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Abstract: We offer a new argument for the claim that there can be non-degenerate objective chance (“true 

randomness”) in a deterministic world. Using a formal model of the relationship between different levels of 

description of a system, we show how objective chance at a higher level can coexist with its absence at a 

lower level. Unlike previous arguments for the level-specificity of chance, our argument shows, in a precise 

sense, that higher-level chance does not collapse into epistemic probability, despite higher-level properties 

supervening on lower-level ones. We show that the distinction between objective chance and epistemic 

probability can be drawn, and operationalized, at every level of description. There is, therefore, not a single 

distinction between objective and epistemic probability, but a family of such distinctions. 

1. Introduction 

There has been much debate on the question of whether there can be objective chance in 

a deterministic world. The “orthodox view” is that non-degenerate objective chance 

(“true randomness”) is incompatible with determinism, and any use of probability in a 

deterministic world is purely epistemic, reflecting nothing but an observer’s lack of 

complete information. This view was held by Popper (1982) and Lewis (1986) and has 

recently been defended by Schaffer (2007). Other authors defend “compatibilist views”, 

according to which there can be non-degenerate objective chance in a deterministic world 

(e.g., Hoefer 2007, Ismael 2009, Sober 2010, Glynn 2010). They employ a variety of 

argumentative strategies, ranging from an appeal to statistical mechanics (e.g., von Plato 

1982, Loewer 2001) to a semantic approach linking chance to ability (Eagle 2010).  

One strategy is to argue that the objective chance of an event depends on the level 

of description (e.g., Loewer 2001, Glynn 2010, Strevens 2011). According to this 

strategy, saying that, macroscopically described, a coin toss has an objective chance of ½ 

of landing heads is consistent with saying that, microscopically described, the initial state 

of the coin determines the outcome. Furthermore, as Glynn (2010) argues, such level-

specific chances can play the role we expect “objective chance” to play. However, no 

existing version of this strategy has been sufficiently immunized against the objection 
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that so-called “higher-level chances” are best understood, not as true objective chances, 

but as expressing the observer’s uncertain degrees of belief about the events in question, 

given his (or her) informational limitations. 

We develop an account of objective chance as an emergent phenomenon that 

answers this objection. Our account is based on a formal model of the relationship 

between different levels of description of a system (drawing on List 2011 and Butterfield 

2012) and shows how indeterminism and chance at a higher level can coexist with 

determinism and the absence of chance at a lower level.1 We identify a precise sense in 

which higher-level chance does not collapse into epistemic probability and show that the 

distinction between the two can be drawn and operationalized at every level of 

description. It is therefore misleading to draw a single overall distinction between 

objective chance and epistemic probability. There is an entire family of such distinctions: 

one for each level.  

The key insight underlying our account is that different levels of description of a 

system correspond to different specifications of the system’s state space and its set of 

possible histories, at different levels of “coarse-graining”, which induce different 

“algebras of events” on which probabilities are defined. Far from overcomplicating 

matters, this insight allows us to develop a parsimonious criterion of what separates 

objective chance from epistemic probability. What we are suggesting is no doubt implicit 

in earlier work on the topic (e.g., von Plato 1982), but the literature does not yet contain a 

satisfactory account of why the objective-epistemic distinction can be drawn at every 

level and how different levels are insulated from one another so as to permit objective 

chance as an emergent phenomenon, despite “chancy” higher-level world histories 

supervening on “non-chancy” lower-level ones. 

2. The basic setup 

We model a system whose state evolves over time (adopting the formalism from List 

2011).2 Time is represented by a set T of points that are linearly ordered. The state of the 

system at each time is given by an element of some state space S. A history of the system 
                                                
1 Butterfield (2012) and List (2011) discuss emergent indeterminism; we here focus on emergent chance. 
2 Other, structurally similar branching-history models include Butterfield (2012) and, in agential contexts, 
Belnap, Perloff, and Xu (2001). 
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is a temporal path through the state space, formally a function h from T into S, where, for 

each time t in T, h(t) is the state of the system at t.  

In this model, histories play the role of possible worlds. We write Ω to denote the 

set of all histories deemed possible. This could be either the set of all logically possible 

functions from T into S or, more plausibly, a proper subset of that universal set, so as to 

capture the fact that the laws of the system permit some histories while ruling out others. 

In the latter case, possibility (in Ω) can be understood as nomological possibility.3 

To define determinism and indeterminism, some further terminology is needed. For 

any history h and any time t, we write ht to denote the truncated history up to time t 

(defined as the restriction of the function h to all points in time up to t in the relevant 

linear order). A history h is deterministic if, for every time t, its truncation ht has only one 

possible continuation in Ω, where a possible continuation of ht is a history h’ such that 

h’t = ht. A history h is indeterministic if, for some time t, its truncation ht has more than 

one possible continuation in Ω. Thus indeterministic histories allow branching, while 

deterministic histories do not. 

Probability functions, irrespective of their interpretation, are always defined on 

algebras of events. An event is a collection of histories, i.e., a subset of Ω. An algebra is a 

collection of events that is closed under union, intersection, and complementation. One 

example of such an algebra is the set of all possible events (i.e., the power set of Ω). 

However, when Ω is infinite, it is technically useful to work with smaller algebras. 

Typically, the structure of Ω dictates a canonical choice of algebra, which we label 

A(Ω).4 A probability function is a function from A(Ω) into the interval from 0 to 1 with 

standard properties. It is non-degenerate if some events have probability greater than 0 

and less than 1. 

There can be different probability functions on the same algebra, indexed to 

different “locations” or “vantage points”. It is widely agreed, for example, that any 

objective chance function, when it exists, is indexed to a particular history and time 

(Lewis 1986, Schaffer 2007). Chance assignments thus take the form “event E has 
                                                
3 The laws of the system may go beyond specifying modal facts (facts about what is and is not 
nomologically possible); the set Ω only encodes those modal facts. A family of objective chance functions, 
when it exists, may encode additional, probabilistic facts. 
4 For example, if Ω has a topology, A(Ω) is usually the Borel sigma algebra. 
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objective chance p in history h at time t”. Epistemic probability (or credence) functions 

are indexed not only to histories and times, but also to agents and/or their informational 

states. Epistemic probability (or credence) assignments thus take the form “agent A (with 

information I) in history h at time t has degree of belief p in event E”.  

3. Objective chance 

Not every history-and-time-indexed probability function qualifies as an objective chance 

function. Indeed, on the orthodox view, no non-degenerate probability function does so 

for a deterministic history. Schaffer (2007) proposes six desiderata that a family of 

history-and-time-indexed probability functions must satisfy to play the “objective 

chance” role.5 These express the idea that chance must relate in the right kind of way to 

various other pertinent concepts, such as credence, possibility, the future, intrinsicness, 

lawfulness, and causation. For present purposes, we accept Schaffer’s claim that 

whichever family of probability functions “best” satisfies these desiderata represents 

objective chance. We call such a family, 〈Prh,t〉 (with h ranging over Ω and t ranging over 

T), an (objective) chance structure on Ω. Translated into our framework,6 the desiderata 

are as follows:  

The chance-credence desideratum: If an agent, in history h at time t, were 

to receive the information that the objective chance of some event E ⊆ Ω is p, 

he would set his degree of belief in E to p, no matter what other admissible 

                                                
5 Schaffer speaks of a single function with three arguments: a proposition (event), a world (history), and a 
time. Technically, however, only the projection of this function for a fixed history and a fixed time is a 
probability function. Hence it is mathematically more correct, though equivalent to what Schaffer has in 
mind, to speak of a family of history-and-time-indexed probability functions. 
6 In Schaffer’s model, each possible world (history, in our terms) is equipped with its own laws; different 
worlds can have different laws. In our model, the laws come into play in two ways. First, they impose 
modal constraints on what histories are nomologically possible: they determine Ω. Second, the laws 
determine the chance structure. So, in one sense, the laws are the same across all possible histories. 
However, if h and h’ are two distinct histories, the local properties of Ω and 〈Prh,t〉 may be different in a 
neighbourhood of h than in a neighbourhood of h’. Thus, there is another sense in which the world 
described by h may have “different” laws than the one described by h’ (in line with Schaffer’s assumption 
of world-specific laws). Formally, these “local” laws at h and h’ can still be understood as fragments of the 
“global” laws embodied by the whole structure of Ω and 〈Prh,t〉. 
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information he has (where this information is formally represented by a subset 

I ⊆ Ω, containing precisely the histories consistent with the information).7  

This is a version of Lewis’s “Principal Principle”, which is commonly accepted as a key 

constraint on the role of chance. The next two desiderata are equally natural: only events 

that are possible can have non-zero chance, and only future events can have non-

degenerate chance. 

The chance-possibility desideratum: A necessary condition for an event 

E ⊆ Ω to have non-zero objective chance in history h at time t is that E is 

possible in h at t, meaning that E contains a continuation of ht. 

The chance-future desideratum: A necessary condition for an event E ⊆ Ω 

to have non-degenerate objective chance in history h at time t is that E is 

“properly in the future” of t. 

Spelling out what it means for an event E to be “properly in the future” of time t is a non-

trivial matter. A simple, but ultimately unsatisfactory criterion would be that the 

complement of E is still possible in h at t. The chance-future desideratum would then 

become an immediate consequence of the chance-possibility desideratum. The two 

desiderata can be teased apart using a more mathematically involved construction.8  

The following desideratum captures the idea that the objective chance of any event 

is determined by relevant properties of the event itself, not by extrinsic or relational 

properties.  
                                                
7 The definition of “admissible information” is subtle. We adopt a permissive definition here, deeming, at 
any time t, any information about the past admissible. On a generous criterion, information I ⊆  Ω is 
admissible in history h at time t whenever I contains at least all possible continuations of ht. A more 
restrictive admissibility criterion would only strengthen our conclusions. Further, since the laws of the 
system are encoded in Ω (and the chance structure 〈Prh,t〉), the admissible information I ⊆  Ω can also 
convey information about the laws. An agent in a deterministic history can thus, in principle, fully predict 
the future if he learns which truncated history he is in.  
8 Let ST be the set of all functions from T into S, i.e., the set of all logically possible histories and thus a 
superset of Ω. Any event E in Ω can be (non-uniquely) represented as E = E’ ∩ Ω, for some E’ ⊆ ST. 
Heuristically, E’ is a (merely) logically possible event, while E is the set of all histories in E’ that are 
nomologically possible. For any time t, let B(t) be the set of all times up to and including t, and A(t) the set 
of all times after t. Let SB(t) be the set of all functions from B(t) into S, and SA(t) the set of all functions from 
A(t) into S. Heuristically, SB(t) is the set of all logically possible truncated histories up to and including time 
t, and SA(t) the set of logically possible future histories after time t. Then ST = SB(t) × SA(t). An event E is 
settled in the past of t if E = (P × SA(t)) ∩ Ω for some P ⊆ SB(t). An event E is properly in the future of t if it 
is not settled in the past of t. If all histories in Ω are deterministic, any event E ⊆ Ω is settled in the past in 
this technical sense. 
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The chance-intrinsicness desideratum: For any histories h, h’, any events 

E, E’ ⊆ Ω, and any times t, t’, if the triple (E, h, t) is an intrinsic duplicate of 

the triple (E’, h’, t’), the objective chance of E in h at t is the same as that of 

E’ in h’ at t’. 

The precise definition of an “intrinsic duplicate” is difficult and raises a number of 

philosophical issues beyond the scope of this paper.9 Informally, if all intrinsic properties 

of (E, h, t) are exactly replicated in (E’, h’, t’), for instance in two separate runs of the 

same experiment, then the objective chance facts should be the same. 

The next desideratum requires that objective chances must be determined by the 

laws of the system, as opposed to, for instance, the attitudes of the observer. 

The chance-lawfulness desideratum: There is a set of laws at the level of Ω 

that determines the chance structure on Ω. 

For example, there are physical laws that imply that a photon has a chance of ½ of 

passing through each of the two symmetrical slits in the classic double-slit experiment. 

To state the final desideratum, some preliminary definitions are needed. Let C and 

E be two events, occurring at times tC and tE, respectively.10 We say that C appears 

causally relevant to E in history h at time t (before tE) if tC is before tE and 

Prh,t(E|C) ≠ Prh,t(E). Informally, this means that, in the context of the other facts that 

obtain in history h at time t, the occurrence of C alters the chance of the subsequent 

occurrence of E. We require tC to be before tE to rule out backwards causation. The causal 

relation is dependent on a specific history and time because certain background 

                                                
9 Schaffer restricts this requirement to triples (E’,h’,t’) and (E,h,t) in which h’ = h, since he allows different 
worlds to have different laws (in our terminology, these would be “local” laws, as discussed in an earlier 
footnote). Although we have no problem with making the desideratum more restrictive, our formulation can 
be defended against the “different laws” objection by using a sufficiently stringent criterion of when 
(E’,h’,t’) and (E,h,t) are intrinsic duplicates. Here is one operationalization (though undoubtedly a departure 
from what Schaffer has in mind). Let π be a permutation (one-to-one, onto function) on S. Then π induces a 
permutation π* on ST. We call π a symmetry if π*(Ω) = Ω and, for any h in Ω, t in T, and E ⊆ Ω, we have 
Prh’,t(π*(E)) = Prh,t(E) where h’ = π*(h). Heuristically, π transforms the state of the system in a way that 
preserves all causally relevant features. Examples might be shifting all particles in the universe five metres 
in a particular direction or assigning a unique integer label to every electron and exchanging the even- and 
odd-numbered electrons. All “intrinsic” features of the system are preserved under such a symmetry. On 
this operationalization, (E’,h’,t’) is an “intrinsic duplicate” of (E,h,t) if there is some symmetry π such that 
h’(t’) = π(h(t)) and E’ = π*(E). 
10 For a technical treatment of the time of an event, see an earlier footnote. 
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conditions may be necessary for C to be causally relevant to E. (For example, lighting a 

match cannot “cause” a fire unless there is already flammable material nearby.11) Finally, 

the expression “appears causally relevant” acknowledges that “true” causality may 

require more than just a probabilistic relationship between C and E. For our purposes, we 

need not take stand on what else causality involves. The last desideratum can now be 

stated as follows: 

Chance-causation desideratum: If some event C appears causally relevant 

to another event E in history h at time t, then C must happen after time t and 

before E. 

Formulated this way, the desideratum is essentially the well-known Markov condition on 

a stochastic process: it says that any causally relevant properties of events occurring up to 

time t are already encoded in the truncated history ht. Thus, if C is causally relevant to E, 

then C must occur after time t (and of course before E itself).12 

If we accept the six desiderata, we obtain the following conclusion, as noted by 

Schaffer (2007). 

Observation 1: There can be no non-degenerate objective chance in a 

deterministic history. 

To see this, let h be a deterministic history, and consider, for example, the chance-

credence desideratum. If an agent were to receive the information that some event E has 

non-degenerate objective chance p in history h at time t, he would have to set his degree 

of belief in E equal to p, no matter what other admissible information he has. However, 

the full information about the truncated history up to time t is certainly admissible. 

Formally, this is the subset I of Ω consisting of all possible continuations of ht. But h is 

deterministic, so I is the singleton set containing only h itself. Thus, conditional on I, the 

agent will assign credence 0 or 1 to E, depending on whether E contains h or not. This 

contradicts the chance-credence desideratum, which mandated a credence p strictly 

between 0 and 1. 
                                                
11 Indeed, in some contexts, it might be more correct to think of the truncated history ht as being what 
“causes” E, with C only playing an “auxiliary” role. For example, if E is a forest fire, and ht is a history in 
which a camper left a live ember under the ashes of his camp fire, C might be the random gust of wind that 
ignites the conflagration. Our definition is noncommittal on this point. 
12 On probabilistic causation, see Pearl (2000). 
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Similarly, consider the chance-possibility desideratum. Since h is deterministic, the 

truncation ht, at any time t, has only one continuation, namely h itself. Thus, any event E 

is possible in h at time t if and only if E contains h itself, in which case the complement 

of E is impossible. By implication, Prh,t(E)=1 if E contains h, and Prh,t(E)=0 otherwise. 

Thus, in a deterministic history, the chance-possibility desideratum rules out non-

degenerate objective chance. 

Finally, consider the chance-future desideratum. In a deterministic history, all 

events are “settled in the past” (as technically explicated in an earlier footnote), and thus 

no event counts as being “properly” in the future. This would also follow if we defined an 

event’s being “properly in the future” as requiring that its complement be possible, since 

in a deterministic history no possible event has a possible complement. Either way, the 

necessary condition for non-degenerate objective chance, according to the chance-future 

desideratum, can never be met under determinism. (This is not to deny that, in a more 

richly described ontology of events, some events could count as being “in the future” in 

some other sense, even under determinism.)  

The question of whether, in a deterministic history, the other three desiderata – 

chance-intrinsicness, chance-lawfulness, and chance-causation – can be met by a non-

degenerate chance structure is less straightforward. But in any case, it is clear that our 

package of six desiderata cannot be satisfied in its entirety. By contrast, in indeterministic 

histories, the desiderata pose no such restriction. 

Observation 2: There can be non-degenerate objective chance in an 

indeterministic history. 

To see this, it suffices to construct an example. Consider a toy universe containing only 

one particle, whose state is fully described by its location. Suppose that space and time 

are both discrete, and space is one-dimensional. Thus, spatial positions can be represented 

by integers, and moments in time by positive integers. In other words, we can write 

S={...,-3,-2,-1,0,1,2,3,...} and T={1,2,3,....}. Let Ω be the set of all histories where the 

particle begins at spatial position 0 and moves exactly one spatial position (either left or 

right) in each time period. Histories in Ω are non-deterministic, because any truncated 

history of length t can be extended to a truncated history of length t+1 in two ways. For 
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example, the truncated history (0,1,2) can be extended to both (0,1,2,3) and (0,1,2,1). We 

can construct a non-degenerate objective chance structure for this toy universe as follows. 

For any time t and any spatial position s, let E[s at t] be the set of all histories h in Ω 

such that h(t)=s. Now let h be a specific history in Ω, and suppose h(t-1)=s. Then we set 

Prh,t(E[s+1 at t]) = ½ and Prh,t(E[s-1 at t]) = ½. In other words, the particle has an equal chance 

of moving right or left in each period. We then define the chance function Prh,t by 

multiplying these “one-step” chances in the obvious way. To be precise, for any positive 

number n, there are 2n possible extensions of any truncated history ht of length t to a 

truncated history of length t+n, and the chance function Prh,t will assign probability 1/2n to 

each of these possible extensions. There is no barrier for this family of chance functions 

to satisfy all of the six desiderata listed above. This should, of course, be uncontroversial. 

4. Epistemic probability 

We have seen that non-degenerate objective chance can exist only in indeterministic 

histories in Ω. This does not mean, however, that non-degenerate probability assignments 

are never appropriate in deterministic histories: they may reflect our uncertain degrees of 

belief, given incomplete information. In fact, whether or not a history is deterministic, an 

agent’s epistemic probability (or credence) function will typically be non-degenerate, 

unless the agent has complete information and there are no chance events in the world.  

For example, after having watched the first half of an old recorded football match, 

we may assign probability 2/3 to our favoured team’s winning – a non-degenerate 

probability assignment – despite understanding that the outcome of the match is long 

settled: we just do not know what it is. This probability assignment simply expresses our 

uncertain degrees of belief; we are even dealing with a past event. On the other hand, we 

may also hold non-degenerate epistemic probabilities in cases involving real chance. 

Consider our disposition to bet on the outcome of tomorrow’s football match. Ordinarily, 

we think that, over and above the players’ skills, there is some real randomness involved 

here. Generally, therefore, epistemic probabilities (or credences) reflect a mix of 

incomplete information and objective-chance hypotheses. 

Clearly, epistemic probabilities need not, and typically will not, satisfy the six 

desiderata on objective chance. Instead, they must satisfy the following desideratum, 
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which ensures compatibility between an agent’s epistemic probabilities (or credences) 

and his information: 

Epistemic probability-possibility desideratum: A necessary condition for 

an event E ⊆ Ω to be assigned non-zero epistemic probability by agent A with 

information I (at time t in history h) is that E is epistemically possible from 

A’s perspective, meaning that E ∩ I is non-empty. 

One may or may not wish to impose other desiderata on epistemic probabilities, such as 

Bayesian ones, but we need not take a stand on this here. The key point is that even in the 

limiting case of a completely deterministic history, non-degenerate epistemic probability 

is still possible – and typically entirely rational, given an agent’s incomplete information. 

As long as the information set I is non-singleton, there is no conflict between non-

degeneracy and the epistemic probability-possibility desideratum. The earlier example of 

the pre-recorded football match illustrates this: none of the conceivable outcomes of the 

match is ruled out by our information after watching the first half. 

The example also motivates a simple criterion for distinguishing “pure” epistemic 

probability from probability assignments that are driven, at least in part, by objective 

chance. If we had complete information about the history of football, we would already 

know the outcome of the pre-recorded match before we even watched it: there would be 

no room for non-degenerate epistemic probabilities. However, even with complete 

information about football history, we would still not know the outcome of tomorrow’s 

match. We would continue to entertain non-degenerate epistemic probabilities here, 

which arise from objective-chance considerations.13 (For those who prefer a 

microphysical example: we certainly do not know which of the two slits in the classic 

double-slit experiment a photon will pass through. But even with complete information 

about the past, we would still assign non-degenerate probabilities to the two possibilities, 

since we dealing with objective chance.)   

 

                                                
13 There is no guarantee, of course, that such full-information epistemic probabilities will match the “true” 
objective chances. The fact that we assign non-degenerate epistemic probabilities to the different outcomes 
here is driven by objective chance; the question of which probability values we assign still reflects our 
information. 
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In general, a sufficient condition for a non-degenerate probability assignment made 

in history h at time t to some event E to be purely epistemic is that it becomes degenerate, 

once we conditionalize on complete information about the truncated history up to time t. 

Formally, this yields the following test: 

Test for pure epistemic probability: Let E be an event, and let Pr denote a 

probability function held by an agent A in history h at time t. A sufficient 

condition for Pr to be purely epistemic with respect to E is that Pr(E|ht) = 0 or 

1. Here, Pr(E|ht) is shorthand for Pr(E|I), where I is the information that the 

truncated history is ht; formally, I = {h’ ∈ Ω : h’ is a continuation of ht}.  

5. Emergent indeterminism 

So far, we have described the system of interest at only one level, which we will now call 

the lower level. The state space S could be, for example, the set of all possible 

microphysical states, and Ω the set of all possible microphysical histories. Often, 

however, we wish to employ higher-level descriptions, for example by describing the 

state of water as liquid or frozen, rather than as a complex configuration of individual 

molecules, or by describing a tossed coin as landing heads or tails, rather than as 

following a particular finely specified physical trajectory.  

We assume that (i) higher-level states and histories supervene on lower-level states 

and histories (meaning that there cannot be any variation at the higher level without 

variation at the lower level), and (ii) higher-level states are typically multiply realizable 

by lower-level states. There are many different configurations of water molecules that 

each instantiate the same state of liquid water. Similarly, there are many different 

physical trajectories of a coin that all correspond to landing heads.  

The relationship between the different levels can be formally captured by the idea 

of coarse-graining: each higher-level state corresponds to an equivalence class of lower-

level states, consisting of all its possible lower-level realizations. Call a partition of the 

state space S into such equivalence classes a coarse-graining of S, and let S denote the set 

of all equivalence classes (note the outlined letter for higher-level objects).14 Each s in S 

                                                
14 Again, we use the formalism from List (2011). 
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represents one higher-level state. Let σ denote the function that maps each lower-level 

state s in S to the corresponding higher-level state s in S (i.e., the equivalence class to 

which s belongs). The function σ can also be interpreted as a supervenience relation that 

maps subvenient lower-level states to their supervenient higher-level counterparts.  

We can apply σ not only to states, but also to histories. For each lower-level history 

h in Ω, the corresponding higher-level history h is the function from T into S such that, 

for each t in T, h(t) = σ(h(t)). The set of all possible higher-level histories is the 

projection of Ω under σ, formally Ω = σ(Ω).  

With these definitions in place, all the concepts, definitions, and observations from 

the previous sections carry over, without any formal changes, to the system described at 

the higher level, where S is now the state space and Ω the corresponding set of possible 

histories. All the relevant symbols in those sections must simply be replaced by their 

outlined counterparts.  

For example, we can define determinism and indeterminism in higher-level histories 

in exact analogy to determinism and indeterminism in lower-level histories: a higher-

level history h (in Ω) is indeterministic if, for some time t, its truncation ht has more than 

one possible continuation in Ω, and deterministic otherwise. A possible continuation of ht 

is defined, as before, as a history h’ in Ω such that h’t = ht. Similarly, a higher-level 

event E ⊆ Ω is possible in history h at time t if E contains a continuation of ht. 

A key point to note is that determinism at the lower level (in Ω) is fully compatible 

with indeterminism at the higher level (in Ω). 

Observation 3: For suitable σ (and sufficiently large Ω), there can be 

indeterministic histories in Ω even when all histories in Ω are deterministic 

(List 2011; for a structurally similar result, see Butterfield 2012). 

Figure 1 provides an example of emergent indeterminism. Part (a) shows a simple system 

at the lower level of description (Ω). Time is plotted on the horizontal axis 

(T={1,2,3,...}), and the state of the system on the vertical one. Here the state space S is 

the set of all real numbers. The figure displays five deterministic histories, from time 
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t = 1 to time t = 25. Part (b) shows the same system at a higher level of description (Ω), 

obtained by coarse-graining the state space S. Specifically, S is the set of all integers. The 

coarse-graining function σ maps each real number s in S to the closest integer s in S (with 

the usual rounding convention). In this coarse-grained description, there are now five 

indeterministic histories, supervenient on the lower-level deterministic ones. In particular, 

they all coincide up to time t = 9 before diverging from one another. 
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Figure 1: Emergent indeterminism 

6. Objective chance at a higher level  

Observation 3 shows that while a system may be deterministic at a lower level of 

description, indeterminism can emerge at a higher level: while the set Ω may contain 

only deterministic histories, a suitable coarse-graining may yield a set Ω of 

indeterministic histories. But then Observation 2, applied to the level of Ω rather than Ω, 

shows that Ω may admit a non-degenerate objective chance structure. Thus, non-
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degenerate objective chance is possible at a higher level of description, even if the system 

is totally deterministic at a lower level of description.  

Corollary of Observations 2 and 3: There can be non-degenerate objective 

chance in a higher-level history (in Ω), even when all lower-level histories (in 

Ω) are deterministic. (A necessary condition for this is that the higher-level 

history is indeterministic, which is compatible with lower-level determinism.) 

At first sight, this conclusion may seem puzzling. Have we not established that when the 

histories in Ω are deterministic, only degenerate objective chance structures can meet the 

six desiderata? However, the key insight is this: when evaluating chance and 

(in)determinism at a higher level of description, only higher-level language is available. 

The relevant family of history-and-time-indexed probability functions, 〈Prh,t〉, now 

consists of functions defined on the algebra A(Ω) rather than A(Ω), and the index h now 

ranges over Ω rather than Ω (while t continues to range over T).15 Our entire analysis 

from the previous sections, including the desiderata, must therefore be re-applied at the 

level of Ω rather than Ω. 

Past arguments for the incompatibility of higher-level objective chance and lower-

level determinism tended to make a fundamental conceptual error: they supposed that, 

when evaluating the chance of some higher-level event E ⊆ Ω, we could employ a 

probability function indexed to a lower-level history h or conditionalize on a lower-level 

event E ⊆ Ω, as in expressions of the form “Prh,t(E) = 0” or “Prh,t(E |E) = 0”. But it should 

now be clear that this is misguided. Such expressions involve a category mistake: they 

mix two different levels of description.16  

The obstacle here is conceptual, not epistemic. There are, of course, a number of 

epistemic questions about whether, and why, we should employ higher-level descriptions 

(lower-level information may or may not be accessible to us, higher-level descriptions 

may or may not be “reducible” to lower-level ones, and so on). We turn to these issues in 

                                                
15 Technically, A(Ω) is a sub-algebra of A(Ω). 
16 Even Glynn’s (2010) defence of “indeterministic chance”, whose claim about the level-specificity of 
chance we agree with, preserves the quantification over lower-level histories (worlds) and introduces 
different levels only via level-specific laws, not via explicit coarse-graining of states and histories (worlds).  
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Section 8. However, the conceptual point is that when we are operating at the higher 

level of description, lower-level language is unavailable. So, our claim, at this stage of 

the argument, is conditional: if we are operating at the higher level, we must stick to it. 

As further evidence of the pitfalls of mixing levels, note that expressions like “Prh,t(E) = 

0” or “Prh,t(E |E) = 0” are not even mathematically well-defined when the indexed history 

h and the event E are described at the higher level but E is described at the lower one. 

In Sections 2 and 3, we laid out a theory of objective chance in the setting of 

indeterministic histories in Ω. But this theory applies equally well to Ω: simply replace 

every symbol with its outlined counterpart. When the higher-level analysis (in Ω) is 

correctly insulated from lower-level descriptions (in Ω), higher-level indeterminism can 

coexist with lower-level determinism, as we have just seen, and so the possibility of 

higher-level non-degenerate objective chance follows immediately from the “outlined 

letter” version of the framework in Sections 2 and 3. 

We will now give a simple example of emergent chance (familiar from the 

dynamical-systems literature). Consider a system whose state space S is the interval of all 

real numbers between 0 and 1. Time is given by the set of positive integers, T={1,2,3,...}. 

The system changes its state from one time period to next via a transition rule, which is 

formally a function f from S into itself. If s is the state at time t, then f(s) is the state at 

time t+1. Thus, starting at any state s in S, we obtain the following history:  

h(1) = s, h(2) = f(s), h(3) = f( f(s) ), h(4) = f( f( f(s) ) ), and so on.  

The set Ω is the set of all histories that can be obtained in this way. The system is clearly 

deterministic.  

More specifically, suppose that f is defined as follows (as illustrated in Figure 2): 
    2s if 0 ≤ s ≤ ½;  f(s) =    {                   2-2s if ½ < s ≤ 1.   
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Figure 2: The transition rule f 

 
Now we introduce a coarse-graining of this system. Let A and B be symbols representing 

higher-level states, and let S ={A,B}. Define the function σ from S to S by setting  
  A if 0 ≤ s ≤ ½;  σ(s) =    {                    B if ½ < s ≤ 1.   
By implication, σ maps each lower-level history h to a higher-level history h that takes 

the form of a sequence of As and Bs. For example, if we begin in the lower-level state 

s=1/7, we obtain the lower-level history h=(1/7, 2/7, 4/7, 6/7, 2/7, 4/7, ...). After coarse-

graining via σ, this becomes the higher-level history (A,A,B,B,A,B,...). Let Ω be the set of 

all higher-level histories that can be obtained in this way. Then Ω contains every possible 

function from T into {A,B}. Thus, there is not only indeterminism in Ω, but “maximal” 

indeterminism: every truncated history up to time t can be extended to two truncated 

histories up to time t+1, four truncated histories up to time t+2, and so on.  
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Figure 3: Higher-level histories generated by the function f and the partition {A,B} 
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To see how a non-degenerate chance structure on Ω arises in a very natural way, 

consider Figure 3. Suppose a higher-level history h begins with A at time t = 1. Then h 

must be the coarsened counterpart of a lower-level history h beginning at some state s 

between 0 and ½. There are two possibilities: either 0 ≤ s ≤ ¼, or ¼ < s ≤ ½. In the first 

case, f(s) (and thus h(2)) must be between 0 and ½, and so h(2) = A. In the second case, 

f(s) (and thus h(2)) must be between ½ and 1, and so h(2) = B. Similarly, if h begins with 

B at time t = 1, its lower-level realizer must begin with some state between ½ and 1. 

Here, either ½ < s < ¾, or ¾ ≤ s ≤ 1. In the first case, h(2) = B; in the second, h(2) = A.  

So, depending on where exactly in the interval S the lower-level state falls at time 

t = 1, we obtain higher-level histories beginning with (A,A), (A,B), (B,B), or (B,A). These 

correspond exactly to four sub-intervals of S, each of length ¼, as shown in Figure 3(a). 

What happens at time t = 3? We must now consider eight sub-intervals of S, each of 

length ⅛, as illustrated in Figure 3(b). Which of these we start in determines the higher-

level history up to time t = 3. For example, if ¼ < s ≤ ⅜, then ½ < f(s) ≤ ¾, and so 

½ < f(f(s)) ≤ 1. Thus σ(s)=A, while σ(f(s))=B and σ(f(f(s)))=B. It follows that h(s) begins 

with (A,B,B). 

To determine the higher-level history up to time t = 4, we must consider sixteen 

sub-intervals of S, each of length 1/16. These correspond to the sixteen possible truncated 

histories of length 4, as illustrated in Figure 3(c).  

By iterating this argument, we see that, for any time t, the interval S can be 

subdivided into 2t subintervals, each of length 1/2t, which correspond to the 2t possible 

truncated histories of length t in Ω. This symmetry suggests a chance structure for the 

higher-level system, where each of these 2t truncated histories has an equal chance of 

occurring. A higher-level history can then be seen as a sequence of random choices 

between A and B, both having probability ½, and with different choices independent of 

one another, as in a sequence of fair coin tosses. In other words, the higher-level chance 

structure is that of a classic Bernoulli process. There is clearly no barrier for this chance 

structure to satisfy the six desiderata on objective chance.17  

                                                
17 The higher-level system Ω  admits many other non-degenerate chance structures. The one described here 
has some claim to being the most “natural” one, since it is invariant under an exchange of the symbols A 
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One might object that the emergence of non-degenerate objective chance in this 

example is an artifact of the excessively coarse partition of S into only two sub-intervals, 

from 0 to ½ and from ½ to 1, which we labelled A and B. But non-degenerate objective 

chance also emerges from finer partitions. Suppose, for example, we partition S into four 

sub-intervals of length 1/4 each, labelled {AA,AB,BB,BA}, as in Figure 2(a). Then an 

argument similar to the one just given shows that, for any higher-level history h (now a 

function from T into S = {AA,AB,BB,BA}), if h(t) = AA (for example), then we must have 

Prh,t[h(t+1)=AA] = ½ and Prh,t[h(t+1)=AB] = ½. Similar points apply if h(t) is AB, BB, or 

BA. If, instead, we partition S into eight sub-intervals of length 1/8 each, labelled 

{AAA,AAB,ABB,ABA,BAA,BAB,BBB,BBA}, as in Figure 2(b), then non-degenerate 

chance emerges again: for any higher-level history h (now over an even finer S), if 

h(t) = BBB (for example), we have Prh,t[h(t+1)=BBA] = ½ and Prh,t[h(t+1)=BBB] = ½. 

Indeed, a non-degenerate chance structure emerges for any finite partition of the 

interval S. The reason is that lower-level histories of the system are extremely sensitive to 

small perturbations. To see this, suppose that s and s’ are two points in the interval S, 

which generate lower-level histories h and h’, corresponding to higher-level histories h 

and h’ via some coarse-graining function σ. Suppose s and s’ are very close together. The 

distance between f(s) and f(s’) will then typically be twice the distance between s and s’.18 

And the distance between f(f(s)) and f(f(s’)) will typically be twice that between f(s) and 

f(s’) (hence four times the distance between s and s’),19 and so on. In this way, the lower-

level histories h and h’ will rapidly diverge from each other. This, in turn, will lead the 

corresponding higher-level histories h and h’ to come apart eventually. Even if two 

higher-level histories h and h’ agree for their first two million entries, there is no reason 

for h(2,000,001) to be the same as h’(2,000,001).  

                                                                                                                                            
and B. But it is not necessary for our purposes to show that this chance structure is in any way unique or 
canonical. What matters is that it can meet the six desiderata (at the level of Ω). 
18 This is true as long as s and s’ are both in sub-interval A, or both in sub-interval B. 
19 This is true as long as f(s) and f(s’) are both in sub-interval A, or both in sub-interval B. 
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7. The objective-epistemic distinction at every level 

In Section 4, we drew the distinction between objective chance and epistemic probability 

at the lower level of description (i.e., in Ω). However, the same distinction can be drawn 

at the higher level (in Ω) and, indeed, at every level of description. Furthermore, our 

earlier operational test applies in each case. While objective chance is represented by 

whichever family of history-and-time-indexed probability functions “best” satisfies the 

six desiderata at the relevant level, we also have a test for purely epistemic probability. A 

non-degenerate probability assignment at a given level meets the sufficient condition for 

being purely epistemic if it becomes degenerate once we conditionalize on complete 

information about the truncated history at that level.  

Test for pure epistemic probability, where Ω  is the level-specific set of 

histories: Let E ⊆  Ω  be an event, and let Pr denote a probability function 

held by an agent A in history h ∈ Ω  at time t, with Pr defined on A(Ω). A 

sufficient condition for Pr to be purely epistemic with respect to E is that 

Pr(E |h t) = 0 or 1. As before, Pr(E |ht) stands for Pr(E |I), where I is the 

information that the truncated history is ht; formally I = {h’ ∈ Ω : h’ is a 

continuation of ht}. 

Consider the example of two dice being thrown onto a gaming table. Perhaps the system 

of tumbling dice admits a microphysical description Ω that is completely deterministic. 

However, as explained in Section 6, this system may also admit a higher-level description 

Ω in which the objective chance that the gambler is about to throw snake-eyes (a pair of 

ones) is 1/36. Now suppose the gambler has already thrown the dice, but the result is 

hidden from your view by a barrier. The gambler can see the dice, but you cannot. There 

is no longer any non-degenerate objective chance here; either the dice came up snake-

eyes, or they did not. The objective chance of this event is now either zero or one. But 

from your perspective, with limited information, the epistemic probability of the event 

(your credence) remains 1/36. Once the barrier is removed, however, you will assign 
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probability 0 or 1. In this story, there is both objective chance (about how the dice will 

land in the future) and epistemic probability (about how the dice have already landed). 

For another example, consider the sort of uncertainty confronted by meteorologists. 

Perhaps the Earth’s atmosphere admits a microphysical description Ω that is completely 

deterministic. However, this system may also admit a higher-level description Ω, in 

which the objective chances of future weather events are non-degenerate. Meteorologists 

gather data from a large array of weather sensors (thermometers, hygrometers, 

barometers, etc.) and analyze it with computers to predict tomorrow’s weather. These 

predictions are uncertain, and this uncertainty arises in part from the existence of non-

degenerate objective chance about tomorrow’s weather at the level of Ω. Indeed, 

meteorologists model the weather as a stochastic system. However, meteorologists also 

confront another kind of uncertainty. Their network of sensors is sparse. The current 

meteorological conditions at some location X between two sensors are unknown. But the 

meteorologists can assign a probability distribution to the current conditions at X. This is 

a purely epistemic probability; if there had been a sensor at X, the epistemic probability 

for the conditions at X would be degenerate, because the meteorologists would know the 

actual conditions at X.  

Finally, consider an example from the social world. The police in a big city wish to 

forecast crime rates in various neighbourhoods, in order to organize effective patrols. 

Whether or not there is some physical or neuropsychological level (Ω) at which each 

individual crime is pre-determined, at the ordinary human or social level (Ω) the police 

will have to treat patterns of crime as involving non-degenerate objective chance. The 

chance of various crimes happening will differ from neighbourhood to neighbourhood: 

there is a higher chance of petty theft and pickpocketing at the railway station than on a 

quiet residential street. The probabilities in question would not become degenerate even if 

the police had complete information about the human and social history up to now. 

Contrast this with a murder investigation in which the police assign probability 1/3 to the 

hypothesis that Jones did it. This probability is purely epistemic. Conditional on complete 

historical information (at the level of Ω), it would collapse into 0 or 1, since the relevant 

history would settle the matter. 
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8. Why coarse-graining is inevitable 

Higher-level objective chances arise from coarse-graining, but they are not just epistemic 

probabilities in disguise. It is true that coarse-graining may be a response to incomplete 

information about a system’s lower-level state. But this is not the only reason for coarse-

graining. Even if we had complete or almost-complete information about the lower-level 

state, coarse-graining would still be necessary for agents such as ourselves to avoid the 

unmanageable complexity of the lower level, for several reasons.  

First, the lower-level dynamics of many systems is chaotic. This means that even 

very small errors in our measurement of the current state of the system can translate into 

very large errors in our predictions of the system’s future behaviour. (A simple example 

is the system shown in Figures 2 and 3 in Section 6.) Since some tiny amount of 

measurement error is inevitable, this means that prediction is in practice impossible, at 

the lower level. So an agent who insists on maintaining a detailed lower-level 

representation of the world will have no predictive ability. However, under a suitable 

coarse-graining, the chaotically diverging trajectories at the lower level of description can 

perhaps be amalgamated into a single, predictable trajectory at some higher level – or at 

least, into a higher-level stochastic process with a manageable amount of randomness. 

Weather forecasting is an example. So, by using a higher-level description, the agent 

makes his predictive task much easier.  

Also, even if the agent could make perfect measurements, or even if the lower-level 

dynamics were not chaotic, an accurate predictive model of the lower level may still be 

infeasible due to computational complexity. For example, the dynamics of trillions of 

molecules of water and other organic compounds ricocheting around a tea cup is chaotic 

and astronomically complex to model at a lower level. But it is very easy at a higher level 

to model what happens when you add boiling water to tea leaves. 

Furthermore, the agent is not ultimately interested in the lower-level state of the 

system. He is interested in higher-level questions. Trivial examples are: is the tea 

brewed? Is it cool enough to drink? Is it strong? In principle, this higher-level information 

could be recovered from a complete lower-level description of the system, but this would 

again be extremely computationally complex. 
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Indeed, in some cases, this computation may not even be possible. The “coarse-

graining” map σ may be a well-defined mathematical object, but there is no reason to 

assume that it admits a finite description in any formal language available to us. Via σ, 

each higher-level history h corresponds to an equivalence class H of lower-level histories. 

Unfortunately, however, the simplest description of H may be just an enumeration of its 

elements. If H contains infinitely many elements, then it may not even be describable by 

any finite sentence. This is not an outlandish possibility; there is a sense in which “almost 

all” subsets of Ω admit no finite description.20 

Even if H is finitely describable, it is still possible that the shortest description of H 

is astronomically large: it may contain as many symbols as there are atoms in the Milky 

Way galaxy. And even if the description of H is finite and of manageable length, it is still 

possible that it is formally undecidable whether any particular lower-level history belongs 

to H or not. Thus, even with a complete lower-level description of the system, questions 

about its higher-level history may be formally undecidable. If we are ultimately interested 

in such higher-level questions, this formal undecidability would make the lower-level 

description effectively useless. 

For these reasons, higher-level descriptions should not be regarded as simply 

resulting from “epistemic failure”. They should be regarded as offering effectively 

“autonomous” conceptual schemes, which may be just as appropriate for describing the 

world as their lower-level counterparts – and sometimes, indeed, more appropriate. These 

considerations echo familiar arguments against the reducibility of higher-level properties 

to lower-level ones, due to multiple realizability (e.g., Fodor 1974, Putnam 1975), and for 

non-reductive physicalism more generally (e.g., Jackson and Pettit 1990, List and 

Menzies 2009). 

9. An objection 

We have seen that higher-level objective chance is distinct from epistemic probability, 

even when there is lower-level determinism, and that the two kinds of probability can be 

distinguished at every level of description. A critic might object that “true” objective 

                                                
20 Technically, the class of all subsets of Ω that admit a finite description is countable. But the class of all 
subsets of Ω is uncountable. So the former class is a very small subclass of the latter. 
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chance can only ever exist at the lowest or most fundamental level, and that if there is 

determinism at that level, then any kind of higher-level chance can only be an epistemic 

phenomenon. This is what Schaffer (2007) seems to suggest. What can be said in 

response to this objection? 

First, by lumping all higher-level probability together into the same “epistemic” 

category, the critic loses the ability to distinguish between the chance of the dice coming 

up snake-eyes in the next round (a future event that is “random” from a higher-level 

perspective) and our credence in the hypothesis that, in the last round, the outcome was 

snake-eyes (a past event that is already settled, but which we have not observed). The 

second of these probabilities would become degenerate if we received complete 

information about the truncated higher-level history up to now; the first probability would 

not. The critic is unable to make this distinction. 

Secondly, it is an open question whether there is a lowest or most fundamental 

level. In another article, Schaffer criticizes the common assumption “that there is a 

bottom level which is fundamental” (Schaffer 2003, p. 498). He notes that this 

assumption often underpins “an ontological attitude according to which the entities [for 

our purposes: properties] of the fundamental level are primarily real, while any remaining 

contingent entities [properties] are at best derivative, if real at all” (p. 498). Schaffer 

argues that there is “no evidence” in support of this assumption and that, if we drop it 

(while upholding “a hierarchical picture of nature as stratified into levels”, which he 

considers “plausible as reflected in the structure and discoveries of the sciences”), we 

arrive at “a far more palatable metaphysic in which … all entities [for us: properties] are 

equally real” (p. 498). This line of thinking is entirely consistent with our claim that 

higher-level chance can be just as “objective” as lower-level chance when it exists.  

As we have emphasized, the distinction between objective and epistemic 

probability is a level-specific one. Furthermore, even if there were a lowest level, this 

would not necessarily be the most appropriate one for conceptualizing the chance events 

we are interested in. As the sciences have taught us, the most appropriate level of 

description may depend on the phenomena in question, and typical special-science 

phenomena, such as those in our examples of emergent chance, warrant a higher level of 

description than fundamental physical ones. 
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10. The mutual embeddability of deterministic and indeterministic systems 

Two final results should give further pause to those who think that, once we have 

identified a level at which the world is deterministic, we cannot treat any higher-level 

indeterminism or chance as “objective”.   

Observation 4: Any deterministic system can be expressed as emerging from 

a more fine-grained indeterministic system.   

Observation 5: Any indeterministic system can be expressed as emerging 

from a more fine-grained deterministic system.  

Observation 4 shows that, even if we identified an apparently fundamental level of 

description at which a given system is deterministic, we would not be able to rule out the 

possibility of indeterminism at an even lower level. And similarly, Observation 5 shows 

that indeterminism at an apparently fundamental level would be fully consistent with 

determinism at an even more fundamental one.   

To prove Observation 4, let T be any set of times, S any state space, and Ω any set 

of deterministic histories (i.e., functions from T into S). Now let S = S × {0,1}. In other 

words, S is the set of all ordered pairs of the form (s, b), where s is an element of S, and b 

is either 0 or 1. Any S-valued history (i.e., any function h from T into S) is thus a 

combination of two functions: a function h from T into S, and a function β from T into 

{0,1}. Let Ω be the set of all histories (h, β), where h is any element of Ω, and β is any 

possible function from T into {0,1}. It is clear that Ω is a set of indeterministic histories; 

any length-t truncated history (ht, βt) in Ω has two possible extensions to a truncated 

history of length t+1: one where β(t+1)=0, and one where β(t+1)=1. Now we define the 

function σ from S to S by setting σ(s, b) = s for any s in S and b in {0,1}. Then σ is a 

coarse-graining map that converts the (indeterministic) histories of Ω into the 

(deterministic) histories of Ω. 

To prove Observation 5, let T be any set of times, S any state space, and Ω any set 

of indeterministic histories (i.e., functions from T into S). Now define S =  Ω × T. In 

other words, S is the set of all ordered pairs of the form (h, t), where h is any element of 
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Ω, and t is some point in time. For any history h in Ω, we define a function h from T into 

S by setting h(t) = (h, t), for all t in T. Clearly, this is a completely deterministic history. 

(Heuristically, the lower-level world consists of a “book” and a “clock”. The “book” is a 

complete record of the entire history of the higher-level world, both past and future. It is 

represented by h, and it never changes. The “clock” is represented by the t-coordinate, 

which simply records the current time, and thus evolves in an entirely predictable way.) 

Let Ω be the set of all lower-level histories obtained in this way; then Ω is a deterministic 

system. Finally, we define a function σ from S to S by setting σ(h, t) = h(t), for any h in 

Ω and t in T. Then σ is a coarse-graining map that converts the (deterministic) histories 

of Ω into the (indeterministic) histories of Ω. 

Of course, these are purely mathematical constructions, which only provide a proof 

of possibility. We do not claim that the lower level of any physical system would have 

the structure described in the previous two paragraphs. In reality, the lower level would 

presumably be some system of interacting particles and fields, of the kind described in 

modern microphysical theories. But these examples illustrate that there is no necessary 

entailment from indeterminism at a higher level to indeterminism at a lower level, or vice 

versa. 

Furthermore, these constructions can be iterated indefinitely; it is perfectly possible 

to have a deterministic higher-level system that is a coarse-graining of an indeterministic 

lower-level system, which is in turn a coarse-graining of an even lower-level 

deterministic system, and so on. There could be an infinite hierarchy of such systems, 

with no “rock bottom” level; it could be “turtles all the way down”.21  

Observation 6: An infinite hierarchy of levels, forever alternating between 

deterministic and indeterministic sets of level-specific histories, is a coherent 

(and unfalsifiable) possibility.   

                                                
21 Mathematically, this can be obtained through an inverse limit construction. As noted, Schaffer (2003) 
argues that such a metaphysics of “infinite descent” is perfectly coherent, and that it is in some ways more 
plausible than positing a “fundamental level”. However, he does not examine the question of determinism 
in this setting of “infinite descent”. 
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In this scenario, it would make no sense to ask whether the system was “really” 

deterministic or indeterministic. There would be no level-independent answer to this 

question. 

11. Conclusion 

Objective chance, along with indeterminism, should be understood as a level-specific 

phenomenon, which stands in no conflict with determinism at other levels, both lower 

and higher. (Objective chance is only incompatible with determinism at the same level.) 

There is not a single distinction between objective chance and epistemic probability, but a 

separate distinction for each level. 
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