Commentary on Jan Sprenger’s “A Confirmation-Theoretic Guide to Explanation”

Justin C. Fisher
University of British Columbia
What makes a proposed explanation good?

– Truth
 • Hard to achieve
 • Hard to know when you’ve achieved it.

– Relevance
 • Are more relevant explanations more useful?
 • Are they more strongly confirmable?
 • Or are we just trying to fit intuitions about relevance?

– Other good-making features?
What makes a proposed explanation good?

– Truth
 • Hard to achieve
 • Hard to know when you’ve achieved it.

– Relevance
 • Are more relevant explanations *more useful*?
 • Are they *more strongly confirmable*?
 • Or are we just trying to fit intuitions about relevance?

– Other good-making features?
Jan’s Proposal

“relative to the actual background knowledge [K] of the subject, knowing the explanans [C] boosts the likelihood of the explanandum [E].”

• I.e., a proposed explanation is more explanatorily relevant, the more it boosts the probability of its explanandum.

\[r_d = P(E \mid C . K) - P(E \mid K) \]
- Violates objectivity desideratum \([r_d \text{ varies with } P(C|K)].\]

\[r_s = P(E \mid C . K) - P(E \mid \neg C . K) \]
- Jan notes this also violates objectivity! So why favor it?

• If \(P(C|K)\) is small, as it often will be, then \(r_d \approx r_s\).
• Even if we grant that \(r_s\) is the best game currently in town, that doesn’t mean we have to play it.
Why is the sky blue?

E = “Daytime clear skies on earth are blue”
K = Our background knowledge
C = Any proposed explanation such that
 C and ¬ C are each compatible with K.

\[P(E \mid K) = 1 \]

Thus...

\[P(E \mid C \cdot K) = 1 \]
\[P(E \mid ¬ C \cdot K) = 1 \]

And thus...

\[r_s = 1 - 1 = 0 \]

If you were already sure E was true, then there’s no room for a proposed explanation to boost E’s probability, so none will count as “relevant”!
Non-Dogmatic Version

E = “Daytime clear skies on earth are blue”
K = Our background knowledge
C = A great explanation of E (given K).

\[
\begin{align*}
P(E \mid K) &= 0.99 \\
P(E \mid C \land K) &= 1.00 \\
P(E \mid \neg C \land K) &= 0.98
\end{align*}
\]

Thus...

\[r_s = 1 - 0.98 = 0.02\]

If you were already quite sure E was going to occur, then there’s little room for a proposed explanation with low prior probability to boost E’s probability, so none will count as “relevant”!
Why did this atom decay?

E = “This atom decays”
K = Our background knowledge
C = The correct physical theory of radioactivity.

\[P(E \mid K) = 0.10 \]
\[P(E \mid C \cdot K) = 0.01 \]

It follows that…
\[r_s < 0.01 - 0.10 = -0.09 \]

Compare: \(C^* = “My favorite color is yellow.” \)
– This has zero explanatory relevance to \(E \).
– **Zero** is significantly higher than **-0.09**.
– But \(C^* \) can’t be more relevant to \(E \) than the correct physical theory of radioactivity!
Further Problems…

E = “He will apparently saw a lady in half”
K = Our knowledge going into the show.
C = He brandishes a saw conspicuously.

\[
P(E \mid K) = 0.10
\]
\[
P(E \mid C \cdot K) = 0.90
\]

It follows that…

\[r_s > 0.90 - 0.10 = 0.80 \]

Mere correlates shouldn’t be so highly relevant!

Compare: C* = Full contents of his notebook.

– This should be explanatorily relevant to E.
– But it may not even boost E’s probability at all.
“Probabilification Value”

\[r_s = P(E \mid C . K) - P(E \mid \neg C . K) \]

- I would call Jan’s proposed notion something like “probabilification value”
 - It is a measure of how much learning the actual truth value of a particular claim C would impact upon the probability of E, relative to background knowledge K.

- *Probabilification value* is interesting, and something that scientists often hope to achieve.
But Probabilification Value is not closely linked to Explanatory Relevance

Sometimes K already confers enough probability on E that there’s little probabilification value left to be had, even by highly relevant explanations.

Sometimes K confers \textit{too much} probability on E, such that good, relevant, explanations will end up being \textit{anti}-probabilifying.

Sometimes K is sparse enough that unexplanatory correlates of E will have high probabilification values, whereas quite relevant supplements to K will themselves have low probabilification values.