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Abstract. The Knower Paradox demonstrates that any theory T which 1)
extends Robinson arithmetic Q, 2) includes a predicate K(x) intended to for-

malize the formula with Godel number x is known by agent i, and 3) contains
certain elementary epistemic principles involving K(x) is inconsistent. In [3]
Dean and Kurokawa show that the Knower can be proved in the Quantified
Logic of Proofs (QLP) formulated by Mel Fitting in [6] – extending work

presented by Artemov in [1]. Dean and Kurokawa argue that QLP is more ex-
pressive than most modal logics and that this permits to identify more clearly
the epistemic principles used in the proof of the Knower. They also argue that
the proof seems to require the use of a suspect principle – the Uniform Barcan

Formula (UBF). So, they propose to resolve the paradox by abandoning UBF.
In this note we offer three independent proofs of the Knower in QLP that

do not require the use of UBF. So, it seems that the resolution of the paradox

proposed by Dean and Kurokawa is not a viable option. We conclude with
some observations about possible resolutions of the paradox compatible with
our results.

1. Introduction

Montague and Kaplan present the paradox of the Knower at the end of their joint
paper [8]. The central idea is that any formal system containing the apparatus of
elementary syntax (Robinson’s arithmetic Q) and including among its theorems
all instances of three basic principles regulating knowledge is inconsistent. The
principles establish that knowledge entails truth, that this fact is known and a
closure principle for knowledge. Here is a formal presentation of the basic principles
about knowledge (where ϕ is the standard name of ϕ):

(T): �(ϕ) → ϕ

(U): �(�(ϕ) → ϕ)
(I): [I(ϕ, ψ) ∧ �(ϕ)] → �(ψ)

T and U are self-explanatory. I uses the operator I. The idea of this operator
is to express in elementary syntax the fact that ϕ entails ψ. This is done by the
sentence I(ϕ, ψ).

The derivation of a contradiction passes through the fact that the existence of
self-referential statements about the modality � such as:

(i): δ ↔ �(¬δ)
(ii): δ ↔ ¬�(δ)

The proof in [8] uses (i). The proof is rather direct. Here is a sketch of it:
1. ⊢ δ ↔ �(¬δ) (i)
2. ⊢ δ → �(¬δ) Classical logic (1).
3. ⊢ �(¬δ) → ¬δ An instance of axiom T. Call it E1

1
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4. E1 ⊢ δ → ¬δ From (2), classical logic.
5. E1 ⊢ ¬δ From (4), classical logic.
6. I(E1,¬δ) From (5) and the definition of the I-operator.
7. ⊢ [I(E1,¬δ) ∧ �(E1)] → �(¬δ) Instance of axiom I. Call it E3.
8. ⊢ �(E1) Instance of axiom U. Call it E2.
9. E2, E3 ⊢ �(¬δ) Classical Logic

10. ⊢ δ (1), (9), (7) and (8), Classical Logic.
11. ⊢ ¬δ (5) and (3), MP.

In [7] Montague proved a different theorem that appeals to (ii) and slightly
different epistemic principles. Here it is the central theorem proved in [7]:

Theorem 1.1. Suppose that T is any theory such that:
(t): T is an extension of Q.
(T): �(δ) → δ
(Int): If T ⊢ δ, then T ⊢ �(δ)

Then T is inconsistent.

Proof. The proof proceeds along similar lines than the previous proof.
1. T ⊢ δ ↔ ¬�(δ) An instance of (ii).
2. T ⊢ ¬�(δ) → δ Logic (1).
3. T ⊢ �(δ) → ¬δ (1) Logic.
4. T ⊢ �(δ) → δ An instance of axiom T.
5. T ⊢ ¬�(δ) (3), (4), classical logic.
6. T ⊢ δ (2), (5), classical logic.
7. T ⊢ �(δ) Int, (6).
8. T ⊢⊥ (5), (7), Logic.

�

Dean and Kurokawa suggest that a faithful interpretation of the meaning of the
modality in the previous proof is given by the following:

(�): �(ϕ) 
 there exists a proof of ϕ in T.
They propose in addition to formalize this informal interpretation of the modality

in the context of an extension to the first order case of the Logic of Proofs proposed
by Artemov in [1]. This logic implements statements of the form [t]ϕ known as
explicit modalities with the following intended interpretation:

(Explicit Modalities): [t]ϕ 
 t is a proof of ϕ.
Herein t is a potentially complex expression known as a proof term intended

to denote an informal proof. In addition to explicit modalities, QLP also possess
first-order quantifiers intended to range over informal proofs. In this system, a
statement of the form ∃x[x]ϕ thus receives the intended interpretation ”there exists
a proof of ϕ,” which thereby provide with a means of formalizing the right hand
side of (�).

The main goal of [3] is to show that if the second aforementioned proof of the
Knower is reconstructed in QLP a suspect epistemic principle is needed in order to
justify step (7) in the derivation of the paradox. Our goal in this note is to show
that both proofs of the Knower are reconstructible in QLP without appealing to
this principle.
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2. Some background about QLP

The class of QLP proof terms is specified by the following grammar:
t := xi|ai(x)|!t|t1.t2|t1 + t2|(t∀x)

x1, x2, . . . are known as proof variables, a1(x), a2(x), . . . as primitive proof terms.
!, ., +, (.∀.) denote proof operations respectively called proof checker (unary),
application (binary), sum (binary) and uniform verifier (binary). The intuition is
as follows: t.u is meant to be the result of joining together the two reasons t and
u; typically if t justifies X → Y and u justifies X then t.u justifies Y . t + u is a
kind of union or choice operation; it justifies what either t or u justifies. And ! is a
verification operator; !t verifies the correctness of an application of t. The axioms
below articulate these ideas formally.

The class of formulas and sentences of QLP is defined as follows (where Pi are
propositional letters) :

ϕ :=⊥ |Pi|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|ϕ1 → ϕ2|¬ϕ|[t]ϕ|∀xϕx|∃xϕx

Definition 2.1. A primitive proof term is a proof term of the form f(x1, ..., xn),
where f is a primitive function symbol and x1, ..., xn are proof variables. A primitive
term specification is a mapping F , assigning to each primitive proof term p some
set (possibly empty) of formulas. Think of F as mapping a primitive proof term
to the set of formulas it potentially justifies. A formula X has a primitive proof
term with respect to F if X ∈ F(p) for some primitive proof term p. Likewise a
primitive proof term p is for a formula X if X ∈ F(p).

2.1. An Axiom System.
1: A finite set of classical axiom schemas, sufficient for tautologies.
2: [t](X → Y ) → ([s]X → [t.s]Y )
3: [t]X → X
4: [t]X → [!t]([t]X)
5: [s]X → (s+ t)X and [t]X → (s+ t)X

These axioms are the usual axioms of LP, taken from [1]. To these axioms Fitting
adds the following axioms for quantification:

6: ∀xϕ(x) → ϕ(t), for any proof term t that is free for x in ϕ(x).
7: ∀x(ψ → ϕ(x)) → (ψ → ∀xϕ(x)), where x does not occur free in ψ.
8: ∃y[y]∀x[t]ϕ→ [t∀x]∀xϕ, y does not occur free in t or ϕ.

The last axiom is called a uniformity formula by Fitting. The justification of
the axiom is as follows. Suppose that we can produce a proof in a uniform way
for each instance of ϕ(x) and that we can verify that. From this we can conclude
that we have a proof of ∀xϕ(x), which we can calculate from the uniform proof of
instances of ϕx, a calculation represented by (t∀x).

Axiom 8 is Fitting’s weaker version of the Uniform Barcan Formula used in [3]:
UBF: ∀x[t(x)]ϕ→ [t∀x]∀xϕ, y does not occur free in t or ϕ.

Dean and Kurokawa find UBF objectionable. Perhaps Axiom 8 is less trans-
parent than other axioms or rules of inference. But it does not be a necessary
ingredient in the proof of the Knower.

The rules of inference are Modus Ponens and two additional rules that correspond
to necessitation and the standard universal generalization rule.

A primitive term specification F is axiomatically appropriate if F provides prim-
itive proof terms for exactly the axioms listed above. This amounts to a requirement
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that primitive proof terms serve to justify the obvious, which in this case are ele-
mentary logical truths. The next rule depends on the choice of F , which is assumed
to be axiomatically appropriate.

F Necessitation Rule: If X is an axiom and X ∈ F(p), one may conclude
[p]X.

Justified Universal Generalization Rule: If [t]ϕ(x), infer [t∀x]∀xϕ(x).
We have an important derived result:

Proposition 2.2. If X is a theorem of QLP, then for some proof term p the
formula [p]X is also a theorem, where all free variables of p are also free variables
of X.

For a proof see [6]. We have now an axiom system that characterizes QLP. We
will now consider various proofs of the Knower in this system.

3. The First Proof of the Knower

Consider the self referential axiom schema S: �(φ ↔ �¬φ). For any system of
modal logic X we can call X∗ its extension with the axiom schema S.

Theorem 3.1. (KT )∗ is inconsistent.

Proof. The idea is to use Kaplan and Montague’s strategy of proof while simplifying
the presentation and eliminating the operator I. Instead we use the axiom K. We
have:

1. ⊢ �(φ↔ �¬φ) Axiom S
2. ⊢ φ↔ �¬φ By T in (1)
3. ⊢ �¬φ→ ¬φ An instance of T. Call it E1.
4. ⊢ φ→ �¬φ From (2), classical logic.
5. E1 ⊢ φ→ ¬φ From (4), classical logic.
6. ⊢ E1 → ¬φ From (5), classical logic.
7. ⊢ �(E1 → ¬φ) Necessitation in (6)
8. ⊢ [�(E1 → ¬φ) ∧ �(E1)] → �(¬φ) Instance of K
9. ⊢ �(E1) Necessitation in (3)

10. ⊢ �(¬φ) (7), (8), (9) and MP.
11. ⊢ φ (2) and (10), Classical logic.
12. ⊢ ¬φ (3), (6) and MP.

�

Now consider the axiom schema S: [p](φ ↔ ∃x[x]¬φ). (QLP )∗ is the extension
of QLP with this axiom schema. We will show that this extension is inconsistent.

Theorem 3.2. (QLP )∗ is inconsistent.

Proof. The proof proceeds in a similar manner than the modal proof.
1. ⊢ φ↔ ∃x[x]¬φ Axiom S and Axiom 3.
2. ⊢ [x]¬φ→ ¬φ An instance of Axiom 3.
3. ⊢ [q0]([x]¬φ→ ¬φ) 2, F-Necessitation
4. ⊢ [q1](([x]¬φ→ ¬φ) → (φ→ ¬[x]¬φ)) F-Necessitation for CPL
5. ⊢ [q1 · q0](φ→ ¬[x]¬φ) 3, 4, Axiom-2-rule
6. ⊢ [(q1 · q0)∀x]∀x(φ→ ¬[x]¬φ) 5, JUG
7. ⊢ [q2](∀x(φ→ ¬[x]¬φ) → (φ→ ∀x¬[x]¬φ)) Axiom 7, F-Necessitation
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8. ⊢ [q2 · ((q1 · q0)∀x)](φ→ ∀x¬[x]¬φ) 6, 7, Axiom-2-rule
9. ⊢ [q3]((φ→ ∀x¬[x]¬φ) → (∃x[x]¬φ→ ¬φ)) F-Necessitation for CPL

10. ⊢ [q3 · (q2 · ((q1 · q0)∀x))](∃x[x]¬φ→ ¬φ) 8, 9, Axiom-2-rule
11. ⊢ ∃x[x]¬φ→ ¬φ 10, Axiom 3. Call this formula E1.
12. ⊢ φ→ ∃x[x]¬φ From (1), classical logic.
13. E1 ⊢ φ→ ¬φ From (12), classical logic.
14. ⊢ E1 → ¬φ From (13), classical logic.
15. ⊢ [q](E1 → ¬φ) Proposition 2.2 in (14)
16. ⊢ ([q](E1 → ¬φ)∧[q3·(q2·((q1·q0)∀x))](E1)) → [q·(q3·(q2·((q1·q0)∀x)))](¬φ)

Axiom 2.
17. ⊢ [q · (q3 · (q2 · ((q1 · q0)∀x)))](¬φ) 10, 16 and 15, MP.
18. ⊢ ∃x[x](¬φ) Axiom 6 applied to (17)
19. ⊢ φ (1) and (18), Classical logic.
20. ⊢ ¬φ 14 and 11, MP.

�

Remark 3.3. As the reader can see there is no appeal to Axiom 8 or UBF. An
important ingredient of the proof is the use of Justified Universal Generalization.
The alternative proofs that follow also appeal to this rule.

Remark 3.4. We justified step 15 in terms of Proposition 2.2. Notice, again, that
we do not need the full force of Proposition 2.2 in the proof. We only need to
verify the axioms and rules of inference previously used in the proof. None of them
involves the use of Axiom 8.

4. The Second Proof of the Knower

This proof proceeds similarly than the proof offered in [3]. The central idea is
to produce a proof of ¬�(A↔ ¬�A) in S4 and then translate the proof to QLP.

The main difference is that we make explicit the intermediate steps needed to
go from step 5 to step 6. Dean and Kurokawa appeal to a derived rule that they
call Necessitation (although the rule is only remotely connected to the rule of Ne-
cessitation used in modal logic). We here make explicit various intermediate steps
that appeal to axiom 4 and K. The resulting argument does not seem to appeal to
Axiom 8 or UBF. As in the previous case, a central ingredient of the proof is the
use of the Justified Universal Generalization Rule.

4.1. The Modal Argument.
0: �(A↔ ¬�A) ⊢ A↔ ¬�A
1: �(A↔ ¬�A) ⊢ ¬�A→ A
2: �(A↔ ¬�A) ⊢ �A→ ¬A
3: �(A↔ ¬�A) ⊢ �A→ A
4: �(A↔ ¬�A) ⊢ ¬�A
5: �(A↔ ¬�A) ⊢ A
5’: ⊢ �(A↔ ¬�A) → A
5”: ⊢ �(�(A↔ ¬�A) → A)
5”’: ⊢ ��(A↔ ¬�A) → �A
5””: ⊢ �(A↔ ¬�A) → ��(A↔ ¬�A)
6: �(A↔ ¬�A) ⊢ �A
7: �(A↔ ¬�A) ⊢⊥
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4.2. The argument translated to QLP.
0: ∃x[x](φ↔ ¬∃x[x]φ) ⊢ φ↔ ¬∃x[x]φ
1: ∃x[x](φ↔ ¬∃x[x]φ) ⊢ ¬∃x[x]φ→ φ
2: ∃x[x](φ↔ ¬∃x[x]φ) ⊢ ∃x[x]φ→ ¬φ
3: ∃x[x](φ↔ ¬∃x[x]φ) ⊢ ∃x[x]φ→ φ by derivation in QLP
4: ∃x[x](φ↔ ¬∃x[x]φ) ⊢ ¬∃x[x]φ
5: ∃x[x](φ↔ ¬∃x[x]φ) ⊢ φ
5’: ⊢ ∃x[x](φ↔ ¬∃x[x]φ) → φ
5”: ⊢ ∃x[x](∃x[x](φ↔ ¬∃x[x]φ) → φ) by QLP derivation
5”’: ⊢ ∃x[x]∃x[x](φ↔ ¬∃x[x]φ) → ∃x[x]φ
5””: ⊢ ∃x[x](φ↔ ¬∃x[x]φ) → ∃x[x]∃x[x](φ↔ ¬∃x[x]φ) QLP derivation
6: ∃x[x](φ↔ ¬∃x[x]φ) ⊢ ∃x[x]φ
7: ∃x[x](φ↔ ¬∃x[x]φ) ⊢⊥

4.2.1. The first QLP argument: Step (3).
1. [q0]([x]φ→ φ) Axiom 3, F-Necessitation
2. [q1](([x]φ→ φ) → (¬φ→ ¬[x]φ)) F-Necessitation for CPL
3. [q1 · q0](¬φ→ ¬[x]φ) 1, 2, Axiom-2-rule
4. [(q1 · q0)∀x]∀x(¬φ→ ¬[x]φ) 3, JUG
5. [q2](∀x(¬φ→ ¬[x]φ) → (¬φ→ ∀x¬[x]φ)) Axiom 7, F-Necessitation
6. [q2 · ((q1 · q0)∀x)](¬φ→ ∀x¬[x]φ) 4, 5, Axiom-2-rule
7. [q3]((¬φ→ ∀x¬[x]φ) → (∃x[x]φ→ φ)) F-Necessitation for CPL
8. [q3 · (q2 · ((q1 · q0)∀x))](∃x[x]φ→ φ) 6, 7, Axiom-2-rule
9. ∃x[x]φ→ φ 8, Axiom-3-rule

4.2.2. The second QLP argument: Step (5”).
1. ⊢ ∃y[y](φ↔ ¬∃x[x]φ) → φ Proof in QLP established above
2. ⊢ [p](∃y[y](φ↔ ¬∃x[x]φ) → φ) Proposition 2.2 (Fitting)
3. ⊢ ∃z[z](∃y[y](φ↔ ¬∃x[x]φ) → φ) Axiom 6

Notice that we do not need the full force of Proposition 2.2. We only need to
appeal to a proof of a part of this proposition involving the axioms and rules of
inference used so far: Axiom 3, 6 and 7 and the rule JUG. Nothing of this requires
to appeal to UBF.

4.2.3. The third QLP argument: Step (5””). We will prove: ∃x[x]X → ∃x[x]∃x[x]X
1. [x]X → [!x]([x]X) Axiom 4
2. [x]X → ∃x[x]X Instance of axiom 6
3. [p]([x]X → ∃x[x]X) 2 and F Necessitation.
4. [p]([x]X → ∃x[x]X) → ([!x]([x]X) → [p.!x]∃x[x]X) Axiom 2
5. ([!x]([x]X) → [p.!x]∃x[x]X) 3,4 and MP
6. ([!x]([x]X) → ∃x[x]∃x[x]X) from 5
7. [x]X → ∃x[x]∃x[x]X from 1 and 6
8. ∃x[x]X → ∃x[x]∃x[x]X By a modification of the proof given in 4.2.1.

4.3. An additional argument for the step from 5”’ from 5”. We define
QLP− to be the logic consisting of Axioms 1–7 (note that we omit Axiom 8, i.e.,
UF), Modus Ponens, and F-Necessitation of Fitting 2005, plus a rule of universal
generalization. It is of some interest to show that there is a derivation of 5”’ from
5” in QLP−. The justification of the steps uses both the notation of [3] and ours.
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⊢ ∃x[x]∃x[x](φ↔ ¬∃x[x]φ) → ∃x[x]φ(5′′′)

from

⊢ ∃x[x](∃x[x](φ↔ ¬∃x[x]φ) → φ)(5′′)

when x /∈ FV(φ). We may assume y /∈ FV(φ).
1. [x](∃x[x](φ↔ ¬∃x[x]φ) → φ) → ([y]∃x[x](φ↔ ¬∃x[x]φ) → [y · x]φ) LP2

(Axiom 2)
2. [y · x]φ→ ∃x[x]φ QLP2 (Axiom 6)
3. [x](∃x[x](φ↔ ¬∃x[x]φ) → φ) → ([y]∃x[x](φ↔ ¬∃x[x]φ) → ∃x[x]φ)

1, 2, classical propositional logic
4. ∀x([x](∃x[x](φ↔ ¬∃x[x]φ) → φ) → ([y]∃x[x](φ↔ ¬∃x[x]φ) → ∃x[x]φ))

3, RQLP3 (universal generalization)
5. ∀x([x](∃x[x](φ↔ ¬∃x[x]φ) → φ) → ([y]∃x[x](φ↔ ¬∃x[x]φ) → ∃x[x]φ))

→ (∃x[x](∃x[x](φ↔ ¬∃x[x]φ) → φ) → ([y]∃x[x](φ↔ ¬∃x[x]φ) → ∃x[x]φ))
QLP4 (Axiom 7)

6. ∃x[x](∃x[x](φ↔ ¬∃x[x]φ) → φ) → ([y]∃x[x](φ↔ ¬∃x[x]φ) → ∃x[x]φ)
4, 5, RQLP2 (Modus Ponens)

7. ∃x[x](∃x[x](φ↔ ¬∃x[x]φ) → φ) Assumption (5′′)
8. [y]∃x[x](φ↔ ¬∃x[x]φ) → ∃x[x]φ 6, 7, RQLP2 (Modus Ponens)
9. ∀y([y]∃x[x](φ↔ ¬∃x[x]φ) → ∃x[x]φ) 8, RQLP3 (universal generalization)

10. ∀y([y]∃x[x](φ↔ ¬∃x[x]φ) → ∃x[x]φ)
→ ([x]∃x[x](φ↔ ¬∃x[x]φ) → ∃x[x]φ) QLP1 (Axiom 6)

11. [x]∃x[x](φ↔ ¬∃x[x]φ) → ∃x[x]φ 9, 10, RQLP2 (Modus Ponens)
12. ∀x([x]∃x[x](φ↔ ¬∃x[x]φ) → ∃x[x]φ) 11, RQLP3 (universal

generalization)
13. ∀x([x]∃x[x](φ↔ ¬∃x[x]φ) → ∃x[x]φ)

→ (∃x[x]∃x[x](φ↔ ¬∃x[x]φ) → ∃x[x]φ) QLP4 (Axiom 7)
14. ∃x[x]∃x[x](φ↔ ¬∃x[x]φ) → ∃x[x]φ 12, 13, RQLP2 (Modus Ponens)

5. The Third and Last Proof of the Knower

This proof does not use a modal argument as a heuristic device. It is a pure
proof of the Knower in QLP.

1. [p](φ↔ ¬∃y[y]φ) → (φ↔ ¬∃y[y]φ) Axiom 3
2. [y]φ→ φ Axiom 3
3. ¬φ→ ¬[y]φ 2, CPL
4. ∀y(¬φ→ ¬[y]φ) 3, SUG
5. ∀y(¬φ→ ¬[y]φ) → (¬φ→ ∀y¬[y]φ) Axiom 7
6. ¬φ→ ∀y¬[y]φ1 4, 5, MP
7. [p](φ↔ ¬∃y[y]φ) → ¬∃y[y]φ 1, 6, CPL
8. [q0]([y]φ→ φ) Axiom 3, F-Necessitation
9. [q1](([y]φ→ φ) → (¬φ→ ¬[y]φ)) F-Necessitation for CPL

10. [q1 · q0](¬φ→ ¬[y]φ) 8, 9, Axiom-2-rule
11. [(q1 · q0)∀y]∀y(¬φ→ ¬[y]φ) 10, JUG
12. [q2]((∀y(¬φ→ ¬[y]φ) → (¬φ→ ∀y¬[y]φ)) Axiom 7, F-Necessitation

1The derivation from 2 to 6 can be done by using the proof in 4.2.1. This proof depends
directly on JUG rather than the rule of universal generalization used in step 4 here.
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13. [q2 · ((q1 · q0)∀y)](¬φ→ ∀y¬[y]φ) 11, 12, Axiom-2-rule
14. [q3]((¬φ→ ∀y¬[y]φ) → ((φ↔ ¬∃y[y]φ) → φ)) F-Necessitation for CPL
15. [q3 · (q2 · ((q1 · q0)∀y))]((φ↔ ¬∃y[y]φ) → φ) 13, 14, Axiom-2-rule
16. (15) → ([p](φ↔ ¬∃y[y]φ) → [(q3 · (q2 · ((q1 · q0)∀y))) · p]φ) Axiom 2
17. [p](φ↔ ¬∃y[y]φ) → [(q3 · (q2 · ((q1 · q0)∀y))) · p]φ 15, 16, MP
18. ∀y¬[y]φ→ ¬[(q3 · (q2 · ((q1 · q0)∀y))) · p]φ Axiom 6
19. [(q3 · (q2 · ((q1 · q0)∀y))) · p]φ→ ∃y[y]φ 18, CPL
20. [p](φ↔ ¬∃y[y]φ) → ∃y[y]φ 17, 19, CPL
21. [p](φ↔ ¬∃y[y]φ) → ⊥ 7, 20, CPL

6. Discussion

When it comes to assess the paradox of the Knower most authors seem to blame
the axiom U used in the original proof. The closure condition I is quite strong but it
can be substituted by more reasonable closure conditions like K and Charles Cross
has argued in [2] that one can prove the Knower without a closure condition at
all (see the arguments in [4] which put the last strong statement in context). The
proofs in terms if Int continue to use closure conditions although they are milder
than the ones used in the original proof.

The proofs of the Knower offered above use analogues of condition U although
the direct translation of U is not used. A direct translation of U in the logic of
proofs would be:

UP: ∃y[y](∃x[x]ϕ→ ϕ)
If we focus on the last proof (which is the most direct of the previously offered

proofs) what we use is [q0]([y]φ → φ), which is justified by an application of the
rule of F-Necessitation to Axiom 3. Perhaps F-Necessitation can be weakened, but
it is not clear how such a weakening should be implemented.

Other axioms used in the proof are Axiom 3, 6, 7 and 2. Axiom 3 seems a
solid axiom one should want to keep.2 Axioms 6 and 7 are classical axioms of
quantification, which seem solid also. Axiom 2 is a closure condition in the logic of
proofs. Perhaps it is possible to adopt a weaker version of this axiom but it is not
clear either how to implement this.

Finally we did appeal to the rule of Justified Universal Generalization (JUG) in
all the proofs offered in this note. Other versions of QLP, like the one used in [3]
and [5] , do not appeal explicitly to this rule. But, as we show below, JUG is a
theorem in the system used in [3] and [5]. So, our proofs appeal in all cases to theses
that are provable in the axiom system adopted by Dean and Kurokawa. It is clear
that one has to have a generalization rule of some type in QLP. And JUG seems
a reasonable generalization rule that one would like to preserve. The state of the
art in this area is still in flux. Fitting offered an axiom system in [5] that appealed
directly to UBF. In more recent work [6] UBF is abandoned as an explicit axiom

2At least there is no proof of the Knower revealing a direct conflict between the Axiom T and
self reference. In the area of truth some people have claimed that any language strong enough to
have self reference should not have a predicate satisfying the axiom of truth. In a similar vein one

may claim that a language having self reference should not have a predicate or operator satisfying
the T axiom. But, as we explained above, there is no evidence in the current literature of a direct
conflict between T and self reference. It seems that one needs some form of the axiom U and

or some form of closure. Following Kaplan and Montague contemporary students of the paradox
have preferred to preserve T and blame U or closure.
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(and probably as a theorem) but JUG is adopted as an explicit rule of inference.
Our proofs show that the Knower is provable as well in these weaker systems which
seem to encode Fitting’s most recent ideas about QLP.

6.1. JUG, UBF and UF. Consider the following axioms and rules of inference
previously used:

SUG:
φ

∀xφ

JUG:
[t]φ

[t∀x]∀xφ
UBF: ∀x[t]φ→ [t∀x]∀xφ

UF: ∃y[y]∀x[t]φ→ [t∀x]∀xφ
UF′: ∃y[y]∀x[t]φ→ ∃y[y]∀xφ

We define QLP− to be the logic consisting of Axioms 1–7 (note that we omit Axiom
8, i.e., UF), Modus Ponens, and F-Necessitation of Fitting 2005, plus SUG. We
also write QLPX , for X from the latter three rule / axioms above, to denote the
logic gained by adding X to QLP−; e.g., QLPJUG+UF is QLP− plus JUG and
UF. Then we have the following diagram of strength among different logics.

QLP−

QLPUF′

OO

QLPJUG

!
77ooooooooooo

QLPUF

ggOOOOOOOOOO

QLPJUG+UF

ggOOOOOOOOOO

77oooooooooo

QLPUBF

∗
OO

The arrow marked with ∗ holds because JUG and UF are derivable in QLPUBF, as
shown below. The one marked with ! holds because UF′ is derivable in QLPJUG

as below. All the other arrows are trivial.
The first proof is to show JUG to be derivable in QLPUBF:

1. [t]φ hypothesis
2. ∀x[t]φ SUG
3. ∀x[t]φ→ [t∀x]∀xφ UBF
4. [t∀x]∀xφ 2, 3, MP

Then here is a proof of QLPUBF ⊢ UF:
1. [y]∀x[t]φ→ ∀x[t]φ Axiom 3
2. ¬∀x[t]φ→ ¬[y]∀x[t]φ 1, classical prop. logic
3. ∀y(¬∀x[t]φ→ ¬[y]∀x[t]φ) 2, SUG
4. ∀y(¬∀x[t]φ→ ¬[y]∀x[t]φ) → (¬∀x[t]φ→ ∀y¬[y]∀x[t]φ) Axiom 7
5. ¬∀x[t]φ→ ∀y¬[y]∀x[t]φ 3, 4, MP
6. ∃y[y]∀x[t]φ→ ∀x[t]φ 5, classical prop. logic
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7. ∀x[t]φ→ [t∀x]∀xφ UBF
8. ∃y[y]∀x[t]φ→ [t∀x]∀xφ 6, 7, classical prop. logic

Lastly, here is a proof of QLPJUG ⊢ UF′:
1. [a0](∀x[t]φ→ [t]φ) Axiom 6, F-Necessitation
2. [a1]([t]φ→ φ) Axiom 3, F-Necessitation
3. [p]((∀x[t]φ→ [t]φ) → (([t]φ→ φ) → (∀x[t]φ→ φ)))

F-Necessitation for CPL
4. [p · a0](([t]φ→ φ) → (∀x[t]φ→ φ)) 1, 3, Axiom-2-rule
5. [(p · a0) · a1](∀x[t]φ→ φ) 2, 4, Axiom-2-rule
6. [((p · a0) · a1)∀x]∀x(∀x[t]φ→ φ) 5, JUG
7. [a2](∀x(∀x[t]φ→ φ) → (∀x[t]φ→ ∀xφ)) Axiom 7, F-Necessitation
8. [a2 · (((p · a0) · a1)∀x)](∀x[t]φ→ ∀xφ) 6, 7, Axiom-2-rule
9. [y]∀x[t]φ→ [(a2 · (((p · a0) · a1)∀x)) · y]∀xφ 8, Axiom 2

10. [y]∀x[t]φ→ ∃y[y]∀xφ 9, Axiom 6
11. ∀y([y]∀x[t]φ→ ∃y[y]∀xφ) 10, SUG
12. ∃y[y]∀x[t]φ→ ∃y[y]∀xφ 11, Axiom 7

Dear and Kurokawa present some negative arguments against UBF. Do they
transfer to JUG as well? Dean and Kurokawa offer formal arguments and con-
ceptual arguments against UBF. The formal arguments show the arithmetic un-
soundness of QLPJUG. But this is does not really offer a proof of the arithmetic
unsoundness of JUG per se. It is far from obvious that JUG is the culprit there.

Then there are conceptual arguments against UBF. These arguments seem prob-
lematic even in the case of UBF and they seem difficult to generalize in order to
affect JUG.

A quantified logic of evidence should contain some proof-term expression of uni-
versal justification. JUG seems to offer a reasonable alternative. Criticism against
UBF might have motivated Fitting to abandon the principle. But still he did not
retreated to QLP−. His proposal is to use QLPJUG+UF, a system that does ap-
peal to JUG. We agree with Fitting that QLPJUG+UF seems to offer a reasonable
representation of the quantified logic of proofs. Unfortunately, as we showed, the
Knower is also derivable in this new version of the quantified logic of evidence.

The use of QLP to represent the Knower has some obvious representational
advantages. But it seems that what is puzzling about the Knower remains puzzling
in this new setting. One faces in QLP similar choices to block the paradox than in
other logics. And none of the options seems entirely satisfying. So, in a way the
use of QLP permits new insights but not a full solution of the paradox.
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[4] P. Egré. The knower paradox in the light of provability interpretations of modal logic. Journal
of Logic, Language, and Information, 14(1):13–48, 2005.

[5] M. Fitting. Quantied LP. Technical report, CUNY Ph.D. Program in Computer Science

Technical Report TR-2004019, 2004.
[6] M. Fitting. A Quantified Logic of Evidence, forthcoming in Annals of Pure and Applied Logic.



THREE PROOFS AND THE KNOWER IN THE QUANTIFIED LOGIC OF PROOFS 11

[7] R. Montague. Syntactic treatment of modalities, with corollaries on reflexion princples and

finite axiomatizability. In R. Thomason, editor, Formal Philosophy. Yale University Press,
1974.

[8] R. Montague and D. Kaplan. A paradox regained. Notre Dame Journal of Formal Logic,
1:79–90, 1960.


