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This paper describes a formal measure of epistpsiidication motivated by the dual
goal of cognition, which is to increase true baliahd reduce false beliefs. From this
perspective the degree of epistemic justificatioowd not be the conditional probability
of the proposition given the evidence, as it is oamly thought. It should be determined
instead by the combination of the conditional piolity and the prior probability. This is
also true of the degree of incremental confirmgtaond | argue that any measure of
epistemic justification is also a measure of inaatal confirmation. However, the
degree of epistemic justification must meet an taltal condition, and all known
measures of incremental confirmation fail to meédtdescribe this additional condition
as well as a measure that meets it. The paperihaies the measure to the conjunction
fallacy and proposes an explanation of the fallacy.

1. Justification and Confidence

This paper examines the degree of epistemic joatin (hereafter simply “degree of
justification”) for accepting or rejecting propasits from the perspective of the dual
goal of cognition, which is to increase true baliahd reduce false beliefs. To be a little
more precise, when we add propositions to our lmédheliefs, the dual goal is to
increase true beliefs but not to increase falsietseMWhen we remove propositions from
our body of beliefs, the dual goal is to reduceddleliefs but not to reduce true beliefs.
Whether we are adding or removing propositionsgibed must have two components for
obvious reasons. It is easy to increase true elgdlieve everything you can think of,
including negations of what you already believel aaver abandon any beliefs. But, of
course, we end up with numerous false beliefs, wisainacceptable. It is also easy to
reduce false beliefs: Abandon all beliefs and dtorin any new beliefs. But then we end
up with no true beliefs, which is also unacceptablee challenge is to balance the two
demands. I will focus on cases of adding propas#tim our body of beliefs, which is
more straightforward than removing propositionsrfra tangled web of existing beliefs.
The relevant goal of cognition is then to incretige beliefs but not to increase false
beliefs. In this section | argue that when we ustderd epistemic justification from this
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perspective, we must reject the common view thettigree of justification for
accepting a proposition is its probability.

To express the common view a little more precidiky,degree of justification for
accepting the propositidmgiven the evidence (based on the background knowledge
b—this is suppressed in the following discussiorthesconditional probability df given
e, or P(hle). It may seem that this view can take accounhefdual goal of cognition. If
we only care about increasing true beliefs, welseprobabilistic threshold of
justification at the lowest possible level, viz. s justified in acceptingif and only if
P(hje) = 0, and accept any propositions we can think ofzdfonly care about not
increasing false beliefs, we set the thresholdekegt the highest possible level, viz.
P(hle) = 1, and reject all but absolutely certain proposii Since neither approach
serves the dual goal of cognition well, we setttireshold somewhere in between,
depending on our degree of risk aversion—perhapsrisideration of the pragmatic
context. However, it is well known that this viesvin conflict with an intuitive principle
about conjunction, viz., if we are justified in apting each conjunct, then we are
justified in accepting their conjunction. The cactflarises because it is possible for any
non-trivial probabilistic thresholt(i.e.t # 0, 1) thatP(hi|e) > t, ..., P(hyJe) =t butP(h, O
... Ohple) <t. When this happens, and if we apply the commow wakjustification, we
are justified in accepting each of the propositibps.., h, but not their conjunctioh; [

... Ohn. This is a violation of the intuitive principle h€ lottery paradox (Kyburg 1961)
and the preface paradox (Makinson 1965) are gbastrifitions of the difficulty, but |
want to present the problem in a different waydeouls on what | take to be the core issue.

Consider the séi = {hy, ..., h,} of probabilistically independent propositions. To
put it informally, these propositions have nothioglo with each other. The proposition
h; could be about the demise of the Roman Empirdevthé propositiom, could be
about the salmon’s immune system, and so forthis lasisume that they remain
probabilistically independent given the body ofalhilable evidencethat is relevant to
these propositionsTo exclude trivial cases, we also assume that pbttee propositions
we consider is completely verified or completelfuted by the evidence i.e. 0 <
P(hile), ..., P(hyle) < 1. Now, given their mutual irrelevance, one Vdoexpect that
provided we are justified in accepting each of them are justified in accepting all of
them. Here is the reasoning. First, we condie@lone. We are justified in acceptihg
because we are justified in accepting each of tbpgsitions. Next we considig. Since
h; andh, are mutually irrelevant, we can evalubtendependently of our acceptance of
h;. So, we are justified in acceptihgbecause we are justified in accepting each of the
propositions. The same reasoning applidstb,, and so on. As a result, we are justified
in accepting all the propositioths, ..., hy.

Notice that one forceful response to the lottempdax does not apply to the
present case. When the individually acceptablegsitipns are jointly inconsistent as in
the lottery paradox, it could be plausibly argueat tve can accept eachhaf ..., hy by

! The evidence consists o&,, ..., &, that respectively suppdst, ..., h,. The propositionsy, ..., h, are

still probabilistically independent on conditioneprovidede,, ..., €, are probabilistically independent.
Note thathy, ..., h, arenot probabilistically independent on condition-of even ifey, ..., e, are
probabilistically independent, so the Fork Theok&eichenbach 1956, Section 19) does not applygo th
present case.
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itself, but not all of them together, i.e. we canacceptH = {hs, ..., hy} as a set. But this
suggestion makes sense only if there is incongigter at least some tension—among
the propositionsy, ..., h, while we are assuming in the present case thairtdpositions
involved are mutually irrelevant. This allows usetaluate each proposition
independently even if we have already accepted st propositions, so that if we
are justified in accepting each member, we aréfigstin accepting the set.

Some people may question the final move from tloegtance of the set = {hy,
..., hy} to the acceptance of the conjunction ... (0h, becaus@®(h; [I... Ohyle) can be
extremely low when the number of the conjunctairgé. How can we be justified in
accepting a proposition that is almost certainlgd@a My response is twofold. First, there
is no difference between accepting alhgf..., h, together and accepting their
conjunctionh; ... Oh,. Once we accept all the conjuncts together,unigasonable
not to accept their conjunction. Second, we shdidtinguish the degree of justification
from the degree of confidence. The subject of pliser is the degree of justification
motivated by the dual goal of cognition, whichadncrease true beliefs and reduce false
beliefs. The degree abnfidence serves other purposes, most notably the calcualafio
the expected utility. In order to play that roleg degree of confidence should be
proportional to the probability. So, we should esstonfident in the conjunctiorn, 1 ...
Oh, than we are in any of the conjunbis ..., h,. However, that does not mean that we
are less justified in accepting the conjunctiomthe are in accepting any conjunct.
Accepting the conjunction is riskier than acceptngpnjunct because the conjunction
has a lower probability than any conjunct. But thigher risk is counterbalanced by the
greater potential gain in true beliefs. From thespective of the dual goal of cognition,
the risk of adding false beliefs is not the soleedminant of the degree of justification—
the potential gain in true beliefs is also a fact@nce we distinguish the degree of
justification from the degree of confidence in thigy, the common view that the degree
of justification is the conditional probability tiie proposition given the evidence loses
its appeal. Even if the conditional probabilityasv, we may still be justified in accepting
the proposition if the potential gain in truth igfsciently high.

2. Formalizing the Risk and the Potential Gain

This section formalizes the two factors that aftbet degree of justification—the risk of
adding false beliefs and the potential gain inhtftliefs—in probabilistic ternfsFirst,

the risk of increasing false beliefs is inversalated to the conditional probability of the
proposition given the evidence. The higher the @vog makes the probability of the
proposition, the lower the risk of increasing fatediefs. Since the risk of increasing
false beliefs is inversely related to the degregistification, the conditional probability
of the proposition given the evidence is directiggitively) related to the degree of
justification. There is no surprise here. The oflaetor, the potential gain in true beliefs,
may seem less clear. Obviously, we cannot simpiyntthenumber of potentially true
beliefs. Adding the séd = {hy, ..., h,} to our body of beliefs is no different from addin

2 See Huber (2008a; 2008b) for a similar two-faeqoproach to the formal assessment of scientifiortas.
Huber calls the two factors “plausibility” and “mmativeness”.
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the singletorH* = { hy [0 ... (0 h,} though the former contains many more propositjons
and hence many more potentially true beliefs. Aersmnsible approach is to measure the
potential gain in true beliefs by the amount obmfiation the proposition (or the
conjunction of the propositions if a set of propiosis is added) carries. Since the amount
of information the proposition carries is inversejated to itgrior probability, we can
capture the potential gain in true beliefs in plohstic terms.

We can see the inverse relation between the anodumitormation and the prior
probability in two steps. First, the degreespdcificity is directly (positively) related to
the amount of information. The more specificallg fhroposition describes the world, the
largeramount of information it carries. Second, the degree of specificityigersely
related to therior probability. The more specifically the proposition descrilfesworld,
the lower its prior probability is. By combiningabe two steps, we see that the amount of
information that the proposition carries is invéygelated to its prior probability. Further,
since the amount of information the propositiorriearis directly (positively) related to
the degree of justification, the prior probabilaf/the proposition is inversely related to
the degree of justification. To express this motaitively, if the level of risk is the same
(if the conditional probability of the propositigiven the evidence is the same), a
proposition that describes the world more spedlfigand thus has a lower prior
probability) is more worthy of adding to our bodiybeliefs because the per-unit-of-
information risk is lower.

We put all these together to state that the degfrgestificationJ(h, €) for the
propositionh given the evidenceis directly (positively) related to the conditidna
probabilityP(h|e) and inversely related to the prior probabiith). Note that under this
conception the degree of justification looks mukh the degree of incremental
confirmation (hereafter simply “degree of confirioat). There have been many
proposals in the literature to formally measuredbgree of confirmation. Here | mention
only two of them, the difference meas@g(h, €) and the ratio measux(h, e):

Co(h, €) = P(h|e) - P(h)

Cr(h, © = %

In both measures, the degree of confirmation isctly (positively) related to the
conditional probability and inversely related te fbrior probability, and that is the way it
should be for any plausible measure of confirmation

The question arises at this point whether the degfgustification is simply the
degree of confirmation. The question has two pétjswhether an additional condition
exists that the degree of confirmation should Balist the degree of justification need
not, and (2) whether an additional condition exiistt the degree of justification should
satisfy but the degree of confirmation need not méxt section addresses these two
guestions.

3. Justification and Confirmation
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There is a general consensus in the literaturartaddition to being an increasing
function of the conditional probability and a dexsmg function of the prior probability,
the degree of confirmation should have a constauatral valuek whenP(h|e) = P(h),
regardless oP(h). The idea is that when the eviderdeas no impact on the proposition
h and thus(h|e) = P(h), the evidence neither confirms nor disconfirmes pinoposition.
So, the degree of confirmation in such cases shmeilthe same, regardless of the prior
probability of the proposition. Let’s call this iigement the equi-neutrality condition.
The equi-neutrality condition is satisfied by alldewn measures of confirmation. For
example, the conditioR(hje) = P(h) makes the difference meas@g(h, €) = P(h|e) —

P(h) constant at zero; it makes the ratio meagi#@, €) = P(h|e) / P(h) constant at one.
We can adjust any measure of confirmation to mahkeneutral value zero by subtracting
the constant valule from it For example, if we subtract one from the ratio soe, the
new measur€g*(h, €) = P(hle) / P(h) — 1 has its neutral value at zero. So, | willass
hereafter that the neutral degree of confirmatsozrerro, i.eC(h, €) = 0 whenP(hle) =

P(h).

| want to argue in this section that the degrejusification should also satisfy
the equi-neutrality condition—i.d(h, €) = 0 whenP(h|e) = P(h), regardless dP(h). In
other words, although there is an additional coowli(beyond being an increasing
function of the conditional probability and a dexsmg function of the prior probability)
that the degree of confirmation should satisfy,dbgree of justification should also
satisfy it. The basis of my argument for the eqeurmnality of justification is the case of
conjunction mentioned in Section 1, namely: If gmepositiond, ..., h, are
probabilistically independent, both unconditionalyd conditionally given the evidence
e, and if each of them is justified by the evideedqwith regard to some threshold degree
t), then so is their conjunctidn I ... Oh,. The converse should also hold: If the
propositiondh, ..., hy are probabilistically independent, both uncondisity and
conditionally given the evideneg and if each of them is not justified bywith regard
to some threshold degréethen neither is their conjunctidn [ ... [Th,. | call the
combination of these two conditions the Generalj@uetion Requirement (GCR).

An immediate consequence of GCR is the followingcg Conjunction
Requirement (SCR): If the propositiohs ..., h, are probabilistically independent, both
unconditionally and conditionally given the evidemgcand if each of them is justified to
the same degrgethen so is their conjunctidn [ ... [0 h,. | show here that GCR entails
SCR by proving its contraposition. Suppose mead{inxe) of justification fails to satisfy
SCR, and thus for some eviderecand some probabilistically independent (both
unconditionally and conditionally gives) propositiongy, ..., h,, J(hy, €) = ... =J(hy,, €)
=jbutd(hyO... Ohy, €) =) + afor somea # 0. We can see thdfh, e) violates GCR as
follows. Set the threshold of justificationjat a/2. If a < 0, then each dfj, ..., h,is
justified bye, but their conjunctiom; [J... [T h, is not. If @ > 0, then each dfy, ..., hyis
not justified bye, but their conjunctioi; [ ... O hy is. Either way, GCR is violated. So,
GCR entails SCR. Further, if we assume fiflate), which is of the forn(P(h|e), P(h)),
is a continuous function, then SCR entails equitiadity (see Appendix 1 for proof).

% The obtained measu*(h, €) = Cx(h, €) —k is ordinally equivalent to the original measui@(h, €), i.e.
for any two pairs <y, &> and <h,, &>, Cx*(hy, €)) >/=/< Cx*(hy, &) if and only ifCx(hy, €1) >/=/< Cx(h,,
&), respectively. For many purposes, ordinally eglémt measures are essentially the same measure.
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Putting all these together, we conclude tlfat €) should satisfy the equi-neutrality
condition sincel(h, €) should satisfy GCR, which entails SCR, whichumtentails equi-
neutrality.

This result may look suspect. When the evidencectdtheitheh; norh,, are we
no more justified in acceptirty than in accepting, even ifh; is almost certainly true
while h, is almost certainly false? My response is agagndiltinction between the
degree of confidence and the degree of justificatde should certainly have more
confidence irh; than inh, whenP(h;) is higher tharP(h,), but it does not follow that we
are more justified in acceptirig than we are in acceptitng. Thoughh;, is more likely to
be false thai, is, the higher risk is offset by the greater pt&tmain we make ih,
turns out to be true becausg whose prior probability is lower, carries moréimation
thanh; does. So, if the degree of justification is toveethe dual goal of cognition, it is
not unreasonable to assign the same degree dfgatitin toh; andh,.*

To summarize what we have uncovered so far, theedeof justification for the
propositionh given the evidenceis directly (positively) related to its conditidna
probabilityP(hle) and inversely related to the prior probabiigh). Further, the degree
of justification should also satisfy the equi-nelity condition, i.eJ(h, €) = 0 when
P(hle) = P(h), regardless dP(h). Since these are the standard requirementsrf@asure
of confirmation, a measure of justification is also a measureoofinmation. However,
the converse is not true. Not all plausible measaofeonfirmation can serve as a
measure of justification because the latter musifgahe General Conjunction
Requirement (GCR), while there is no reason toiregbhat a measure of confirmation
should satisfy GCR. Indeed none of the many measfreonfirmation proposed in the
literature satisfies GCRSo, none of them is a measure of justification. &led to
formulate a new measure of confirmation that mesi&.

4. Formal M easur e of Justification

This section describes a formal measifre €) of justification for the propositioh given
the evidence. In order to facilitate the task, | want to delerone further consequence
of GCR. We saw in Section 3 that the degree offjcation should be equi-neutral. It
turns out that the degree of justification shousbdeequi-maximal. It is obvious
already that for any givea(h), J(h, €) should be the highest whé&h|e) = 1 becausé(h,
€) is an increasing function &(h|e). Equi-maximality requires further that this highe
value should be constant, regardlesB(@). Intuitively, this means that when the
evidencee makes the propositidmcertain, we are justified in acceptihgo the highest

* Equi-neutrality of epistemic justification explaithe intuition that in the absence of some inside
information we cannot assert that a given lottarket does not win even if the probability for that
proposition is extremely high (Williamson 2000.246). The reason is that when there is no relevant
evidence beyond the background knowledge, there ositive justification at all for the propositiono
matter how high its prior probability is.

® See Fitelson (1999, 2001), Crupi, Tentori, and Za¢er (2007) for the growing list of confirmation
measures.
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possible degree, regardless of the prior probgitmfih.® This is a sensible thing to say
about the degree of justification, but it is alscoasequence of SCR (see Appendix 2 for
proof) and hence of GCR.

Let us see whal(h, ) should look like in light of the requirements Wwave
uncovered. First)(h, €) should be an increasing functionR{h|e) and a decreasing
function ofP(h). There are two natural ways féh, €) to meet these requirements,
namely, the difference-based measueand the ratio-based measudgs

3, &) = 1 (P(h]e) - g(P(h)
_ t(P(h9
heg=———>=
TR0 &=y

where botH andg are increasing functions. The second set of reqents is equi-
neutrality and equi-maximality. If we set the nalitralue at zero and the maximum
value at one, then:

J(h, €) = 0 whenP(hle) = P(h)
J(h, ) = 1 whenP(hle) = 1

We need to adjust the difference-based measy(bse) and the ratio-based measures
Jr(h, €) to meet this second set of requirements.

We start with the difference-based measures. VWlele) = P(h), Jo(h, €) =
f(P(h)) —g(P(h)). Since this value should be zero regardles¥Iof, f andg should be the
same function. This means tldgt(h, €) = f(P(hle)) —f(P(h)). Further, wherP(hle) = 1,
Jo*(h, €) =1(1) —f(P(h)). Since this value should be one regardles¥lof, we need to
“normalize” Jp*(h, €) by dividing it byf(1) —f(P(h)), to obtainJy**( h, €) = [f(P(hle) —
f(P(h))] / [f(1) —f(P(h))]. This measure satisfies both the first and sdcets of
requirements. We turn next to the ratio-based mieasu(h, €). WhenP(hle) = P(h), Jr(h,
e) =f(P(h)) / g(P(h)). Since this value should be zero regardles¥lof, we subtract
f(P(h)) / g(P(h)) from Jr(h, €) to obtaindg*(h, €) = [f(P(hle)) / g(P(h))] — [f(P(h)) /
a(P(h))] = [f(P(hle)) —f(P(h))] / g(P(h)). Further, wherP(h|e) = 1,Jg*(h, €) = [f(1) —
f(P(h))] / g(P(h)). Since this value should be one regardles¥lof, g(P(h)) should be
f(1) —f(P(h)), so thatlr**( h, €) = [f(P(hle)) —f(P(h))] / [f(1) —f(P(h))]. This turns out to
be the same al**( h, €). So, whether we start from the difference-basedsuregp(h,
€) or the ratio-based measutggh, €), we arrive at the same general formukdh, e) =
[f(P(hle)) —f(P(h))] / [f (1) —f(P(h))], to satisfy the second sets of requirement® Th
remaining task is to determine the functfpao thatlg(h, e) satisfies the General
Conjunction Requirement.

This task is not trivial. If we takieto be the identity functiori(x) = x, then the
degree of justification will bdg*(h, €) = [P(hle) —P(h)] / [1 —P(h)].” But Jg*(h, e) fails
to meet the SCR (and hence GCR) evemfor2, i.e. even when the conjunction has

® We assume that the propositiois not already certain, so it cannot the caseRtge) = P(h) = 1 to
makeJ(h, €) both neutral and maximal.

" This is the positive half of Crupi, Tentori, andi@&alez’s (2007) measureof confirmation.
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only two conjuncts (proof omitted). The problens@ved by makingd a logarithmic
function. If we choose 2 as the base of logaritasit is common in measuring the
amount of information, then we obtain the followimgasureg**( h, €):®

Js**(h, e) = log, P(h|e) —log, P(h)
log,1-log, P(h)
_log, P(h|e) —log, P(h)
- ~log, P(h)

Jc**( h, €) meets GCR (see Appendix 3 for proof), so it measure of justification.
From now on, | will writeJs**( h, €) simply asJ(h, €).

Once we find a measure of justification, the neatural question is whether it is
the only measure of justification. It turned outtthere are many others, i.e. we can
construct many measures of confirmation that sa@ER and thus can serve as
measures of justification. Some of them differ frdf, €) in an interesting way. For
example J(h, €) has the infinite range ¢e; 1], while Atkinson’s (2009) measud4 h, €)
has the finite range [-1, 1]. However, it also drout that all measures of justification
are ordinally equivalent to each other, and thuXtpe).? In other wordsJ)(h, €) is the
unique measure of justification, up to ordinal egignce.

Two more remarks are in order. Fird, €) is related to the log ratio measure of
confirmation, which isC r(h, €) = log, [P(hle) / P(h)] if we choose 2 as the base of
logarithm. Note that the numeratorJgh, €) is the log ratio measure of confirmation, i.e.
log, P(hle) — log P(h) = log, [P(hle) / P(h)]. The denominator ai(h, €) is the highest
value ofC r(h, €) reached wheR(h|e) = 1, i.e. — logP(h) = log [01 / P(h)]. This means
thatJ(h, €) is the “normalized” log ratio measure of confitioa.!

SecondJ(h, ) has a simple and intuitive meaning when we exypitda the
language of information. According to the standaathematical theory of information,

the amount of information thatcarries id(h) = — log P(h). The rationale for this
measure is easy to see by an example. If the pilapaih the propositiorh is 1/8, then
the amount of information thatcarries id(h) = — log 1/8 = — log 2~ = 3. This means

that knowingh with certainty gives us 3 bits of informatidifh) is commonly referred to
as “self information” because it is the amountrgbrmation orh that we gain when it
becomes certain thhtis true. Meanwhile, the amount of informationlothat we gain
when it becomes certain thais true is called “mutual information” and is defd as
follows: I(h, €) = log, P(hle) — log, P(h).* To see its intuitive meaning, suppose the prior

8 The assumption th&t(h) # 1 (see note 6 above) ensures that the denomindbgs P(h) is not zero.

° See Appendix 4 for proof. Atkinson (2009) obtairled same result independently with an illuminating
alternative proof.

10 Crupi, Tentori, and Gonzalez (2007) point out tmainy known measures of confirmation become
ordinally equivalent to their preferred measudrgee note 7 above) when they are “normalized, thoeit
log ratio measure is not one of them.

M(x,y) is called “mutual” information because it follodiresm the definition thak(x, y) = I(y, ).
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probability of the propositioR(h) is 1/8 and the evidenesraises its probability t&(hle)
= 1/2. Then, the amount of mutual information(ls €) = log 2 ™ — log, 2 > = 2. This
means that we gain 2 bits of informationfowhen we obtain the evideneeThe point
to note is that the numerator 3h, €) is the mutual informatioh(h, €) = log, P(hle) —
log, P(h), while the denominator akh, €) is the self informatiom(h) = — log P(h). So,
J(h, e) turns out to be the ratio of the mutual inforroatto the self information:

[ (h,e)

J(h, e ()
This expression allows us to interpdét, €) as the degree of justification in a natural
sense. Self informatiokgh) is the amount of information wegister when we addh to
our body of beliefs. | want to call it “registergdormation.” Meanwhile mutual
informationl(h, €) is the amount of information dnwe gain from the evidenae So, |
call it “earned information.” If we use this terroingy, the degree of justificatiaith, €)
is the ratio of the earned information to the resgisd information. The higher the ratio is,
the more justified we are in accepting (registeriig proposition. This makes good
sense if the degree of justification is to seneedbal goal of cognition, which is to
increase true beliefs and reduce false beliefs.

5. The Conjunction Fallacy

This section applies the measure of justificatlim €) to the analysis of the conjunction
fallacy. The conjunction fallacy is the fallacyadsigning a higher probability to a
conjunctionh; O hy than to its conjundt; (or hy). Since the conjunctiom [1h; logically
entails the conjundt;, the conjunction cannot have a higher probabilign the conjunct,
but it is well known that people are prone to coirims fallacy in certain contexts. The
most famous is the Linda problem (Tversky and Kafare 1983), in which the two
conjuncts are:

h;: Linda is a bank teller.
h,: Linda is active in the feminist movement.

The participants in the experiment receive theofeihg information:

e: Linda is 31 years old, single, outspoken, ang weight. She majored in
philosophy. As a student, she was deeply concesitbdssues of discrimination
and social justice, and also participated in antil@ar demonstrations.

Upon receiving this information, a large majorititioe participants answer thiag (1 h,,
is more probable tham, committing the conjunction fallacy.

Tversky and Kahneman explain the fallacy by theesgntativeness heuristic, i.e.
givene, most participants judge that Linda is more repméative of a feminist banker
than of a banker, and they solely rely on this judgt in assigning a higher probability
to h; [0 hy than toh;. More formal analyses are also possible. Shafiitl§ and Osherson
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(1990) propose that most participants focusikatihood, i.e. the conditional probability
of the evidence given the hypothesis. Accordinthi® analysis, most participants
compare the two likelihood®(elh; [0 hy) andP(elh,), instead of comparing the two
conditional probabilitie®(h; [1hy|e) andP(h;|e) as they should. Another possibility is
that most participants focus on the degree of eies between the evidence and the
hypothesis. We can make it a formal analysis bggihg in any of the many
probabilistic measures of coherence availableérithrature’? Yet another possibility is
that most participants focus on the degree of cotiion (Side®t al. 2002), i.e. they
compare the degrees to which the evidence raisgsrttbabilities of the two hypotheses,
h; andh; Oh,. In support of this idea Crupi, Fitelson, and Ben{2008) show that the
confirmation analysis isobust. That is to say, in Linda-like cases—which they
characterize by the two conditions @(h|e [Ih;) > P(hylh;) and (2)P(hsle) < P(h;)—the
evidencee confirms the conjunctioh; [1h, more than it does the conjurgtby any
measure of confirmation that has been proposed in the literature.

These analyses offer competing accounts of theittegprocess responsible for
the fallacy, or which features of the case mostigpants focus on. But | am more
interested in the conditions under which the fgllsccommon than in the cognitive
process. To use Marr’s (1982) distinction, | am eninterested in theomputation (the
input-output relation) that is accomplished thathiaal gorithm for the computation. The
three formal analyses—nby likelihood, by coheremeel by confirmation—are similar at
the computational level. In fact they are formatuivalent if we determine the degree
of coherence by Shogenji's (1999) measyrg, ..., X%,) =P(x1 O ... OX,) / [P(xg) % ... x
P(x,)] and the degree of confirmation by the ratio nuea€x(h, €) = P(h 0e) / P(h).* |
have no reason to think these formal conditionsar®usly at odds with empirical data,
but I still propose my own analysis. The reasonti@rproposal is not a better fit with the
empirical data but a better explanationbiy the fallacy occurs.

Here is my proposal (the justification analysidheTconjunction fallacy is
common when the degree of justification for thejanation is higher than the degree of
justification for the conjunct, i.€(h; [Thy, €) > J(hy, €). Sinceld(h, €) is also a measure of
confirmation, the proposal is a variant of the aonétion analysis. Given the robustness
of the confirmation analysis, it is not surpristhgt the justification analysis gives the
right prediction in Linda-like cases, i.e. when P{h|e (0 h;) > P(hz|h:) and (2)P(hile) <
P(hy), the evidence justifies the conjunction more thawoes the conjunct, dh; [T hy,

e) > J(hy, e) (see Appendix 5 for proof), so that the conjunmetiallacy should be

common in Linda-like cases. The attraction of t&ification analysis is its explanation
of why the fallacy occurs, viz., the fallacy occbecause we tend to utilize cognitive
processes appropriate for choosing better justgregositions, even when that is not our
task. These justification-oriented processes sérwelual goal of cognition well, so their
persistent use is generally a good epistemic potoyvever, it causes trouble in cases
where our task is not to choose better justifiegppsitions but to choose mqueobable
propositions. The explanation makes the conjundadiacy understandable.

12 See Meijs (2005) for a survey.

13 That is to sayP(elh, O hy) > P(elhy) iff S(hy O hy, €) > Sy, €) iff Cr(hy O hy, €) > Cr(hy, €) (proof
omitted).
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The justification analysis is compatible with diéat theories of the cognitive
process. One of the cognitive processes mentiobegeamay be responsible for the
conjunction fallacy. If so, my proposal is that utdize that cognitive process, not
because it guides us to choose propositions with iéegrees of representativeness,
likelihood, coherence, or confirmatiger se, but because it guides us to choose
propositions with high degrees of justification.dtiner words, the computational
objective of the process is to choose better jestipropositions.

| want to note that although | want to make thejeoction fallacy understandable,
| do not subscribe to the view that the conjuncfaltacy (or the “conjunction effect”)
can be explained by semantic variance (cf. Hertmig Gigerenzer 1999). For example, |
do not think that many people interpret the wortbtfable” to meaijustified and that
their judgment is correct under this interpretatidhe betting case provides strong
evidence against the semantic account. It is knibanhthe conjunction fallacy occurs
even in betting, e.g. many people are more wiltmget onh; [1h, than onh; in the
Linda case for the same reward (Tversky and Kahnet@83, p. 300). There is no
semantic excuse for this behavior since the sdnatself requires the assessment of
probabilities. Some people question the realitthefconjunction fallacy on other
grounds. It has been reported that changing thelgmostructure—e.g. expressing the
problem in terms of frequencies instead of proliédsl—reduces the occurrence of
cognitive fallacies, including the conjunction &adly (Gigerenzer 1991). But if the
justification analysis is correct, the fallacy shibhbe less frequent in those contexts where
people are less accustomed to choosing bettefigalstiropositions automatically. If this
is born out, the reduction of the fallacy in suomtexts strengthens the case for the
justification analysis.

6. Conclusion

When we aim at the dual goal of cognition, the degf justification for accepting the
proposition should not be its conditional probapitiiven the evidence, as it is
commonly thought. We have compelling reason to adidpe) as our formal measure of
justification. It has a simple and intuitive meamias the ratio of the earned information
to the registered information, and it is the onlgasure (up to ordinal equivalence) that
meets the General Conjunction Requirement. | ajr@aehtioned its relevance to the
lottery paradox and the preface paradox in Sedtjand showed how it helps the
analysis of the conjunction fallacy in Section Hiother significant area of application is
logical closure of knowledge. Evenpflogically entailsg, the degree of justification for
g can be lower than that fpr as the conjunction fallacy exemplifies. This me#rat
knowledge is not closed under (known) logical dntant if a certain degree of
justification is a necessary condition for knowledfjsuspect that we need to reconsider
many issues of cognitive science and normativet@pislogy in light of the new
understanding of epistemic justificatith.

14 An earlier version of this paper was presenteti@ivorkshogProbability, Confirmation and Fallacies

in Leuven, Belgium, in April 2008. | would like thank its organizers Jeanne Peijnenburg, David
Atkinson and Igor Douven, and the participantshefworkshop for many stimulating discussions. Sgpeci
thanks to David Atkinson and Branden Fitelson faluable post-conference correspondence.
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Appendices

1. Equi-Neutrality

Supposel(h, €), which is of the form=(P(h|e), P(h)), is a continuous function, ad¢h, €)
satisfies SCR. Then, for any two paits,€> and <y, >, if P(hj|e) = P(h) andP(hj|e)
= P(hy), thenJ(h;, &) = J(h;, g).

Pr oof:

Let loge,, P(h;,) =T, so thafP(h)]" = P(h;).r > 0 because 0 R(h), P(h) < 1. Since
J(h, e) is a continuous function, it suffices to showtttiee claim holds for any two pairs
<hi, &> and 4y, > such tha{ P(h)]" = P(h,) whereq is a positive rational number. Let
<m, n> be the smallest pair of positive integers suel tim=q, so that

[P(h)]" =[P(h,)]". Choose probabilistically independent (both undtorally and

conditionally one) propositiond, ..., h,, and probabilistically independent (both
unconditionally and conditionally o) propositiondin.y, ..., hnem such that?

() [P()]" = [P(h)]"™

(i) P(hy) =P(hy) = ... =P(hy)

(iii) P(hy) =P(hns1) = ... =P(hnem)

(iv) P(hle) = P(hife) = ... =P(hile)

(v) P(hlg) = Ptalg) = ... = Pln:nlg)

It follows from (ii) and (iv) thatl(h;, &) =J(hs, €) = ... =J(h,, €). So, by SCR:
J(hi,e) =J( O... Ohy, &) (1)

Similarly, it follows from (iii) and (v) thad(h;, ) = J(hn+1, §) = ... =I(hn+m, §). SO, by
SCR:

Iy, &) =I(hne1 O ... Ohem, 6) )

15 For example, think afi urns of colored marbles, for each of which thebptlity of drawing a red
marble is the same &gh;), andm urns of colored marbles, for each of which thebatlity of drawing a
red marble is the same Bgh;). To satisfy the conditiorB(hi|e) = P(h;) andP(hj|g) = P(h;) of the theorem
(in addition to (i) through (v)), the urns must have nothing to do wighand them urns must have nothing
to do withe,
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Sincehy, ..., h, are probabilistically independe(h; O ... Ohy) = [P(h)]" from (ii).
Similarly, sincehy.y, ..., hnm are probabilistically independeftthn.1 O ... Ohner) =
[P(h)]™ from (iii). So, it follows from (i) that:

P(hl |:| |:| hn) = P(hn+l |:| |:| hn+m) (3)
Sincehy, ..., h, are probabilistically independent conditionallyerP(h, O ... Ohyje) =
[P(hie)]" = [P(h)]" from (iv) and from the conditioR(h|e) = P(h;) of the theorem.
Similarly, sinceéhn.s, ..., hnm are probabilistically independent conditionallyer(h,.1

O... Ohnmlg) = [P(hile)]™ = [P(h)]™ from (v) and from the conditioR(h;|g) = P(h) of
the theorem. So, it follows from (i) that:

P(hy O... Ohgle) = P(hns1 O ... Ohnenlg) 4)
From (3) and (4) it follows that:
Jh O...O0hy, 8) =I(hpe1 O ... Ohnem, 8) (5)

From (1), (2) and (5) it follows tha(h;, &) = J(h;, g). [

2. Equi-Maximality

Supposedl(h, €) is a justification measure (i.e. a confirmatioaasure that satisfies GCR
and hence SCR). Then, for any two pains &> and <y, >, if P(hjje) = P(hj|g) = 1,
thenJ(h;, ) = J(h;, ).

Pr oof:

Assume without loss of generality th(ty) < P(h;). It follows from the conditiorP(hj|e)
= P(h|g) of the theorem that:

J(hi, @) = I(h;, ) (1)

since the confirmation measulg, ) = F(P(h|e), P(h)) is a decreasing function B{h).
Choose probabilistically independent propositibns.., hy such that:

() [P(h)]" < P(hy)
(i) P(hy) =Pkw) = ... = Pn)

It follows from (ii) andP(hi|n O ... Ohy) = ... =P(hpJhy O ... Ohy) = 1 thatd(hy, hy O ....
Ohy) = ... =J3(h,, hy O... Ohy). Buth;y, ..., h, are probabilistically independent, amgl
..., hy are also trivially probabilistically independemnditionally onh; O ... Oh,
becaus#’(h;jh, O... Ohy) = ... =P(hy|ns O ... Ohy) = 1. So, by SCR:
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Jhy, hy O... Ohy) =3y O... Ohn, hy O... Ohy) )

Also, it follows from the conditiofP(hj|g) = 1 of the theorem and froR(h.|h, O ... Ohy)
= 1 thatP(hj|g) = P(hyjhy O ... Ohy). Further,P(h) = P(hy) from (ii). So,

J(h;, ) =J(hy, hy O ... Ohy) (3)
It follows from (2) and (3) that:
Jh, ) =J(h,O... Ohy, hy O... Ohy) 4)

Meanwhile, it follows from (ii) thaP(hy O ... Ohy) = [P(h)]" sincehy, ..., hy are
probabilistically independent. But [R)]" < P(;) from (i). So,

P(hy O... Ohy) < P(h) (5)

while it follows from the conditiof(hj|e) = 1 of the theorem and froR(h, O ... Ohplhy
... Ohy) =1 that:

P(hy O... Ohglhy O... Ohy) =P(hile) (6)
It follows from (5) and (6) that:
Jha O... Ohy, by O... Ohy) 2 J(hi, €) (7)

since the confirmation measulg, e) is a decreasing function Bfh). It follows from
(4) and (7) that:

ah, &) = J(h, @) ®)

It follows from (1) and (8) thal(h;, &) = J(h;, §). [

3. General Conjunction Requirement

Supposd, ..., h, are probabilistically independent (both uncondisilly and
conditionally one) andP(hy), ..., P(h,) < 1. Then, (i) ifJ(hy, €), ..., I(hn, €) = t, thenJ(h,
O... Ohy, € =t; (i) if I(hy, €), ...,(, €) <t, thend(h, O... Oh,, €) <t.

Pr oof:

A0 Ohy e = 0% PHOE..Ch € -log,PhC...LK)
. “log, P(h 0...0h,)
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_log, [],,P(h I&)-log, [],P(h)
~log, [, P(h)
_ > log,P(h|e)->"" log, P(h)
- log, P(h)
_ > llog; P(h |€) ~log, P()]
> ~log, P(h)

[from independence]

(1)

(i) Supposel(hy, €), ...,J(hn, € =t. Then, fori = 1, ...,n, there is somer; = 0 such that:

J(h e) — logz P(h | e) - |092 P(h)
" - log, P(h)
=t+ ai

So,
logz P(hile) — log: P(hi) = (t + &) [ loge P(hi)] (2)

By plugging (2) into (1) above, we obtain:

> (t+a)[-log, P(h)]
> ~log, P(h)
_ty" ~log, P(h)+>"" ai[-log, P(h)]
) > ~log, P(h)
. 2 al-log, P(h)]

Zin:l_ Iogz P(h)
>t [from ai = 0 andP(h)) < 1]

JhiO... Ohy €)=

=t

(ii) Suppose nexd(hy, e), ..., J(hn, €) <t. Then, fori = 1, ...,n, there is somg > 0 such
that:

J(h e) — |ng P(h |e) B lOgZ P(h)
" ~log, P(h)
= t_,gi

So,

logz P(hile) — log, P(hi) = (t - &) [ log. P(h)] 3)
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By plugging (3) into (1) above, we obtain:

> (t-B)-log, P(h)]

Y -log, P(h)

3" ~log, P(h)-Y"" Bl-log, P(h)]
> ~log, P(h)

_,_ 2uAl-10g, P(Y)]

Zin:l_logz P(h)
<t [fromgG >0andP(h)<1] =

JhiO... Ohy €

4. Ordinal Equivalence

Supposd(h, ) = Fi(P(hle), P(h)) andJx(h, €) = F2(P(h|e), P(h)) are both continuous
functions that are measures of justification. Thbay are ordinally equivalent to each
other, i.e. for any two pairshg &> and <4y, &>, Ji(h;, €) </ =/>J:(h;, g) if and only if
J(h, &) </=1>h(h,e).

Pr oof:

Let logp,, P(h,) =T, so thafP(h)]" = P(h; ) r > 0 because 0 R(h), P(h) < 1. Since

Ji(h, € = F1(P(h|e), P(h)) andJx(h, €) = Fx(P(h|e), P(h)) are continuous functions, it
suffices to show that the claim holds for any tvearg <, > and <, > such that
[P(h)]® = P(h;) whereq is a positive rational number. Letnn> be the smallest pair of

positive integers such thafm=q, so thaf P(h)]" =[P(h;)]". Choose probabilistically

independent (both unconditionally and conditionalte*) propositionsh;, ..., h,, and
probabilistically independent (both unconditionadlyd conditionally o*) propositions
hret, ..., Nnem Such that?®

() [P(M)]" = [P(h)]™

(i) P(h) =P(hy) = ... =P(hy)

(i) P(hy) =P(hns1) = ... =P(hnem)

(iv) P(hi|le) =P(h.le*) = ... = P(h,|e*)

(v) P(hile) =P(hn+1le*) = ... = P(hn+mlg*)

18 For example, think afi urns of colored marbles, for each of which thebptality of drawing a red
marble is the same &gh;), but given the evidenag* that then urns belong to a certain type, the
probability of drawing a red marble is the sam@®g@gle). Similarly, think ofmurns of colored marbles,
for each of which the probability of drawing a madrble is the same &gh;), but given the evidence
g*that them urns belong to a certain other type, the protiginli drawing a red marble is the same as
P(hjle).
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It follows from (ii) and (iv) thatli(h;, &) = Ji(hy, €*) = ... = J1(hn, €%). So, by SCR:
Ji(hi, ) =d(hy O... Ohy, %) (2)
Similarly, it follows from (iii), (v) and SCR that:
Ji(hy, g) =Jdi(hner O ... Ohnem, §%) (2)
Sincehy, ..., h, are probabilistically independent, it follows frdii) thatP(h, O ... Ohy)
= [P(h)]". Similarly, sinceh.1, ..., hn+m are probabilistically independent, it follows from
(iii) that P(hns1 O ... Ohnem) = [P(M)1™ But [P(h)]" = [P(h)]™ from (i). So,
P(hl |:| |:| hn) = P(hn+l |:| |:| hn+m) (3)
Meanwhile, sincdn, ..., h, are probabilistically independent conditionallyepn it
follows from (iv) thatP(h,; O ... Ohyle*) = [P(h|e)]". Similarly, sincehn.y, ..., hnem are

probabilistically independent conditionally e, it follows from (v) thatP(h,.1 O ... O
hn+mlq*) = [P(hle)] m. SO,

P(hy O... Ohgle*) </ =1>P(hn1 O... Ohnerlg*)
iff [P(hie)]" </ =1> P(h|g)]™ (4)

SinceJy(h, €) = F1(P(hle), P(h)) is an increasing function &f(h|e), it follows from (3)
and (4) that:

Jl(hl O...Ohy, a*) </=/ >J1(hn+1 O... Ohpem, q*)
iff [P(hile)]" </=1/> P(hjle)]™ (5)

It follows from (1), (2) and (5) that:
It @) </=1>d(h, 8) iff [P(hle)]" < /= /> P(hle)]" (6)
By the same reasoning,
Jo(hi, @) </ =1>J(hy, &) iff [P(hi|e)]" </ = /> P(hjle)]" (7)
It follows from (6) and (7) that:

Ji(hi, &) </ =1>3y(hy, §) iff Jo(hy, &) </ =1>J(N;, §) n

5. Conjunction Theorem
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Supposé(h), P(hlh) # 1. ThenJ(h Ohy, €) > J(h;, €) iff I(h;, €| hy) > I(h;, €).*
Lemmal: I(x Oy, 2) =1(x, Zy) + I(y, 2
Lemma2: I(xOy) =1(X]y) + I(y).

Corollary: If (i) P(huje) < P(hy) and (i) P(hole T hy) > P(holhy), thend(hy Dhole) > J(hyle).

Proof of Lemma 1:

I(xOy, 2) =log P(x Oy|2) — log P(x (y)
= log P(xly U 2) P(y[2) — log P(Xly) P(Y)
= [logx P(Xly 12) + log P(y[2)] — [logz P(X]y) + log P(y)]
= [loge P(Xly L12) — log: P(Xly)] + [log. P(y|2) — log: P(y)]
=1(x, zly) +1(y, 2 [

Proof of Lemma 2

IxOy) =—log P(x Oy)

—log P(xly) P(y)

— [log P(xly) + log: P(y)]

[(xly) +1(y) u

Proof of the Conjunction Theorem:

I(hCh,e) I(h,e

I(h Oh)  1(h)

_I(helh)+1(h.8) _I(h,e
L(h [h)+1(h) 1(h)

_[I1(h,efh) +1(h.eft(h) -1 (h.e)l(h ) +1(h)]

[1(hy [h) +1(R)IE(h)
_l(h,elm)I(h)-1(h.e)l(h [h)
[1(h; [R) +1(h)](R)

J(h| O] hj, e) —J(hi, e) =

[from Lemmas 1 and 2]

But I(hj|hy), 1(h;) > O from the assumptidd(h;), P(hj|hy) # 1. So,

J(hi Ohle) > I(hale) iff 1(hy, efhi) I(hi) > 1(hq, €) 1(h]hi)

73(x, yI2) ae= 1(%, YI2) 1 1(x|2) is the degree of justification for the propositiogiven the evidenceon the
background. 1(X, ¥|2) ¢ei= 00, P(Xly 02) — log, P(x|2) is the mutual information of giveny on the
background. 1(x|2) ¢e= — l0g P(X|2) is the self information af on the background
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iff I(hi’elh)>|(h’e)
I(hyIh)  1(h)
iff  J(hy, elhy) > I(hi, €) [
Proof of the Corollary:

I(hy, € = log P(h1|e) — log P(h;) < 0 from (i), whilel(h;) > O from the assumption. So,

J(hl,e):%m 1)

I(hy, elhy) = log P(hzle OOhy) — log P(h|hy) > O from (ii), whilel(hz|h;) > O from the
assumption. So,

_I(h.e[h)
J(h, =—2— >0 2
(hoelh) =T > @
It follows from (1) and (2) that:
J(hz, elhy) > J(hy, €) 3)
It follows from (3) by the Conjunction Theorem tl3é; [ hyle) > J(hy, €). [
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