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Incremental confirmation

The Bayesian picture: we have, for hypothesis h and evidence e relative to
background information b,




confirmation when P(h|eb) > P(h|b);
disconfirmation when P(h|eb) < P(h|b);
neither confirmation nor disconfirmation when P(h|eb) = P(h|b).

(I’m going to take for granted that P(e|b) > 0 and P(b) > 0.)

Incremental confirmation: e confirms h just in case e increases degree of
belief in h

This is all I’m interested in here. Jim Joyce has distinguished various
conceptions of confirmation. Certainly there are other notions relating to
the bearing of evidence on hypotheses and vice versa. It’s contestable that
there are other Bayesian conceptions of confirmation.

— Incremental confirmation, the additional evidence provided by e
regarding h, a.k.a. probative value . . . and how to measure it.
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Incremental confirmation

From an example of David Christensen’s:

Wondering whether there are deer in a nearby wood, I come
across first deer droppings then a discarded antler. Both are in
themselves strong evidence for the presence of deer, but having
come across the deer droppings, the antler provides little
additional evidence.

The Bayesian considers confirmation and disconfirmation to relate to what
is added by a proposition over and above the support that background
knowledge already provides.

The Bayesian is not providing an explication of the relation e is good
evidence for h. In the ordinary run of things, both deer droppings and a
discarded antler are good evidence for the presence of deer. But in a given
epistemic context only one, or maybe neither, may serve to raise degree of
belief significantly.
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The fundamental problem

Confirming evidence increases degree of belief, disconfirming decreases it.
How do we measure this change?
There are three standard ways to quantify change:

Difference: P(h|eb) − P(h|b);

Ratio: P(h|eb)/P(h|b)

Proportional difference:
P(h|eb) − P(h|b)

P(h|b)

But degrees of belief are equally well represented by odds.
The fundamental problem:

sameness of difference in probabilities does not track sameness of
difference in odds (and vice versa)

sameness of ratio of probabilities does not track sameness of ratio of
odds (and vice versa)

sameness of proportional difference in probabilities does not track
sameness of proportional difference in odds (and vice versa)

—We have to look beyond standard measures of change. We do that by
achieving a balance between plausible principles and examples.
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Basic Principles

1 



confirmation when P(h|eb) > P(h|b);
disconfirmation when P(h|eb) < P(h|b);
neither confirmation nor disconfirmation when

P(h|eb) = P(h|b).

2 The probabilities that matter for the definition of Confb(h, e),
whether taken straight or used to determine odds, are some among
the values P(·|b) and P(·| · b) take on the sixteen truth-functional
combinations of e and h.

3 Confb(h, e) > Confb(h, f ) when P(h|eb) > P(h|fb).
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Basic Principles

4 Wondering whether there are deer in the nearby wood, I and
a companion come across deer droppings. We agree that
this is strong evidence for the presence of deer. We then
come across an antler. We agree that, given the droppings,
this doesn’t add much support. I say, ‘The droppings and
the antler aren’t much better evidence than just the
droppings.’
‘No, on the contrary, taken together they’re considerably
better evidence,’ she replies.
‘But you agreed that the droppings are strong evidence and
that the antler doesn’t add much given the droppings.’
‘Yes. That’s right.’
‘???’

At a loss to know how to make sense of the disagreement with my
companion, I conclude

Confb(h, ef ) is determined by Confb(h, e) and Confbe(h, f ).

Notice that in the second term e is now part of the background.
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Basic Principles

The fourth principle,

Confb(h, ef ) is determined by Confb(h, e) and Confbe(h, f )

was called “generalized additivity” by I.J. Good.

Nozick’s measure

nb(h, e) = P(e|hb) − P(e|hb)

and Christensen’s measure

Sb(h, e) = P(h|eb) − P(h|eb),

fail to satisfy constraint (3). [Fitelson]

Nozick’s measure and Christensen’s also fail generalized additivity (4).
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Basic Principles Failures of general additivity

Theorem Any measure of confirmation satisfying constraints (1), (2), and

(4) can be expressed as a function of P(h|b) and the ratio
P(h|eb)

P(h|b)
.

In addition to Nozick’s and Christensen’s measures, Carnap’s

rb(h, e) = P(he|b)−P(h|b)P(e|b) = P(he|b).P(he|b)−P(he|b).P(he|b),

Rescher’s

Reb(h, e) =
P(h|eb) − P(h|b)

1 − P(h|b)
P(e|b), when P(h|eb) ≥ p(h|b),

=
P(h|eb) − P(h|b)

P(h|b)
P(e|b), when P(h|eb) < p(h|b),

Crupi, Tentori, and Gonzalez’

Zb(h, e) =
P(h|eb) − P(h|b)

1 − P(h|b)
, when P(h|eb) ≥ P(h|b),

=
P(h|eb) − P(h|b)

P(h|b)
, when P(h|eb) < P(h|b),
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Basic Principles Failures of general additivity

and the Odds Ratio

O(h|eb)

O(h|eb)
=

P(he|b).P(he|b)

P(he|b).P(he|b)
,

a measure of correlation widely used in medical statistics, all fail general
additivity [Newcombe].

Corollary Up to multiplication by a positive constant, there is a unique
non-trivial rescaling of any continuous measure of confirmation satisfying
constraints (1), (2), (3), and (4) into a measure that scales confirmational
neutrality as zero and adds across conjunctions of evidence: the extent to
which ef confirms h relative to b is just the sum of the support e gives to
h relative to b and the support f gives to h over and above that, i.e, to h
relative to be.
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Disconfirmation and hypothesis symmetry

An oddity of the ratio measure Rb(h, e) = P(h|eb)/P(h|b)

When e confirms h relative to b, Rb(h, e) lies between 1 and ∞.
When e disconfirms h relative to b, Rb(h, e) lies between 0 and 1.

On the face of it, confirmation always outweighs disconfirmation. But if it
makes sense to speak of amounts of confirmation, something is badly
amiss here. There is no natural sense in which confirming evidence always
supports more than disconfirming evidence undermines.

If the net effect of the conjunction ef is neither to confirm nor disconfirm
h relative to b then any confirmation (disconfirmation) due to e relative to
b must be “undone” or “offset” by disconfirmation (confirmation) by f
relative to be. If these amounts of confirmation and disconfirmation do
not match up, there is an excess of confirmation over disconfirmation or
vice versa that simply disappears.
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Disconfirmation and hypothesis symmetry

The advocate of R has to say something along the lines that we should
measure disconfirmation like this:

Disconfb(h, e) =
1

Confb(h, e)
=

1

Rb(h, e)
=

P(h|b)

P(h|be)
.

But then, strictly speaking, confirmation and disconfirmation are being
measured on different scales. They are related as density (mass per unit
volume) and specific volume (volume per unit mass). But with good
reason this is not, in methodological contexts, how we think of
confirmation and disconfirmation. What we want is:
Disconfb(h, e) = −Confb(h, e).

To disconfirm h is to find evidence for its falsity, which is, ipso facto, to
find evidence for the truth of h. I.e. Disconfb(h, e) = Confb(h, e).

Hence

Hypothesis Symmetry : Confb(h, e) = −Confb(h, e).
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Disconfirmation and hypothesis symmetry

Numerous measures in the literature fail to satisfy Hypothesis Symmetry

the ratio measure Rb(h, e) =
P(h|eb)

P(h|b)

the log ratio measure rb(h, e) = log
P(h|eb)

P(h|b)

the likelihood ratio measure Lb(h, e) =
P(e|hb)

P(e|hb)

Haim Gaifman’s
1 − P(h|b)

1 − P(h|eb)

Henry Finch’s & Stephen Pollard’s proportional difference measure
P(h|eb) − P(h|b)

P(h|b)

Lance Rip’s
P(h|eb) − P(h|b)

1 − P(h|b)

Popper’s
P(h|eb) − P(h|b)

P(h|eb) + P(h|b)
=

P(e|hb) − P(e|b)

P(e|hb) + P(e|b)

Jim Joyce’s O(h|eb) − O(h|b) = P(h|eb)−1 − P(h|b)−1
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Disconfirmation and hypothesis symmetry

A lot fail to meet the requirement of hypothesis symmetry. But we can rig
up new measures, satisfying (1) - (4), that meet it. For example

log
tan π

2 P(h|eb)

tan π
2 P(h|b)

.

And insisting that Confb(h, e) = −Confb(h, e) doesn’t force a measure of
confirmation to be strictly additive:

Confb(h, ef ) = Confb(h, e) + Confbe(h, f ).

The Kemeny–Oppenheim measure

kob(h, e) =
P(e|hb) − P(e|hb)

P(e|hb) + P(e|hb)

is a (counter-) example.
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Measures of other things

What do measures like Christensen’s P(h|eb) − P(h|eb) and the Odds

Ratio
O(h|eb)

O(h|eb)
measure?

[Probative relations] compare the “posterior” evidence for h
when e is added, to the “posterior” evidence for h when e is
added. Here the issue is the extent to which the total evidence
for h varies with changes in e’s probability. When P(h|eb) and
P(h|eb) are close together, changes in P(e|b) have little effect
on P(h|b), but when they are far apart such changes have a
significant impact. [Hájek & Joyce]

This is not incremental confirmation. What we have here are measures of
how worthwhile it might be where h is concerned to find out whether (or
not) e is the case. This is not the same as a measure of the impact on
degree of belief in h of finding that e is the case.
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Measures of other things

What do measures like Nozick’s P(e|hb) − P(e|hb), the Likelihood Ratio
P(e|hb)

P(e|hb)
and the Odds Ratio

O(e|hb)

O(e|hb)
measure?

These measures compare the “posterior” prediction of e when h
is added, to the “posterior” prediction of e when h is added.
Here the issue is the extent to which how much e is anticipated
varies with changes in h’s probability. When P(e|hb) and
P(e|hb) are close together, changes in P(h|b) have little effect
on P(e|b), but when they are far apart such changes have a
significant impact.

Again, this is not incremental confirmation. What we have here are
measures of the difference coming to believe h rather than h would make
to one’s degree of belief in e. This is not the same as a measure of the
impact on degree of belief in h of finding that e is the case.
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Examples The deck of cards

A card is drawn “randomly” from a deck of cards. e is ‘It’s the ten of
diamonds’; h1 is ‘It’s the ten of diamonds’; h2 is ‘It’s the ten of diamonds
or the six of clubs’; h3 is ‘It’s the ten of diamonds or the six of clubs or the
jack of diamonds’; ... and so on, in no particular order, through the entire
pack, fifty-two hypotheses, progressively saying less and less until the last
one, listing all the cards, is implied by background knowledge b.

Measures such as the difference measure db(h, e) = P(h|eb) − P(h|b) and

the ratio measure Rb(h, e) =
P(h|eb)

P(h|b)
see the incremental confirmation

going down, progressively, as we move through the sequence, to zero at
h52. For each i , 1 ≤ i ≤ 52, hi receives the maximum confirmation possible
for it, but since they say progressively less, these local maxima diminish as
we go through the sequence.
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Examples The deck of cards

Good’s favoured log odds ratio measure

lb(h, e) = log
P(e|hb)

P(e|hb)
= log

O(h|eb)

O(h|b)
and the Kemeny–Oppenheim

measure kob(h, e) =
P(e|hb) − P(e|hb)

P(e|hb) + P(e|hb)
see matters quite differently.

They say that hypotheses h1 to h51 all receive the same maximum
confirmation: ∞ in the case of l, 1 in the case of ko. h52, on the other
hand receives no confirmation. (Constraint (1) tells us that there is neither
confirmation nor disconfirmation of h52.)
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Examples Kahneman & Tversky’s taxi-cab example

85% of taxis in a certain city are green, the rest are blue. An
eye-witness to a hit-and-run accident testifies that the taxi
involved was blue. On tests in similar conditions, she turns out
to be 80% reliable in her judgments of taxi colour, by which we
mean that on 80% of the occasions on which the object involved
is blue, she reports it as being such, and likewise for occasions on
which it is green.

How does the amount of confirmation supplied by the witness’s report vary
with changes in the base rate and the witness’s reliability?

Let x = P(taxi is blue) and y = P(witness says �Blue �|taxi is blue). Then

difference measure: d =
x(1 − x)(2y − 1)

xy + (1 − x)(1 − y)
;

log odds ratio measure: l = log y − log(1 − y);

Kemeny–Oppenheim: ko = 2y − 1.
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Examples Kahneman & Tversky’s taxi-cab example

According to the log odds ratio and Kemeny–Oppenheim measures, the
base rate is irrelevant. No matter how probable or improbable the
involvement of a blue taxi, the witness’s report affords the same amount of
support to the hypothesis that the taxi involved in the accident was blue.

According to the difference measure, the lower the base rate the more
inclined we are to write off the witness’s report as mistaken, although the
better her powers of colour discrimination the lower the base rate has to
be in order to incline us significantly to do that. Conversely, if the
percentage of blue taxis is large, we are unimpressed by her evidence, it’s
what we were expecting anyway. Somewhere in between lies the area in
which we give most weight to the witness’s report: it brings about most
change in our degree of belief in the taxi’s being blue.
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Examples Sutherland’s deaths from smoking example

Stuart Sutherland asserts:

In Great Britain about 300,000 people die each year from heart
disease, while about 55,000 die from lung cancer. Heavy
smoking approximately doubles one’s chance of dying from heart
disease, and increases the chance of dying from lung cancer by a
factor of about ten.

and goes on

Most people will conclude that smoking is more likely to cause
lung cancer than heart disease and indeed both in Britain and
elsewhere government campaigns against smoking have been
largely based on this assumption. But it is false.

In an obvious notation, Sutherland’s figures tell us

P(h)
P(l) = 300

55 ; P(h|s)
P(h|s) = 2; P(l |s)

P(l |s) = 10.
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Examples Sutherland’s deaths from smoking example

We find that

P(h|s)
P(l |s) = P(h)

P(l) × 9P(s)+1
P(s)+1

and

P(h|s)
P(l |s) = 2

10 × P(h)
P(l) × 9P(s)+1

P(s)+1 .

As 300
55 > 5, P(h|s) > P(l |s): irrespective of the proportion of the

population that smokes, a smoker is more likely to die from heart disease
than lung cancer.
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Examples Sutherland’s deaths from smoking example

Provided 0 < P(s) < 1, the ratio, log-ratio, Popper and Finch/Pollard
measures tell us tell us that smoking is better evidence of dying from lung
cancer than from heart disease (and increasingly better evidence the
smaller the percentage of the population that smokes).

The difference measure tells is that smoking is better evidence for death
from heart disease unless the proportion of smokers in the population is
less than 13

147 (just under 9%).

Since ratios of odds are not determined by ratios of probabilities, the log
odds ratio and Kemeny–Oppenheim measures tell us nothing regarding
smoking as evidence.

(The measures all agree that death from lung cancer is better evidence for
having been a smoker than is death from heart disease.)
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Some properties of the difference measure

Taking up Sutherland analysis of the statistics concerning deaths of
smokers, we can estimate the proportion of deaths from heart disease in
the general population were no-one to smoke by P(h|s). Hence the
number of deaths per unit population from heart disease attributable to
smoking is given by P(h) − P(h|s). Since

d(h, s) = P(h|s) − P(h) = (P(h) − P(h|s))P(s)

P(s)
,

we have that more smokers ‘kill themselves of heart disease [than] die from
lung cancer caused by smoking’ [Sutherland] if, and only if, smoking is
better evidence of death from heart disease than death from lung cancer.
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Some properties of the difference measure

d factorizes as

(P(h|eb) − P(h|eb))P(e|b),

thus d takes account of the “probative force” of evidence e with respect
to hypothesis h—the importance finding out whether e has for degree of
belief in h—but weights it by the prior improbability of that evidence.
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Some properties of the difference measure

d factorizes as

(Rb(h, e) − 1)P(h|b) and (1 − Rb(h, b))P(h|b).

Both Rb(h, e) and Rb(h, e)−1 have been suggested as measures of severity
of test. Going with that, d takes account of severity of test but weights it
by the prior (im)probability of the hypothesis. Now, it may seem odd that
when P(e|h1b) = P(e|h2b) d says that the better confirmed of h1 and h2,
if e confirms h1 and h2, or the more strongly disconfirmed, if e disconfirms
h1 and h2 is the initially more probable, and, equally, it may seem odd that
when P(e|h1b) = P(e|h2b) d says that the better confirmed, if e confirms
h1 and h2, or the more strongly disconfirmed, if e disconfirms h1 and h2 is
the initially less probable. But . . .
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Some properties of the difference measure

if P(e|h1b) = P(e|h2b) > P(e|b) then P(h1) > P(h2) if, and only if,
P(e|h1b) < P(e|h2b);

if P(e|h1b) = P(e|h2b) < P(e|b) then P(h1) > P(h2) if, and only if,
P(e|h1b) > P(e|h2b);

if P(e|h1b) = P(e|h2b) < P(e|b) then P(h1) < P(h2) if, and only if,
P(e|h1b) > P(e|h2b);

if P(e|h1b) = P(e|h2b) > P(e|b) then P(h1) < P(h2) if, and only if,
P(e|h1b) < P(e|h2b).

So, in the first case, for example, e better confirms h the less likely is e on
the supposition that h is false. A symptom equally likely in the presence of
two diseases is better evidence for the disease in whose absence it is less
likely. Likewise, in the third case, a symptom equally (un)likely in the
absence of two diseases, is better evidence for the disease in whose
presence it is more likely.

So all in all I think the difference measure will do just fine as “the one true
measure of confirmation”.
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