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Abstract

We introduce a formal representation of belief and knowledge based

on the idea that knowledge is a matter of forming a belief through a su�-

ciently error-free method. We �rst model methods and their infallibility,

then de�ne belief and knowledge in terms of them. The resulting models

are a signi�cant extension of so-called �neighbourhood models�. We argue

that epistemological notions and problems like Gettier, inductive knowl-

edge, fallible justi�cation, epistemic contextualism, or failure of logical

omniscience are represented in a more satisfactory ways in these models

than in standard epistemic logic. In general, our models only validate the

claim that knowledge is true belief; but we show that a full S5 system can

be derived from a set of natural idealisations. The derivation provides

some explanation of why and when the S5 axioms should hold, and a

vindication of their use.

∗Thanks to Paul Egré, Elia Zardini, Jonathan Shaheen, Davide Fassio, Fabrice Correia,
Olivier Roy, Andreas Witzel, Vincent Hendricks, Johan van Benthem, John Hawthorne, Jonas
de Vuyst, Timothy Williamson for much-needed help and encouragement, and to audiences
in Geneva (Palmyr workshop), Lausanne (DLG09), Nancy (EpiConfFor workshop) and two
anonymous referees for useful comments.
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1 Introduction

My starting point is the following puzzle. (1) Whether one knows centrally de-

pends on what basis one's belief has. (2) Standard epistemic logic cannot repre-

sent bases of belief. (3) Standard epistemic logic adequately models knowledge

in a number of applications. I introduce formal models of knowledge directly

stemming from the idea that knowledge is a matter of bases of belief, or as I will

call them, methods. The models are an extension of Scott's (1970) and Mon-

tague's (1968; 1970) neighbourhood models, and they di�er from other recent

formal systems aimed at dealing with similar issues.1 They solve the puzzle

by providing an insight into why and when axioms of standard epistemic logic

hold, including the most controversial ones. But most importantly, they pro-

vide a philosophically satisfying representation of knowledge. We illustrate the

point by using them to formalise several classical epistemological problems and

views: the Gettier problem, inductive knowledge, deductive closure without log-

ical omniscience, Frege cases, epistemic contextualism, and failure of knowledge

to iterate.

Let me �rst illustrate the puzzle. Consider three cases:

1. Tea leaves. As things are, reading tea leaves is not a reliable way to �nd

the truth. My uncle believes on the sole basis of tea leaves readings that

I will get a pay raise soon. Whether or not I will, he does not know that

I will.

2. Watson. Holmes and Watson know the same facts about a case. Reasoning

carefully, Holmes deduces that the father is the culprit. Watson is also

convinced of this, but on the sole basis of the father's shady looks. Watson

does not know that the father did it.

3. Induction. Seeing that the light is on at the neighbour's, my mother

infers that the neighbours are home. In suitably normal circumstances,

she comes to know that the neighbours are home.

Here are a few prima facie intuitive things to say about the cases. In (1)-(2),

my uncle and Watson fail to know because the bases of their beliefs are not

adequate for knowledge. In Watson's case, that is so even though his belief is

true and he knows facts which together entail it. In case (3), my mother comes

1Notably Kelly's (1996) Learning Theory, Artemov's Logic of Proofs (1994; 2005), Fagin
and Halpern's (1988) Awareness Models. We will not provide a detailed comparison of the
present models with these alternatives here.
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to know something on a basis which fails to entail it. That is so because her

basis is adequate or su�cient given the circumstances she is in. All three cases

show that consideration of the basis of one's belief and its adequateness to the

circumstances are central to whether one knows.

Given the apparently central role of bases of belief in epistemology, it is strik-

ing how hard it is to accommodate the notion in standard models for knowledge

introduced by Hintikka (1962). Such models essentially characterise knowledge

and belief in terms of elimination of possibilities:

What the concept of knowledge involves in a purely logical perspec-

tive is thus a dichotomy of the space of all possible scenarios into

those that are compatible with what I know and those that are in-

compatible with my knowledge. Hintikka (2007, 15)

As Hintikka makes clear, the account is not reductive, since the �elimination� of

possibilities is itself de�ned in terms of knowledge.2 In fact, standard epistemic

logic is best construed as a representation of the content of one's knowledge

rather than as a representation of the state of knowing.3 That does not mean

that it does not say anything about knowledge. The problem is rather that

what it says seems false, namely that one knows p i� one knows something

incompatible with ¬p. In our Watson case, Watson fails to know that the

father is the culprit even though he knows things that are incompatible with

it being false. In our Induction case, my mother appears to learn that the

neighbours are home on the basis of facts compatible with them not being here.

(One may of course reply that before she came to learn it, the facts known to

her where indeed compatible with them not being there, but then she did not

know they were there; while since she has drawn the inference, she knows some

fact incompatible with them not being there: simply, that they are there. Be

that as it may, we still lack an account of how an inductive inference can achieve

2Lewis (1996) attempts to turn the idea into a reductive account by construing elimination
as metaphysical incompatibility with one's being in the total experiential state on is in. The
move has unpalatable consequences (see e.g. Hawthorne, 2004, 60n).

3See Hintikka (2007, 16): �Epistemic logic presupposes essentially only the dichotomy
between epistemically possible and epistemically excluded scenarios. How this dichotomy is
drawn is a question pertaining to the de�nition of knowledge. However, we do not need to
know this de�nition in doing epistemic logic. Thus the logic and the semantics of knowledge
can be understood independently of any explicit de�nition of knowledge. Hence it should not
be surprising to see that a similar semantics and a similar logic can be developed for other
epistemic notions�for instance, belief, information, memory, and even perception. This is an
instance of a general law holding for propositional attitudes. This law says that the content
of a propositional attitude can be speci�ed independently of di�erences between di�erent
attitudes.�
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such a result.) As we pointed out, a natural �rst step in thinking about these

cases is to formulate them in terms of bases of belief or methods. But it is

unclear how to introduce such a notion in standard models. In my view, that

goes a long way towards explaining the widely noted gap between epistemic logic

and epistemology (Hendricks, 2006; van Benthem, 2006): epistemologists mainly

think of knowledge as adequately based belief, while epistemic logic represents

it as the elimination of possibilities, and it is unclear how to �t the two pictures

together.

I am not claiming that epistemic logic cannot be amended and fruitfully

extended to deal with some methods-related aspects of knowledge. Much has

already be done in that respect.4 But I take a di�erent approach here. Instead

of adapting standard models to speci�c philosophical purposes, I start from a

philosophical characterisation of knowledge and build a model suited to it.

Call methods whatever bases of beliefs or ways of forming or sustaining be-

liefs are relevant to knowledge attribution.5 Believing that an object is an apple

on the basis of sight at a short distance involves a di�erent method than believ-

ing it on the basis of sight at a great distance; believing that a market is going

to collapse on the basis of hearsay involves a di�erent method than believing

it on the basis of an expert report; believing that a man was present at a cer-

tain dinner on the basis of plausible inference involves a di�erent method than

believing it on the basis of a clear memory. Methods need not be conscious pro-

cedures one follows methodically. They may involve unconscious computational

processes. They may be individuated �externally� or �broadly�, that is, they

may involve relations between an agent and her environment and aspects of the

latter. We need not settle these important issues here. As will be become clear,

a lot can be said about methods while maintaining a fairly abstract perspective

on them, and it is su�cient for our purposes that our models are compatible

with various substantive conceptions of what methods are.6

4See e.g. Fagin et al. (1995, chap. 9,10).
5That use of the term has some currency in epistemology since Nozick (1981, chap.3).
6I doubt that we can characterise methods in terms wholly independent of the notion of

knowledge, such as psycho-physical descriptions. Rather, we have to use our judgements about
knowlege as a guide to what methods are. For instance, we cannot count all beliefs based on
sight at a short distance are based on a same method. For one may know that an object is
a banana while mistaking an apple next to it for a peach, even though one sees both at a
short distance. The two beliefs would thus have to involve di�erent methods. Ultimately, the
aim is to pick up methods through their relations to belief and knowledge and their structural
properties identi�ed by the models. But these points are beyond the scope of the present
paper. (See Williamson (2000, 100) for analogous considerations with respect to the notion
of safety used in an account of knowledge.)
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(We make one important presupposition about methods, though. We assume

that whether one knows in a given case depends on an equivalence class of beliefs

with the same basis, and not on a class of beliefs with similar enough bases,

where the similarity relation may be non-transitive. 7 We leave for further work

the exploration of how our models may be recast in the less demanding setting

of a similarity relation between bases.)

Our guiding idea is that knowledge is belief based on an infallible method:

Methods infallibilism An agent knows that p i� she believes that p on the

basis of a method that could only yield true beliefs.

We say that a method �yields� a belief whenever it forms it or sustains it. A

method that produces truth-valueless beliefs (if there are such) counts as fallible

by the de�nition. The �could� is meant to be understood as a (possibly context-

sensitive) alethic modal.

There are several reasons to adopt the method-infallibilist account, which

we can only mention here. First, it automatically secures factivity and the idea

that deduction preserves knowledge � which is to be distinguished from logical

omniscience, as we will see. Second, analyses that allow adequate bases for belief

to be compatible with error at the circumstances at hand seem to systematically

face Gettier-style counterexamples; some infallibility condition appears required

to avoid them (Sturgeon, 1993). Third, it provides a simple diagnosis of why

no matter how high the odds, we fail to know in advance that a ticket in a

fair lottery is a looser (Hawthorne, 2004). I also hope that the intuitive results

we get from the formal implementation of the account will further support it.

Be that as it may, the models we introduce can alternatively be extended to

represent fallibilist notions of knowledge.

A crucial aspect of the methods approach is that in order to evaluate whether

a particular belief is knowledge, we have to consider other beliefs one has or

could have had on the same basis. Consider in particular:

1. Fake oranges.8 Looking at a particular orange in a fruit bowl, Oscar

believes that that orange is a fruit. Unbeknownst to him, the other �fruits�

in the bowl are perfect wax replicas of oranges.

2. Prime numbers. Primo has a mistaken way of evaluating whether a num-

ber higher than 20 is prime: he adds its digits, and if the sum is prime he

7Thanks to John Hawthorne here.
8A variant of Ginet-Goldman barn facades case (Goldman, 1976, 772�3).

6



judges that the original number was too. For instance, since 4 + 7 = 11 is

prime, he (rightly) believes that 47 is prime.

Assuming essentialism, there is no possible world where that orange, the one

Oscar is looking at, is not a fruit. And there is no possible worlds where 47 is

not prime or where Primo's method would lead him to wrongly believe that it is

not. Yet both fail to know, because they could have believed false propositions

on the basis of the same methods: Oscar would falsely believe on the same

basis that an �orange� next to the one he is looking at was a fruit too, and

Primo would falsely believe on the same basis that 49 is prime. The fact that,

so to speak, we evaluate a belief by looking at whether it is in �good� or �bad�

company is the basic idea of our formalisation of methods.

Section 2 gives the most general characterisation of methods and infallibil-

ity, without assuming a speci�c notion of proposition. We de�ne operations on

methods and give an algebra for them. Section 3 applies the method-infallibilist

approach to formalise Gettier cases, fallible justi�cation and inductive knowl-

edge. Section 4 introduces methods models properly. For concreteness and

simplicity we take propositions to be sets of possible worlds. That creates trou-

ble with so-called Frege cases, though not as straightforwardly as expected. The

resulting models are an extension of neighbourhood models, but more explana-

tory than the latter. (A detailed comparison is made in appendix B, sec 8).

We introduce a language for methods-based belief and knowledge. Section 5 de-

tails the main consequences of the models. In general, the models only validate

the uncontroversial claim that knowledge is true belief; however, we derive a

full S5 system for a series of natural idealisations of the agent's methods. The

derivation provides a illuminating perspective on why and when the axioms of

standard epistemic logic hold.

2 Methods

2.1 The space of possible methods

A method is something that yields beliefs. But it does not need to yield the

same beliefs wherever it exists; in fact, it typically yield beliefs as a function

of other factors. First, a method may yield beliefs as a function of the state of

the world. Facing a table, Alice opens her eyes. She immediately forms beliefs:

say, that there is an apple, or that there is an apple and that there is a pear,
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depending on what there is on the table. That is the idea of a purely non-

inferential method, and it is naturally modelled as a function from worlds to

sets of propositions. Second, a method may yield beliefs as a function of other

beliefs. For instance, modus ponens would lead you to believe that q from the

premises that p and that p→ q. That is the idea of a purely inferential method,

and it is naturally modelled as a function from sets of propositions (premises)

to sets of propositions (conclusions).

Generalising both ideas, a purely non-inferential method is a function from

worlds and sets of premises that is constant over sets of premises. It yields a

set of �conclusions� depending on the state of the world, for any premises what-

soever, including no premise at all. A purely inferential method is a function

from worlds and sets of premises that is constant over worlds. It yields the same

conclusions for a given set of premises, whatever world one is in. Mixed methods

(if there are any) are variable functions from worlds and sets of premises to sets

of conclusions.9

We are now in position to de�ne the space of all possible methods as the

space of all functions from worlds to functions from sets of premises to sets of

conclusions. Let W be a set of worlds and P a set of propositions:

De�nition 1. M = W × (P(P )× P(P )) is the space of possible methods.
Terminology. For any method m ∈ M , world w ∈ W , and sets of proposi-

tions π, π′ ⊆ P ,
when π′ = m(w)(π), we say that π′ is the set of conclusions reached by method

m at world w from the set of premises π,

when p ∈ m(w)(π), we say that p is a conclusion reached by m at w from π,

when p ∈ m(w)(∅), we say that p is an unconditional output of m at w, that is,

a conclusion reached by m at t without premise.

Notation. We abbreviate:

m(w, π) := m(w)(π),
m(w) := m(w)(∅).

Remark 1. By convention, worlds are noted w, w′, . . . , propositions p, p′, . . . ,

q, q′, . . . , sets of premises π, π′, . . . , and methods m, m′, . . . , n, n′, . . . .

We typically omit domains when they are clearly indicated by this convention.

Thus we write: �for all w�, �∀w(. . .)� and �{w : . . .}� instead of �for all w in

9Here are two candidates cases of mixed methods: (1) perceptual processes that are sensi-
tive to one's background beliefs; (2) trust processes (roughly, inferences from S said p to p)
that are sensitive to subtle visual clues in a quasi-perceptual way. But whether or not one
wants to contend such methods does not matter for the purposes of this paper.
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W �, �∀w ∈ W � and �{w ∈ W : . . .}�, and similarly for any p ∈ P , π ⊆ P and

m ∈M.

Now the idea that methods are functions from worlds is a gross simpli�ca-

tion. Suppose two agents are in distinct rooms, each facing a table: Alice sees an

apple, Bob a pear. Intuitively, we would like to say that the very same method

can produce a belief that there is a apple in Alice's mind, and no such belief in

Bob's mind. Also, it is natural to take the outputs of a method to depend on

the time and not just the world. To model these phenomena, methods should

rather be functions from centred worlds < c,w > where w is a world and c a

perspective on that world. A perspective is a point from which methods can be

applied; a time and a place, at least. Perspectives need not only be where some

agent is: a visual method can be fallible in virtue of producing false beliefs as

used from the top of the mountain, even though nobody has been, is or will be

at the top of the mountain. The life of an agent is then the series of perspectives

the agent occupies. The agent's belief and knowledge are then derived from her

life and the methods she has.

These re�nements for perspectives and lives are relatively straightforward to

introduce, but they needlessly complicate the models for our present purposes.

We thus stick to the characterisation of methods in terms of functions from

worlds.

2.2 Operations on methods

For any methods m,n, we de�ne:

De�nition 2. The union of m and n is the method (m + n) given by (m +
n)(w, π) := m(w, π) ∪ n(w, π) for any w, π.

The composition of m and n is the method (m◦n) given by (m◦n)(w, π) :=
m(w, n(w, π)) for any w, π.

Method union is the idea that an agent is able to pool together the outputs

of di�erent methods. If, given premises π, m outputs {p} and n outputs {q},
the method (m+ n) outputs {p, q}. Putting limitations on union is thus a way

to model the modularity of an agent. For instance, a limited number of unions

corresponds to an agent with limited working memory, who is unable to put to

use all her beliefs at once. And a systematic bar on uniting certain methods

corresponds to an agent whose bodies of beliefs are partly isolated from each

other.
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Method composition is the idea that an agent is able to apply one method

to the output of another: if n outputs {p} from no premises, and m outputs

{q} from {p}, then m ◦ n outputs {q} from no premises. Limits on an agent's

ability to compose methods is thus a way to represent computationally bounded

agents, such as agents who are only able to go through proofs with a limited

number of steps.10

Given a set of methods M , we can de�ne its union and composition closure

as the smallest set M◦+ such that M ⊆ M◦+ and for any m,n ∈ M◦+, (m +
n), (m ◦ n) ∈ M◦+. M◦+ is the set of methods available to an agent that has

the M methods and is neither modular nor computationally bounded.

Method union and composition are interpreted in a synchronic way here. If

a (non-modular) agent has m and n at a given time, then (m + n) is available
to her at the very same time. However, union and composition could easily

be construed as dynamic processes. For instance, given a certain method set

M0, one could consider the series M1,M2, . . . where each Mk corresponds to

applying one step of union and composition to Mk−1: Mk = Mk−1 ∪ {(m+ n) :
m,n ∈ Mk−1} ∪ {(m ◦ n) : m,n ∈ Mk−1} for k ≥ 1. We will not get into such

models here.

〈M,+, ◦〉 is an algebraic structure over the set of methods. We detail its

main properties in Appendix A (section 7). The most remarkable are:

1. Method union is associative, commutative and idempotent:

(m+ n) + r = m+ (n+ r).
m+ n = n+m.

m+m = m.

2. Method composition is associative, but not commutative nor idempotent.

m ◦ (n ◦ r) = (m ◦ n) ◦ r.

3. Composition distributes right-to-left over union, but not left-to-right:

(m+ n) ◦ r = (m ◦ r) + (n ◦ r),
but m ◦ (n+ r) = (m ◦ n) + (m ◦ r) may fail.

The fact that composition does not distribute left to right over union is a re�ec-

tion of the fact that method composition keeps track of information processing

or, more accurately, of information dependencies. m ◦ (n + r) corresponds to

uniting n and r and then applying m, which is not the same as applying m

10I am grateful to Jonathan Shaheen and Andreas Witzel for helping me sorting out initial
issues with modelling method composition with function composition.
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to n and to r separately. To take a simple example: suppose m outputs the

conjunction of any premises and suppose n outputs only p and r outputs only

q. The union of n and r outputs both p and q, so m ◦ (n+ r) will output p ∧ q.
But applying m to the premise p and separately to the premise q will not yield

the conjunction of the two, so (m ◦ n) + (m ◦ r) will not output p ∧ q.

2.3 Infallibility

The infallibility of a method has two components. For its non-inferential part,

it is infallible if it could only yield true beliefs. For its inferential part, it is

infallible if it could only reach true conclusions from true premises. The fact

that modus ponens reaches false conclusions from false premises does not make

it infallible. In a nutshell: a method is infallible i� it could not reach false

conclusions from any set of true premises, including the empty one.11

The relevant modality is alethic, not epistemic or doxastic. For a method to

be infallible, it is not required that one knows or believes that it is. It is su�-

cient that error is in fact impossible. Within the domain of alethic modalities,

many options are open. For instance, one could require that error be physically

impossible given the makeup of the agent and the situation she is in (Armstrong,

1973, 168), or that error be impossible in su�ciently similar cases (Williamson,

2000, 100), or that error be impossible in a contextually determined set of rele-

vant possibilities (Lewis, 1996, 553�4). We need not decide between them here.

Three points should me mentioned, though.

Infallibility requires at least no error at the actual world: a method that

actually yields a false belief is not such that it could not yield one. That is a

consequence of the fact that the relevant modality is alethic.

Infallibility need not require impossibility of error across all worlds. In some

worlds, pigs can �y, in others, they cannot. Similarly, some methods are fallible

at some worlds and yet infallible at others.12

An important feature of the notion of possibility is whether what is possibly

possible is possible (axiom 4 of modal logic). Physical possibility and related

11On a weaker notion of infallibility only the non-inferential component of methods (i.e.
beliefs) would be taken into account. Thanks to Timothy Williamson for suggesting the
stronger notion used here.

12In many applications of epistemic logic, one need only consider a restricted set of possible
worlds � for instance, we simply ignore possible worlds in which our two prisoners communi-
cate. In such set-ups, infallibility across �all� worlds is in e�ect a restricted form of infallibility.
In other applications, the fact that a method can be infallible at a world but fallible at another
will play a role.
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notions are usually taken to have this property. But if possibility is a matter of

su�cient similarity between cases, it does not: a possibility may be su�ciently

similar to a second which is su�ciently similar to a third without the �rst being

similar to the third. When the property holds, infallible methods are necessarily

infallible; when it does not, a method can be both infallible and possibly fallible.

As in standard epistemic logic, the property turns out to be crucial to derive

knowledge of one's knowledge (section 5.4).13

We model possibility in the standard way by an accessibility relation over

worlds. A method is infallible at a world if at all accessible worlds its uncondi-

tional outputs and its conclusions reached from true premises are all true:

De�nition 3. Let W be the set of worlds, and R ⊆ W ×W a re�exive acces-

sibility relation over worlds. A method m is infallible at a world w i�:

(a) for any w′, p such that wRw′ and p ∈ m(w′), p is true at w′.14

(b) for any w′, p, π such that wRw′ and p ∈ m(w′, π), p is true at w′ if all the

propositions in π are true at w′.

Remark 2. A purely non-inferential methodm is infallible i� (a) holds. A purely

inferential method is infallible i� (b) holds.

Di�erent constraints on relation R yield di�erent notions of infallibility.

1. wRw′ i� w′ = w: a true-belief-like notion of knowledge, in which only

the actual world needs to be considered. Though implausible as a philo-

sophical account of knowledge, it is noteworthy that all our results can be

obtained in that simple setting.15

2. wRw′ for any w, w′: a notion of knowledge that requires the metaphysical

impossibility of error, and correspondingly precludes inductive knowledge.

Arguably the notion defended by Descartes.

3. wRw′ i� w′ is �close� to w: a safety notion of knowledge such as the

one defended by Williamson (2000) and Sosa (1996). If closeness is not

transitive, what is possibly possible need not be possible, and knowledge

of one's knowledge is not guaranteed (section 15).

13See Williamson (2000, ch.5) on the failures of epistemic introspection that result when
the relevant notion of impossibility does not iterate.

14Recall that m(w′) = m(w′, ∅) is the unconditional output of m at w′.
15Note that that option does not equate true belief and knowledge. Suppose that a method

outputs both p and q, and that p is true but q false. Then one's belief that p on that basis is
not knowledge, even though p is true. The option makes knowledge �true-belief-like�, though,
because it would classify many lucky true beliefs as �knowledge� just because no agent happens
to use a given method in unfavourable circumstances.
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4. In each context c, �knows� is associated with a speci�c Rc relation: a

contextualist account along the lines of the one defended by DeRose (1995)

and Lewis (1996).

Our results are independent of the choice. They only require that R be re�exive,

except knowledge of one's knowledge which additionally requires transitivity.16

3 Applications: Gettier cases, fallible justi�ca-

tion and inductive knowledge

We can already sketch how to use methods to model a few epistemological ideas.

3.1 The prime number case and fake-barn-style Gettier

cases

In our Prime Numbers case (sec. 1), Primo uses a method m that both produces

a true belief that 47 is prime and a false belief that 49 is prime. (Let us assume

16Some related accounts of knowledge cannot be represented without substantial modi�-
cations of our apparatus. On Nozick's (1981, chap.3) view, one knows that p only if: if p
had been false, one would not have believed p. On the Lewis-Stalnaker semantics of counter-
factuals (Stalnaker, 1968; Lewis, 1973), the conditional is true if the corresponding material
conditional p → q holds at each world up to the �closest� p world(s). This means that the
range of possibility one has to look at for a given knowledge ascription depends on the partic-

ular proposition at stake, in our case, p. To model this, one needs to relativise accessibility to
propositions: wRpw′ i� w′ is at least as close to w than the �rst p world that is closest to w.
Infallibility needs to be rede�ned: m is infallible at w with respect to p i� for any w′, q, π, if
wRpw′ and q ∈ m(w′, π) then q is true at w′ if π is empty or all its members are true at w′.
This invalidates our proof (below) that if a method is infallible at w, then the composition of
Deduction and that method is infallible at w, since it may happen that a method is infallible
with respect to p, without being infallible with respect to a proposition q deduced from p, if
the �rst q-world is further away than the �rst p-world. That is why Deductive closure fails in
Nozick's system.
Note than on the von Fintel-Gillies semantics of counterfactuals (von Fintel, 2001; Gillies,
2007), the condition is true i� p→ q holds a set of close worlds �xed by context. The set does
not depend on the particular p evaluated. In that setting Nozick's condition is modelled in
our system by a context-relative Rc, and it does not violate closure.
Another view that is not straightforwardly accommodated by our models is the subject-

sensitive or interest-relative accounts of (Hawthorne, 2004; Stanley, 2005). On that view
the range of possibilities of error relevant to whether an agent knows p is a�ected by the
stakes she has in p: the higher the cost of error, the broader set of possibilities of error
becomes relevant her knowing. If stakes are relative to propositions (one's stake in p may
be higher than one's stake in q), we get ranges of error that are p-dependent as in Nozick's
semantics. So Infallibility must be rede�ned as before, and our proofs do not go through. If
stakes are relative to a subject's situation, we can model stake-sensitivity with a stake relative
accessibility relation Rs,t akin to the contextualist one, but which is a function of subject and
time instead of being function of context. On the latter model stake-relative versions of our
results (notably Deductive closure) can be recovered.
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that he considered both questions at the actual world.) Let P (47) and P (49)
be the relevant propositions:

'& %$ ! "#

P (49) P (47)

w1

m
;;;{

;{
;{

;{
;{

m // w1

(Illustrations for methods models. To avoid cluttering, I lay out the set of

possible worlds W in a column that is repeated horizontally as many times as

needed. Propositions are represented by circled sets of worlds; typically we use

one column per proposition. Only the unconditional outputs of methods are

represented: an arrow named m between w and p indicates that p ∈ m(w), that
is, p ∈ m(w, ∅). When the output is true, the arrow is horizontal. Diagonal

arrows indicate false beliefs and are signalled by wavy lines. When the output

proposition is the empty set, as P (49) is here, the arrow points directly to its

name instead of a circle. When needed, accessibility relations between worlds

are represented by dotted arrows labeled with R.)

At w1, m outputs the belief P (47) that is true at w1, but it also outputs the

belief P (49), which is false. Consequently, m is fallible, and no belief based on

m can be knowledge.

Similar models can be given for the fake-barn style of case (sec. 1). Suppose

that at w2 the agent looks at the real orange, but that there is an accessible

world w1 where she looks at a fake one and forms the false belief that it is an

orange. Write O(o) and O(f) the relevant propositions:

?> =<

89 :;

O(f) O(o)

w1

m
<<<|

<|
<|

<|
<|

w1

w2
m //

R

OO

w2

m produces only a true belief at w2, but there is an accessible world in which

it produces a false belief, namely w1, and that is why the subject fails to know

even in world w2.

The models are straightforward but not trivial. In standard epistemic logic,

Kp holds if and only if p is true at all accessible worlds. Unless impossible

14



worlds are introduced, it is true at every world that 47 is prime. So however

accessibility is �xed, we get the result that it is known. Similarly, in Fitting's

models for Logic of Proofs (Fitting, 2005, 4) , t : p (which we can read as �t is

the subject's justi�cation for p�) holds at a world i� t is evidence for p at w and

p holds at all accessible worlds.17 Here we get the result that it is know that 47
is prime as soon as some justi�cation supports that belief, since the proposition

that 47 is prime holds at every world. If we count Primo's calculations as

justi�cations, we get the wrong results; if we don't, the models do not explain

why they do not count as justi�cations.18

3.2 Standard Gettier cases

Consider (a slight variant of) Chisholm's (1966) sheep case: a man comes to

believe that there is a sheep in a �eld by seeing a sheep-looking rock in the

distance. As it happens, there is one, but it is hidden behind the rock. The

case is straightforwardly modelled if we assume that the subject could have

formed the same belief on the same basis in the absence of sheep. Let s be the

proposition that there is a sheep in the �eld:

'& %$ ! "#

s

w1
m //

R

��

w1

w2

m

===}
=}

=}
=}

=}

w2

At w2, the subject's method produces a false belief. At w1, w2 is an accessible

possibility, so his method is fallible and he fails to know.

The original Gettier (1963) cases are modelled in basically the same way,

except that we need to introduce a inferential step. Smith has good evidence

17The same holds for the extension of Fitting's models presented by Artemov and Nogina
(2005, 1066).

18On Fitting's (Fitting, 2005, 5) strong models, any formula that is true at all accessible
worlds has a justi�cation, so Primo's belief would come out as justi�ed. Artemov (2008,
section 6) suggests that a knowledge-level justi�cation for p is a �factive justi�cation�, i.e.
�su�cient for an agent to conclude that p is true�. This can be understood in three ways.
(a) su�cient for an agent to know that p is true: the characterisation is circular. (b) such that
necessarily, if p is justi�ed by that justi�cation, p is true: this wrongly ascribes knowledge in
the Prime Number case. (c) such that for any proposition p′, necessarily, if p′ is justi�ed by
that justi�cation, p′ is true: this is infallibilism as we have de�ned it. Artemov's semantics
(based on Fitting, 2005) suggests that he adopts the second construal.
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that Jones owns a Ford, and infers that Jones owns a Ford (j) or Brown is in

Barcelona (b). As it happens, b is true but j is false. Let m be the method that

leads Smith to form the belief that Jones owns a Ford, and let n be the method

that infers j ∨ b from j. Assuming that the subject could have formed the same

beliefs while b was false:

'& %$ ! "# ?> =<

89 :; '& %$ ! "#

j j ∨ b b

w1OO

R

��

m //
n◦m

--w1 w1 w1

w2OO

R

��

m

===}
=}

=}
=}

=}
n◦m

--w2 w2 w2

w3

m

FF
F�

F�
F�

F�
F�

F�
F�

F�
F� n◦m

666v6v6v6v6v6v6v6v6v6v
w3 w3 w3

At each world, by method m, the subject forms the belief that j, and by the

method n applied to m, she infers j ∨ b. In w1 her evidence is not misleading:

j is true. In w2 her evidence is misleading, however j ∨ b is true because j is

true. That is the Gettier situation. In w3 the evidence is misleading as in w2,

but now b is not true, so n◦m outputs a false belief. Since w3 is accessible from

w2, n ◦m is not infallible at w2, and that is why the subject fails to know.

Again the result is straightforward but not trivial. A common diagnosis of

Gettier's original cases is the �no-false-lemma� view (or its generalisation the

�no-false-assumption� view) according to which reasoning from false premises

cannot provide knowledge (Clark, 1963).19 Our models assumes nothing of

the kind: what matters is whether the subject's total inference (n ◦m) could

have lead to a false belief, not whether some intermediate steps are. Suppose

I slightly overestimate heights, and from my belief that the door is over 2.5

meters high, I infer cautiously that it is at least more than 2m high: we may

grant me knowledge of the latter even though the door was 2.4 meter high, for

instance, and my initial belief false. (See Unger, 1968, 165 for a similar view.)

Such verdicts are available in methods models.

19Artemov's formalisation of the cases in the context of the Logic of Proofs endorses a
strong version of the no-false-lemma view: namely, that in the sense of justi�cation relevant
to knowledge there is no justi�cation of a false proposition (Artemov, 2008, section 6). That
threatens the possibility of inductive knowledge (see section 3.4). See Lycan (2006, section
6.1) for a recent defence of the no-false-assumption view.
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3.3 Fallible but reliable methods

We have modelled Gettier cases in terms of fallible methods. That explains

why they are not cases of knowledge, but not why they are not simply cases of

unjusti�ed belief, such as belief based on tea leaves readings.

There is a natural way to introduce the idea in our models, though we do

not implement it formally here: each method gets assigned a reliability measure

(a real between 0 and 1) at a world depending on its tendency to produce true

beliefs rather than non-true ones at accessible worlds. In a �nite setting, we

could for instance take the measure to be the ratio of true beliefs to all beliefs

produced at accessible worlds, but in general we need not assume that reliability

is reducible to other notions except in very simple cases. For instance, if m is

the method that leads one to believe that each ticket in a one-hundred ticket

lottery is a looser, we may say that the reliability of m is .99. This gives a sense
in which one's belief based on m that one's ticket will loose is justi�ed without

being knowledge.

In section 5.1.2, we discuss how the notion of fallible justi�cation, when

plugged in a justi�ed-true-belief account of knowledge, results in Gettier-type

cases.

3.4 Inductive knowledge

Things being as they are, my mother often comes to know that the neighbours

are home by seeing that their light is on. Absolutely speaking, it is of course

physically possible that the neighbour's light is on and they are not there. But

given their habits and the general circumstances, they could not be out with

the light left on. This is what allows my mother to come to know that they

are home simply by seeing their light. In the method infallibilist setting, that is

cashed out as the idea that inductive knowledge is a matter of local infallibility,

that is infallibility over a relevantly restricted set of accessible worlds.20

20What if the neighbours do have such a habit, but my mother has no idea of it and just
rashly assumes that they are there? Then she does not know. On the method infallibilist
view, that result can be obtained in two ways. Either we have an accessible world in which
the neighbour's habits are di�erent. Or we have an accessible world in which she believes
something false on the basis of the same method, e.g., that some other neighbours are there
while they are not. Inductive knowledge would then require a method that is somehow sensitive
to the neighbours' habits: for instance, that my mother would not draw the inference if they
did not have the habit. Such a sensitivity may amount to knowledge of their habits, but it
can easily fall short of entailing that they are there tonight if the light is on tonight. Even in
these more realistic settings, inductive knowledge boils down to local infallibility, infallibility
in the kind of world my mother is in. (The account of inductive knowledge assumed here
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Let m be the method that produces my mother's belief that (p) the neigh-

bours are there:

'& %$ ! "#

p

w1
m // w1

w2

m

===}
=}

=}
=}

=}

w2

At w1, the method produces a true belief. As in the model for Chisholm's

sheep case (section 3.2), there is a world in which the method produces a false

belief (w2). But here that world is not a genuine possibility in w1. The absence

of neighbours while their light is on is not something that could have happened

in the circumstances at hand. So m is infallible at w1, and and p is known.

We can thus say that a method is inductive i� it is metaphysically fallible.

If we want to call �strongly a priori � a piece of knowledge that is based on a

non-inductive method, we get a vindication of the idea of contingent a priori

knowledge: for instance, the method that would lead each subject to believe

that she exists is metaphysically infallible.21

These considerations allow us to draw an important distinction between two

properties that the label �fallibility� fails to distinguish. A reliable method can

be �fallible� in the sense that it is (a) fallible properly, that is, it produces false

beliefs within the relevant set of worlds, (b) inductive, that is, it produces false

beliefs outside of the relevant set of worlds. An inductive method can thus be

infallible in the proper sense. Fallibility in the �rst sense is incompatible with

deductive closure and typically leads to Gettier cases; �fallibility� in the second

sense (inductivity) is compatible with deductive closure and is better positioned

to avoid Gettier cases.

is externalist: whether a subject has inductive knowledge by a certain method depends on
features of her environment she may not be aware of. See Armstrong, 1973, 157, 166�7, 206�8;
Dretske, 1971, 2�4.)

21I call metaphysically infallible methods strongly a priori to allow for the possibility of
weakly a priori methods that would allow an agent to get knowledge without experience and
yet depend on a certain kind of environment the agent is in. (Innate knowledge of grammar
or physical properties of our environement may be a case in point.)
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4 Methods models

All we have said so far assumed only a set of worlds, an alethic modality over

them, and a set of propositions. That su�ces to characterise methods, oper-

ations over them, their infallibility, and to give models of Gettier cases and

inductive knowledge. To get a proper formal implementation of methods infal-

libilism, however, we now opt for a particular notion of proposition. What has

been said so far nevertheless holds for other choices.

We take the simplest notion of proposition, namely a set of worlds. That has

troublesome consequences with so-called Frege cases, though we point out that

even there our simplest method models have something interesting to say. We

show how agents are speci�ed as sets of methods, and how knowledge and belief

are from those. We give a language and we state basic equivalence results with

Scott-Montague neighbourhood models (Montague, 1968, 1970; Scott, 1970).

4.1 Propositions and the problem of Frege cases

4.1.1 Propositions as sets of worlds

De�nition 4. Propositions are sets of worlds: P = P(W ).
A proposition p is true at a world w i� w ∈ p.

The resulting methods models are an extension of neighbourhood models.

See Appendix B (section 8).

4.1.2 Frege cases

The choice keeps our models simple and on familiar grounds, but comes at a

cost. Call referential opacity cases cases in which we are tempted to say that

an agent knows (or believes) that p but fails to know (believe) that q, while p

and q are true at exactly the same worlds.22 Well-known candidates are:

Proper names Alice knows that Hespherus shines, but she does not know that

Phosphorus shines. (Frege, 1892/1980)

Pierre believes that Londres is pretty, but he does not believe that London

is pretty. (Kripke, 1979)

Indexicals David knows that that man's pants [unwittingly pointing at himself

in the mirror] are on �re, but he does not know that his own pants are on

�re. (Kaplan, 1989, sec XVII, see also Perry, 1979)

22The terminology comes from Quine (1953/1961).
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Natural kinds terms Saul knows that there is water in the glass, but does

not know that there is H2O in the glass. (Kripke, 1980)

Logical equivalents Fred knows that p but does not know that p∨ (¬p→ p).

Given (De�nition 4), if p and q are true at exactly the same world, p = q, and

thus p is an output of a method m i� q is. So it appears that simple methods

models cannot represent referential opacity cases.

The matter is not so straightforward, however. Suppose that, not know-

ing that Hespherus and Phosphorus are the same planet, Alice believes that

Hespherus shines but not that Phosphorus shine. Let mH be a constant for

the method through which she believes that Hespherus shines (when she does),

and mP a constant for the method through which she believes that Phosphorus

shines (when she does). (We introduce the full language in section 4.3.1.) In

our language, we represent Alice's situation as follows:

BmHp ∧ ¬BmH¬p ∧ BmP¬p ∧ ¬BmPp

where p is a term for the proposition that Venus shines. In other terms:

by method mH, she believes the proposition to be true and does not believe it

to be false; by method mP, she believes it to be false and does not believe it

to be true. That representation at least avoids a contradictory statement that

Bp ∧ ¬Bp.23 Moreover, it shows that the notion of method can at least partly

capture Frege's elusive notion of �mode of presentation�: a belief that p is a

Hespherus-belief if based on mH, and a Phosphorus-belief if based mP. And it

is compatible with a direct-referentialist view of content.

However, the suggested account has its limits. It is likely that referential

opacity phenomena arise within a single method. For instance, if I see the end

of a ship by one window, and its other end by another, I may rationally come to

believe that they are two distinct ships (Perry, 1979, 483). I may thus believe

that that ship [pointing at one end] is identical to that ship [pointing at the

same end] while also believing that that ship [pointing at the other end] is not

identical to that ship [poiting at the �rst end again]. We may want to count the

two beliefs as being issued by the same method. So we get a case in which:

Bmp ∧ Bm¬p

23See Kripke (1979, section III).
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where p is the proposition that that ship is identical to itself, and m the

method by which I formed both beliefs. Here we cannot represent the contra-

diction as a contradiction of beliefs based on di�erent sources. An option would

be to make methods as �ne-grained as necessary to make sure that Frege cases

can all be cashed out in terms of distinct methods, but that strikes me as an ad

hoc move, and would render the notion of method less natural.

Some further enrichment of the models thus appears needed to fully take into

account referential opacity phenomena. One option is to distinguish propositions

that are true at the same possible worlds: this can be done by introducing

impossible worlds.24 Another option is to take the outputs of methods to be

sentence-like structures. Philosophically, that option corresponds equally to

(a) a language-of-thought view, (b) a Frege-style view in which propositions are

structured and not reducible to extensions, (c) a view of belief as a ternary

relation between subjects, modes of presentations (represented by sentences),

and coarse propositions.25

4.2 Frames and agents

Our frames are given by a set of worlds, an accessibility relation over them,

and a set of methods for the agent. (In the multi-agent case, a set of methods

can be introduced for each agent.) Propositions and the space of methods are

themselves de�ned from the set of worlds:

De�nition 5. A methods frame F is a triple 〈W,MB , R〉 where:
MB ⊆M is the set of basic methods of the agent, where M = W × (P(P )×

P(P )) with propositions as sets of worlds: P = P(W ).26

R ⊆W ×W is a re�exive accessibility relation over worlds.

24We introduce a set of impossible worlds I and rede�ne the set of propositions as P =
P(W ∪ I). Premises and conclusions of methods are now taken from this extended set;
however, they can remain functions from possible worlds. At impossible worlds, valuation
is not compositional: any arbitrary set of formulas can hold � impossible worlds can be
modelled as such sets. For two propositional constants p1 and p2 (standing for �Hespherus
shines� and �Phosphorus shines�, for instance) that hold at exactly the same possible worlds
in a model, we have an impossible world w∗ such that w∗ ∈ p1 and w∗ /∈ p2, so that p1 6= p2
and we can have p1 ∈ m(w) and p2 /∈ m(w) for some method m and possible world w.

25We can take the premises and conclusions of methods to be formulas of our language,
for instance � similar strategies appear in Awareness semantics (Fagin and Halpern, 1988)
and Fitting's semantics for the Logic of Proofs (Fitting, 2005). (Though it should be noted
that the technique is philosophically unsatisfactory, since it makes things look as though the
mental states of a subject were dependent on the language of the ascriber.) However, the
resulting semantics is prone to self-referential paradoxes, and methods may have to be typed
in order to avoid them.

26Cf. sections 2.1 and 4.1.
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A transitive methods frame is a methods frame in which R is transitive.

The primitives of our models are just worlds, a set of basic methods for each

agent, and a background alethic modality given by 〈W,R〉 that will be used to

characterise infallibility. The rest is derived as follows.

De�nition 6. The agent's method set is M = MB◦+.27

An agent is represented by a set of methods. We assume an agent free of

modular or computational limitations: the set of her methods is closed under

composition and union. As we noted in section 2.1, bounded agents can be mod-

elled by putting restrictions on building M out of MB , and more sophisticated

representations of agents could have their method set changing through time.

We de�ne a set of infallible methods at each world:

De�nition 7. M I(w) is the set of infallible methods at w:
m ∈M I(w) i� for all w′ such that wRw′:

(a) ∀p(p ∈ m(w′)→ w′ ∈ p), and
(b) ∀p, π((p ∈ m(w′, π) ∧ w′ ∈

⋂
π)→ w′ ∈ p).

Corollary 1. Infallible methods preserve infallibility. If m ∈ M I(w) and n ∈
M I(w), m+ n ∈M I(w) and m ◦ n ∈M I(w).

Proof. Obvious from De�nitions 2 and 7 for method union. For method com-

bination, let m,n,w be such that m ∈ M I(w) and n ∈ M I(w). We show that

m ◦ n ∈M I(w):
(a) Suppose wRw′ and p ∈ m ◦ n(w′) for some p, w′. By De�nition 2,

there is a π such that π = n(w′) and p ∈ m(w′, π). By De�nition 7 (a), since

n ∈M I(w), wRw′ and π = n(w′), we have w′ ∈
⋂
π. By De�nition 7 (b), since

m ∈ M I(w), wRw′, w′ ∈
⋂
π and p ∈ m(w′, π), we have w′ ∈ p. Generalising

over p: ∀p(p ∈ m ◦ n(w′)→ w′ ∈ p).
(b) Suppose wRw′, p ∈ m ◦ n(w′, π) and w′ ∈

⋂
π. By De�nition 2, there

is a π′ such that π′ = n(w′, π) and p ∈ m(w′, π′). By De�nition 7 (b), since

n ∈ M I(w), wRw′, w′ ∈
⋂
π and π′ = n(w′, π), w′ ∈

⋂
π′. By De�nition

7 (b) again, since m ∈ M I(w), wRw′, w′ ∈
⋂
π′ and p ∈ m(w′, π′), w′ ∈ p.

Generalising over p, π: ∀p, π((p ∈ m ◦ n(w′, π) ∧ w′ ∈
⋂
π)→ w′ ∈ p).

Lemma 1. If F is a transitive methods frame, then for any m, w, w′ such that

wRw′, if m ∈M I(w) then for any w′ such that wRw′, m ∈M I(w′).

27cf. section 2.2.
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Proof. Let m,w be such that m ∈ M I(w), and w′ such that wRw′. Let w′′ be

any world such that w′Rw′′. By the transitivity of R, wRw′′. Sincem ∈M I(w),
by De�ntion 7, ∀p(p ∈ m(w′′) → w′′ ∈ p) and ∀p, π((p ∈ m(w′′, π) ∧ w′′ ∈⋂
π)→ w′′ ∈ p). By De�nition 7 again, m ∈M I(w′).

Lemma 1 is crucial to the derivation of knowledge of one's knowledge (section

18).

Finally we de�ne a range of functions from worlds and methods to sets of

propositions for belief and knowledge on a basis, and from worlds to sets of

propositions for belief and knowledge simpliciter. �B� and �K� each refer to

functions of both types, but the ambiguity is convenient and their arguments

always disambiguate:

De�nition 8. B : (m,w) 7→ {p : m ∈ M ∧ p ∈ m(w)} gives the agent's beliefs
on the basis of m.

K : (m,w) 7→ {p : p ∈ B(m,w) ∧m ∈ M I(w)} gives the agent's knowledge
on the basis of m.

B : w 7→ {p : ∃m(p ∈ B(m,w))} gives the agent's beliefs simpliciter.
K : w 7→ {p : ∃m(p ∈ K(m,w)} gives the agent's knowledge simpliciter.

Beliefs are just the outputs of the agent's methods on the basis of no premises.

Knowledge is belief on an infallible basis. B(m,w) is the set of propositions be-
lieved on the basis of m at w, and B(w) is the set of propositions believed

at w, and similarly for knowledge. B(w) and K(w), as well as the functions

w 7→ B(m,w) and w 7→ K(m,w) for a given m, are neighbourhood functions:

see Appendix B (section 8) .

The de�nitions of belief and knowledge simpliciter are not entirely innocu-

ous. For all we have said, an agent may be such that one of her methods

unconditionally outputs p and another one ¬p. The de�nition implies that such

an agent both believes p and not-p. Some may want to resist that; one may want

to say for instance that an agent believes p i� one of her methods outputs p and

no other outputs ¬p. However, our existentially quanti�ed de�nition is by far

the simplest; alternative options create holistic constraints on belief and knowl-

edge that would prevent us to get fully general theorems such as Kp→ KKp.

However, I do not see the fact that we rely on this choice as a important liabil-

ity, though; for one lesson of methods models is that deep generalisations about

knowledge should be stated in terms of based belief and knowledge rather than

in terms of belief and knowledge simpliciter.
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4.3 Language

4.3.1 Syntax

De�nition 9. Let M = {m, n, . . .} be a set of methods constants. The set of

methods terms is given by the grammar:

µ ::= m|µ+ ν|µ ◦ ν

L is the set of formulas given by:

φ ::= p|>|¬φ|φ ∨ ψ|φ∧ψ|φ→ ψ|φ↔ ψ|Bµ : ψ|Kµ : φ|Bψ|Kφ|�φ

where P = {p, q, r, . . .} is a set of propositional constants.

We introduce two B and K operators, one for methods-relative belief and

knowledge and the other for belief and knowledge simpliciter. � will express

the background alethic modality.

By convention, Bµ : and Kµ : take the narrowest scope: we read Bµ : φ→ ψ

as (Bµ : φ)→ ψ and not as Bµ : (φ→ ψ) .

4.3.2 Semantics

De�nition 10. Let M =< F, V > be a model where V : P ∪M → P ∪M is

a valuation function that assigns a proposition to each propositional constant

and a method to each method constant. We de�ne J·KM:

Methods terms. JmKM = V (m),
Jµ+ νKM = JµKM + JνKM,

Jµ ◦ νKM = JµKM ◦ JνKM.

Propositional logic. JpKM = V (p), J>KM = W ,

J¬φKM = W\JφKM,

Jφ ∨ ψKM = JφKM ∪ JψKM,

and as usual for other logical connectives.

Necessity, belief and knowledge.

J�φKM = {w : ∀w′(wRw′ → w′ ∈ JφKM)},
JBµ : φKM = {w : JφKM ∈ B(JµKM, w)},
JKµ : φKM = {w : JφKM ∈ K(JµKM, w)},
JBφKM = {w : JφKM ∈ B(w)},
JKφKM = {w : JφKM ∈ K(w)}.
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Truth. |=M
w φ i� w ∈ JφKM.

Validity. |=M φ i� for any w, |=M
w φ.

The clause for �φ is familiar from Kripke models. The clauses for Bφ and Kφ

are familiar from neighbourhood models, and it is easy to see that the clauses

for Bµ : φ and Kµ : φ pick up the neighbourhood function corresponding to the

unconditional output of the method m designated by µ, namely: w 7→ m(w),
provided thatm is one of the agent's methods (belief case) and that it is infallible

(knowledge case).

In Appendix B (section 8) we compare neighbourhood models and methods

models in more detail. We show that for any neighbourhood model for B,

there is an equivalent method model for B, and conversely, and that for any

neighbourhood model for K in which Kφ → φ is valid, there is an equivalent

method model for K, and conversely (Theorems 20 and 21). But we also argue

that methods models are more explanatory than neighbourhood ones, because

they allow us to derive the modal axioms from the structure of an agent's

methods.

We check that belief and knowledge on a basis entail belief and knowledge

simpliciter :

Corollary 2. For any M, w, |=M
w Bµ : φ→ Bφ and |=M

w Kµ : φ→ Kφ for any

µ,φ.

Proof. From De�nition 10, if |=M
w Bµ : φ then there is a m ∈ M such that

JφKM ∈ m(w). By De�nition 8, JφKM ∈ B(w), and by De�nition 10 again,

|=M
w Bφ. And analogously for K.

The methods algebra of Appendix A (section 7) and the semantics give us

a series of equivalences:

Corollary 3. The following are valid in any method model M:

B(µ+ ν) + ρ : φ↔ Bµ+ (ν + ρ) : φ,
Bµ+ ν : φ↔ Bν + µ : φ,
Bµ+ µ : φ↔ Bµ : φ,
B(µ ◦ ν) ◦ ρ : φ↔ Bµ ◦ (ν ◦ ρ) : φ,
B(µ+ ν) ◦ ρ↔ B(µ ◦ ρ) + (ν ◦ ρ) : φ,
and similarly for K, for any µ, ν, ρ, φ.

For some methods model M, 6|=M Bµ ◦ (ν + ρ) : φ ↔ B(µ ◦ ν) + (µ ◦ ρ) : φ,
and similarly for K, for some µ, ν, ρ, φ.
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5 Results

The consequences of methods models fall within four groups, corresponding to

di�erent idealisations of agents:

1. For any agent : knowledge entails belief and truth (subjectivity and factiv-

ity of knowledge). That is a welcome result, since these are the only two

(quasi-)uncontroversial facts about knowledge. Moreover, we have refer-

ential transparency : if p and q are true exactly at the same worlds, p is

known i� q is. That is a limitation of the simpler models, as we noted

(section 4.1).

2. For perfect reasoners, who have speci�c methods to believe all logical

truths and all the logical consequences of what they believe: deductive

closure. With unbounded resources, this validates the logical omniscience

axiom K: K(φ→ ψ)→ (Kφ→ Kψ).

3. For perfect introspecters and perfect con�dent introspecters, who have

methods to ensure that they believe that they believe p whenever they be-

lieve p (positive psychological introspection), that they believe that they

do not believe p when they do not (negative psychological introspection),

that they believe that they know p whenever they believe p (positive con-

�dent introspection) and that they believe that they do not know p when

they do not believe it (negative con�dent introspection): self-knowledge

(Bφ ↔ KBφ), partial negative epistemic introspection (¬Bφ → K¬Kφ)

and, if possible possibilities are possible, epistemic positive introspection

or axiom 4 (Kφ→ KKφ).

4. For excellent agents, whose methods are all infallible: believing is knowing

(Bφ ↔ Kφ) and epistemic negative introspection or axiom 5 (¬Kφ →
K¬Kφ).

With pure reasoners, we get a normal modal logic K for the belief simpliciter

operator and KT for the knowledge simpliciter operator, and putting all ide-

alisations together, we get a standard S5 system for both. This gives us an

equivalence between those models and standard Hintikka models for the sub-

part of L that is free of method terms, and shows that methods models can be

as powerful as the standard ones.

As the summary indicates, the idealisations which we use to derive our results

are natural idealisations of the psychology of an agent. (For positive epistemic
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introspection, we need also an assumption on the structure of possibilities.)

They are more intuitive than direct judgement on the S5 axioms or on formal

constraints on accessibility relations (transitivity, euclideanity). Correspond-

ingly, they give us a better understanding of why and when the various axioms

of standard epistemic logic hold.28

5.1 Subjectivity, factivity, and referential transparency

5.1.1 Referential transparency: the rule of equivalence

Theorem 1. Referential transparency (EBK). If |=M φ ↔ ψ, then |=M Bφ ↔
Bψ and |=M Kψ ↔ Kφ, for any methods model M.

Proof. Suppose |=M φ ↔ ψ. We have JφKM = JψKM, so JBφKM = {w : JφKM ∈
B(w)} = {w : JψKM ∈ B(w)} = JBψKM, and similarly for K.

Referential transparency is the rule of equivalence of classical modal logic.

It is known to determine the class of all neighbourhood frames.29 Thus by

Theorem 20 the schema determines methods frames for the B operator.

Referential Transparency is a consequence of our choice of modelling propo-

sitions as sets of possible worlds. It ensures that our models are classical and

similar to neighbourhood models. However, in doxastic and epistemic terms,

that means that belief and knowledge are referentially transparent in the sense

discussed above. This is a problematic consequence, as we said (section 4.1).

5.1.2 Factivity and subjectivity

Theorem 2. Subjectivity (S). |=M Kφ→ Bφ for any methods model M.

Proof. Evident from De�nitions 8 and 10.

The theorem states that knowledge is subjective, in the sense that knowledge

is in part a matter of the agent's psychology, namely, his beliefs.30

28The properties of the epistemic accessibility relation in standard epistemic logic can be
naturally interpreted as indistinguishability relations. But this hides an important ambiguity.
Indistinguishability can be understood as inability to know the di�erence: w is indistinguish-
able from w′ to one i� in w one cannot know that w is di�erent from w′. Or indistinguishability
can be understood as sameness of internal state: w is indistinguishable from w′ to one i� in
w one is in the same internal state as in w′. The �rst reading is Hintikka's (2007) and the
second is roughly Lewis' (1996). Each has problematic consequences, as we noted in section
1. (Thanks to an anonymous referee here.)

29Chellas (1980, 257).
30By saying that knowledge is �subjective� I only mean that it requires a state of mind �

not that it is �subjective� in the sense in which matters of taste are said to be so. Subjectivity
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Theorem 3. Factivity (TK). |=M Kφ→ φ for any methods model M.

Proof. Evident from the fact that R is re�exive and De�nitions 7, 8 and 10.

Factivity entails that knowledge is consistent, or axiom D: Kφ → ¬K¬φ.
(Assume Kφ; by factivity, φ, so ¬¬φ, and by factivity again, ¬Kφ.)

It is known from neighbourhood semantics that EBK and TK determine

truthful neighbourhood models.31 By Theorem 21 the schemas determine meth-

ods models with respect to the K operator.

Note that we need two things to derive Factivity. First we need the re�exivity

of R, that is, � should be a modality that itself satis�es T :

Theorem 4. Alethic necessity (T�). |=M �φ→ φ for any method model M.

Proof. From the re�exivity of R and De�nition 10.

This re�ects the fact that � is intended as an alethic modality. Second, we

need strict infallibility, i.e. that the methods in M I(w) are such that all their

unconditional outputs are true.

Suppose we try to put a weaker condition on knowledge; for instance, we

include in M I(w) all the methods that are highly reliable at w (see section

3.3). Factivity can no longer be derived: p ∈ m(w) and m ∈ M I(w) do not

entail that p is true at w, since some of the unconditional outputs of m may be

false at w. Truth must then be added as a separate condition on knowledge:

p ∈ K(w) i� there is a m such that p ∈ m(w), m ∈ M I(w) and w ∈ p. This

is in essence the �justi�ed-true-belief� analysis of knowledge, and it is open to

Gettier counterexamples because its two conjuncts (m is a reliable/adequate

method, and p is true) can be simultaneously satis�ed by coincidence.

5.1.3 Failure of logical omniscience and introspection

None of the other axioms of modal logic are valid.

Theorem 5. Each of M, C, K, N, 4, 5 for B and K fails in some methods

model M, and D and T for B fail in some methods model M.

is in contrast with the notion of �implicit knowledge� that Hintikka models are often taken
to formalise, which does not require than an agent be in any sense aware of the things she
�knows�.

31A neighbourhood model 〈W,N〉 is truthful i� w ∈
T
N(w) for any w. See Appendix B

(section 8).
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DB. Bφ→ ¬B¬φ
TB. Bφ→ φ

MB. B(φ ∧ ψ)→ (Bφ ∧ Bψ) MK. K(φ ∧ ψ)→ (Kφ ∧ Kψ)
CB. (Bφ ∧ Bψ)→ B(φ ∧ ψ) CK. (Kφ ∧ Kψ)→ K(φ ∧ ψ)
KB. B(φ→ ψ)→ (Bφ→ Bψ) KK. K(φ→ ψ)→ (Kφ→ Kψ)
NB. B> NK. K>
4B. Bφ→ BBφ 4K. Kφ→ KKφ

5B. ¬Bφ→ B¬Bφ 5K. ¬Kφ→ K¬Kφ

Proof. Neighbourhood models that invalidate each schemas are known. By

Theorem 20 they can be used to show that none of the B schema are valid

in methods models. Moreover, it is easy to construct such counter-models as

truthful neighbourhood models, so that by theorem 21 we have counterexamples

to the K schemas.

In appendix C (sec. 9), we give illustrations of violations of M, N, K, and

4. In particular, the violation of K illustrates our Watson case (sec. 1).

5.2 Perfect reasoning

The �rst interesting class of methods models is that of perfect reasoners. In-

tuitively, an agent is a perfect reasoner if she believes all logical truths, and

deduces all logical consequences of what she believes. To model such agents, we

de�ne the two following methods:

De�nition 11. The Pure Reason methodmR is the method such thatmR(w, π) =
{W} for any w, π.32

For any model M, we write mR the constant such that JmRKM = mR.

That is, Pure Reason outputs the tautology given any set of premises, in-

cluding the empty set.

De�nition 12. The Multi-Premise Deduction method mD is the method such

that mD(w, π) = {p : ∃q, r ∈ π(q ∩ r ⊆ p)} for any w, π.
For any model M, we write mD the constant such that JmDKM = mD.

32Thus de�ned, Pure Reason entails that the agent exists at any world. To avoid this, one
could instead use a Conditional Pure Reason method: mCR(w, π) = {W} for any w, π 6= ∅.
Conditional Pure Reason outputs the tautology only if the agent has some other belief. The
resulting schema are |=M Bφ→ B> and |=M Bφ→ K> for any φ.
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That is, Deduction maps a set of premises to all logical consequences of any

pair of premises. (Note that it outputs nothing on the basis of the empty set of

premises.)33

We call perfect reasoner model a methods model such that mR,mD ∈M .34

Theorem 6. Knowledge of logic (NB and NK). For any perfect reasoner model

M, |=M BmR : > and |=M KmR : >. By Corollary 2, |=M B> and |=M K> .

Proof. We �rst prove that at any world, the agent believes the tautology on the

basis of Pure Reason; we then prove that Pure Reason is infallible at any world.

Let w be any world in a perfect reasoner model M. By De�nition 11, W ∈
mR(w). By De�nition 8, W ∈ B(w). By De�nition 10, |=M

w B>.
Furthermore, by De�nition 11, for any p, w, π, if p ∈ mR(w, π) then p = W ,

so w ∈ p. Thus by De�nition 7, mR ∈ M I(w). By De�nition 8, W ∈ K(w),
and by De�nition 10, |=M

w K>.

Theorem 7. Deductive closure. For any perfect reasoner model M:

|=M Bµ : (φ→ ψ)→ (Bν : φ→ BmD ◦ (µ+ ν) : ψ)

|=M Kµ : (φ→ ψ)→ (Kν : φ→ KmD ◦ (µ+ ν) : ψ)

for any µ, ν, φ, ψ. Thus by Corollary 2, |=M B(φ → ψ) → (Bφ → Bψ) and

|=M K(φ→ ψ)→ (Kφ→ Kψ) for any φ, ψ.

Proof. We show that whenever p→ q and p are believed on the basis of m and

n respectively, q is believed out of mD ◦ (m+n). We additionally show that mD

is infallible at any world, which entails that mD ◦ (m+n) is infallible whenever
m and n are (Corollary 1).

Let M, w be a perfect reasoner model and a world such that |=M
w Bµ : (φ→

ψ)∧Bν : φ for some µ, ν, φ, ψ. By De�nition 10 and De�nition 8, there are m,n

33In particular, given any premise, Deduction will output the tautology. But that does not
make Pure Reason redundant. If all purely non-inferential methods of the agent are fallible,
then composing Deduction with them cannot yield knowledge, since the resulting composed
method is fallible as well. Adding Pure Reason to the method set of such an agent enables
knowledge of tautologies. (Thanks to an anonymous referee here.)

34Note that an agent may be a perfect reasoner without having Pure Reason and Deduction
in its basic set MB . To illustrate, let m,n ∈ MB be such that, for some p ⊆ W , m(w, π) =
{W} if w ∈ p and ∅ otherwise, and n(w, π) = {W} if w /∈ p and ∅ otherwise. (m outputs the
tautology at p worlds, n outputs the tautology at not-p worlds.) We have m+ n = mR. So if
M is the union and composition closure of MB , m+ n ∈M , and the corresponding model is
a perfect reasoner model provided that mD ∈M as well, even if mR /∈MB .
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and p, q such that JµKM = m, JνKM = n, JφKM = p, JψKM = q, (W\p)∪q ∈ m(w)
and p ∈ n(w) and m,n ∈M . By De�nition 2, (W\p)∪ q, p ∈ (m+n)(w). Since
((W\p)∪q)∩p ⊆ q, by De�nition 12 we have q ∈ mD◦(m+n)(w). By De�nition
10, |=M

w BmD ◦ (µ+ ν) : ψ, which completes the proof of KB.

Since mD is purely inferential, we need only establish its inferential infal-

libilty (see De�nition 3). Let M, w be any perfect reasoner model and world.

Suppose that p ∈ mD(w′, π), wRw′ and w′ ∈
⋂
π for some p, π, w′. By Def-

inition 12, there are q, r ∈ π such that p ⊇ q ∩ r. Since w′ ∈
⋂
π, w′ ∈ p.

Generalising over p, π, w′, by De�nition 3, mD ∈M I(w).
Now suppose |=M

w Kµ : (φ → ψ) ∧ Kν : φ for a perfect reasoner model

M, a world w, and some φ,ψ. The situation is as before with, additionally,

m,n ∈M I(w) (De�nitions 10 and 8). SincemD ∈M I(w) and infallible methods

preserve infallibility (Corollary 1), mD ◦ (m+ n) ∈M I(w). We show as before

that mD ◦ (m + n) ∈ M and q ∈ (mD ◦ (m + n))(w), so by De�nition 10

|=M
w KmD ◦ (µ+ ν) : ψ, which completes the proof of KK .

The proof of KK relies on two things. First, for any methods m,n, the

agent has a union method m+n that outputs the union of the original outputs

of m and n. This means that the agent �puts together� the result of any two

methods. (Note that this does not mean that she believes the conjunction of

original outputs.) Second, given any method m, mD ◦m outputs all the logical

consequents of any two conclusions reached by m. We show that mD ◦ m is

infallible if m is, and that if p, q are unconditional outputs of m, then mD ◦m
outputs all logical consequents of p ∧ q .

It is easy to see that mD ◦m will output the consequents of any two premises

given mym,mD◦mD◦m the consequents of any three premises,mD◦mD◦mD◦m
the consequents of any four premises, and so on. Correspondingly, we can limit

the number of consequences the agent is able to reach by putting limits on the

number of repeated applications of Deduction she can make, and we can model

a dynamic process of reasoning by indexing those limits to time.

Methods models thus allow us to draw a distinction between deductive clo-

sure proper and logical omniscience. If an agent is limited on the number of

mD steps that she can reach, she will not be logically omniscient. But still, any

consequence of what she knows that she does deduce will be knowledge, since

mD preserves infallibility. The idea that any agent knows all the consequences

she does deduce can be somewhat indirectly captured by the following theorem:

Theorem 8. Deduction preserves knowledge. For any methods model M:
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|=M Kµ : φ→ (BmD ◦ µ : ψ → KmD ◦ µ : ψ)

(If anything is known on the basis of µ, then anything believed on the basis

of deduction from µ is known).

Proof. Let M, w be such that |=M
w Kµ : φ for some φ. By De�nitions 10 and 8,

JµKM ∈ M I(w). Since Deduction is infallible (Theorem 7) by Corollary 1, we

have mD ◦ JµKM ∈ M I(w). Now suppose that |=M
w BmD ◦ µ : ψ for some ψ.

Since JmD ◦ µKM = mD ◦ JµKM ∈M I(w), |=M
w KmD ◦ µ : ψ.

The theorem has no equivalent in a language without methods terms. (The

closest we can formulate is Kφ → ((�(φ → ψ) ∧ Bψ) → Kψ), which is coun-

terexampled if the agent believes ψ from some other reasons than φ, as in

our Watson case. Note that Kφ → (((φ → ψ) ∧ Bψ) → Kψ) reduces to

Kφ → ((ψ ∧ Bψ) → Kψ), which, barring bizarre cases, holds only for excel-

lent agents: see De�nition 20 ( p. 41).

Further exploration of the deductive aspects of methods models are made in

Appendix D (section 10):

1. Axioms M and C for belief and knowledge follow from axiom K. But

it is also possible to get them separately, by de�ning a Single-Premise

Deduction method mSD (for M) and a Conjunctive Deduction method

mCD (for C). The relation between mD, mSD and mCD is: mD = mSD ◦
mCD (Corollary 4).

2. These results are correlated to topological properties of sets of sets, as in

neighbourhood semantics.

3. The B and K versions of the K axiom are mutually independent, and

similarly for M, C, N.

4. Having Pure Reason and Deduction is su�cient to satisfy the N and K

axioms, respectively, but not necessary. So we have not characterised

the full class of methods models that validates the axioms. However, we

argue that that is not a defect: an agent might well satisfy N and K

without having speci�c methods for doing so, but that would then be a

sort of coincidence. The important regularities about knowledge are the

methods-relative ones, not the ones stated in terms of belief and knowledge

simpliciter.
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5.3 Consistency

Pure Reason and Deduction do not guarantee than an agent is consistent: that

is, the DB axiom for belief (Bφ→ ¬B¬φ) may fail. (The DK axiom for knowl-

edge is of course guaranteed by the factivity of knowledge, Theorem 3.) Can

we de�ne a method to validate axiom DB? No. And that is an intuitive result:

avoiding contradictions among one's beliefs is not a matter of forming one's

beliefs, but rather of revising them. As long as we have not de�ned methods

for belief revision � for instance, functions from a method set to another �,

we cannot de�ne a method that ensures consistency. We can at most give a

(trivial) constraint to satisfy consistency:

De�nition 13. A consistent agent model is a methods model such that for w,⋂
B(w) 6= ∅.

Theorem 9. If M is a consistent agent model, (DB) |=F Bφ→ ¬B¬φ for any

φ.

Proof. Suppose M is a consistent agent model and w a world such that |=M
w Bφ

for some φ. By De�nition 10 there is a p such that JφKM = p and p ∈ B(w). By
De�nition 13 it follows that (W\p) /∈ B(w), and by De�nition 10 6|=M

w B¬φ.

5.4 Perfect introspection and perfect con�dence

The second interesting classes of models are that of perfect introspecters and

con�dent introspecters. Intuitively, an agent is a perfect introspecter if whenever

she believes something, she believes that she does, and whenever she does not

believe something, she believes that she does not. An agent is a con�dent

introspecter if whenever she believes something, she believes that she knows it,

and whenever she does not believe something, she believes that she does not

know it.

Some abbreviations will be useful:

De�nition 14. bp := {w : p ∈ B(w)},
−bp := {w : p /∈ B(w)} = W\bp,
kp := {w : p ∈ K(w)},
−kp := {w : p /∈ K(w)} = W\kp,

bp is the proposition that p is believed, −bp its negation, and analogously

for kp and −kp.

33



5.4.1 Perfect introspection: self-knowledge

De�nition 15. Given any methods model M, we de�ne:

For each method m, the Positive Introspection of m, noted pi(M,m), is the
method such that for any w, p, π: p ∈ pi(M,m)(w, π) i� for some p′, p = bp′

and p′ ∈ m(w).
For each set of methods X, the Negative Introspection of X, noted ni(X),

is the method such that for any w, p, π: p ∈ ni(M, X)(w, π) i� for some p′,

p = −bp′ and there is no m ∈ X such that p′ ∈ m(w).
Convention. We write pi(m) and ni(X) for pi(M,m) and ni(M,m) when

the intended model is clear from the context.

For each method m, the method pi(m) outputs that the agent believes p

whenever m outputs p. In intuitive terms, an agent that has pi(m) takes herself
to have method m, as far as her beliefs are concerned � whether she does in

fact have m or not. For each set of methods X, the method ni(X) outputs that
the agent does not believe p, when p is not among the outputs of the methods

in X. In intuitive terms, an agent that has ni(X) takes herself to have at most

the methods in X.

It is easy to see that pi(m) is infallible if m is one of the agent's methods

and ni(X) is infallible if X includes all of the agent methods:

Lemma 2. For any methods model and any world w:

For any m ∈M , the positive introspection of m is infallible: pi(m) ∈M I(w).
For any X ⊇M , the negative introspection of X is infallible: ni(x) ∈M I(w)

Proof. Positive and Negative Introspection methods are purely non-inferential,

so we need only prove their non-inferential infallibility.

Positive introspection. Let M,m be such that m ∈ M and let w be any

world. Suppose that wRw′ and p ∈ pi(m)(w′) for some w′, p. By De�nition

15, there is some p′ such that p = bp′ and p′ ∈ m(w′). Since m ∈ M and

p′ ∈ m(w′), by De�nition 8, p′ ∈ B(w′). Hence w′ ∈ bp′ . Generalising over

w′, p, pi(m) ∈M I(w) (De�nition 7).

Negative introspection. Let M, X be such that M ⊆ X and let w be any

world. Suppose that wRw′ and p ∈ ni(X)(w′) for some w′, p. By De�nition 15,

there is a p′ such that p = −bp′ and for no m ∈ X, p′ ∈ m(w′). Since M ⊆ X,

for no m ∈ M , p′ ∈ m(w′), so by De�nition 8, p′ /∈ B(w′). Hence w′ ∈ −bp′ .
Generalising over w′, p, ni(X) ∈M I(w) (De�nition 7).
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An agent is a perfect introspecter if she has positive and negative introspec-

tion methods that perfectly match her set of methods. Perfect introspecters

have perfect knowledge of their own beliefs:

De�nition 16. A perfect introspecter model is a methods model such that for

each m ∈M , pi(m) ∈M , and ni(M) ∈M .

Theorem 10. Self-knowledge (SK). If M is a perfect introspecter model, |=M
w

Bφ→ KBφ and |=M
w ¬Bφ→ K¬Bφ.

Proof. Positive self-knowledge. Suppose M is a perfect introspecter model and

w any world such that |=M
w Bφ. By De�nitions 10 and 8, there are p,m such

that JφKM = p, m ∈ M and p ∈ m(w). By De�nition 15, bp ∈ pi(m), where
bp = JBφKM (De�nitions 8, 10 and 14) and by De�nition 16 pi(m) ∈ M . Since

by Lemma 2, pi(m) ∈ M I(w), and since JBφKM ∈ pi(m)(w) and pi(m) ∈ M ,

we have |=M
w KBφ (De�nitions 8 and 10).

Negative self-knowledge. Suppose M is a perfect introspecter model and w

any world such that |=M
w ¬Bφ. By De�nitions 10 and 8, there are no p,m such

that JφKM = p, m ∈ M and p ∈ m(w). By De�nition 15, −bp ∈ ni(M), where
−bp = J¬BφKM (De�nitions 8, 10 and 14) and by De�nition 16, ni(M) ∈ M .

Since by Lemma 2, ni(M) ∈M I(w), and since JBφKM ∈ ni(M)(w) and ni(M) ∈
M , |=M

w K¬Bφ (De�nitions 8 and 10).

A few remarks on introspection methods are in order.

Introspection methods are characterized in agent- and model-relative terms.

Let p,m,w be such that p ∈ m(w). At w, the Positive Introspection of m will

output the proposition that the agent believes p, namely bp. But since we model

propositions as sets of worlds, bp is the set of worlds in which the agent believes

p. Which set that is depends on what model we are considering. Since the

output of an introspection method cannot be de�ned independently of a given

model, these methods cannot be so de�ned either. In multi-agent settings, their

output would be further relativized to agents, and bp and pi(), ni() should be

parametrized accordingly. So we cannot have model- and agent-independent

method constants for Introspection methods, by contrast with Deduction and

Pure Reason. This re�ects the fact that Introspection methods tell us something

about the agents.35

35A contrast may be useful. Let us write m : p for the proposition that m unconditionally
outputs p. Given any method m, we can de�ne the 'method-introspection' (as opposed to
belief-introspection) method !m such that !m outputs m : p whenever m outputs p. That is,
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For the same reason, though pi() and ni() can be considered as operations

on methods and sets of methods, they are not model-independent operations

such as Union and Composition.

Relatedly, it is not straightforward to construct perfect introspection models.

Take a model M built on the basic method set MB and a method such that m

is a method of the agent but the agent lacks the corresponding Introspection

method: m ∈ M but pi(M,m) /∈ M . To ensure that the agent introspects

her own method m, we cannot simply take the model M′ built on the basic

set MB ∪ {pi(M,m)}. For it may be that pi(M,m) is not an Introspection

method in the new model: pi(M,m) 6= pi(M′,m). And analogously for Negative
Introspection. Thus there is no straightforward way to close a model under

Introspection.

We have used �ne-grained Positive Introspection methods: one per method.

We could have used instead coarser methods, along the lines of Negative Intro-

spection: pi∗(X) is such that p ∈ pi∗(X)(w, π) i� p′ ∈ m(w) for some m ∈ X
and p′ s.th. p = bp′ . The method pi∗(X) outputs that the agent believes p

whenever any method within X outputs p. This is su�cient for knowledge of

one's beliefs. But �ner-grained methods are required for knowledge of one's

knowledge, as we will see.

By contrast, (perfect) Negative Introspection is essentially holistic. We can-

not get perfect negative introspection on a method-per-method basis. Suppose

we de�ne, for a given method m, a method that outputs that the agent does not

believe p whenever the method m does not output p. The method will go wrong

in cases in which some other method of the agent outputs p, so that the agent

believes p after all. At most, we can de�ne a �ne-grained infallible method that

outputs that the agent does not believe p on the basis of m.36 But negative

introspection methods of this type would not deliver the proposition that the

agent does not believe p simpliciter .37

The asymmetry between Positive and Negative Introspection on this score

re�ects the fact that in order for an agent to believe p, it is su�cient that some

!m tells us that m outputs p whenever m does output p. (! is analogous to the proof-checker in
the Logic of Proofs (Artemov, 1994).) The ! operator can be de�ned in a model-independent
way. But ! is not a operator of psychological introspection: its outputs are about what
methods output, not about what agents believe, and it 'introspects' any method, irrespective
of whether the agent has it or not.

36Such methods would be analogues to the negative veri�er ? in the Logic of Proofs (Fitting,
2008).

37More precisely, given our extensional notion of proposition, they will deliver this proposi-
tion only if it happens to be coextensive with the proposition that the agent does not believe
p on the basis of some particular method m.
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of her method outputs p, while for her not to believe p, it is necessary that none

of her methods ouptuts p.

5.4.2 Perfectly Con�dent Introspection: knowledge of one's knowl-

edge and partial knowledge of one's ignorance

Con�dent Introspection methods are introspection methods whose output is the

proposition that one knows (or fails to know) instead of the proposition that

one believes (or fails to believe):

De�nition 17. Given any methods model M, we de�ne:

For each methodm, the Positive Con�dent Introspection ofm, noted pc(M,m),
is the method such that for any w, p, π, p ∈ pc(M,m)(w, π) i� for some p′,

p = kp′ and p
′ ∈ m(w).

For each set of methods X, the Negative Con�dent Introspection of X, noted

nc(X), is the method such that p ∈ nc(M, X)(w, π) i� for some p′, p = −kp′

and there is no m ∈ X such that p′ ∈ m(w).
Convention. We omit reference from the model when it is clear from the

context, and write pc(m) and nc(X) for pc(M,m) and nc(M,m), respectively.

In intuitive terms, an agent that has Negative Introspection of X believes as

if all its knowledge came from methods in X. Negative Con�dence is infallible

applied to any X that includes the agent's methods:

Lemma 3. For any methods model and any world w:

For any X ⊇ M , the Negative Con�dent Introspection of X is infallible:

nc(x) ∈M I(w).

Proof. We transpose the proof of Lemma 2, using the fact that if p′ /∈ B(w′)
then p′ /∈ K(w′) (De�nition 8 and Theorem 2) .

For Positive Con�dence we would expect a conditional infallibility result:

if m is infallible, then pc(m) is infallible. This is guaranteed, however, only if

the frame is transitive. For any output of m, pc(m) tells that the agent knows
it. Thus if m is infallible, all the outputs of pc(m) are true. But for pc(m) to
be infallible, its outputs must be true at all accessible worlds; so m has to be

infallible at all accessible worlds. If the frame is transitive, the infallibility of m

at a world ensures its infallibily at accessible worlds (Lemma 1), so we get the

desired result:
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Lemma 4. For any transitive methods models and any world w:

For any m ∈M , if m ∈M I(w) then the Positive Con�dent Introspection of

m is infallible: pc(m) ∈M I(w).

Proof. Positive Con�dence methods are purely inferential, so we need only prove

the infallibility of their unconditional outputs.

Let M,m be a model in a transitive frame and a method such that m ∈M
and let w be a world such that m ∈ M I(w). Suppose that wRw′ and p ∈
pc(m)(w′) for some w′, p. By De�nition 15, there is some p′ such that p = kp′

and p′ ∈ m(w′). Since M is transitive, m ∈ M I(w) and wRw′, m ∈ M I(w′)
(Lemma 1). Since m ∈ M , p′ ∈ m(w′) and m ∈ M I(w′), by De�nition 8,

p′ ∈ K(w′). Hence w′ ∈ kp′ . Generalising over w
′, p, pc(m) ∈M I(w) (De�nition

7).

An agent is a Perfect Con�dent Introspecter if she has Con�dent Introspec-

tion methods that exactly match her method set:

De�nition 18. A Perfect Con�dent Introspecter model (or Con�dent Intro-

specter, for short) is a methods model such that for each m ∈ M , pc(m) ∈ M ,

and nc(M) ∈M .

Theorem 11. Con�dent Introspection. If M is a con�dent introspecter model,

|=M Bφ→ BKφ and |=M ¬Bφ→ B¬Kφ.

Proof. Evident from De�nitions 10, 8 and 18.

Theorem 12. Knowledge of one's knowledge (4). If M is a Con�dent Intro-

specter model in a transitive frame, |=M Kφ→ KKφ for any φ.

Proof. Suppose M is a perfect con�dent introspecter model in a transitive frame

and w any world such that |=M
w Kφ. By De�nitions 10 and 8, there are p,m

such that JφKM = p, m ∈ M , p ∈ m(w) and m ∈ M I(w). By De�nition 17,

kp ∈ pc(m), where kp = JKφKM (De�nitions 8, 10 and 14) and by De�nition 18,

pc(m) ∈M . Since the frame is transitive, m ∈M and m ∈M I(w), by Lemma

4, pc(m) ∈ M I(w). Since JKφKM ∈ pc(m)(w) and pc(m) ∈ M , |=M
w KKφ

(De�nitions 8 and 10).

The result is the only one that requires a stronger assumption on the back-

ground accessibility relation than re�exivity. The proof relies on �ner-grained

introspection methods. An indiscriminate con�dence method (pc∗(M) such that
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p ∈ pc∗(M)(w, π) i� p′ ∈ m(w) for some m ∈ X and p′ s.th. p = kp′) would be

fallible as long as some of the agent's methods are fallible.38

Theorem 13. Partial knowledge of one's ignorance (p5). If M is a Con�dent

Introspecter, |=F ¬Bφ→ K¬Kφ for any φ.

Given subjectivity (Kφ→ Bφ), the theorem is equivalent to a conditionalised

version of axiom 5: |=F ¬Bφ→ (¬Kφ→ K¬Kφ). I am using �ignorance� here in

a slightly unnatural way to refer to everything the subject fails to know. (Thus

if p is false p is part of the subject's �ignorance� in that sense.)

Proof. We transpose the proof of negative self-knowledge (Theorem 10), using

Lemma 3.

Partial knowledge of one's ignorance (p5) is a very intuitive result. There

has been much debate around axiom 5 of epistemic logic, according to which if

one does not know p, one knows that one does not to know it. The intuition

that has lead many to think that it was appropriate for knowledge is, I think,

the following: ask an agent whether p, she will �look up� her memory to see

whether it contains p, and if it does not, she will answer (rightly) that she does

not know. But that is precisely the idea that our result cashes out: when a

subject fails to know p because they fail even to believe it, they know that they

do not know p.

A few remarks on Con�dence methods.

The Con�dent Introspection methods we de�ne are introspection methods,

in the sense that the methods pc(m) and nc(X) �track� what method m and

the methods in X are doing. It would be more natural to de�ne them as a

composition of a psychological introspection method and a con�dence method:

whenever the agent believes p, she believes that she does (psychological intro-

spection), and whenever she believes that she believes p, she infers that she

knows p (con�dence).

That can be done for negative con�dence: we could de�ne an inferential

method nc∗ such that nc∗(w, π) = {−kp : −bp ∈ π}. The method is infallible:

suppose that p ∈ nc∗(w, π) and all the premisses in π are true. Then there is

38At a given world w, knowledge of one's knowledge holds if the agent is indiscriminately
con�dent of all her methods that happen to be infallible at w: that is, the agent has pc∗(M ∩
MI(w)). But since the agent's method set is not world-dependent in our models, this would
mean that at every world the agent is con�dent of her methods that are infallible at w.
Furthermore, to derive knowledge of one's knowledge at every world, the agent's method set
should include all methods of this type: for any w, pc∗(M ∩MI(w)) ∈ M . It is not clear to
me whether such an idealisation makes sense.
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some p′, p′′ such that p′ ∈ π, p′ = −bp′′ , and p = −kp′ . Since p
′ is true, −bp′ is

true. Since −bp′ is true, −kp′ is true. Thus the combined method nc∗ ◦ ni(M)
is infallible, which gives us (p5) for Perfect Introspecters with nc∗. In addition,

we get the schema |=M B¬Bφ → B¬Kφ for any agent with nc∗. This makes

explicit how Con�dent Introspection is parasitic on Introspection.

Unfortunately, the parallel idea for Positive Con�dence cannot be imple-

mented in our models. This is a consequence of the coarse individuation of

proposition as sets of worlds (sec. 4.1). Consider the method pc∗ such that

pc∗(w, π) = {kp : bp ∈ π}. Suppose that we have a methods model M with two

methods m,n ∈M such that only m ever outputs p, only n ever outputs q, but

they do so at the very same worlds. We have bp = bq: the proposition that the

agent believes that p and the proposition that she believes that q are the same,

even if p and q are di�erent. Now at a world where m outputs p, pi(m) outputs
bp, and therefore pc∗ ◦ pi(m) outputs kp. But since bp = bq, pc

∗ ◦ pi(m) will also
output kq. As a result, if m is infallible but n is not, kp will be true but kq will

be false. So pc∗ ◦ pi(m) is not guaranteed to be infallible if m is.

Roughly put, what is going on is that the di�erence between introspecting

from m (pi(m)) and introspecting from n (pi(n)) is �lost� on the con�dence

method pc∗ when their outputs are not di�erentiable (bp = bq). That is why we

had to build our Con�dence methods as directly introspecting the lower-order

methods, i.e. as Con�dent Introspection methods.

The idea that Con�dence is parasitic on psychological Introspection can still

be partly captured through the following constraint on method models:

De�nition 19. A Normal Con�dence model is a method model such that for

any m,X, pc(m) ∈M only if pi(m) ∈M and nc(X) ∈M only if nc(X) ∈M .

A natural class of normal con�dence models is that of Perfect Introspecters

that are Con�dent Introspecters. Other ways of cashing out the dependence of

Con�dence upon Introspection require more re�ned models in which we will not

get into here.39

39One is to have �ne-grained propositions, for instance formulas. Roughly, in our example
we would have pi(m)(w) = {Bp} and pi(m)(w) = {Bq} at some world w, where Bp 6= Bq
even though they hold at the same worlds. Positive Con�dence can be de�ned as follows:
pc∗∗(w, π) = {Kp : Bp ∈ π} and knowledge of one's knowledge is easily derived.
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5.5 Excellence

A third interesting class of models is that of excellent agents. An excellent agent

is simply an agent whose methods are all infallible.

De�nition 20. A Excellent Agent model is a methods model such that M ⊆
M I(w) for any w.

Theorem 14. Belief is knowledge (BK). If M is an excellent agent model,

|=M Bφ↔ Kφ.

Proof. The right-to-left direction follows from Subjectivity.

The left-to-right direction is evident from De�nition 20, 8 and 10. Let M, w

be an Excellent Agent model and world such that |=M
w Bφ for some φ. There is

a p such that JφKM = p and p ∈ B(w). Since p ∈ B(w), there is a m ∈M such

that p ∈ m(w). By Excellence, m ∈M I(w). So p ∈ K(w), and |=M
w Kφ.

For an excellent agent, believing is knowing, since all her beliefs are infallibly

based. Correlatively, the only way such an agent fails to know something is by

failing to believing it � while imperfect agents can fail to know something by

having a false belief or by having a fallibly-based belief in it. That is the basis

of the next result:

Theorem 15. Perfect knowledge of one's ignorance (5). If M is an Excellent

Con�dent Introspecter model, |=M Kφ→ K¬Kφ.

Proof. Suppose M, w are an Excellent Con�dent Introspecter model and a world

such that |=M
w ¬Kφ. By Excellence and Theorem 14, |=M

w ¬Bφ. By Con�dent

Introspection and Theorem 13, |=M
w K¬Kφ.

The result is again intuitive. However, it provides an illuminating perspec-

tive over the much-disputed axiom 5. While the axiom is assumed in many

successful applications of epistemic logic, it faces a glaring and simple counter-

example: false belief. If I mistakenly believe that my car keys are in my pocket,

then I do not know that they are there, but (typically at least) I will not know

that I do not know it. To the contrary, I (typically) think that I do know it.

That does not re�ect any irrationality on my part; nor is it plausible to say that

I implicitly know that I do not know that they are there. Our result is in line

with that idea: we derive knowledge of one's ignorance for excellent agents, i.e.

agents who cannot have false beliefs. At the same time, the result explains why
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(and when) it is safe to assume 5: namely, when the agent can be taken to be ex-

cellent with respect to the relevant facts. For instance, in many game-theoretic

applications, it is assumed that the agents cannot have false beliefs about the

game setup nor draw false inferences. The simple S5 epistemic system is suited

to that use.

5.6 Discussion

We have shown that under a natural set of idealisations, the axioms of a standard

S5 epistemic logic hold. That ensures that many applications of epistemic logic

can be recovered in methods models. Additionally, we have derived a number

of principles linking knowledge and belief: Subjectivity, Self-knowledge, Partial

Knowledge of One's Ignorance and Belief is Knowledge.

But even though their stronger versions are equivalent to a single-operator

S5 system, methods models provide an insight into the idealisations at work

behind the S5 axioms. A widespread picture about epistemic logic is the fol-

lowing:

The axioms of standard epistemic logic represent an ideal of rational-

ity, where rationality is a matter of internal or subjective coherence

and unbouded computational ability, as opposed to a matter of ex-

cellence, that is, objective success.

Our result suggest a radically di�erent picture.

We have three sets of derivations that are independent: (a) Perfect Reasoning

(K and N), (b) Positive epistemic introspection and partial negative epistemic

introspection (4 and p5), (c) Excellence (BK). Negative epistemic introspection

(5) is obtained from a composition of (b) and (c). But it is important to

note that the results in (b) and (c) do not assume perfect reasoning, nor does

(c) assume introspection or con�dence. We thus have three distinct sets of

idealisations at play.

Moreover, it can be shown that while the Perfect Reasoning methods are

non-informative, Introspection and Con�dent Introspection are informative, in

the sense that they �narrow down� the sets of possible worlds compatible with

what the agent believes and knows. (That is, if a possible world is incompatible

with a agent's belief based on mD ◦m, that possible world is also incompatible

some agent's belief based on m; the same does not hold for pi(m) and pc(m).)
See Appendix E (section 11) for a formal de�nition of the relevant notions of
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information and informativeness.

Together, these remarks suggest the following picture:

1. Deduction and Reason (axiomK) are properly a matter of pure rationality

or internal coherence. They do not provide information, but make explicit

the information the subject has.

2. Introspection and Con�dent Introspection (axioms 4 and p5) are a mat-

ter of excellence with respect to the inner. Both assume that the agent

has reliable ways to �nd out about its own internal states. Both are

information-purveying methods. Thus satisfying axiom 4 or KK is not

simply a matter of internal coherence.

3. Excellence (BK and with Con�dent Introspection, axiom 5) typically re-

quires excellence with respect to the outer. Extreme cases aside, it requires

one's methods to provide information.40 It is not a simple matter of in-

ternal coherence either.

The methods approach thus exhibits a distinction between three groups of ide-

alisations behind standard epistemic logic: pure rationality, internal excellence

and external excellence. It can be used as a guide as to when the axioms are

appropriately assumed to hold.

6 Conclusion

Methods models provide a formal representation of knowledge that rests on the

methods-infallibilist conception of knowledge. The conception is in line with

various trends in mainstream epistemology, such as reliablism, safety theories

or some variants of virtue epistemology. I have argued that it is suited to model

and think about classical epistemological issues such as the Gettier problem

or inductive knowledge. Because the intuitive notion of method, or basis of

belief, takes a centre stage in the models, they should prove more amenable

to epistemologists than the standard Hintikka models. However, I have also

shown that standard epistemic logic systems can be recovered from methods

models through a series of natural idealisations of agents and a constraint on

possibility. The models thus o�er a new vindication of the standard axioms and

an illuminating perspective on why and when they hold or not. They should

consequently prove useful to formal epistemologists as well.

40The extreme case is that of an agent who has only Reason and Deduction.
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The models can be further developed in a range of directions, and much

needs yet to be done. On the formal side, they should be studied syntactically,

starting from the algebra we sketched and by introducing an operator to express

infallibility. Soundness and completeness properties should be established. Re-

latedly, the models may be usable as models for the Logic of Proofs. A further

important formal development is to build variants of the models that integrate

common treatments of referential opacity, which will most likely require us to

leave the ground of neighbourhood semantics.

On the epistemology side, four developments can be mentioned. First, our

methods are only methods of belief formation. Methods of belief inhibition and

revision should also be considered. The former would allow holistic constraints

on the belief system (e.g., if a method produces a belief that p and another a

belief that ¬p, both beliefs are suspended); but for that reason, they may be

hard to accommodate formally. The latter would require to recast our models

in dynamic terms, with temporal slices of agents being characterised by the set

of beliefs reached at each point or by distinct sets of methods. Second, we have

only considered �ne-grained Introspection and maximal Con�dence. Variants

of Introspection that fail to discriminate between beliefs produced by a range of

similar methods should be discussed, as well as cautious agents whose epistemic

con�dence extends only to the beliefs produced by a subset of their methods.

Third, our methods can straightforwardly be used to model conditional belief

and hypothetical reasoning. If an agent has a method m such that p ∈ m(w, π),
then (at w) she conditionally believes that p on the hypothesis that π. However,

the Introspection methods as de�ned here are unsuitable for that purpose (they

imply that, for any p, the agent conditionally believes that she believes that

p on the hypothesis that p). Accordingly, we may want to rede�ne them as a

class of non-inferential methods. Fourth, the idea of a reliability measure over

methods that we have sketched in section 3.3 should be investigated in order to

see whether it can yield an interesting notion of epistemic probability.

These developments only concern the single-agent case. A further one is

of course to study multi-agent settings and to characterise common knowledge

in method terms. Mind-reading methods may prove relevant here, as well as

perspectives (section 2.1).

Finally, the methods approach need not be restricted to epistemology. Along

methods of belief formation, one may characterise an agent by a set of methods

for decision, whose inputs are a set of premises (and perhaps a set of aims)

and whose outputs are actions. Truth is here replaced by success. In the epis-
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temological case, the approach induces a shift of focus from individual beliefs

to classes of beliefs formed in the same way. In the practical case, we get an

analogous shift of focus from particular intentions or actions to classes of ac-

tions that result from a same policy. The latter kind of focus is already familiar

from rule utilitarianism and virtue theories. Methods models may provide useful

representations of such ideas.
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7 Appendix A. Algebra for methods

〈M,+, ◦, 0, 1〉 is an algebraic structure over the set of methods, where 0 and 1
are de�ned as follows: 41

De�nition 21. The empty method, noted 0, is the method such that 0(w, π) = ∅
for all w, π.

The identity method, noted 1, is the method such that 1(w, π) = π for all

w, π.

Here are the main properties of the algebra.

Theorem 16. Method union is idempotent, commutative and associative.

For any m,n, r ∈ M: m + m = m , m + n = n + m, and (m + n) + r =
m+ (n+ r).

Proof. From the corresponding properties of set union and De�nition 2.

Remark 3. The empty method 0 is uniquely characterised as the method such

that 0 + n = n for any n.

Theorem 17. Method composition is associative but not idempotent nor com-

mutative.

For any m,n, r ∈ M: m ◦ (n ◦ r) = (m ◦ n) ◦ r. But m ◦ m = m and

m ◦ n = n ◦m are not valid.

Proof. Associativity: from the associativity of function composition and De�-

nition 2.

Counterexample to idempotence: for any proposition p ∈ P , write ¬p the

negation of p. Let m be such that for any w, π, m(w, π) = {¬p : p ∈ π}. At any
w we have: m(w, {p}) = {¬p} 6= (m ◦m)(w, {p}) = {¬¬p}.42

Counterexample to commutativity: consider m de�ned as above, and n such

that at any w, n(w, π) = {p ∧ q : p, q ∈ π} where p ∧ q denotes the conjunction
of any propositions p and q. Assuming p 6= q, we have (m ◦ n)(w, {p, q}) =
{¬(p ∧ q),¬p,¬q} 6= (n ◦m)(w, {p, q}) = {¬p ∧ ¬q,¬p,¬q} at any w.

Remark 4. The identity method 1 is uniquely characterised as the method such

that 1 ◦ n = n ◦ 1 = n for any n ∈M.

41Thanks to Paul Egré and Johan van Benthem for suggesting this development.
42The counterexamples given in this section assume a few uncontroversial facts about propo-

sitions, such as: the negation of a proposition is a proposition and at least some negation of a
proposition is distinct from its own negation. These will hold however propositions are �eshed
out.
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Remark 5. Purely non-inferential methods are methods who are insensitive to

what premises they are given. They can thus be characterised as the set of

methods m such that m ◦ n = m for any n ∈M.

For any n ∈M, w, π: 0 ◦n = 0 (the empty method is purely non-inferential)

and (n ◦ 0)(w, π) = n(w, ∅) (applying a method n to the empty one amounts to

applying n without premise).

Theorem 18. Method union does not distribute over method composition.

m+ (n ◦ r) = (m+ n) ◦ (m+ r) is not valid.

Proof. Take r = 1; the claim reduces to m + n = (m + n) ◦ (m + 1), which is

guaranteed only if m+ n is non-inferential.

Theorem 19. Composition distributes right-to-left over union, but not left-to-

right.

For any m,n, r ∈M: (m+n)◦r = (m◦r)+(n◦r). By contrast, m◦(n+r) =
(m ◦ n) + (m ◦ r) is not valid.

Proof. Right-to-left distribution. For any w, π, (m + n)(w, π) = m(w, π) ∪
n(w, π) (De�nition 2). Now for any π′, let π = r(w, π′): we have (m +
n)(w, r(w, π′)) = m(w, r(w, π′)) ∪ n(w, r(w, π′)). Thus by De�nition 2, (m +
n) ◦ r = m ◦ r + n ◦ r.

Counterexample to left-to-right distribution. Write p ∨ q the disjunction of

any propositions p and q. Let m be such that m(w, π) = {p ∨ q : p, q ∈ π}.
Consider w, n, r such that n(w, ∅) = {p} and r(w, ∅) = {q}. Assuming p 6= q,

we have m ◦ (n+ r)(w, ∅) = {p ∨ q, p, q} 6= (m ◦ n) + (m ◦ r)(w, ∅) = {p, q}.

Composition distributes right-to-left but not left-to-right because the meth-

ods algebra represents information �ow or informational dependencies. Com-

posing m with n+ r means that m can use the outputs of n and r together; this

is not the same as applying m to the outputs of r and and those of n separately.

So typically, m ◦ (n + r) 6= (m ◦ n) + (m ◦ r). By contrast, pooling together

the m- and n-inferences and applying them to a single output is the same as

applying m and n separately to that output, so (m+ n) ◦ r = (m ◦ r) + (m ◦ r).
To sum up, we have an algebra 〈M,+, ◦, 0, 1〉 with two distinguished ele-

ments, the empty method (identity element for +) and the identity method

(identity element for ◦). + is associative, commutative and idempotent, ◦ is
associative. ◦ distributes right-to-left over + but not left-to-right.
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8 Appendix B. Comparison with neighbourhood

models

Methods models amount to building a neighbourhood model with two modalities

out of the agent's basic methods and a background alethic modality. They

are richer than simple neighbourhood models because they give insight on a

structure of methods (built out of composition and union) which is, so to speak,

the sca�olding with which the neighbourhood functions for knowledge and belief

are built. That is why our models are more explanatory, as we will see.

A neighbourhood frame F is a pair 〈W,N〉 where W is a set of worlds and

the N ⊆W × PP(W ) a function from worlds to sets of propositions.43

De�nition 22. Let LO be the set of formulas given by:

φ ::= p|>|¬φ|φ ∨ ψ|Oφ where P = {p, q, . . .} is a set of propositional con-

stants.

LetM = 〈F , V 〉 be a model where V : P → P is a valuation function. We

de�ne J·KM:

JpKM = V (p),
J¬φKM = W\J¬φKM

Jφ ∨ ψKM = JφKM ∪ JψKM

(and as usual for other logical connectives)

JOφKM = {w : JφKM ∈ N(w)}.
Truth. |=M

w φ i� w ∈ JφKM.

Validity. |=M φ i� for any world w, |=M
w φ.

In methods models, methods are functions from worlds to inference transi-

tions functions, that is functions from sets of premises to sets of conclusions.

For a given set of premises π and a given method m, the function w 7→ m(w, π)
is a function from worlds to sets of conclusions. If propositions are sets of pos-

sible worlds, this is a neighbourhood function. In particular, the unconditional

output function w 7→ m(w) of a method m is a neighbourhood function.44 And

so are the functions B(m,w), K(m,w), B(w) and K(w) that we build out of

them. We can establish two useful equivalence results:

43Neighbourhood models (or �Scott-Montague models�) have been independently introduced
by Scott (1970) and Montague (1968, 1970) and explored in detail by Segerberg (1971). See
Chellas' (1980, III) handbook for an overview of the results.

44Recall that m(w) abbreviates m(w, ∅).
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Theorem 20. For each method frame F, there is a pointwise equivalent neigh-

bourhood frame F for the B operator in the simple language LO, and conversely.

Proof. Let F =< W,MB , R > be any methods frame. De�ne the neighbourhood

frame F =< W,N > such that for any w, N(w) = B(w) and for any modelM
in F , JBφKM = {w : JφKM ∈ N(w)} . We prove that F is pointwise equivalent

to F by induction on the complexity of φ. The interesting case is:

|=Mw Bφ i� JφKM ∈ N(w) (semantics)

i� JφKM ∈ B(w) (de�nition of N)

i� JφKM ∈ B(w) (inductive hypothesis)
i� |=M

w Bφ.

Conversely let F =< W,N > be any neighbourhood frame for B. De�ne

the methods frame F =< W,MB , R > such that MB = {m} where m is such

that for any w, π: m(w, π) = N(w) and R some re�exive accessibility relation.

We �rst prove that M = {m}: m+m = m and m ◦m = m (the �rst holds for

any method by the de�nition of union (De�nition 2), the second holds because

the de�nition of m entails that m(w,m(w, π)) = N(w) = m(w, π) for any π),

and since MB = {m}, M = MB◦+ = {m} (De�nition 6). We then prove that

B(w) = N(w): by the de�nition of m and De�nition 8, B(m,w) = m(w) =
N(w) for any w. Since M = {m}, by De�nition 8 again B(w) = N(w). From
this F and F are easily shown to be pointwise equivalent.

Theorem 21. Call a neighbourhood frame F =< W,N > truthful i� for each

w, w ∈
⋂
N(w).45 For each methods frame F, there is a pointwise equivalent

truthful neighbourhood frame for the K operator in the simple language LO, and
conversely.

Proof. Let F =< W,MB , R > be any methods frame for K. De�ne the neigh-

bourhood frame F =< W,N > such that for any w, N(w) = K(w) and for any

model M in F , JKφKM = {w : JφKM ∈ N(w)} . We prove as before that for

anyM in F and M in F, |=Mw Kφ i� |=M
w Kφ and that the frames are pointwise

equivalent. Moreover, we prove that for any w, w ∈
⋂
N(w) =

⋂
K(w):

For any w, w ∈
⋂
K(w) i� ∀m∀p(p ∈ K(m,w)→ w ∈ p) (De�nition 8).

For any w,m, p, if p ∈ K(m,w) then m ∈M I and p ∈ m(w) (De�nition 8),

if m ∈M I then p ∈ m(w)→ w ∈ p (De�nition 7 and re�exivity of R)

Thus for any w,m, p, if p ∈ K(m,w) then w ∈ p. So w ∈
⋂
K(w) for any w.

45The class of truthful neighbourhood frames is the class of neighbourhood frames which
validate the schema Oφ→ φ. See Chellas (1980, 224).
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Conversely, let F =< W,N > be any neighbourhood frame such that for

any w, w ∈
⋂
N(w). De�ne the methods frame F =< W,MB , R > such that

MB = {m} wherem is such thatm(w, π) = N(w) for any w, π and R is identity.

We prove that M = {m} and B(m,w) = N(w) as before. Moreover, we prove

that for any w, m ∈M I(w):
For any w: m ∈ M I(w) i� for any w′, p′, wRw′ → (p′ ∈ m(w′) → w′ ∈ p′)

(De�nition 7),

i� for any p′, p′ ∈ m(w)→ w ∈ p′ (R is identity),

i� w ∈
⋂
m(w),

i� w ∈
⋂
N(w) (de�nition of m), which is true by assumption.

Thus m ∈ M I(w) for any w. Since M = {m}, it follows that K(w) =
K(m,w) = N(w). From this we show as before that F and F are pointwise

equivalent with respect to K.

The results mean that the B and K schemas valid in the class of methods

frames are just those valid in the class of neighbourhood frames and in the class

of truthful neighbourhood frames, respectively (see section 5.1.2).

Given the equivalences of Theorems 20 and 21, why prefer methods models to

simpler neighbourhood ones? Essentially, because methods models allows us to

derive a set of facts that would be treated as primitive in a simple neighbourhood

semantics models. A simple example: despite the equivalences Theorems 20

and 21, the class of methods frames is not the class of neighbourhood frames

for two modalities 〈W,NB , NK〉 where the second neighbourhood function is

truthful. For it is easy to see that in our models, p ∈ K(w) → p ∈ B(w)
for any w, p (Theorem 2), while we can construct neighbourhood models such

that p ∈ NK(w) ∧ p /∈ NB(w) for some w. Of course we could introduce the

notion of belief-knowledge neighbourhood frames 〈W,NB , NK〉 such that at any

w, NK(w) ⊆ NB(w) (knowledge entails belief) and w ∈
⋂
NK(w) (knowledge

entails truth). But that would amount to treating those facts as unexplained

primitives. By contrast, those constraints on knowledge are derived in methods

models from a de�nition of knowledge.

The same goes for other axioms. A much-discussed axiom for knowledge

is 4, according to which knowing is knowing that one knows: Kp → KKp.

A neighbourhood frame validates 4 i�: p ∈ NK(w) → {w′ : p ∈ NK(w′)} ∈
NK(w) for any p, w. The condition is a transparent restatement of axiom 4: if

p is among the propositions known at w, then so is the proposition that holds

wherever p is among the propositions known. The condition on the model does
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not shed any light on whether, when or why the axiom should hold. Thus we

are left to decide directly on the basis of the axiom whether we think our agents

would or should satisfy it. By contrast, in methods models, the axiom is derived

from the psychological model of the agent and the transitivity of background

alethic modality. If on the relevant sense of possibility, what is possibly possible

is possible, we show that the agent satis�es axiom 4 for knowledge if it has

a �con�dent introspection� method mpc such that, in non-formal terms: if she

believes that p out of m then she believes that she knows that p on the basis

of a composition of m and mpc (section 5.4). This gives a better grasp on how

and when an agent is able to know that she knows. For a start, it shows that it

is not a trivial a�air: the axiom fails for agents who do not introspect or if the

space of possibilities is non-transitive.

The explanatory advantages of methods models are due to the fact that they

contain more structure than neighbourhood ones. The neighbourhood functions

B and K are not given as primitives, but constructed out of a set of methods.

The construction gives us an insight into a structure of B and K that is not

simply reducible to the structure of the set of propositions they map to (the

structure of {p : p ∈ B(w)} and {p : p ∈ K(w)} at each w). The additional

structure is re�ected in the methods operators Bµ : φ and Kµ : φ. For instance,
we get validities such as:

|=M Kµ : (φ→ ψ)→ (Kν : φ→ KmD ◦ (µ+ ν) : ψ)

|=M Kµ : φ→ Kmpi ◦ µ : Bφ

which cannot be stated with the unary operators.

9 Appendix C. Counterexamples to M, N, K and

4

Example 1. Counterexample to MB and MK. We construct a model where

the agent believes and knows that p ∧ q, but does not believe nor know that

q. Consider a frame F = 〈W,MB , R〉 where W = {w1, w2} and MB = {m}
where m is such that m(w1, π) = {w1} and m(w2, π) = ∅ for any π, and R any

re�exive accessibility relation. Let p = {w1} and q = {w1, w2}. Consider M in
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F such that V (p) = p and V (q) = q. It is easy to check that M = {m} and that

|=M
w1

B(p ∧ q) but 6|=M
w1

Bq, and similarly for K since however R is de�ned, the

method m is infallible at w (m ∈M I(w)).

'& %$ ! "# ?> =<

89 :;

p = p ∧ q q

w1
m // w1 w1

w2 w2 w2

(The illustrations are explained p. 14 above.)

The methods frames F constructed from a neighbourhood frame F = 〈W,N〉
following the procedure in Theorem 21 are such that the agent's unique method

is infallible and so they validate Kφ↔ Bφ. (They are �excellent agent frames�,

in our terminology: see De�nition 20). Consequently the counterexamples to

the K schemas built this way, like Example 1, all involve a failure of belief,

and a failure of the corresponding B schema. However they are two ways for

knowledge to fail in methods models: failure of belief, but also fallibly-based

belief. It will be instructive to look at two examples of the latter.

Example 2. Counterexample to NK . The agent has a method that leads her

to believe both the tautology and a false proposition. Though the agent believes

the tautology (W ), she fails to know it, because her belief is fallibly based.

Consider F = 〈W,MB , R〉 where W = {w1, w2}, with p = {w2}, and MB =
{m} where m is s.th. m(w1, π) = {W,p} and m(w2, π) = {W} for any π; R is

any re�exive accessibility relation. Consider M in F such that V (p) = p. Since

p ∈ m(w1) but w1 /∈ p, m /∈ M I(w1). For this it follows that |=M
w1

B> but

6|=M
w1

K> (De�nitions 8 and 10).

'& %$ ! "#

?> =<

89 :;

W p

w1
m // w1 w1

m

!!
!a

!a
!a

!a

w1

w2
m // w2 w2 w2

Example 3. Counterexample to KK. We consider an agent that believes p→ q

and p out of infallible methods. The agent also believes q, but on the basis of a
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method that would lead her to believe q even if it was false, so the agent fails

to know that q.

Consider F =< W,MB , R > where R = W ×W and W = {w1, w2, w3} with
p = {w1} and q = {w1, w2}. MB = {m,n, r} such that m(w, π) = W for any

w, π, n(w1, π) = {p} and n(w2, π) = n(w3, π) = ∅ for any π, and r(w, π) = {q}
for any w, π.

?> =<

89 :;

�� ���� �� ?> =<

89 :;

p→ q p q

w1
m //

OO

R

��

w1 w1
n // w1 w1

r // w1

w2
m //

OO

R

��

w2 w2 w2 w2
r // w2

w3
m //

��

R

AA

w3 w3 w3 w3

r

===}
=}

=}
=}

=}

w3

Consider M in F such that V (p) = p and V (q) = q. We have Jp→ qKM = W .

Since q ∈ r(w3) but w3 /∈ q, and since w1Rw3, r /∈M I(w1) (by De�nition 7). It

follows that at w1 we have: |=M
w1

K(p→ q), |=M
w1

Kp, |=M
w1

Bq and yet 6|=M
w1

Kq.

Example 3 models our Watson case. Though the agent knows two propositions

that together entail q (namely p → q and p), and though she believes that q,

her belief that q is not based on deduction from the two others; rather, it is has

an independent and unreliable basis that would lead her to still believe that q

without knowing that p and p→ q , and even if q was false.

Example 4. Counterexample to 4K . The agent has a method that leads her

to believe that she knows that p, even at a world where she does not.

Consider F = 〈W,MB , R〉 where W = {w1, w2}, with p = {w1, w2} = W ,

q = {w1} and MB = {m,n} where m is s.th. m(w1, π) = {p} and m(w2, π) = ∅
for any π, and n is s.th. n(w, π) = {q} for any w, π, and R = W ×W .

?> =<

89 :;

'& %$ ! "#

q = Kp p

w1
n //

OO

R

��

w1
m // w1

w2

n

::
:z

:z
:z

:z
:z

w2 w2

Consider M in F such that V (p) = p. Since p ∈ m(w1) and m ∈ M I ,

|=M
w1

Kp. Since JKpKM = q and q ∈ n(w1), |=M
w1

BKp. But since w1Rw2,

q ∈ n(w2) and q /∈ w2, n /∈ M I(w1), and since there is no other method r such
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that q ∈ r(w1), we have 6|=M
w1

KKp. (De�nitions 8 and 10).

10 Appendix D. Further exploration of Reason-

ing methods

Axioms M and C for belief and knowledge follow from axiom K. But it is also

possible to get them separately, by de�ning the two following methods:

De�nition 23. Single-Premise Deduction is the methodmSD s.thmSD(w, π) =
{p : ∃q ∈ π(q ⊆ p)} for any w, π.

Conjunctive Deduction is the method mCD such that mCD(w, π) = {p :
∃q, r ∈ π(p = q ∩ r)} for any w, π.

Theorem 22. For any methods model M, if mSD ∈M , then (MB) |=M B(φ∧
ψ)→ (Bφ ∧ Bψ) and (MK) |=M K(φ ∧ ψ)→ (Kφ ∧ Kψ) for any φ, ψ.

For any methods model M, if mCD ∈ M , then (CB) |=M (Bφ ∧ Bψ) →
B(φ ∧ ψ) and (CK) |=M (Kφ ∧ Kψ)→ K(φ ∧ ψ).

Proof. The proofs are analogous the proof of KB and KK (Theorem 7).

For (MB) and (MK), assume that M, w are s.th. |=M
w B(φ ∧ ψ) and that

mSD ∈M . Then there are p, q such that JφKM = p, JψKM = q, and p∩q ∈ m(w)
for some m ∈M . We show that p, q ∈ (mSD ◦m)(w) , that mSD ◦m is infallible

if m is, and that mSD ◦m ∈M . From this (MB) and (MK) follow.

For (CB) and (CK), assume that M, w are s.th. |=M
w Bφ ∧ Bψ and that

mCD ∈ M . Then there are p, q such that JφKM = p, JφKM = q, and p ∈ m(w)
and q ∈ n(w) for some m,n in M . We show that p ∩ q ∈ (mCD ◦ (m+ n))(w),
that mCD ◦ (m+ n) is infallible if m and n are, and that mCD ◦m ∈M . From

this (CB) and (CK) follow.

The relation between Multi-Premise Deduction, Single-Premise Deduction

and Conjunctive Deduction is straightforward:

Corollary 4. mD = mSD ◦mCD.

Proof. Evident from De�nitions 12 and 23.

In neighbourhood models, axioms M, C and K have been correlated to

corresponding properties of the topology of sets of sets (see Chellas, 1980, 215�

216). A set of sets S ⊆ PP(W ) is supplemented or closed under supersets i�
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∀X,Y ⊆ W ((X ∈ S ∧ X ⊆ Y ) → Y ∈ S), is closed under �nite intersections

i� ∀X,Y ∈ S(X ∩ Y ∈ S), contains its core i�
⋂
S ∈ S, and is augmented

i� it is supplemented and contains its core. We say that a neighbourhood

function W → PP(W ) is supplemented, closed under �nite intersections, and

augmented i� it maps to supplemented, closed under �nite intersections, and

augmented sets, respectively. Supplemented neighbourhood functions satisfy

M, neighbourhood functions that are closed under �nite intersections satisfy C,

and augmented ones satisfy K. It can be shown that the methods mSD, mCD

and mD ensure that the B and K neighbourhood functions are respectively

supplemented, closed under �nite intersections, and augmented. We do not

present the proofs here. The reader will easily construe them by considering,

for a given method m, the series of composed methods mDmk , k ∈ N such that

mDm0 = m, and mDmk = mD ◦mDmk−1 for any k ≥ 1, and analogous series for

mSD and mCD.

Satisfying the knowledge axioms MK , CK , KK does not guarantee satis-

faction of the corresponding belief axioms, and conversely. It is in principle

possible that an agent believes the logical consequences of what she believes on

the basis of infallible methods but does not believe all the logical consequences

of what she believes on the basis of fallible methods.

Finally, note that we have only stated su�cient conditions for a methods

frame to satisfy M, C, K and N, not necessary ones. There are frames that

validate those schemas for belief and/or knowledge without Deduction and Pure

Reason. Consider two examples:

� MB = {mR}. The agent believes and knows the tautology, and only the

tautology, at any world. Trivially, the agent validates KB and KK , yet

she does not have mD.

� Suppose that an agent is such that whenever, for some w, m, n, p ∈
B(m,w) and (W\p)∪q ∈ B(n,w), there is some third method r such that

q ∈ B(r, w), yet the third method is not the result of composing m and

n with mD. For instance, one may assume that r also outputs some true

propositions (say, {w} at any w) that do not follow from the outputs of

m and n. Such an agent can satisfy KB and/or KK without having mD.

Therefore the methods mR and mD fail to identify the class of methods frames

that validate the schema of normal modal logics (KN). By contrast, in neigh-

bourhood semantics, these class of frames can be identi�ed as the ones in which
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the neighbourhood function is augmented. Is that a defect of our models? Quite

the contrary. An agent may satisfy the KN schemas �accidentally�, so to speak.

Imagine an agent that forms beliefs by listening to various people's testimonies.

Suppose that whenever the agent has heard p and p → q from some persons,

there happens to be, by sheer coincidence, a person that tells her that q. The

agent thereby satis�es KB , B(p→ q)→ (Bp→ Bq). Yet that is intuitively ac-

cidental, because her belief that q is unconnected to her believing p and p→ q.

By contrast, it is not all accidental that an agent satis�es KB if the agent has

the Deduction method, because the method ensures that she has a belief that

q based on her having beliefs that p and that p → q. The upshot is that, far

from being a de�ciency of methods frames, the fact that there is no natural

class of methods frames that validates KN rather shows that the epistemic and

doxastic KN are super�cial rather than deep generalities about knowledge and

belief. For instance, the deep generality behind K is that a (certain idealised

type of) agent deduces all the logical consequences of what she knows, and that

generality can only be stated in the more complex language that allows reference

to methods (De�nition 10), as we pointed out (see Theorem 8).

11 Appendix E. Belief, knowledge and informa-

tion

Given methods models, we can de�ne the information provided by a method as

the set of possibilities compatible with its outputs. Correlatively, we de�ne an

agent's doxastic and epistemic information as the set of possibilities compatible

with what an agent believes and with what she knows.

De�nition 24. For any method m, I(m,w) =
⋂
{p : p ∈ m(w)} is the doxastic

information given by method m, and E(m,w) =
⋂
{p : p ∈ m(w)∧m ∈M I(w)}

is the method's epistemic information. (If the method is infallible, epistemic and

doxastic information coincide; if the method is fallible, its epistemic information

is nihil.)

I(w) =
⋂
B(w) is the agent's doxastic information.

E(w) =
⋂
K(w) is the agent's epistemic information.

The doxastic and epistemic information of a set of methods X is the con-

junction of the information of its members: I(X,w) =
⋂

m∈X I(m,w) and

E(X,w) =
⋂

m∈X E(m,w).
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As understood here, information is an objective notion of content. The

doxastic information provided by a method is how the world has to be in order

to be as the method presents it: that is, which states of the world are compatible

with the output of a method. Epistemic information is the information provided

by knowledge-producing methods: how the world has to be in order to be as a

method teaches that it is.

The formal representation of such notions is familiar from Hintikka (1962)

models. The states of worlds that are compatible with what I believe are just

those worlds where every proposition I believe to be true holds. So at a given

world w, the set of worlds is the intersection of the set of propositions in Bw.

And similarly for Kw or for the unconditional outputs of a given (infallible)

method m. Our notions of information thus correspond to standard Kripke

models:

Remark 6. For a frame F and any method m, let RIm, REm, RI , RE ⊆W ×W
be such that, for any w,w′:

wRImw′ i� w′ ∈ I(m,w),
wREmw′ i� w′ ∈ E(m,w)
wRIw′ i� w′ ∈ I(w)
wREw′ i� w′ ∈ E(w)
Each of 〈W,RIm〉, 〈W,REm〉, 〈W,RI〉 and 〈W,RE〉 is a Kripke frame.

The relations between I(m,w), E(m,w), I(w) and E(w) are straightforward.
If m is infallible at w, E(m,w) = I(m,w), otherwise E(m,w) = ∅. It is easy

to check that I(w) =
⋂

m∈M I(m,w) at any w (where M is the agent's method

set), and that E(w) =
⋂

m∈M∩MI(w) I(m,w) at any w, whereM ∩M I(w) is the
set of agent's methods that are infallible at w.

Intuitively, a method is informative i� it can reduce the set of possibilities

the agent considers or should consider. Formally, we can formulate the intuition

in two ways, depending on whether the method is inferential or non-inferential:

De�nition 25. A purely non-inferential method m is informative i� for some

w, n, I(n,w) 6= I(m+ n,w).46

An inferential or mixed method m is informative i� for some w, n, I(n,w) 6=
I(m ◦ n,w).

Non-informative methods are guaranteed to preserve truth, in the following

sense:

46A method m is purely non-inferential i� m ◦ n = m for any n (section 2.2).
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Corollary 5. Say that the information of m is truthful at w i� w ∈ I(m,w).
If an inferential method m is non-informative, then for any n, I(m ◦ n,w) is

truthful if I(n,w) is. If a non-inferential method m is non-informative, then for

any n, I(m+ n,w) is truthful if I(n,w) is.

Proof. Obvious from De�nition 25.

This characterises the sense in which non-informative methods are risk-free.

Applying an inferential non-informative method to another one cannot lead to

falsity unless the original method was erroneous; adding a non-inferential non-

informative method to any other cannot lead to a false set of beliefs unless the

original one did.

Theorem 23. Deduction and Pure-Reason are not informative. For any m,w,

I(m,w) = I(m+mR, w) and I(m,w) = I(mD ◦m,w).

Proof. By De�nition 11, at every w, mR(w) = {W}. Since for any p, p ∈
m(w) → p ⊆ W , I(m,w) =

⋂
m(w) ⊆ W . So I(m + mR, w) =

⋂
(m(w) ∪

{W}) =
⋂
m(w) = I(m,w).

For Deduction, let o =
⋂
m(w) for some w,m. For any q, r ∈ m(w), q∩r ⊇ o.

So for any p ⊇ q ∩ r, p ⊇ o, so that o ∩ p = o. From this and De�nition 12 it

follows that for any p ∈ mD ◦m(w), p ⊇ o. So
⋂

(mD ◦m)(w) ⊇
⋂
m(w) = o.

Moreover, since for every p, p ⊆ p ∩ p, we have m(w) ⊆ mD ◦ m(w), so that⋂
(mD ◦m)(w) ⊆

⋂
m(w).

Given any set of beliefs, Pure Reason adds belief in the proposition {W}, so
it cannot narrow down the set of worlds compatible with the beliefs. And given

any premises, Deduction adds supersets of intersections of them, so it cannot

narrow down the set of worlds compatible with the intersection of all of them.

The result formalises the intuition that Reason and Deduction do not provide

information that was not at least implicit in the premises, and the intuition that

they are risk free methods.

Conjecture 1. Say that a method m is included in a method n i� for all w, π,

m(w, π) ⊆ n(w, π). Let Total Deduction be such that mTD ◦n = mD ◦mD ◦ ... ◦
mD ◦ n.

Reason and Total Deduction are the most inclusive non-informative methods.

Any purely non-inferential method that is not included in Reason is informative;

any purely inferential method that is not included in Total Deduction is infor-

mative.
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By contrast, Introspection methods are potentially informative. Most inter-

estingly, they are potentially informative with respect to the method or sets of

methods they introspect:

Theorem 24. Introspection and Con�dent Introspection are informative. For

some methods models, there are w,m,X, pi(m), pc(m), ni(X), nc(X) (where X ⊆
M is a set of methods) such that I(m,w) 6= I({m∪pi(m)}, w), I(m,w) 6= I({m∪
pc(m)}, w), I(X,w) 6= I(X ∪ {ni(X)}, w), and I(X,w) 6= I(X ∪ {nc(X)}, w).

Proof. Model for I({m ∪ pi(m)}, w) 6= I(m,w). Let W = {w1, w2} and MB =
{m,n} where m and n are purely non-inferential methods such that: m(w1) =
{W}, n(w1) = {w1} and m(w2) = n(w2) = ∅. Since m and n are purely

non-inferential, we have M = {m,n,m+ n}.

'& %$ ! "# ?> =<

89 :;

p p W

mpi◦m// w1
mpi◦m// w1

m // w1

w2 w2 w2

It is easy to check that n is the Positive Introspection of m for this model:

n = pi(m) (De�nition 15). At w1, m outputs W and only W . Correspondingly,

n outputs bW = {w : ∃m′ ∈ M(W ∈ m′(w))} = {w1}. At w2, m outputs

nothing and the output of n is correspondingly empty. At w1 we have I(m,w) =
W but I(m,w) ∩ I(pi(m), w) = W ∩ w1 = w1.

Similar models can be built for I(m,w) 6= I({m ∪ pc(m)}, w), I(X,w) 6=
I(X ∪ {ni(X)}, w), and I(X,w) 6= I(X ∪ {nc(X)}, w).

The results are fairly intuitive. Typically, p and Bp do not hold at the

same worlds. For that reason, an Introspection method that �adds� a belief

that Bp wherever the agent believes p typically narrows down the sets of worlds

compatible with the agent's beliefs. Similarly, p and Kp do not typically hold

at the same worlds. That is why Introspection and Con�dent Introspection are

informative methods. Because they narrow down the set of worlds compatible

with the agent's beliefs, they are not risk-free methods: it may be true that p

and false that Bp, or true that p and false that Kp. They are inductive methods,

as we de�ned them section 3.4. Correlatively, the axioms of epistemic logic that

rely on them (4 and 5) are not a matter of pure rationality or inner coherence;

they require reliable information-gathering methods.
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