The Degree of Epistemic Justification and the Conjunction Fallacy

Tomoji Shogenji

(Last revision made on August 27, 2008)

This paper describes a formal measure of epistemic justification motivated by the dual goal of cognition, which is to increase true beliefs and reduce false beliefs. From this perspective the degree of epistemic justification should not be the conditional probability of the proposition given the evidence, as it is commonly thought. It should be determined instead by the combination of the conditional probability and the prior probability. This is also true of the degree of incremental confirmation, and I argue that any measure of epistemic justification is also a measure of incremental confirmation. However, the degree of epistemic justification must meet an additional condition, and all known measures of incremental confirmation fail to meet it. I describe this additional condition as well as a measure that meets it. The paper then applies the measure to the conjunction fallacy and proposes an explanation of the fallacy.

1. Justification and Confidence

This paper examines the degree of epistemic justification (hereafter simply "degree of justification") for accepting or rejecting propositions from the perspective of the dual goal of cognition, which is to increase true beliefs and reduce false beliefs. To be a little more precise, when we add propositions to our body of beliefs, the dual goal is to increase true beliefs but not to increase false beliefs. When we remove propositions from our body of beliefs, the dual goal is to reduce false beliefs but not to reduce true beliefs. Whether we are adding or removing propositions, the goal must have two components for obvious reasons. It is easy to increase true beliefs: Believe everything you can think of, including negations of what you already believe, and never abandon any beliefs. But, of course, we end up with numerous false beliefs, which is unacceptable. It is also easy to reduce false beliefs: Abandon all beliefs and don't form any new beliefs. But then we end up with no true beliefs, which is also unacceptable. The challenge is to balance the two demands. I will focus on cases of adding propositions to our body of beliefs, which is more straightforward than removing propositions from a tangled web of existing beliefs. The relevant goal of cognition is then to increase true beliefs but not to increase false beliefs. In this section I argue that when we understand epistemic justification from this
perspective, we must reject the common view that the degree of justification for accepting a proposition is its probability.

To express the common view a little more precisely, the degree of justification for accepting the proposition h given the evidence e (based on the background knowledge b-this is suppressed in the following discussion) is the conditional probability of h given e, or $P(h \mid e)$. It may seem that this view can take account of the dual goal of cognition. If we only care about increasing true beliefs, we set the probabilistic threshold of justification at the lowest possible level, viz. we are justified in accepting h if and only if $P(h \mid e) \geq 0$, and accept any propositions we can think of. If we only care about not increasing false beliefs, we set the threshold degree at the highest possible level, viz. $P(h \mid e) \geq 1$, and reject all but absolutely certain propositions. Since neither approach serves the dual goal of cognition well, we set the threshold t somewhere in between, depending on our degree of risk aversion-perhaps in consideration of the pragmatic context. However, it is well known that this view is in conflict with an intuitive principle about conjunction, viz., if we are justified in accepting each conjunct, then we are justified in accepting their conjunction. The conflict arises because it is possible for any non-trivial probabilistic threshold t (i.e. $t \neq 0,1$) that $P\left(h_{1} \mid e\right) \geq t, \ldots, P\left(h_{n} \mid e\right) \geq t$ but $P\left(h_{1} \wedge\right.$ $\left.\ldots \wedge h_{n} \mid e\right)<t$. When this happens, and if we apply the common view of justification, we are justified in accepting each of the propositions h_{1}, \ldots, h_{n} but not their conjunction $h_{1} \wedge$ $\ldots \wedge h_{n}$. This is a violation of the intuitive principle. The lottery paradox (Kyburg 1961) and the preface paradox (Makinson 1965) are good illustrations of the difficulty, but I want to present the problem in a different way to focus on what I take to be the core issue.

Consider the set $H=\left\{h_{1}, \ldots, h_{n}\right\}$ of probabilistically independent propositions. To put it informally, these propositions have nothing to do with each other. The proposition h_{1} could be about the demise of the Roman Empire, while the proposition h_{2} could be about the salmon's immune system, and so forth. Let's assume that they remain probabilistically independent given the body of all available evidence e that is relevant to these propositions. ${ }^{1}$ To exclude trivial cases, we also assume that none of the propositions we consider is completely verified or completely refuted by the evidence e, i.e. $0<$ $P\left(h_{1} \mid e\right), \ldots, P\left(h_{n} \mid e\right)<1$. Now, given their mutual irrelevance, one would expect that provided we are justified in accepting each of them, we are justified in accepting all of them. Here is the reasoning. First, we consider h_{1} alone. We are justified in accepting h_{1} because we are justified in accepting each of the propositions. Next we consider h_{2}. Since h_{1} and h_{2} are mutually irrelevant, we can evaluate h_{2} independently of our acceptance of h_{1}. So, we are justified in accepting h_{2} because we are justified in accepting each of the propositions. The same reasoning applies to h_{3}, h_{4}, and so on. As a result, we are justified in accepting all the propositions h_{1}, \ldots, h_{n}.

Notice that one forceful response to the lottery paradox does not apply to the present case. When the individually acceptable propositions are jointly inconsistent as in the lottery paradox, it could be plausibly argued that we can accept each of h_{1}, \ldots, h_{n} by

[^0]itself, but not all of them together, i.e. we cannot accept $H=\left\{h_{1}, \ldots, h_{n}\right\}$ as a set. But this suggestion makes sense only if there is inconsistency-or at least some tension-among the propositions h_{1}, \ldots, h_{n} while we are assuming in the present case that the propositions involved are mutually irrelevant. This allows us to evaluate each proposition independently even if we have already accepted some of the propositions, so that if we are justified in accepting each member, we are justified in accepting the set.

Some people may question the final move from the acceptance of the set $H=\left\{h_{1}\right.$, $\left.\ldots, h_{n}\right\}$ to the acceptance of the conjunction $h_{1} \wedge \ldots \wedge h_{n}$ because $P\left(h_{1} \wedge \ldots \wedge h_{n} \mid e\right)$ can be extremely low when the number of the conjuncts is large. How can we be justified in accepting a proposition that is almost certainly false? My response is twofold. First, there is no difference between accepting all of h_{1}, \ldots, h_{n} together and accepting their conjunction $h_{1} \wedge \ldots \wedge h_{n}$. Once we accept all the conjuncts together, it is unreasonable not to accept their conjunction. Second, we should distinguish the degree of justification from the degree of confidence. The subject of this paper is the degree of justification motivated by the dual goal of cognition, which is to increase true beliefs and reduce false beliefs. The degree of confidence serves other purposes, most notably the calculation of the expected utility. In order to play that role, the degree of confidence should be proportional to the probability. So, we should be less confident in the conjunction $h_{1} \wedge \ldots$ $\wedge h_{n}$ than we are in any of the conjuncts h_{1}, \ldots, h_{n}. However, that does not mean that we are less justified in accepting the conjunction than we are in accepting any conjunct. Accepting the conjunction is riskier than accepting a conjunct because the conjunction has a lower probability than any conjunct. But this higher risk is counterbalanced by the greater potential gain in true beliefs. From the perspective of the dual goal of cognition, the risk of adding false beliefs is not the sole determinant of the degree of justificationthe potential gain in true beliefs is also a factor. Once we distinguish the degree of justification from the degree of confidence in this way, the common view that the degree of justification is the conditional probability of the proposition given the evidence loses its appeal. Even if the conditional probability is low, we may still be justified in accepting the proposition if the potential gain in truth is sufficiently high.

2. Formalizing the Risk and the Potential Gain

This section formalizes the two factors that affect the degree of justification-the risk of adding false beliefs and the potential gain in truth beliefs-in probabilistic terms. ${ }^{2}$ First, the risk of increasing false beliefs is inversely related to the conditional probability of the proposition given the evidence. The higher the evidence makes the probability of the proposition, the lower the risk of increasing false beliefs. Since the risk of increasing false beliefs is inversely related to the degree of justification, the conditional probability of the proposition given the evidence is directly (positively) related to the degree of justification. There is no surprise here. The other factor, the potential gain in true beliefs, may seem less clear. Obviously, we cannot simply count the number of potentially true beliefs. Adding the set $H=\left\{h_{1}, \ldots, h_{n}\right\}$ to our body of beliefs is no different from adding

[^1]the singleton $H^{*}=\left\{h_{1} \wedge \ldots \wedge h_{n}\right\}$ though the former contains many more propositions, and hence many more potentially true beliefs. A more sensible approach is to measure the potential gain in true beliefs by the amount of information the proposition (or the conjunction of the propositions if a set of propositions is added) carries. Since the amount of information the proposition carries is inversely related to its prior probability, we can capture the potential gain in true beliefs in probabilistic terms.

We can see the inverse relation between the amount of information and the prior probability in two steps. First, the degree of specificity is directly (positively) related to the amount of information. The more specifically the proposition describes the world, the larger amount of information it carries. Second, the degree of specificity is inversely related to the prior probability. The more specifically the proposition describes the world, the lower its prior probability is. By combining these two steps, we see that the amount of information that the proposition carries is inversely related to its prior probability. Further, since the amount of information the proposition carries is directly (positively) related to the degree of justification, the prior probability of the proposition is inversely related to the degree of justification. To express this more intuitively, if the level of risk is the same (if the conditional probability of the proposition given the evidence is the same), a proposition that describes the world more specifically (and thus has a lower prior probability) is more worthy of adding to our body of beliefs because the per-unit-ofinformation risk is lower.

We put all these together to state that the degree of justification $J(h, e)$ for the proposition h given the evidence e is directly (positively) related to the conditional probability $P(h \mid e)$ and inversely related to the prior probability $P(h)$. Note that under this conception the degree of justification looks much like the degree of incremental confirmation (hereafter simply "degree of confirmation"). There have been many proposals in the literature to formally measure the degree of confirmation. Here I mention only two of them, the difference measure $C_{\mathrm{D}}(h, e)$ and the ratio measure $C_{\mathrm{R}}(h, e)$:

$$
\begin{aligned}
& C_{\mathrm{D}}(h, e)=P(h \mid e)-P(h) \\
& C_{\mathrm{R}}(h, e)=\frac{P(h \mid e)}{P(h)}
\end{aligned}
$$

In both measures, the degree of confirmation is directly (positively) related to the conditional probability and inversely related to the prior probability, and that is the way it should be for any plausible measure of confirmation.

The question arises at this point whether the degree of justification is simply the degree of confirmation. The question has two parts: (1) whether an additional condition exists that the degree of confirmation should satisfy but the degree of justification need not, and (2) whether an additional condition exists that the degree of justification should satisfy but the degree of confirmation need not. The next section addresses these two questions.

3. Justification and Confirmation

There is a general consensus in the literature that in addition to being an increasing function of the conditional probability and a decreasing function of the prior probability, the degree of confirmation should have a constant neutral value k when $P(h \mid e)=P(h)$, regardless of $P(h)$. The idea is that when the evidence e has no impact on the proposition h and thus $P(h \mid e)=P(h)$, the evidence neither confirms nor disconfirms the proposition. So, the degree of confirmation in such cases should be the same, regardless of the prior probability of the proposition. Let's call this requirement the equi-neutrality condition. The equi-neutrality condition is satisfied by all known measures of confirmation. For example, the condition $P(h \mid e)=P(h)$ makes the difference measure $C_{\mathrm{D}}(h, e)=P(h \mid e)-$ $P(h)$ constant at zero; it makes the ratio measure $C_{\mathrm{R}}(h, e)=P(h \mid e) / P(h)$ constant at one. We can adjust any measure of confirmation to make the neutral value zero by subtracting the constant value k from it. ${ }^{3}$ For example, if we subtract one from the ratio measure, the new measure $C_{\mathrm{R}} *(h, e)=P(h \mid e) / P(h)-1$ has its neutral value at zero. So, I will assume hereafter that the neutral degree of confirmation is zero, i.e. $C(h, e)=0$ when $P(h \mid e)=$ $P(h)$.

I want to argue in this section that the degree of justification should also satisfy the equi-neutrality condition-i.e. $J(h, e)=0$ when $P(h \mid e)=P(h)$, regardless of $P(h)$. In other words, although there is an additional condition (beyond being an increasing function of the conditional probability and a decreasing function of the prior probability) that the degree of confirmation should satisfy, the degree of justification should also satisfy it. The basis of my argument for the equi-neutrality of justification is the case of conjunction mentioned in Section 1, namely: If the propositions h_{1}, \ldots, h_{n} are probabilistically independent, both unconditionally and conditionally given the evidence e, and if each of them is justified by the evidence e (with regard to some threshold degree t), then so is their conjunction $h_{1} \wedge \ldots \wedge h_{n}$. The converse should also hold: If the propositions h_{1}, \ldots, h_{n} are probabilistically independent, both unconditionally and conditionally given the evidence e, and if each of them is not justified by e (with regard to some threshold degree t), then neither is their conjunction $h_{1} \wedge \ldots \wedge h_{n}$. I call the combination of these two conditions the General Conjunction Requirement (GCR).

An immediate consequence of GCR is the following Special Conjunction Requirement (SCR): If the propositions h_{1}, \ldots, h_{n} are probabilistically independent, both unconditionally and conditionally given the evidence e, and if each of them is justified to the same degree j, then so is their conjunction $h_{1} \wedge \ldots \wedge h_{n}$. I show here that GCR entails SCR by proving its contraposition. Suppose measure $J(h, e)$ of justification fails to satisfy SCR, and thus for some evidence e and some probabilistically independent (both unconditionally and conditionally given e) propositions $h_{1}, \ldots, h_{n}, J\left(h_{1}, e\right)=\ldots=J\left(h_{n}, e\right)$ $=j$ but $J\left(h_{1} \wedge \ldots \wedge h_{n}, e\right)=j+\alpha$ for some $\alpha \neq 0$. We can see that $J(h, e)$ violates GCR as follows. Set the threshold of justification at $j+\alpha / 2$. If $\alpha<0$, then each of h_{1}, \ldots, h_{n} is justified by e, but their conjunction $h_{1} \wedge \ldots \wedge h_{n}$ is not. If $\alpha>0$, then each of h_{1}, \ldots, h_{n} is not justified by e, but their conjunction $h_{1} \wedge \ldots \wedge h_{n}$ is. Either way, GCR is violated. So, GCR entails SCR. Further, if we assume that $J(h, e)$, which is of the form $F(P(h \mid e), P(h))$, is a continuous function, then SCR entails equi-neutrality (see Appendix 1 for proof).

[^2]Putting all these together, we conclude that $J(h, e)$ should satisfy the equi-neutrality condition since $J(h, e)$ should satisfy GCR, which entails SCR, which in turn entails equineutrality.

This result may look suspect. When the evidence affects neither h_{1} nor h_{2}, are we no more justified in accepting h_{1} than in accepting h_{2} even if h_{1} is almost certainly true while h_{2} is almost certainly false? My response is again the distinction between the degree of confidence and the degree of justification. We should certainly have more confidence in h_{1} than in h_{2} when $P\left(h_{1}\right)$ is higher than $P\left(h_{2}\right)$, but it does not follow that we are more justified in accepting h_{1} than we are in accepting h_{2}. Though h_{2} is more likely to be false than h_{1} is, the higher risk is offset by the greater potential gain we make if h_{2} turns out to be true because h_{2}, whose prior probability is lower, carries more information than h_{1} does. So, if the degree of justification is to serve the dual goal of cognition, it is not unreasonable to assign the same degree of justification to h_{1} and $h_{2} .{ }^{4}$

To summarize what we have uncovered so far, the degree of justification for the proposition h given the evidence e is directly (positively) related to its conditional probability $P(h \mid e)$ and inversely related to the prior probability $P(h)$. Further, the degree of justification should also satisfy the equi-neutrality condition, i.e. $J(h, e)=0$ when $P(h \mid e)=P(h)$, regardless of $P(h)$. Since these are the standard requirements for a measure of confirmation, a measure of justification is also a measure of confirmation. However, the converse is not true. Not all plausible measures of confirmation can serve as a measure of justification because the latter must satisfy the General Conjunction Requirement (GCR), while there is no reason to require that a measure of confirmation should satisfy GCR. Indeed none of the many measures of confirmation proposed in the literature satisfies GCR. ${ }^{5}$ So, none of them is a measure of justification. We need to formulate a new measure of confirmation that meets GCR.

4. Formal Measure of Justification

This section describes a formal measure $J(h, e)$ of justification for the proposition h given the evidence e. In order to facilitate the task, I want to describe one further consequence of GCR. We saw in Section 3 that the degree of justification should be equi-neutral. It turns out that the degree of justification should also be equi-maximal. It is obvious already that for any given $P(h), J(h, e)$ should be the highest when $P(h \mid e)=1$ because $J(h$, $e)$ is an increasing function of $P(h \mid e)$. Equi-maximality requires further that this highest value should be constant, regardless of $P(h)$. Intuitively, this means that when the evidence e makes the proposition h certain, we are justified in accepting h to the highest

[^3]possible degree, regardless of the prior probability of $h .{ }^{6}$ This is a sensible thing to say about the degree of justification, but it is also a consequence of SCR (see Appendix 2 for proof) and hence of GCR.

Let us see what $J(h, e)$ should look like in light of the requirements we have uncovered. First, $J(h, e)$ should be an increasing function of $P(h \mid e)$ and a decreasing function of $P(h)$. There are two natural ways for $J(h, e)$ to meet these requirements, namely, the difference-based measures J_{D} and the ratio-based measures J_{R} :

$$
\begin{aligned}
& J_{\mathrm{D}}(h, e)=f(P(h \mid e))-g(P(h)) \\
& J_{\mathrm{R}}(h, e)=\frac{f(P(h \mid e)}{g(P(h))}
\end{aligned}
$$

where both f and g are increasing functions. The second set of requirements is equineutrality and equi-maximality. If we set the neutral value at zero and the maximum value at one, then:

$$
\begin{aligned}
& J(h, e)=0 \text { when } P(h \mid e)=P(h) \\
& J(h, e)=1 \text { when } P(h \mid e)=1
\end{aligned}
$$

We need to adjust the difference-based measures $J_{\mathrm{D}}(h, e)$ and the ratio-based measures $J_{\mathrm{R}}(h, e)$ to meet this second set of requirements.

We start with the difference-based measures. When $P(h \mid e)=P(h), J_{\mathrm{D}}(h, e)=$ $f(P(h))-g(P(h))$. Since this value should be zero regardless of $P(h), f$ and g should be the same function. This means that $J_{\mathrm{D}^{*}}(h, e)=f(P(h \mid e))-f(P(h))$. Further, when $P(h \mid e)=1$, $J_{\mathrm{D}}{ }^{*}(h, e)=f(1)-f(P(h))$. Since this value should be one regardless of $P(h)$, we need to "normalize" $J_{\mathrm{D}} *(h, e)$ by dividing it by $f(1)-f(P(h))$, to obtain $J_{\mathrm{D}} * *(h, e)=[f(P(h \mid e)-$ $f(P(h))] /[f(1)-f(P(h))]$. This measure satisfies both the first and second sets of requirements. We turn next to the ratio-based measures $J_{\mathrm{R}}(h, e)$. When $P(h \mid e)=P(h), J_{\mathrm{R}}(h$, $e)=f(P(h)) / \mathrm{g}(P(h))$. Since this value should be zero regardless of $P(h)$, we subtract $f(P(h)) / g(P(h))$ from $J_{\mathrm{R}}(h, e)$ to obtain $J_{\mathrm{R}}{ }^{*}(h, e)=[f(P(h \mid e)) / g(P(h))]-[f(P(h)) /$ $g(P(h))]=[f(P(h \mid e))-f(P(h))] / g(P(h))$. Further, when $P(h \mid e)=1, J_{\mathrm{R}}{ }^{*}(h, e)=[f(1)-$ $f(P(h))] / g(P(h))$. Since this value should be one regardless of $P(h), g(P(h))$ should be $f(1)-f(P(h))$, so that $J_{\mathrm{R}}{ }^{* *}(h, e)=[f(P(h \mid e))-f(P(h))] /[f(1)-f(P(h))]$. This turns out to be the same as $J_{\mathrm{D}}{ }^{* *}(h, e)$. So, whether we start from the difference-based measures $J_{\mathrm{D}}(h$, $e)$ or the ratio-based measures $J_{\mathrm{R}}(h, e)$, we arrive at the same general formula, $J_{\mathrm{G}}(h, e)=$ $[f(P(h \mid e))-f(P(h))] /[f(1)-f(P(h))]$, to satisfy the second sets of requirements. The remaining task is to determine the function f, so that $J_{\mathrm{G}}(h, e)$ satisfies the General Conjunction Requirement.

This task is not trivial. If we take f to be the identity function, $f(x)=x$, then the degree of justification will be $J_{\mathrm{G}}{ }^{*}(h, e)=[P(h \mid e)-P(h)] /[1-P(h)]{ }^{7}$ But $J_{\mathrm{G}}{ }^{*}(h, e)$ fails to meet the SCR (and hence GCR) even for $n=2$, i.e. even when the conjunction has

[^4]only two conjuncts (proof omitted). The problem is solved by making f a logarithmic function. If we choose 2 as the base of logarithm, as it is common in measuring the amount of information, then we obtain the following measure $J_{\mathrm{G}} * *(h, e):{ }^{8}$
\[

$$
\begin{aligned}
J_{\mathrm{G}}^{* *}(h, e) & =\frac{\log _{2} P(h \mid e)-\log _{2} P(h)}{\log _{2} 1-\log _{2} P(h)} \\
& =\frac{\log _{2} P(h \mid e)-\log _{2} P(h)}{-\log _{2} P(h)}
\end{aligned}
$$
\]

$J_{\mathrm{G}}{ }^{* *}(h, e)$ meets GCR (see Appendix 3 for proof), so it is a measure of justification. From now on, I will write $J_{\mathrm{G}}{ }^{* *}(h, e)$ simply as $J(h, e)$.

Once we find a measure of justification, the next natural question is whether it is the only measure of justification. It turned out that there are many others, i.e. we can construct many measures of confirmation that satisfy GCR and thus can serve as measures of justification. Some of them differ from $J(h, e)$ in an interesting way. For example, $J(h, e)$ has the infinite range ($-\infty, 1$], while Atkinson's (2009) measure $J^{\prime}(h, e)$ has the finite range $[-1,1]$. However, it also turned out that all measures of justification are ordinally equivalent to each other, and thus to $J(h, e) .{ }^{9}$ In other words, $J(h, e)$ is the unique measure of justification, up to ordinal equivalence.

Two more remarks are in order. First, $J(h, e)$ is related to the log ratio measure of confirmation, which is $C_{\mathrm{LR}}(h, e)=\log _{2}[P(h \mid e) / P(h)]$ if we choose 2 as the base of logarithm. Note that the numerator of $J(h, e)$ is the \log ratio measure of confirmation, i.e. $\log _{2} P(h \mid e)-\log _{2} P(h)=\log _{2}[P(h \mid e) / P(h)]$. The denominator of $J(h, e)$ is the highest value of $C_{\mathrm{LR}}(h, e)$ reached when $P(h \mid e)=1$, i.e. $-\log _{2} P(h)=\log _{2}[1 / P(h)]$. This means that $J(h, e)$ is the "normalized" \log ratio measure of confirmation. ${ }^{10}$

Second, $J(h, e)$ has a simple and intuitive meaning when we express it in the language of information. According to the standard mathematical theory of information, the amount of information that h carries is $I(h)=-\log _{2} P(h)$. The rationale for this measure is easy to see by an example. If the probability of the proposition h is $1 / 8$, then the amount of information that h carries is $I(h)=-\log _{2} 1 / 8=-\log _{2} 2^{-3}=3$. This means that knowing h with certainty gives us 3 bits of information. $I(h)$ is commonly referred to as "self information" because it is the amount of information on h that we gain when it becomes certain that h is true. Meanwhile, the amount of information on h that we gain when it becomes certain that e is true is called "mutual information" and is defined as follows: $I(h, e)=\log _{2} P(h \mid e)-\log _{2} P(h) .{ }^{11}$ To see its intuitive meaning, suppose the prior

[^5]probability of the proposition $P(h)$ is $1 / 8$ and the evidence e raises its probability to $P(h \mid e)$ $=1 / 2$. Then, the amount of mutual information is $I(h, e)=\log _{2} 2^{-1}-\log _{2} 2^{-3}=2$. This means that we gain 2 bits of information on h when we obtain the evidence e. The point to note is that the numerator of $J(h, e)$ is the mutual information $I(h, e)=\log _{2} P(h \mid e)-$ $\log _{2} P(h)$, while the denominator of $J(h, e)$ is the self information $I(h)=-\log _{2} P(h)$. So, $J(h, e)$ turns out to be the ratio of the mutual information to the self information:
$$
J(h, e)=\frac{I(h, e)}{I(h)}
$$

This expression allows us to interpret $J(h, e)$ as the degree of justification in a natural sense. Self information $I(h)$ is the amount of information we register when we add h to our body of beliefs. I want to call it "registered information." Meanwhile mutual information $I(h, e)$ is the amount of information on h we gain from the evidence e. So, I call it "earned information." If we use this terminology, the degree of justification $J(h, e)$ is the ratio of the earned information to the registered information. The higher the ratio is, the more justified we are in accepting (registering) the proposition. This makes good sense if the degree of justification is to serve the dual goal of cognition, which is to increase true beliefs and reduce false beliefs.

5. The Conjunction Fallacy

This section applies the measure of justification $J(h, e)$ to the analysis of the conjunction fallacy. The conjunction fallacy is the fallacy of assigning a higher probability to a conjunction $h_{1} \wedge h_{2}$ than to its conjunct h_{1} (or h_{2}). Since the conjunction $h_{1} \wedge h_{2}$ logically entails the conjunct h_{1}, the conjunction cannot have a higher probability than the conjunct, but it is well known that people are prone to commit this fallacy in certain contexts. The most famous is the Linda problem (Tversky and Kahneman 1983), in which the two conjuncts are:
h_{1} : Linda is a bank teller.
h_{2} : Linda is active in the feminist movement.
The participants in the experiment receive the following information:
e : Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

Upon receiving this information, a large majority of the participants answer that $h_{1} \wedge h_{2}$, is more probable than h_{1}, committing the conjunction fallacy.

Tversky and Kahneman explain the fallacy by the representativeness heuristic, i.e. given e, most participants judge that Linda is more representative of a feminist banker than of a banker, and they solely rely on this judgment in assigning a higher probability to $h_{1} \wedge h_{2}$ than to h_{1}. More formal analyses are also possible. Shafir, Smith, and Osherson
(1990) propose that most participants focus on likelihood, i.e. the conditional probability of the evidence given the hypothesis. According to this analysis, most participants compare the two likelihoods $P\left(e \mid h_{1} \wedge h_{2}\right)$ and $P\left(e \mid h_{1}\right)$, instead of comparing the two conditional probabilities $P\left(h_{1} \wedge h_{2} \mid e\right)$ and $P\left(h_{1} \mid e\right)$ as they should. Another possibility is that most participants focus on the degree of coherence between the evidence and the hypothesis. We can make it a formal analysis by plugging in any of the many probabilistic measures of coherence available in the literature. ${ }^{12}$ Yet another possibility is that most participants focus on the degree of confirmation (Sides et al. 2002), i.e. they compare the degrees to which the evidence raises the probabilities of the two hypotheses, h_{1} and $h_{1} \wedge h_{2}$. In support of this idea Crupi, Fitelson, and Tentori (2008) show that the confirmation analysis is robust. That is to say, in Linda-like cases-which they characterize by the two conditions (1) $P\left(h_{2} \mid e \wedge h_{1}\right)>P\left(h_{2} \mid h_{1}\right)$ and (2) $P\left(h_{1} \mid e\right)<P\left(h_{1}\right)$-the evidence e confirms the conjunction $h_{1} \wedge h_{2}$ more than it does the conjunct h_{1} by any measure of confirmation that has been proposed in the literature.

These analyses offer competing accounts of the cognitive process responsible for the fallacy, or which features of the case most participants focus on. But I am more interested in the conditions under which the fallacy is common than in the cognitive process. To use Marr's (1982) distinction, I am more interested in the computation (the input-output relation) that is accomplished than in the algorithm for the computation. The three formal analyses-by likelihood, by coherence, and by confirmation-are similar at the computational level. In fact they are formally equivalent if we determine the degree of coherence by Shogenji's (1999) measure $S\left(x_{1}, \ldots, x_{\mathrm{n}}\right)=P\left(x_{1} \wedge \ldots \wedge x_{\mathrm{n}}\right) /\left[P\left(x_{1}\right) \times \ldots \times\right.$ $\left.P\left(x_{\mathrm{n}}\right)\right]$ and the degree of confirmation by the ratio measure $C_{\mathrm{R}}(h, e)=P(h \wedge e) / P(h){ }^{13} \mathrm{I}$ have no reason to think these formal conditions are seriously at odds with empirical data, but I still propose my own analysis. The reason for the proposal is not a better fit with the empirical data but a better explanation of why the fallacy occurs.

Here is my proposal (the justification analysis): The conjunction fallacy is common when the degree of justification for the conjunction is higher than the degree of justification for the conjunct, i.e. $J\left(h_{1} \wedge h_{2}, e\right)>J\left(h_{1}, e\right)$. Since $J(h, e)$ is also a measure of confirmation, the proposal is a variant of the confirmation analysis. Given the robustness of the confirmation analysis, it is not surprising that the justification analysis gives the right prediction in Linda-like cases, i.e. when (1) $P\left(h_{2} \mid e \wedge h_{1}\right)>P\left(h_{2} \mid h_{1}\right)$ and (2) $P\left(h_{1} \mid e\right)<$ $P\left(h_{1}\right)$, the evidence justifies the conjunction more than it does the conjunct, or $J\left(h_{1} \wedge h_{2}\right.$, $e)>J\left(h_{1}, e\right)$ (see Appendix 5 for proof), so that the conjunction fallacy should be common in Linda-like cases. The attraction of the justification analysis is its explanation of why the fallacy occurs, viz., the fallacy occurs because we tend to utilize cognitive processes appropriate for choosing better justified propositions, even when that is not our task. These justification-oriented processes serve the dual goal of cognition well, so their persistent use is generally a good epistemic policy. However, it causes trouble in cases where our task is not to choose better justified propositions but to choose more probable propositions. The explanation makes the conjunction fallacy understandable.

[^6]The justification analysis is compatible with different theories of the cognitive process. One of the cognitive processes mentioned above may be responsible for the conjunction fallacy. If so, my proposal is that we utilize that cognitive process, not because it guides us to choose propositions with high degrees of representativeness, likelihood, coherence, or confirmation per se, but because it guides us to choose propositions with high degrees of justification. In other words, the computational objective of the process is to choose better justified propositions.

I want to note that although I want to make the conjunction fallacy understandable, I do not subscribe to the view that the conjunction fallacy (or the "conjunction effect") can be explained by semantic variance (cf. Hertwig and Gigerenzer 1999). For example, I do not think that many people interpret the word "probable" to mean justified and that their judgment is correct under this interpretation. The betting case provides strong evidence against the semantic account. It is known that the conjunction fallacy occurs even in betting, e.g. many people are more willing to bet on $h_{1} \wedge h_{2}$ than on h_{1} in the Linda case for the same reward (Tversky and Kahneman 1983, p. 300). There is no semantic excuse for this behavior since the situation itself requires the assessment of probabilities. Some people question the reality of the conjunction fallacy on other grounds. It has been reported that changing the problem structure-e.g. expressing the problem in terms of frequencies instead of probabilities-reduces the occurrence of cognitive fallacies, including the conjunction fallacy (Gigerenzer 1991). But if the justification analysis is correct, the fallacy should be less frequent in those contexts where people are less accustomed to choosing better justified propositions automatically. If this is born out, the reduction of the fallacy in such contexts strengthens the case for the justification analysis.

6. Conclusion

When we aim at the dual goal of cognition, the degree of justification for accepting the proposition should not be its conditional probability given the evidence, as it is commonly thought. We have compelling reason to adopt $J(h, e)$ as our formal measure of justification. It has a simple and intuitive meaning as the ratio of the earned information to the registered information, and it is the only measure (up to ordinal equivalence) that meets the General Conjunction Requirement. I already mentioned its relevance to the lottery paradox and the preface paradox in Section 1, and showed how it helps the analysis of the conjunction fallacy in Section 5. Another significant area of application is logical closure of knowledge. Even if p logically entails q, the degree of justification for q can be lower than that for p, as the conjunction fallacy exemplifies. This means that knowledge is not closed under (known) logical entailment if a certain degree of justification is a necessary condition for knowledge. I suspect that we need to reconsider many issues of cognitive science and normative epistemology in light of the new understanding of epistemic justification. ${ }^{14}$

[^7]
Appendices

1. Equi-Neutrality

Suppose $J(h, e)$, which is of the form $F(P(h \mid e), P(h))$, is a continuous function, and $J(h, e)$ satisfies SCR. Then, for any two pairs $\left\langle h_{i}, e_{i}\right\rangle$ and $\left\langle h_{j}, e_{j}\right\rangle$, if $P\left(h_{i} \mid e_{i}\right)=P\left(h_{i}\right)$ and $P\left(h_{j} \mid e_{j}\right)$ $=P\left(h_{j}\right)$, then $J\left(h_{i}, e_{i}\right)=J\left(h_{j}, e_{j}\right)$.

Proof:

Let $\log _{P\left(h_{i}\right)} P\left(h_{j}\right)=r$, so that $\left[P\left(h_{i}\right)\right]^{r}=P\left(h_{j}\right) . r>0$ because $0<P\left(h_{i}\right), P\left(h_{j}\right)<1$. Since $J(h, e)$ is a continuous function, it suffices to show that the claim holds for any two pairs $\left\langle h_{i}, e_{i}\right\rangle$ and $\left\langle h_{j}, e_{j}\right\rangle$ such that $\left[P\left(h_{i}\right)\right]^{q}=P\left(h_{j}\right)$ where q is a positive rational number. Let $<m, n>$ be the smallest pair of positive integers such that $n / m=q$, so that $\left[P\left(h_{i}\right)\right]^{n}=\left[P\left(h_{j}\right)\right]^{m}$. Choose probabilistically independent (both unconditionally and conditionally on e_{i}) propositions h_{1}, \ldots, h_{n}, and probabilistically independent (both unconditionally and conditionally on e_{j}) propositions h_{n+1}, \ldots, h_{n+m} such that: ${ }^{15}$
(i) $\left[P\left(h_{i}\right)\right]^{n}=\left[P\left(h_{j}\right)\right]^{m}$
(ii) $P\left(h_{i}\right)=P\left(h_{1}\right)=\ldots=P\left(h_{n}\right)$
(iii) $P\left(h_{j}\right)=P\left(h_{n+1}\right)=\ldots=P\left(h_{n+m}\right)$
(iv) $P\left(h_{i} \mid e_{i}\right)=P\left(h_{1} \mid e_{i}\right)=\ldots=P\left(h_{n} \mid e_{i}\right)$
(v) $P\left(h_{j} \mid e_{j}\right)=\mathrm{P}\left(h_{n+1} \mid e_{j}\right)=\ldots=\mathrm{P}\left(h_{n+m} \mid e_{j}\right)$

It follows from (ii) and (iv) that $J\left(h_{i}, e_{i}\right)=J\left(h_{1}, e_{i}\right)=\ldots=J\left(h_{n}, e_{i}\right)$. So, by SCR:

$$
\begin{equation*}
J\left(h_{i}, e_{i}\right)=J\left(h_{1} \wedge \ldots \wedge h_{n}, e_{i}\right) \tag{1}
\end{equation*}
$$

Similarly, it follows from (iii) and (v) that $J\left(h_{j}, e_{j}\right)=J\left(h_{n+1}, e_{j}\right)=\ldots=J\left(h_{n+m}, e_{j}\right)$. So, by SCR:

$$
\begin{equation*}
J\left(h_{j}, e_{j}\right)=J\left(h_{n+1} \wedge \ldots \wedge h_{n+m}, e_{j}\right) \tag{2}
\end{equation*}
$$

[^8]Since h_{1}, \ldots, h_{n} are probabilistically independent, $P\left(h_{1} \wedge \ldots \wedge h_{n}\right)=\left[P\left(h_{i}\right)\right]^{n}$ from (ii). Similarly, since h_{n+1}, \ldots, h_{n+m} are probabilistically independent, $P\left(h_{n+1} \wedge \ldots \wedge h_{n+m}\right)=$ $\left[P\left(h_{j}\right)\right]^{m}$ from (iii). So, it follows from (i) that:

$$
\begin{equation*}
P\left(h_{1} \wedge \ldots \wedge h_{n}\right)=P\left(h_{n+1} \wedge \ldots \wedge h_{n+m}\right) \tag{3}
\end{equation*}
$$

Since h_{1}, \ldots, h_{n} are probabilistically independent conditionally on $e_{i}, P\left(h_{1} \wedge \ldots \wedge h_{n} \mid e_{i}\right)=$ $\left[P\left(h_{i} \mid e_{i}\right)\right]^{n}=\left[P\left(h_{i}\right)\right]^{n}$ from (iv) and from the condition $P\left(h_{i} \mid e_{i}\right)=P\left(h_{i}\right)$ of the theorem. Similarly, since h_{n+1}, \ldots, h_{n+m} are probabilistically independent conditionally on $e_{j}, P\left(h_{n+1}\right.$ $\left.\wedge \ldots \wedge h_{n+m} \mid e_{j}\right)=\left[P\left(h_{j} \mid e_{j}\right)\right]^{m}=\left[P\left(h_{j}\right)\right]^{m}$ from (v) and from the condition $P\left(h_{j} \mid e_{j}\right)=P\left(h_{j}\right)$ of the theorem. So, it follows from (i) that:

$$
\begin{equation*}
P\left(h_{1} \wedge \ldots \wedge h_{n} \mid e_{i}\right)=P\left(h_{n+1} \wedge \ldots \wedge h_{n+m} \mid e_{j}\right) \tag{4}
\end{equation*}
$$

From (3) and (4) it follows that:

$$
\begin{equation*}
J\left(h_{1} \wedge \ldots \wedge h_{n}, e_{i}\right)=J\left(h_{n+1} \wedge \ldots \wedge h_{n+m}, e_{j}\right) \tag{5}
\end{equation*}
$$

From (1), (2) and (5) it follows that $J\left(h_{i}, e_{i}\right)=J\left(h_{j}, e_{j}\right)$.

2. Equi-Maximality

Suppose $J(h, e)$ is a justification measure (i.e. a confirmation measure that satisfies GCR and hence SCR). Then, for any two pairs $\left\langle h_{i}, e_{i}\right\rangle$ and $\left\langle h_{j}, e_{j}\right\rangle$, if $P\left(h_{i} \mid e_{i}\right)=P\left(h_{j} \mid e_{j}\right)=1$, then $J\left(h_{i}, e_{i}\right)=J\left(h_{j}, e_{j}\right)$.

Proof:

Assume without loss of generality that $P\left(h_{i}\right) \leq P\left(h_{j}\right)$. It follows from the condition $P\left(h_{i} \mid e_{i}\right)$ $=P\left(h_{j} \mid e_{j}\right)$ of the theorem that:

$$
\begin{equation*}
J\left(h_{i}, e_{i}\right) \geq J\left(h_{j}, e_{j}\right) \tag{1}
\end{equation*}
$$

since the confirmation measure $J(h, e)=F(P(h \mid e), P(h))$ is a decreasing function of $P(h)$. Choose probabilistically independent propositions h_{1}, \ldots, h_{n} such that:
(i) $\left[P\left(h_{j}\right)\right]^{n} \leq P\left(h_{i}\right)$
(ii) $\mathrm{P}\left(h_{j}\right)=\mathrm{P}\left(h_{1}\right)=\ldots=\mathrm{P}\left(h_{n}\right)$

It follows from (ii) and $P\left(h_{1} \mid h_{1} \wedge \ldots \wedge h_{\mathrm{n}}\right)=\ldots=P\left(h_{n} \mid h_{1} \wedge \ldots \wedge h_{n}\right)=1$ that $J\left(h_{1}, h_{1} \wedge \ldots\right.$ $\left.\wedge h_{n}\right)=\ldots=J\left(h_{n}, h_{1} \wedge \ldots \wedge h_{n}\right)$. But h_{1}, \ldots, h_{n} are probabilistically independent, and h_{1}, \ldots, h_{n} are also trivially probabilistically independent conditionally on $h_{1} \wedge \ldots \wedge h_{n}$ because $P\left(h_{1} \mid h_{1} \wedge \ldots \wedge h_{n}\right)=\ldots=P\left(h_{n} \mid h_{1} \wedge \ldots \wedge h_{n}\right)=1$. So, by SCR:

$$
\begin{equation*}
J\left(h_{1}, h_{1} \wedge \ldots \wedge h_{n}\right)=J\left(h_{1} \wedge \ldots \wedge h_{n}, h_{1} \wedge \ldots \wedge h_{n}\right) \tag{2}
\end{equation*}
$$

Also, it follows from the condition $P\left(h_{j} \mid e_{j}\right)=1$ of the theorem and from $P\left(h_{1} \mid h_{1} \wedge \ldots \wedge h_{n}\right)$ $=1$ that $P\left(h_{j} \mid e_{j}\right)=P\left(h_{1} \mid h_{1} \wedge \ldots \wedge h_{n}\right)$. Further, $P\left(h_{j}\right)=P\left(h_{1}\right)$ from (ii). So,

$$
\begin{equation*}
J\left(h_{j}, e_{j}\right)=J\left(h_{1}, h_{1} \wedge \ldots \wedge h_{n}\right) \tag{3}
\end{equation*}
$$

It follows from (2) and (3) that:

$$
\begin{equation*}
J\left(h_{j}, e_{j}\right)=J\left(h_{1} \wedge \ldots \wedge h_{n}, h_{1} \wedge \ldots \wedge h_{n}\right) \tag{4}
\end{equation*}
$$

Meanwhile, it follows from (ii) that $P\left(h_{1} \wedge \ldots \wedge h_{n}\right)=\left[P\left(h_{j}\right)\right]^{n}$ since h_{1}, \ldots, h_{n} are probabilistically independent. But $\left[\mathrm{P}\left(h_{\mathrm{j}}\right)\right]^{n} \leq \mathrm{P}\left(h_{\mathrm{i}}\right)$ from (i). So,

$$
\begin{equation*}
P\left(h_{1} \wedge \ldots \wedge h_{n}\right) \leq P\left(h_{i}\right) \tag{5}
\end{equation*}
$$

while it follows from the condition $P\left(h_{i} \mid e_{i}\right)=1$ of the theorem and from $P\left(h_{1} \wedge \ldots \wedge h_{n} \mid h_{1}\right.$ $\left.\wedge \ldots \wedge h_{n}\right)=1$ that:

$$
\begin{equation*}
P\left(h_{1} \wedge \ldots \wedge h_{n} \mid h_{1} \wedge \ldots \wedge h_{n}\right)=P\left(h_{i} \mid e_{i}\right) \tag{6}
\end{equation*}
$$

It follows from (5) and (6) that:

$$
\begin{equation*}
J\left(h_{1} \wedge \ldots \wedge h_{n}, h_{1} \wedge \ldots \wedge h_{n}\right) \geq J\left(h_{i}, e_{i}\right) \tag{7}
\end{equation*}
$$

since the confirmation measure $J(h, e)$ is a decreasing function of $P(h)$. It follows from (4) and (7) that:

$$
\begin{equation*}
J\left(h_{j}, e_{j}\right) \geq J\left(h_{i}, e_{i}\right) \tag{8}
\end{equation*}
$$

It follows from (1) and (8) that $J\left(h_{i}, e_{i}\right)=J\left(h_{j}, e_{j}\right)$.

3. General Conjunction Requirement

Suppose h_{1}, \ldots, h_{n} are probabilistically independent (both unconditionally and conditionally on e) and $P\left(h_{1}\right), \ldots, P\left(h_{n}\right)<1$. Then, (i) if $J\left(h_{1}, e\right), \ldots, J\left(h_{n}, e\right) \geq t$, then $J\left(h_{1}\right.$ $\left.\wedge \ldots \wedge h_{n}, e\right) \geq t$; (ii) if $J\left(h_{1}, e\right), \ldots, J\left(h_{n}, e\right)<t$, then $J\left(h_{1} \wedge \ldots \wedge h_{n}, e\right)<t$.

Proof:

$$
J\left(h_{1} \wedge \ldots \wedge h_{n}, e\right)=\frac{\log _{2} P\left(h_{1} \wedge \ldots \wedge h_{n} \mid e\right)-\log _{2} P\left(h_{1} \wedge \ldots \wedge h_{n}\right)}{-\log _{2} P\left(h_{1} \wedge \ldots \wedge h_{n}\right)}
$$

$$
\begin{align*}
& =\frac{\log _{2} \prod_{i=1}^{n} P\left(h_{i} \mid e\right)-\log _{2} \prod_{i=1}^{n} P\left(h_{i}\right)}{-\log _{2} \prod_{i=1}^{n} P\left(h_{i}\right)} \quad \text { [from independence] } \\
& =\frac{\sum_{i=1}^{n} \log _{2} P\left(h_{i} \mid e\right)-\sum_{i=1}^{n} \log _{2} P\left(h_{i}\right)}{-\sum_{i=1}^{n} \log _{2} P\left(h_{i}\right)} \\
& =\frac{\sum_{i=1}^{n}\left[\log _{2} P\left(h_{i} \mid e\right)-\log _{2} P\left(h_{i}\right)\right]}{\sum_{i=1}^{n}-\log _{2} P\left(h_{i}\right)} \tag{1}
\end{align*}
$$

(i) Suppose $J\left(h_{1}, e\right), \ldots, J\left(h_{n}, e\right) \geq t$. Then, for $i=1, \ldots, n$, there is some $\alpha_{i} \geq 0$ such that:

$$
\begin{aligned}
J\left(h_{i}, e\right) & =\frac{\log _{2} P\left(h_{i} \mid e\right)-\log _{2} P\left(h_{i}\right)}{-\log _{2} P\left(h_{i}\right)} \\
& =t+\alpha_{i}
\end{aligned}
$$

So,

$$
\begin{equation*}
\log _{2} P\left(h_{i} \mid e\right)-\log _{2} P\left(h_{i}\right)=\left(t+\alpha_{i}\right)\left[-\log _{2} P\left(h_{i}\right)\right] \tag{2}
\end{equation*}
$$

By plugging (2) into (1) above, we obtain:

$$
\begin{aligned}
J\left(h_{1} \wedge \ldots \wedge h_{n}, e\right) & =\frac{\sum_{i=1}^{n}\left(t+\alpha_{i}\right)\left[-\log _{2} P\left(h_{i}\right)\right]}{\sum_{i=1}^{n}-\log _{2} P\left(h_{i}\right)} \\
& =\frac{t \sum_{i=1}^{n}-\log _{2} P\left(h_{i}\right)+\sum_{i=1}^{n} \alpha_{i}\left[-\log _{2} P\left(h_{i}\right)\right]}{\sum_{i=1}^{n}-\log _{2} P\left(h_{i}\right)} \\
& =t+\frac{\sum_{i=1}^{n} \alpha_{i}\left[-\log _{2} P\left(h_{i}\right)\right]}{\sum_{i=1}^{n}-\log _{2} P\left(h_{i}\right)} \\
& \geq t \quad\left[\text { from } \alpha_{i} \geq 0 \text { and } P\left(h_{i}\right)<1\right]
\end{aligned}
$$

(ii) Suppose next $J\left(h_{1}, e\right), \ldots, J\left(h_{n}, e\right)<t$. Then, for $i=1, \ldots, n$, there is some $\beta_{i}>0$ such that:

$$
\begin{aligned}
J\left(h_{i}, e\right) & =\frac{\log _{2} P\left(h_{i} \mid e\right)-\log _{2} P\left(h_{i}\right)}{-\log _{2} P\left(h_{i}\right)} \\
& =t-\beta_{i}
\end{aligned}
$$

So,

$$
\begin{equation*}
\log _{2} P\left(h_{i} \mid e\right)-\log _{2} P\left(h_{i}\right)=\left(t-\beta_{i}\right)\left[-\log _{2} P\left(h_{i}\right)\right] \tag{3}
\end{equation*}
$$

By plugging (3) into (1) above, we obtain:

$$
\begin{aligned}
J\left(h_{1} \wedge \ldots \wedge h_{n}, e\right) & =\frac{\sum_{i=1}^{n}\left(t-\beta_{i}\right)\left[-\log _{2} P\left(h_{i}\right)\right]}{\sum_{i=1}^{n}-\log _{2} P\left(h_{i}\right)} \\
& =\frac{t \sum_{i=1}^{n}-\log _{2} P\left(h_{i}\right)-\sum_{i=1}^{n} \beta_{i}\left[-\log _{2} P\left(h_{i}\right)\right]}{\sum_{i=1}^{n}-\log _{2} P\left(h_{i}\right)} \\
& =t-\frac{\sum_{i=1}^{n} \beta_{i}\left[-\log _{2} P\left(h_{i}\right)\right]}{\sum_{i=1}^{n}-\log _{2} P\left(h_{i}\right)}
\end{aligned}
$$

$$
<t
$$

[from $\beta_{i}>0$ and $\left.P\left(h_{i}\right)<1\right]$

4. Ordinal Equivalence

Suppose $J_{1}(h, e)=F_{1}(P(h \mid e), P(h))$ and $J_{2}(h, e)=F_{2}(P(h \mid e), P(h))$ are both continuous functions that are measures of justification. Then, they are ordinally equivalent to each other, i.e. for any two pairs $\left\langle h_{i}, e_{i}\right\rangle$ and $\left.\left\langle h_{j}, e_{j}\right\rangle, J_{1}\left(h_{i}, e_{i}\right)</=/\right\rangle J_{1}\left(h_{j}, e_{j}\right)$ if and only if $J_{1}\left(h_{i}, e_{i}\right)</=/>J_{1}\left(h_{j}, e_{j}\right)$.

Proof:

Let $\log _{P\left(h_{i}\right)} P\left(h_{j}\right)=r$, so that $\left[P\left(h_{i}\right)\right]^{r}=P\left(h_{j}\right) . r>0$ because $0<P\left(h_{i}\right), P\left(h_{j}\right)<1$. Since $J_{1}(h, e)=F_{1}(P(h \mid e), P(h))$ and $J_{2}(h, e)=F_{2}(P(h \mid e), P(h))$ are continuous functions, it suffices to show that the claim holds for any two pairs $\left\langle h_{i}, e_{i}\right\rangle$ and $\left\langle h_{j}, e_{j}\right\rangle$ such that $\left[P\left(h_{i}\right)\right]^{q}=P\left(h_{j}\right)$ where q is a positive rational number. Let $\langle m, n\rangle$ be the smallest pair of positive integers such that $n / m=q$, so that $\left[P\left(h_{i}\right)\right]^{n}=\left[P\left(h_{j}\right)\right]^{m}$. Choose probabilistically independent (both unconditionally and conditionally on $e_{i}{ }^{*}$) propositions h_{1}, \ldots, h_{n}, and probabilistically independent (both unconditionally and conditionally on e_{j}^{*}) propositions h_{n+1}, \ldots, h_{n+m} such that: ${ }^{16}$
(i) $\left[P\left(h_{i}\right)\right]^{n}=\left[P\left(h_{j}\right)\right]^{m}$
(ii) $P\left(h_{i}\right)=P\left(h_{1}\right)=\ldots=P\left(h_{n}\right)$
(iii) $P\left(h_{j}\right)=P\left(h_{n+1}\right)=\ldots=P\left(h_{n+m}\right)$
(iv) $P\left(h_{i} \mid e_{i}\right)=P\left(h_{1} \mid e_{i}^{*}\right)=\ldots=P\left(h_{n} \mid e_{i}^{*}\right)$
(v) $P\left(h_{j} \mid e_{j}\right)=P\left(h_{n+1} \mid e_{j}^{*}\right)=\ldots=P\left(h_{n+m} \mid e_{j}^{*}\right)$

[^9]It follows from (ii) and (iv) that $J_{1}\left(h_{i}, e_{i}\right)=J_{1}\left(h_{1}, e_{i}^{*}\right)=\ldots=J_{1}\left(h_{n}, e_{i}^{*}\right)$. So, by SCR:

$$
\begin{equation*}
J_{1}\left(h_{i}, e_{i}\right)=J_{1}\left(h_{1} \wedge \ldots \wedge h_{n}, e_{i}^{*}\right) \tag{1}
\end{equation*}
$$

Similarly, it follows from (iii), (v) and SCR that:

$$
\begin{equation*}
J_{1}\left(h_{j}, e_{j}\right)=J_{1}\left(h_{n+1} \wedge \ldots \wedge h_{n+m}, e_{j}^{*}\right) \tag{2}
\end{equation*}
$$

Since h_{1}, \ldots, h_{n} are probabilistically independent, it follows from (ii) that $P\left(h_{1} \wedge \ldots \wedge h_{n}\right)$ $=\left[P\left(h_{i}\right)\right]^{n}$. Similarly, since h_{n+1}, \ldots, h_{n+m} are probabilistically independent, it follows from (iii) that $P\left(h_{n+1} \wedge \ldots \wedge h_{n+m}\right)=\left[P\left(h_{j}\right)\right]^{m}$. But $\left[P\left(h_{i}\right)\right]^{n}=\left[P\left(h_{j}\right)\right]^{m}$ from (i). So,

$$
\begin{equation*}
P\left(h_{1} \wedge \ldots \wedge h_{n}\right)=P\left(h_{n+1} \wedge \ldots \wedge h_{n+m}\right) \tag{3}
\end{equation*}
$$

Meanwhile, since h_{1}, \ldots, h_{n} are probabilistically independent conditionally on $e_{i}{ }^{*}$, it follows from (iv) that $P\left(h_{1} \wedge \ldots \wedge h_{n} \mid e_{i}^{*}\right)=\left[P\left(h_{i} \mid e_{i}\right)\right]^{n}$. Similarly, since h_{n+1}, \ldots, h_{n+m} are probabilistically independent conditionally on e_{j}^{*}, it follows from (v) that $P\left(h_{n+1} \wedge \ldots \wedge\right.$ $\left.h_{n+m} \mid e_{j}^{*}\right)=\left[P\left(h_{j} \mid e_{j}\right)\right]^{m}$. So,

$$
\begin{align*}
& P\left(h_{1} \wedge \ldots \wedge h_{n} \mid e_{i}^{*}\right)</=/>P\left(h_{n+1} \wedge \ldots \wedge h_{n+m} \mid e_{j} *\right) \\
& \text { iff }\left[P\left(h_{i} \mid e_{i}\right)\right]^{n}</=/>\left[P\left(h_{j} \mid e_{j}\right)\right]^{m} \tag{4}
\end{align*}
$$

Since $J_{1}(h, e)=F_{1}(P(h \mid e), P(h))$ is an increasing function of $P(h \mid e)$, it follows from (3) and (4) that:

$$
\begin{align*}
& J_{1}\left(h_{1} \wedge \ldots \wedge h_{n}, e_{i}^{*}\right)</=/>J_{1}\left(h_{n+1} \wedge \ldots \wedge h_{n+m}, e_{j}^{*}\right) \\
& \text { iff }\left[P\left(h_{i} \mid e_{i}\right)\right]^{n}</=/>\left[P\left(h_{j} \mid e_{j}\right)\right]^{m} \tag{5}
\end{align*}
$$

It follows from (1), (2) and (5) that:

$$
\begin{equation*}
J_{1}\left(h_{i}, e_{i}\right)</=/>J_{1}\left(h_{j}, e_{j}\right) \text { iff }\left[P\left(h_{i} \mid e_{i}\right)\right]^{n}</=/>\left[P\left(h_{j} \mid e_{j}\right)\right]^{m} \tag{6}
\end{equation*}
$$

By the same reasoning,

$$
\begin{equation*}
J_{2}\left(h_{i}, e_{i}\right)</=/>J_{2}\left(h_{j}, e_{j}\right) \text { iff }\left[P\left(h_{i} \mid e_{i}\right)\right]^{n}</=/>\left[P\left(h_{j} \mid e_{j}\right)\right]^{m} \tag{7}
\end{equation*}
$$

It follows from (6) and (7) that:

$$
J_{1}\left(h_{i}, e_{i}\right)</=/>J_{1}\left(h_{j}, e_{j}\right) \text { iff } J_{2}\left(h_{i}, e_{i}\right)</=/>J_{2}\left(h_{j}, e_{j}\right)
$$

5. Conjunction Theorem

Suppose $P\left(h_{i}\right), P\left(h_{j} \mid h_{i}\right) \neq 1$. Then, $J\left(h_{i} \wedge h_{j}, e\right)>J\left(h_{i}, e\right)$ iff $J\left(h_{j}, e \mid h_{i}\right)>J\left(h_{i}, e\right) .{ }^{17}$
Lemma 1: $I(x \wedge y, z)=I(x, z \mid y)+I(y, z)$
Lemma 2: $I(x \wedge y)=I(x \mid y)+I(y)$.
Corollary: If (i) $P\left(h_{1} \mid e\right)<P\left(h_{1}\right)$ and (ii) $P\left(h_{2} \mid e \wedge h_{1}\right)>P\left(h_{2} \mid h_{1}\right)$, then $J\left(h_{1} \wedge h_{2} \mid e\right)>J\left(h_{1} \mid e\right)$.

Proof of Lemma 1:

$$
\begin{aligned}
I(x \wedge y, z) & =\log _{2} P(x \wedge y \mid z)-\log _{2} P(x \wedge y) \\
& =\log _{2} P(x \mid y \wedge z) P(y \mid z)-\log _{2} P(x \mid y) P(y) \\
& =\left[\log _{2} P(x \mid y \wedge z)+\log _{2} P(y \mid z)\right]-\left[\log _{2} P(x \mid y)+\log _{2} P(y)\right] \\
& =\left[\log _{2} P(x \mid y \wedge z)-\log _{2} P(x \mid y)\right]+\left[\log _{2} P(y \mid z)-\log _{2} P(y)\right] \\
& =I(x, z \mid y)+I(y, z)
\end{aligned}
$$

Proof of Lemma 2:

$$
\begin{aligned}
I(x \wedge y) & =-\log _{2} P(x \wedge y) \\
& =-\log _{2} P(x \mid y) P(y) \\
& =-\left[\log _{2} P(x \mid y)+\log _{2} P(y)\right] \\
& =I(x \mid y)+I(y)
\end{aligned}
$$

Proof of the Conjunction Theorem:

$$
\begin{aligned}
J\left(h_{i} \wedge h_{j}, e\right)-J\left(h_{i}, e\right) & =\frac{I\left(h_{i} \wedge h_{j}, e\right)}{I\left(h_{i} \wedge h_{j}\right)}-\frac{I\left(h_{i}, e\right)}{I\left(h_{i}\right)} \\
& =\frac{I\left(h_{j}, e \mid h_{i}\right)+I\left(h_{i}, e\right)}{I\left(h_{i} \mid h_{j}\right)+I\left(h_{i}\right)}-\frac{I\left(h_{i}, e\right)}{I\left(h_{i}\right)} \quad[\text { from Lemmas } 1 \text { and 2] } \\
& =\frac{\left[I\left(h_{j}, e \mid h_{i}\right)+I\left(h_{i}, e\right)\right] I\left(h_{i}\right)-I\left(h_{i}, e\right)\left[I\left(h_{j} \mid h_{i}\right)+I\left(h_{i}\right)\right]}{\left[I\left(h_{j} \mid h_{i}\right)+I\left(h_{i}\right)\right] I\left(h_{i}\right)} \\
& =\frac{I\left(h_{j}, e \mid h_{i}\right) I\left(h_{i}\right)-I\left(h_{i}, e\right) I\left(h_{j} \mid h_{i}\right)}{\left[I\left(h_{j} \mid h_{i}\right)+I\left(h_{i}\right)\right] I\left(h_{i}\right)}
\end{aligned}
$$

But $I\left(h_{j} \mid h_{i}\right), I\left(h_{i}\right)>0$ from the assumption $P\left(h_{i}\right), P\left(h_{j} \mid h_{i}\right) \neq 1$. So,

$$
J\left(h_{i} \wedge h_{j} \mid e\right)>J\left(h_{1} \mid e\right) \text { iff } I\left(h_{j}, e \mid h_{i}\right) I\left(h_{i}\right)>I\left(h_{1}, e\right) I\left(h_{j} \mid h_{i}\right)
$$

[^10]\[

$$
\begin{aligned}
& \text { iff } \frac{I\left(h_{j}, e \mid h_{i}\right)}{I\left(h_{j} \mid h_{i}\right)}>\frac{I\left(h_{i}, e\right)}{I\left(h_{i}\right)} \\
& \text { iff } J\left(h_{j}, e \mid h_{i}\right)>J\left(h_{i}, e\right)
\end{aligned}
$$
\]

Proof of the Corollary:

$I\left(h_{1}, e\right)=\log _{2} P\left(h_{1} \mid e\right)-\log _{2} P\left(h_{1}\right)<0$ from (i), while $I\left(h_{1}\right)>0$ from the assumption. So,

$$
\begin{equation*}
J\left(h_{1}, e\right)=\frac{I\left(h_{1}, e\right)}{I\left(h_{1}\right)}<0 \tag{1}
\end{equation*}
$$

$I\left(h_{2}, e \mid h_{1}\right)=\log _{2} P\left(h_{2} \mid e \wedge h_{1}\right)-\log _{2} P\left(h_{2} \mid h_{1}\right)>0$ from (ii), while $I\left(h_{2} \mid h_{1}\right)>0$ from the assumption. So,

$$
\begin{equation*}
J\left(h_{1}, e \mid h_{1}\right)=\frac{I\left(h_{1}, e \mid h_{1}\right)}{I\left(h_{2} \mid h_{1}\right)}>0 \tag{2}
\end{equation*}
$$

It follows from (1) and (2) that:

$$
\begin{equation*}
J\left(h_{2}, e \mid h_{1}\right)>J\left(h_{1}, e\right) \tag{3}
\end{equation*}
$$

It follows from (3) by the Conjunction Theorem that $J\left(h_{1} \wedge h_{2} \mid e\right)>J\left(h_{1}, e\right)$.

References

Atkinson, D., 2009. "Confirmation and Justification," Synthese, this number.
Crupi, V., Fitelson, B., and Tentori, K. 2008. "Probability, Confirmation, and the Conjunction Fallacy," Thinking and Reasoning 14, pp. 182-199.
Crupi, V., Tentori, K., and Gonzalez, M. 2007. "On Bayesian Measures of Evidential Support: Theoretical and Empirical Issues," Philosophy of Science 74, pp. 229252.

Fitelson, B. 1999. "The Plurality of Bayesian Measures of Confirmation and the Problem of Measure Sensitivity," Philosophy of Science 66, pp. S362-S378.
Fitelson, B. 2001. Studies in Bayesian Confirmation Theory. Ph.D. thesis, University of Wisconsin-Madison.
Gigerenzer, G. 1991. "How to Make Cognitive Ilusions Disappear: Beyond Heuristics and Biases," European Review of Social Psychology 2, pp. 83-115.
Hertwig, R. and Gigerenzer, G. 1999. "The 'Conjunction Fallacy' Revisited: How Intelligent Inferences Look Like Reasoning Errors," Journal of Behavioral Decision Making 12, pp. 275-305.
Huber, F. 2008a. "Assessing Theories, Bayes Style," Synthese 161, pp. 89-118.

Huber, F. 2008b. "Hempel's Logic of Confirmation," Philosophical Studies 139, pp. 181189.

Kyburg, H. 1961. Probability and the Logic of Rational Belief (Middletown: Wesleyan University Press)
Makinson, D. C. 1965. "The Paradox of the Preface," Analysis 25, pp. 205-207.
Marr, D. 1982. Vision (New York: W. H. Freeman and Company).
Meijs, W. 2005. Probabilistic Measures of Coherence. Ph. D. dissertation, Erasmus University, Rotterdam.
Reichenbach, H. 1956. The Direction of Time (Berkeley: University of California Press).
Shafir, E., Smith, E., and Osherson, D. "Typicality and Reasoning Fallacy," Memory \& Cognition 18, pp. 229-239.
Shogenji, T. 1999. "Is Coherence Truth Conducive?" Analysis 59, pp. 338-345.
Sides, A. Osherson, D., Bonini, N., and Viale, R. 2002. "On the Reality of the Conjunction Fallacy," Memory \& Cognition 30, pp. 191-198.
Tversky, A. and Kahneman, D. 1983. "Extensional Versus Intuitive Reasoning: The Conjunction Fallacy in Probability Judgment," Psychological Review 90: 4, pp. 293-315.
Williamson, T. 2000. Knowledge and Its Limits (Oxford: Oxford University Press).

[^0]: ${ }^{1}$ The evidence e consists of e_{1}, \ldots, e_{n} that respectively support h_{1}, \ldots, h_{n}. The propositions h_{1}, \ldots, h_{n} are still probabilistically independent on condition of e provided e_{1}, \ldots, e_{n} are probabilistically independent. Note that h_{1}, \ldots, h_{n} are not probabilistically independent on condition of $\neg e$ even if e_{1}, \ldots, e_{n} are probabilistically independent, so the Fork Theorem (Reichenbach 1956, Section 19) does not apply to the present case.

[^1]: ${ }^{2}$ See Huber (2008a; 2008b) for a similar two-factor approach to the formal assessment of scientific theories. Huber calls the two factors "plausibility" and "informativeness".

[^2]: ${ }^{3}$ The obtained measure $C_{\mathrm{X}} *(h, e)=C_{\mathrm{X}}(h, e)-k$ is ordinally equivalent to the original measure $C_{\mathrm{X}}(h, e)$, i.e. for any two pairs $\left\langle h_{1}, e_{1}\right\rangle$ and $\left\langle h_{2}, e_{2}\right\rangle, C_{\mathrm{X}} *\left(h_{1}, e_{1}\right)>/=/\left\langle C_{\mathrm{X}} *\left(h_{2}, e_{2}\right)\right.$ if and only if $\left.C_{\mathrm{X}}\left(h_{1}, e_{1}\right)\right\rangle /=/\left\langle C_{\mathrm{X}}\left(h_{2}\right.\right.$, e_{2}), respectively. For many purposes, ordinally equivalent measures are essentially the same measure.

[^3]: ${ }^{4}$ Equi-neutrality of epistemic justification explains the intuition that in the absence of some inside information we cannot assert that a given lottery ticket does not win even if the probability for that proposition is extremely high (Williamson 2000, p. 246). The reason is that when there is no relevant evidence beyond the background knowledge, there is no positive justification at all for the proposition, no matter how high its prior probability is.
 ${ }^{5}$ See Fitelson (1999, 2001), Crupi, Tentori, and Gonzalez (2007) for the growing list of confirmation measures.

[^4]: ${ }^{6}$ We assume that the proposition h is not already certain, so it cannot the case that $P(h \mid e)=P(h)=1$ to make $J(h, e)$ both neutral and maximal.
 ${ }^{7}$ This is the positive half of Crupi, Tentori, and Gonzalez's (2007) measure Z of confirmation.

[^5]: ${ }^{8}$ The assumption that $P(h) \neq 1$ (see note 6 above) ensures that the denominator $-\log _{2} P(h)$ is not zero.
 ${ }^{9}$ See Appendix 4 for proof. Atkinson (2009) obtained the same result independently with an illuminating alternative proof.
 ${ }^{10}$ Crupi, Tentori, and Gonzalez (2007) point out that many known measures of confirmation become ordinally equivalent to their preferred measure Z (see note 7 above) when they are "normalized," but the \log ratio measure is not one of them.
 ${ }^{11} I(x, y)$ is called "mutual" information because it follows from the definition that $I(x, y)=I(y, x)$.

[^6]: ${ }^{12}$ See Meijs (2005) for a survey.
 ${ }^{13}$ That is to say, $P\left(e \mid h_{1} \wedge h_{2}\right)>P\left(e \mid h_{1}\right)$ iff $S\left(h_{1} \wedge h_{2}, e\right)>S\left(h_{1}, e\right)$ iff $C_{\mathrm{R}}\left(h_{1} \wedge h_{2}, e\right)>C_{\mathrm{R}}\left(h_{1}, e\right)$ (proof omitted).

[^7]: ${ }^{14}$ An earlier version of this paper was presented at the workshop Probability, Confirmation and Fallacies in Leuven, Belgium, in April 2008. I would like to thank its organizers Jeanne Peijnenburg, David Atkinson and Igor Douven, and the participants of the workshop for many stimulating discussions. Special thanks to David Atkinson and Branden Fitelson for valuable post-conference correspondence.

[^8]: ${ }^{15}$ For example, think of n urns of colored marbles, for each of which the probability of drawing a red marble is the same as $P\left(h_{i}\right)$, and m urns of colored marbles, for each of which the probability of drawing a red marble is the same as $P\left(h_{j}\right)$. To satisfy the conditions $P\left(h_{i} \mid e_{i}\right)=P\left(h_{i}\right)$ and $P\left(h_{j} \mid e_{j}\right)=P\left(h_{j}\right)$ of the theorem (in addition to (i) through (v)), the n urns must have nothing to do with e_{i} and the m urns must have nothing to do with e_{j}.

[^9]: ${ }^{16}$ For example, think of n urns of colored marbles, for each of which the probability of drawing a red marble is the same as $P\left(h_{i}\right)$, but given the evidence e_{i}^{*} that the n urns belong to a certain type, the probability of drawing a red marble is the same as $P\left(h_{i} \mid e_{i}\right)$. Similarly, think of m urns of colored marbles, for each of which the probability of drawing a red marble is the same as $P\left(h_{\mathrm{j}}\right)$, but given the evidence $e_{j}{ }^{*}$ that the m urns belong to a certain other type, the probability of drawing a red marble is the same as $P\left(h_{j} \mid e_{j}\right)$.

[^10]: ${ }^{17} J(x, y \mid z)$ def $=I(x, y \mid z) / I(x \mid z)$ is the degree of justification for the proposition x given the evidence y on the background $z . I(x, y \mid z)_{\text {def }}=\log _{2} P(x \mid y \wedge z)-\log _{2} P(x \mid z)$ is the mutual information of x given y on the background $z . I(x \mid z)$ def $f-\log _{2} P(x \mid z)$ is the self information of x on the background z.

