/c to be an infinitesimal (indistinguishable from
zero) in the classical theory.

Remark that many of the above applications do not require the full set
of ∗Q or ∗R; instead, they involve some kind of a hyperfinite model:
a hyperfinite time line to study differential equations, a hyperfinite grid
to perform integration, or a hyperfinite lattice to study Ising spin models.
These aspects are interesting from the viewpoint of philosophy of science
and we will come back to them in section 9.

4.3 In economics

Hyperreals have been used in mathematical economics: see for instance
Kopp’s chapter “Hyperfinite Mathematical Finance” in [Arkeryd et al., 1997,
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p. 279–308], Sun’s contribution in [Loeb and Wolff, 2000, Chapter IV], or
Herzberg’s [Herzberg, 2007b].

5 History of the calculus

Hyperreals can help us to understand why results that are now considered to
be obtained in a non-rigorous way are nevertheless correct. One should keep
in mind, however, that there is a difference in goal between developing an
algorithm to solve a problem using numbers of a certain kind versus proving
the existence of the totality of numbers of this kind [B laszczyk et al., 2012,
p. 9].

For the sake of illustration and brevity, we focus on a single notion from
the calculus: the derivative. The derivative expresses the rate of change
of the dependent variable with respect to the change in the independent
variable. If the independent variable is interpreted as time, the derivative
is the (instantaneous) velocity. If the independent variable is plotted as the
abscissa (on the x-axis) and the dependent variable is plotted as the ordinate
(on the y-axis), the derivative is the slope of a tangent curve to a point of
the graph.

5.1 Leibniz and Newton: infinitesimals and fluxions

Leibniz’s development of the calculus (around 1674) is characterized by three
important ingredients:

Use of infinitesimals Leibniz’s notation of the derivative as a quotient of
infinitesimals (e.g. dx

dy ) is still in use in mathematics today, although in
standard analysis the derivative cannot be interpreted as a quotient.

Law of continuity The law of continuity (also known with the French
name ‘souverain principe’) says that the rules of the finite also hold in
the infinite, and vice versa. It is related to the Transfer Principle in
NSA.

Law of transcendental homogeneity The law of transcendental homo-
geneity says that when comparing two quantities, quantities with a
lower order of infinity can be ignored. It is related to the standard
part function in NSA.

See for instance [Katz and Sherry, 2012b,a] for more on this topic.
Newton developed his version of the calculus (around 1666) with physics

in mind, which led him to a dynamic concept of the derivative: he thought
of the derivative of a continuous function—which he called the fluxion of a
fluent—as a velocity, or rate of change. His dot notation of the derivative
(e.g. ẋ for dx

dt ) is still in use in physics today. Although Newton did not base
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his calculus on the notion of the infinitesimal, as Leibniz did, infinitesimals
do appear in his work, too, both as infinitely small periods of time and as
‘moments’ of fluent quantities.

5.1.1 Criticism by Berkeley

Berkeley famously criticized the use of infinitesimals and evanescent quan-
tities in his work “The Analyst”:

“And what are these Fluxions? The Velocities of evanescent In-
crements? And what are these same evanescent Increments?
They are neither infinite Quantities nor Quantities infinitely
small, nor yet nothing. May we not call them the Ghosts of
departed Quantities?” [Berkeley, 1734, Section XXXV]

Berkeley’s work was so influential, that many believed that infinitesimals
had to be banned from mathematics once and for all. However, Katz and
Sherry recently pointed out a flaw in Berkeley’s criticism [Katz and Sherry,
2012a,a]: the evanescent quantity need not be treated as zero, merely dis-
carded in certain contexts through an application of the law of transcenden-
tal homogeneity. They claim that Leibniz’s system was consistent after all
(albeit not rigorous to today’s standards).

5.2 Weierstrass: standard analysis

The modern approach to standard analysis was developed by “the great tri-
umvirate” [Boyer, 1949, p. 298]: Cantor, Dedekind, and Weierstrass. Weier-
strass introduced the modern epsilon-delta definition of the limit (which goes
back to Bolzano in 1817). This allows us to define the derivative as a limit
of the quotient of differences.

dy

dx
= lim

∆x→0

∆y

∆x

= lim
∆x→0

y(x + ∆x) − y(x)

∆x
,

where:

lim
∆x→0

∆y

∆x
= L ⇔

∀ϵ > 0 ∈ R, ∃δ > 0 ∈ R,∀∆x ∈ R(0 < |∆x| < δ ⇒ |∆y

∆x
− L| < ϵ).

5.3 Robinson: non-standard analysis

In NSA, the classical derivative is defined as the standard part of a quotient
of infinitesimals in ∗R:

dy

dx
= st(

∗y(x + δ) − ∗y(x)

δ
),
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where ∗y(x) : ∗R → ∗R is the hyperextension of the real function y(x) : R →
R and δ is an infinitesimal in ∗R.

5.4 Further reading

A brief history of the concepts of infinitesimals and the infinitely large in
the development of the calculus can be found in [Kleiner, 2001]. Some
misconceptions on the history of the calculus, mainly centered on the role
of infinitesimals therein, are discussed in the manuscript [B laszczyk et al.,
2012]. More on the general history of non-Archimedean number systems,
not directly related to the development of the calculus, can be found in
[Ehrlich, 2006].

6 Intuitions about infinitesimals

In standard analysis the sequence

⟨0.1, 0.01, 0.001, . . . , 10−n, . . .⟩

converges to 0; it is a null-sequence. Can NSA teach us something about the
common intuition that this sequence is a non-zero infinitesimal? Likewise,
in standard analysis 0.999 . . . is exactly equal to (or just a different notation
for) 1.000 . . .. (See [Hart, 2012] for an amusing overview of various proofs.)
Nevertheless, the intuition that 0.999 . . . is infinitesimally smaller than unity
is a resilient one—not only among students in math class: every so often, it
resurfaces in internet discussions. Can NSA teach us something about this
common intuition?

By looking at the ultrapower construction of ∗R in section 3, one may
convince oneself that the equivalence class under a free ultrafilter of

⟨0.1, 0.01, 0.001, . . . , 10−n, . . .⟩

is different from that of zero. (The former sequence is different from zero at
every position, whereas the latter sequence is exactly zero at every position.
Hence, the index set of positions where both sequences are exactly equal is
the empty set, which is not in the free ultrafilter. Therefore, they correspond
to different hyperreal numbers.) Likewise, the sequence

⟨0.9, 0.99, 0.999, . . . , 1 − 10−n, . . .⟩

is different from the constant sequence ⟨1, 1, 1, . . . , 1, . . .⟩ at every position
and hence does not belong to the same equivalence class under a free ultra-
filter.

Observe that this does not contradict 0.999 . . . = 1, since the number

[⟨0.9, 0.99, 0.999, . . . , 1 − 10−n, . . .⟩]∼U
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is not equal to the real number 0.999 . . . . In fact, by observing that the
standard part of this number is 1, we could use it to prove that 0.999 . . . = 1.
The above number is a hyperreal number strictly smaller than 1, differing
from it by the infinitesimal quantity

[⟨0.1, 0.01, 0.001, . . . , 10−n, . . .⟩]∼U .

This topic is also taken up in [Katz and Katz, 2010].

7 Paradoxes of infinity

Consider the following two principles for comparing set sizes:

Euclidean part-whole principle If A is a proper subset of B, then A is
strictly smaller than B.

Humean one-to-one correspondence If there is a one-to-one correspon-
dence between A and B, then A and B are equal in size.

For finite sets, these principles lead to equivalent ways of measuring sets.
Since an infinite set can be put into one-to-one correspondence with a proper
subset of itself, these principles are incompatible for infinite sets. It led
Galileo to puzzle over the number of squares, for it seemed as though there
both had to be equally many squares as there are natural numbers and less
squares than natural numbers [Mancosu, 2009, p. 613].

In Cantor’s theory of cardinality, one-to-one correspondence is taken to
be the guiding notion for determining set sizes and the part-whole principle
is weakened.

One may wonder whether one can build an alternative theory of sizes
of infinite sets, by keeping on board the part-whole principle and weaken-
ing the principle of one-to-one correspondence. The answer is “yes”, as is
demonstrated by Benci’s theory of numerosity [Benci, 1995, Benci and Di
Nasso, 2003b, Benci et al., 2006b]. ‘Numerosity’ is the term used to refer to
set sizes based on the Euclidean part-whole principle. The numerosity of the
natural numbers (taken to be the set {1, 2, 3, . . .}) is defined to be α. Since
numerosities—unlike cardinal or ordinal numbers—follow the usual algebra
of finite numbers, it is easy to obtain the following results:

• num(N \ {1}) = α− 1;

• num(Z) = 2α + 1;

• num(N× N) = α2;

• num({1, . . . , n}) = n.
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As it turns out, Cantor’s theory of cardinality is not the only consistent way
to assign sizes to infinite sets [Mancosu, 2009].

Numerosity can be regarded as the ideal value of a real-valued ω-sequence,
i.e., some type of non-Archimedean limit). This idea is developed further in
alpha-theory, an axiomatic approach to NSA [Benci and Di Nasso, 2003a,
Benci et al., 2006a, Benci and Di Nasso, 2012].

8 Probability and formal epistemology

The field of non-standard measure theory and non-standard probability the-
ory is among the most developed areas of application of NSA. In these notes,
it is not possible to be exhaustive. Instead, we will focus on two topics that
are of special interest to formal epistemologists.

8.1 Regularity and infinitesimal probabilities

A probability functions is regular if it only assigns probability zero to the
impossible event (logical contradiction or empty set). Because of finite ad-
ditivity, it is equivalent to only assigning probability one to the certain
event (logical tautology or full sample space). It is well-known that stan-
dard probability functions, based on Kolmogorov’s axioms for probability
[Kolmogorov, 1933], can violate regularity in the case of countably infinite
sample spaces and always do so in the uncountable case.

Regularity is often discussed in the context of subjective probability,
where it is proposed as a norm for rationality, known as ‘strict coherence’
[Skyrms, 1995]. I think, however, that it is a desirable property also in
the context of logical or objective probability. Assigning probabilities is a
two-step process: first one determines all the elementary possible outcomes
(atomic events), i.e., one fixes a sample space. Then one assigns differ-
ent weights to the elementary events and to combinations thereof, i.e., one
assigns probabilities to the events in the event space (an algebra over the
sample space). It seems odd that some distinctions between possible and
impossible outcomes, as established in the first step, should get lost in the
second step. Yet, this is what happens if one practices probability theory
within the framework of standard measure theory: on an infinite sample
space, one may be forced to assign probability zero to a possible outcome,
which is the exact same probability as that of the impossible event.

We are interested here in examples that are discussed in the philosophical
literature, such as:

• drawing a random number from the natural numbers (sometimes called
de Finetti’s infinite lottery) and conditionalizing on an even number
being drawn or on a finite subset;

• throwing darts at the interval [0, 1]R and conditionalizing on [0, 1]Q;
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Table 1: Various quantitative probability theories.

Domain: Standard Ideal
Range:

R (Archimedean field) Kolmogorov (b) Loeb

Non-Archimedean field (c) NAP (a) Nelson

• a fully specific outcome (e.g., ‘all heads’) of an ω-sequence of tosses
with a fair coin.

It has been suggested that regularity can be attained for such examples by
considering infinitesimal probabilities, in particular in the context of NSA
[Skyrms, 1980, Lewis, 1980, Skyrms, 1995]; but this suggestion has also
been disputed [Williamson, 2007, Easwaran, 2010, Hájek, 2010]. The first
problem—that of a fair lottery on N—is of course directly related to the
issue of countable additivity; see also [Kelly, 1996, p. 321–323].

Whereas the above problems may seem rather contrived, they are related
to deeper issues in the philosophy of science, where they lead to the zero-fit
problem: if all systems of laws assign probability zero to the present state,
then one cannot select the best system based on a measure of goodness-of-
fit. This problem has been discussed in relation to infinitesimal probabilities
[Elga, 2004, Herzberg, 2007a].

Instead of trying to determine the feasibility of regular probability func-
tions based on hyperreals a priori, I propose to take stock of the different
approaches to hyperreal probabilities first: look at the details of how a the-
ory of infinitesimal probability would look like and evaluate the proposal
afterwards.

Multiple alternative approaches to probability theory have been dis-
cussed in the literature. We focus here on proposals that involve changing
the domain or the range of the probability function to a non-standard set in
the sense of NSA. We can thus distinguish three categories of alternatives,
presented in Table 1: the probability function has (a) both a non-standard
domain and a non-standard range, (b) only a non-standard domain, or (c)
only a non-standard range.

Alternative (a) is easily obtained in the context of NSA by applying
the Transfer principle to standard Kolmogorovian probability functions on
finite domains. An example of this approach was developed by Nelson [Nel-
son, 1987]: his “Radically elementary probability theory” is based on non-
Archimedean, hyperfinite sets as the domain and range of the probability
function. This framework has the benefit of making probability theory on in-
finite sample spaces equally simple and straightforward as the corresponding
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theory on finite sample spaces; the appropriate additivity property is hyper-
finite additivity. Nelson’s theory is regular and, since it is obtained directly
by Transfer, internal. However, this elegant theory does not apply directly
to our current quest for finding regular probability functions on standard
infinite sets, such as a fair lottery on N, R, or 2N.

Alternative (b) is the dominant line of research in non-standard mea-
sure and integration theory; it is concerned mainly with finding new results
in standard measure and integration theory [Cutland, 1983]. A measure
with standard range and non-standard domain can be obtained in NSA by
starting from (a) and applying the standard part function afterwards, which
maps a hyperreal measure to the unique nearest real value. Probability mea-
sures of this type are known as Loeb measures [Loeb, 1975]; these functions
are external objects (due to the use of the external standard map function).
Although the well-developed theory of Loeb measures has proven fruitful in
many applications, it too simply does not address the type of problems that
concern us here.

To describe regular probability functions on standard infinite domains,
we need to investigate the previously unexplored alternative (c). Together
with Leon Horsten, I wrote about a probability function of this form for
the special case of a fair lottery on N [Wenmackers and Horsten, 2010].
Together with Vieri Benci, we generalized this idea and developed our new
approach to probability theory, which we call non-Archimedean probability
(NAP) theory [Benci et al., 2012a, Wenmackers et al., 2012]. There is a
philosophical companion paper to the mathematical results (work in progress
[Benci et al., 2012b]). Remark: although McGee considered a sentential
algebra rather than a set algebra, the approach in his demonstration of the
equivalence between non-standard measures and Popper functions [McGee,
1994] is closely related to NAP.

Some properties of the theory:

• NAP theory is regular. Hence, it allows conditionalization on any
possible event (i.e., any subset of the sample space, except the empty
set).

• Within NAP theory, the domain of the probability function can be
the full powerset of any standard set from applied mathematics (i.e.,
of any cardinality), whereas the general range is a non-Archimedean
field. Hence, there are no non-measurable sets.

• Kolmogorov’s countable additivity (which is a consequence of the use
of standard limits) is replaced by a different type of infinite additivity
(due to the use of a non-Archimedean limit concept).

• For fair lotteries, the probability assigned to an event by NAP theory
is directly proportional to the numerosity of the subset representing
that event.
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• NAP functions are external objects: they cannot be obtained by taking
a standard object and applying the star-map to it.

The price one has to pay for all this is that certain symmetries, which
hold for standard measures, do not hold for NAP. Our theory is closely
related to numerosity and has a similar Euclidean property: a strict subset
has a smaller probability, as is necessary by regularity. Hence, for infinite
sample spaces, NAP is bound to violate the Humean principle of one-to-one
correspondence. Since translation symmetries amount to a particular type
of one-to-one correspondence, they fail in NAP (cf. [Williamson, 2007]). In
other words, as others have pointed out before [Bartha, 2004, Weintraub,
2008], these measures are strongly label-dependent.

8.2 Lockean thesis and relative infinitesimals

Whereas standard probability measures may seem too coarse-grained for
some applications, where we would like to distinguish between possible and
impossible events, they may not seem coarse-grained enough for other ap-
plications, as we will see now.

Suppose that you have detailed knowledge of the probabilities in a given
situation. It has been argued that it may still be beneficial to hold some full
(dis-)beliefs [Foley, 2009]. But when is it rational to believe something in this
case? The Lockean thesis suggests that it is rational to believe a statement if
the probability of that statement is sufficiently close to unity. This is usually
modeled by means of a probability threshold. As is demonstrated by the
Lottery Paradox [Kyburg, 1961], the threshold-based model is incompatible
with the Conjunction Principle. Moreover, it can be objected that the actual
probabilities are too vague to put a sharp threshold on them, and that a
threshold should be context-dependent.

I have discussed the analogy between large and infinite lotteries elsewhere
[Wenmackers, 2012b] (an earlier version can be found in [Wenmackers, 2011,
Chapter 4]), and have suggested the use of NSA to introduce a form of
vagueness or coarse-graining and context-dependence in the formal model
of the Lockean thesis. My model is called Stratified belief [Wenmackers,
2012a] (an earlier version can be found in [Wenmackers, 2011, Chapter 3])
and it is based on the ‘levels’—a formalization of the intuitive scales-of-
magnitude concept—in Hrbáček’s relative or stratified analysis [Hrbacek,
2007].

The basic idea is to interpret the Lockean thesis as follows: it is ratio-
nal to believe a statement if the probability of that statement is indistin-
guishable from unity (in a given context). The context-dependent indistin-
guishability relation is then modeled using the notion of differences up to a
level-dependent, ultrasmall number. These ultrasmall numbers, also called
‘relative infinitesimals’, are ordinary real numbers, which are merely unob-
servable, or do not have a unique name, in a given context. The aggregation
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rule for this model is the ‘Stratified conjunction principle’, which entails that
the conjunction of a standard number of rational beliefs is rational, whereas
the conjunction of an ultralarge number of rational beliefs is not necessarily
rational. Remark: this model is intended to describe beliefs that are almost
certain, but it can be used for weaker forms of belief by substituting a lower
number instead of unity.

9 Physics and philosophy of science

9.1 Rethinking the continuum

We often use “the continuum” as a synonym for the standard reals. However,
this is but one formalization of the concept of a physical continuum. Hyper-
reals form an alternative formalization of the concept. Katz et al. propose
to refer to ∗R as a “thick continuum”, as opposed to the “thin continuum”
R [Katz and Sherry, 2012a]. For a discussion of other rival continua, see
[B laszczyk et al., 2012, p. 23–24].

Like the standard reals, the hyperreals are infinitely divisible. In particu-
lar: infinitesimals are infinitely divisible. However, many applications make
use of hyperfinite sets, which—like a finite set—do contain a smallest non-
zero element. Therefore, such models are discrete or chunky, rather than
continuous. Another distinction to be made here is that, besides the hyper-
reals, there are other systems that also contain infinitesimals, but which may
have very different properties. Archimedes and Zeno, for instance, conceived
of infinitesimals as dimensionless points (for a discussion of Zeno’s paradoxes
in relation to hyperreals, see [White, 1999]), and smooth infinitesimal analy-
sis (SIA) describes nilsquare infinitesimals [Moerdijk and Reyes, 1991, Bell,
1998].

A more radical question is whether we need a continuum, be it modelled
by reals or hyperreals, in the empirical sciences at all. Sommer and Suppes
have proposed to dispense with the continuum in favor of ∗Q [Sommer and
Suppes, 1997]. They developed an axiomatic approach to NSA, called ele-
mentary recursive non-standard analysis (ERNA), and claimed that much
of physics does not rely on the existence of a completed continuum (R).
They proposed to trade the axiom of completeness for an axiom that states
the existence of infinitesimals. According to them, working in ∗Q is more
constructive and matches better with geometric intuitions than working in
R. Also in [Albeverio et al., 1986, p. 31], it is observed that although NSA
is often claimed to be a non-constructive theory (due to the dependence on
the Axiom of Choice), it is remarkably constructive in applications. And
[B laszczyk et al., 2012, p. 17] remark that proofs in NSA go with the flow
of reasoning, whereas epsilon-delta constructions notoriously run against it
(requiring specification of the change in the dependent variable prior to that
of the independent one).
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One may object that irrational numbers, such as
√

2 and π, are common
in physics, but do not exist in ∗Q. However, there are elements in ∗Q
that have the same decimal places as these numbers. Hence, R and ∗Q
are observationally equivalent. This notion of empirical indistinguishability
touches upon the very essence of ‘infinitesimals’, which have been described
long before the advent of NSA as smaller than any assignable or measurable
quantity.

9.2 Hyperfinite models and determinism

Hyperfinite models are models which are both infinite and discrete. As re-
marked before, they have a distinct constructive and intuitive flavor about
them. Moreover, they allow for deterministic models, where the correspond-
ing standard real-valued model may fail to do so. (Another advantage is that
one often does not need very advanced techniques from NSA in order to use
it to solve differential equations, as is demonstrated in [Benci et al., 2010].)

To illustrate this, we follow the example concerning Peano’s existence
theorem (PET) as discussed in [Albeverio et al., 1986, p. 31–33]. PET
states that:

∀f : [0, 1] × R → R continuous and bounded,

∀u0 ∈ R,
∃u : [0, 1] → R such that :{

du(t)/dt = f(t, u(t))
u(0) = u0.

The solution of this Cauchy problem typically is not unique (indeterminism).
In the standard proof of PET, one such solution is constructed, but no hints
are given about how to find the other solutions.

However, taken as functions of hyperreal numbers on a hyperfinite grid,
the solution obtained in the proof of PET would be unique. This can be seen
as follows: the corresponding difference equation, involving finite differences,
does have a unique solution; by Transfer, the same holds for the hyperfinite
equation.

Hyperreals can also be used to find all the solutions of the standard
version of the Cauchy problem. First, perturb the initial condition and/or
the differential equation by an infinitesimal. Then, find the unique solution
to the hyperfinite difference equation using the construction in the proof of
PET. Finally, take the standard part of the hyperreal solution.

In the example of Norton’s dome [Norton, 2008], which is used to demon-
strate a failure of determinism in classical mechanics, we encounter the same
phenomenon as before, this time with a second-order differential equation.
Giving a hyperfinite description of the dome yields a deterministic model.
If we follow Sommer and Suppes’ suggestion that nonstandard models and
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models based on the standard reals are empirically indistinguishable, we
have to conclude that (in-)determinism is a model-dependent property. Ob-
serve that Werndl reaches the same conclusion for a different source of in-
determinism [Werndl, 2009].
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P. Martin-Löf. Mathematics of infinity. In P. Martin-Löf and G. Mints, ed-
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