
Declarations of Independence 

Branden Fitelson and Alan Hájek 

 

Abstract: According to orthodox (Kolmogorovian) probability theory, conditional probabilities 
are by definition certain ratios of unconditional probabilities. As a result, orthodox conditional 
probabilities are regarded as undefined whenever their antecedents have zero unconditional 
probability. This has important ramifications for the notion of probabilistic independence. 
Traditionally, independence is defined in terms of unconditional probabilities (the factorization 
of the relevant joint unconditional probabilities). Various “equivalent” formulations of 
independence can be given using conditional probabilities.  But these “equivalences” break down 
if conditional probabilities are permitted to have conditions with zero unconditional probability. 
We reconsider probabilistic independence in this more general setting.  We argue that a less 
orthodox but more general (Popperian) theory of conditional probability should be used, and that 
much of the conventional wisdom about probabilistic independence needs to be rethought.   
 

1.  Introduction 

According to orthodox (Kolmogorovian) probability theory, conditional probabilities are by 

definition certain ratios of unconditional probabilities. As a result, orthodox conditional 

probabilities are regarded as undefined whenever their antecedents have zero unconditional 

probability.1 Such zero probability cases are typically glossed over or ignored altogether in 

standard treatments of probability, especially those found in the philosophical literature. The 

orthodox treatment of conditional probabilities goes hand in hand with the orthodox treatment of 

probabilistic independence.  Traditionally, independence is defined in terms of unconditional 

probabilities (the factorization of the relevant joint unconditional probabilities). Various 

“equivalent” formulations of independence can be given using conditional probabilities.  But 

these “equivalences” presuppose orthodoxy about conditional probabilities, and they break down 

if conditional probabilities are permitted to have conditions with zero unconditional probability.  

In this paper we reconsider the nature of probabilistic independence in this more general setting.  

We will argue that when a less orthodox but more general (Popperian) theory of conditional 

probability is used, much of the conventional wisdom about probabilistic independence will need 

                                                
1 To be sure, Kolomogorov was well aware of this problem, and he went on to offer a more sophisticated treatment 
of probability conditional on a sigma algebra, P(A||F), in order to address it. We will return to this point later; as we 
will see, this approach also faces some serious problems. 
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to be rethought.  Because independence is such a central notion in probability theory, we will 

conclude that the entire orthodox mathematical framework for thinking about probabilities 

should be reconsidered at a fundamental level. 

 

2. The Orthodox Theory of Probability:  Kolmogorov 

 Almost every textbook or article about probability theory since 1950 follows 

Kolmogorov’s approach.2  That is to say, almost all contemporary probabilists characterize 

probabilities by: (i) taking unconditional probabilities P(•) as primitive, (ii) using Kolmogorov’s 

(1933, 1956) axioms for P(•), and (iii) defining conditional probabilities P(• | •) in terms of 

unconditional probabilities P(•) in the standard way, using Kolmogorov’s ratio definition.  

Specifically, most probabilists adopt the following framework for probabilities: 

Definition.  Let F be a field on a set Ω.  An unconditional Kolmogorov probability 

function P(•) is a function from F to [0,1] such that, for all A, B ∈ F: 

K1.  P(A) ≥ 0. 

K2.  P(Ω) = 1. 

K3.  If (A ∩  B) = ∅, then P(A ∪ B) = P(A) + P(B).3 

We call a triple M = (Ω, F, P) satisfying these axioms a Kolmogorov probability model.  The 

conditional Kolmogorov probability function P(• | •) in M is now defined in terms of P(•) as the 

following partial function from F ×F to [0,1]: 

K4.  P(A | B) =def 
P(A∩ B)
P(B)

, provided P(B) > 0. 

Thus, on the orthodox account, all probabilities are unconditional probabilities or ratios thereof. 

                                                
2 To name just a few of the most famous of these, we have Parzen (1960), Papoulis (1965), Feller (1968), Rozanov 
(1977), Loève (1977), Billingsley (1995), Ross (1998), and, of course, Kolmogorov (1950) himself. 
3 Axiom K3 (finite additivity) is often strengthened to require additivity over denumerably many mutually exclusive 
events.  There is considerable controversy over the issue of countable additivity.  Both Savage and de Finetti urged 
against the assumption of countable additivity in the context of personalistic probability.  Moreover, the assumption 
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In his classic textbook, Billingsley (1995) writes that “the conditional probability of a set A 

with respect to another set B … is defined of course by P(A|B) = P(A ∩ B)/P(B), unless P(B) 

vanishes, in which case it is not defined at all” (427). Three things leap out at us here: the ratio is 

regarded as a definition of conditional probability; its being so regarded is obvious (“of course”); 

and it is regarded as not defined at all when P(B) = 0. The very meaning of conditional 

probability is supposed to be given by the ratio definition; whether this definition is adequate is 

not questioned; and the conditional probability has no value (“defined” has another meaning 

here) when its condition has probability 0. On another understanding, the account is silent about 

such conditional probabilities. We need not choose one understanding over the other here, since 

either way such conditional probabilities are problematic when they should be well-defined, and 

indeed constrained to have particular values and not others. 

Now if 'conditional probability' were a purely formal notion, stipulatively defined by K4, 

then there would be no worrying objection here. You can introduce a new theoretical term and 

stipulate it to be whatever you like, and if your readers and interlocutors are cooperative, they 

will adhere to the stipulation. If you want to stipulate that by the 'schmonditional probability of 

A, schmiven B' you mean the cube root of P(A ∪ B) – P(¬B), go right ahead. You will not find 

much enthusiasm for schmonditional probability, however, unless you can convince your 

audience that it does some distinctive work, that it captures some concept of use to us. 

Conditional probability is clearly intended to be such a concept. 'The probability of A, given 

B' is not merely stipulated to be such-and-such a ratio; rather, it is meant to capture the familiar 

notion of the probability of A in the light of B, or informed by B, or relative to B. It is a useful 

concept, because even if Hume was right that there are no necessary connections between 

distinct existences, still it seems there are at least some non-trivial probabilistic relations between 

them. That's just what we mean by saying things like 'B supports A', or 'B is evidence for A', or 

‘B is counterevidence for A’, or 'B disconfirms A'. Presumably it is a concept that will guide 

                                                                                                                                                       
of countable additivity has some surprising and paradoxical consequences in Kolmogorov’s more general theory of 
conditional probability (Seidenfeld et al. 2001).  We will briefly comment on this issue below. 
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such judgments that Kolmogorov is seeking to capture. Then it is an open question (somewhat in 

the sense of Moore) whether he has succeeded. If he has, then that just means that he has given 

us a good piece of conceptual analysis. By analogy, Tarski's account of logical consequence is 

not merely a stipulative definition, a new piece of jargon for beleaguered students of logic to 

learn; rather, it is intended to capture the strongest form of 'support ' or 'evidence for' relation that 

could hold between two sentences. It is intelligible to ask whether he has succeeded (and 

Etchemendy 1990 answers the question in the negative). 

So let us call the identification of conditional probabilities with ratios of unconditional 

probabilities the ratio analysis of conditional probability. In the next section, we discuss some of 

its peculiarities. These are reasons for thinking that the ratio analysis is unsuccessful. 

 

3. Some Peculiarities of Kolmogorov’s Ratio Analysis of Conditional Probability 

Let us look in more detail at the peculiarity that conditional probabilities are undefined 

whenever their antecedents have zero unconditional probability. K4 has its proviso for a reason. 

Now, perhaps the proviso strikes you as innocuous. To be sure, we could reasonably dismiss 

probability zero antecedents as 'don't cares' if we could be assured that all probability functions 

of any interest are regular—that is, they assign zero probability only to logical impossibilities. 

Unfortunately, this is not the case. As probability textbooks repeatedly drum into their readers, 

probability zero events need not be impossible, and indeed can be of real significance. It is 

curious, then, that some of the same textbooks glide over K4's proviso without missing a beat. 

In fact, interesting cases of probability zero antecedents are manifold. Consider an example 

due to Borel: A point is chosen at random from the surface of the earth (thought of as a perfect 

sphere); what is the probability that it lies in the Western hemisphere, given that it lies on the 

equator? 1/2, surely. Yet the probability of the antecedent is 0, since a uniform probability 

measure over a sphere must award probabilities to regions in proportion to their area, and the 

equator has area 0. The ratio analysis thus cannot deliver the intuitively correct answer. 

Obviously there are uncountably many problem cases of this form for the sphere.  
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Nor is the problem limited to uncountable, or even infinite domains.  Finite probability 

models can contain propositions that receive zero probability.  While all contradictions must 

have zero probability, the converse is not true—even in finite spaces.  For instance, rational 

agents (who may have credences over finite spaces) may—and arguably must4—have irregular 

probability functions, and thus assign probability 0 to non-trivial propositions.  

Probability theory and statistics are shot through with non-trivial zero-probability events. 

Witness the probabilities of continuous random variables taking particular values (such as a 

normally distributed random variable taking the value 0). Witness the various ‘almost sure’ 

results—the strong law of large numbers, the law of the iterated logarithm, the martingale 

convergence theorem, and so on. They assert that certain convergences take place, not with 

certainty, but ‘almost surely’. This is not merely coyness, since these convergences may fail to 

take place—genuine possibilities that receive probability 0, and interesting ones at that. A fair 

coin may land tails forever. 

And so it goes; indeed it could not have gone otherwise. For necessarily a probability 

distribution over uncountably many outcomes is irregular (still assuming Kolmogorov’s 

axiomatization). More than that: such a distribution must accord uncountably many outcomes 

probability zero. For each such outcome, we have a violation of a seeming platitude about 

conditional probability: that the probability of a proposition given that very proposition, is 1. 

Surely that is about as fundamental a fact about conditional probability as there could be—on a 

par, we would say, with the platitude about logical consequence that every proposition entails 

itself.  

Equally platitudinous, we submit, is the claim that the conditional probability of a 

proposition, given something else that entails that proposition, is 1: for all distinct X and Y, if X 

entails Y then the probability of Y, given X, is 1. But clearly this too is violated by the ratio 

analysis. Suppose that X and Y are distinct, X entails Y, but both have probability 0 (e.g., X = 

‘the randomly chosen point lies in the western hemisphere of the equator’, and Y = ‘the point 

                                                
4 See Hájek (2003), Pruss (2013), Easwaran (2014). 
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lands on the equator’). Then P(Y|X) is undefined; but intuition demands that the conditional 

probability be 1. 

The difficulties that probability zero antecedents pose for the ratio formula for conditional 

probability are well known (which is not to say that they are unimportant). Indeed, Kolmogorov 

himself was well aware of them, and he offered a more sophisticated account of conditional 

probability as a random variable conditional on a sigma algebra, appealing to the Radon-

Nikodym theorem to guarantee the existence of such a random variable. But our complaints 

about the ratio analysis are hardly aimed at a strawman, since (RATIO) is by far the most 

commonly used analysis of conditional probability, especially in philosophical applications of 

probability. (Indeed, most philosophers—even mathematically literate ones—would be unable to 

state the more sophisticated account.) Moreover, the move to the more sophisticated account 

does not solve all the problems raised in this paper. In particular, even that account does not 

respect the platitudes of conditional probability stated above, as evidenced by the existence of 

so-called improper conditional probability random variables. Seidenfeld et al. (2001) show just 

how extreme and how widespread violations of the platitudes can be. And the more sophisticated 

machinery does not help with zero probability conditions in finite domains. Above all, the more 

sophisticated theory still delivers unintuitive verdicts regarding independence, as we will see in 

section 7. So that theory is no panacea. 

Hájek (2003) goes on to consider further problems for the ratio formula: cases in which the 

unconditional probabilities that figure in the ratio are vague (imprecise) or are undefined, and yet 

the corresponding conditional probabilities are defined. (These prove to be problematic also for 

the more sophisticated account, so therein lies no solution either.) For our purposes in this paper, 

however, cases of probability zero antecedents are problematic enough. 

We conclude that it is time to rethink the foundations of probability. It is time to question 

Kolmogorov's axiomatization, and in particular the conceptual priority it gives to unconditional 

probability. It is time to consider taking conditional probability as the fundamental notion in 

probability theory. 
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4.  An Unorthodox Account of Conditional Probability: Popper 

There are various ways to define conditional probabilities as total functions from F × F to 

[0,1].5  Popper (1959) presents a general account of such conditional probabilities.  The functions 

picked-out by Popper’s axioms are typically called Popper functions.  Here is a simple 

axiomatization of Popper functions. (We follow Roeper and Leblanc’s 1999 set-theoretic 

axiomatization.6) 

Definition.  Let F be a field on a set Ω.  A Popper function Pr(•, •) is a total function 

from F ×F to [0,1] such that: 

P1. For all A, B ∈ F, 0 ≤ Pr(A, B). 

P2. For all A ∈ F, Pr(Α, A) = 1. 

P3. If there exists a C ∈ F such that Pr(C, B) ≠ 1, then Pr(A, B) + Pr(¬A, B) = 1. 

P4. For all A, B, C ∈ F, Pr(A ∩ B, C) = Pr(A, B ∩ C) Pr(B, C). 

P5. For all A, B, C ∈ F, Pr(A ∩ B, C) = Pr(B ∩  A, C). 

P6. For all A, B, C ∈ F, Pr(A, B ∩  C)= Pr(A, C ∩ B). 

P7. There exist A, B ∈ F such that Pr(A, B) ≠ 1. 

 
                                                
5 For instance, Carnap (1950, 1952), Popper (1959), Kolmogorov (1950), Renyi (1970) and several others have 
proposed axiomatizations of conditional probability (as primitive).  See Roeper and Leblanc (1999) for a very 
thorough survey and comparison of these alternative approaches (in which it is shown that Popper’s definition of 
conditional probability is the most general of the well-known proposals).   
6 This axiomatization is slightly different (syntactically) from Popper’s original axiomatization.  But, the two are 
equivalent (as Roeper and Leblanc show).  Moreover, we are defining Popper functions over sets rather than 
statements or propositions, which is non-standard.  If you prefer, think of our sets as sets of possible worlds in which 
the corresponding propositions are true.  This is an inessential difference (since it doesn’t change the formal 
consequences of the axiomatization), and we will use the terms “entailment” and “set inclusion” interchangeably.  
Our aim here is to frame the various axiomatizations as generally (and commensurably) as possible.  We don’t want 
to restrict some  axiomatizations (e.g., Popper’s) to logical languages or other structures that have limited 
cardinality. Popper’s aim was to provide a logically autonomous axiomatization of conditional probability. Ours is 
simply to compare various axiomatizations in various ways, with an eye toward independence judgments. So we 
don’t mind interpreting the connectives in both Popper’s axiomatization and Kolmogorov’s axiomatization, and 
doing so in the same (non-autonomous, set-theoretic) way.  Given our set-theoretic reading of the connectives, 
axioms P5 and P6 above are redundant.  We include them so that the reader can easily cross-check the above 
axiomatization with the (autonomous) axiomatic system given in Roeper and Leblanc. We also recommend that text 
for various key lemmas and theorems that are known to hold for Popper functions. 
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We call a triple M = (Ω, F, Pr) satisfying these axioms a Popper probability model. It can be 

shown (Roeper and Leblanc 1999, chapter 1) that the Popper function Pr(X , Ω), thought of as a 

unary function of X, is just the Kolmogorovian unconditional probability function P(X) defined 

on (Ω, F).  In this sense, Popper functions can be thought of as an (conservative) extension of the 

Kolmogorovian theory of unconditional probability.  Indeed, Popper and Kolmogorov agreed on 

the nature of unconditional probability.  They only disagreed about the nature of conditional 

probability.  The following important fact about Popper functions will be used in subsequent 

sections: 

For all A and B, Pr(A, A ∩ B) = 1. 

This codifies our second platitude about conditional probability: the conditional probability of a 

proposition, given something else that entails that proposition, is 1. (P2 codifies the first: the 

probability of a proposition given that very proposition, is 1.) 

Now, we do not want to insist that Popper’s axiomatization is necessarily definitive. If some 

other simpler, more intuitive, or more powerful axiomatization of conditional probability can be 

given, so much the better for our cause. But we will happily work with Popper’s axiomatization 

in the meantime, mainly because it is the one best known to philosophers. 

 

5. Some preliminary reflections on independence  

We now come to the notion of independence—or rather, to the notions of independence, 

since it will soon emerge that there are many.  

On the Kolmogorovian theory of probability, A and B are said to be independent (in a model 

M = (Ω, F, P)) just in case 

(FACTORIZATION) P(A ∩ B) = P(A) P(B).  

Here we arrive at that part of probability theory that is distinctively probabilistic. Axioms K1 – 

K3 are general measure-theoretic axioms that apply equally to length, area and volume (suitably 
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normalized), and even to mass (suitably understood). It is this characterization of independence 

that we find only in probability theory.  

Note that (FACTORIZATION) generalizes nicely to n events, as follows: 

A1, …, An are independent (in a model M = (Ω, F, P)) 

iff  

(GENERALIZED FACTORIZATION)     P ∩Ai( ) = P(Ai )∏ . 

The right hand side is to be understood as a shorthand for many simultaneous conditions: all 

probabilities of two conjuncts factorize, all probabilities of three conjuncts factorize, … , the 

probability of the conjunction of all n events factorizes. 

K1 – K3 presuppose nothing but the real interval [0, 1] and elementary set theory, things that 

are antecedently well understood. But mathematics gives us no independent purchase on 

'independence'. For that we must look elsewhere. Paralleling our discussion of conditional 

probability in section 2: If (FACTORIZATION) were simply a stipulative definition of a new 

technical term, then there could be no objection to it (nor to a stipulative definition of 

‘schmindependence’, should anyone be moved to give one).  

But ‘independence’ is clearly a concept with which we were familiar before Kolmogorov 

arrived on the scene, even more so than the concept of ‘conditional probability’. The choice of 

word, after all, is no accident.  Indeed, it has such a familiar ring to it that we are liable to think 

that (FACTORIZATION) captures what we always meant by the word 'independence' in plain 

English. The concept of ‘independence’ of A and B is supposed to capture the idea of the 

insensitivity of (the probability of) A’s occurrence (truth) to B’s, or the uninformativeness of B’s 

occurrence (truth) to A’s. The probability of A is unmoved by how things stand with respect to 

B. Once again, it is an open question whether Kolmogorov has succeeded in capturing this idea. 

If he has, then that just means that he has given us a good piece of conceptual analysis. 

We think that he has not succeeded. For starters, note that unlike 'conditional probability', 

'independence' is obviously a multifarious notion. We use the same word when we speak of 
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logical independence, counterfactual independence, metaphysical independence (the Humean 

absence of any 'necessary connection' between distinct existences in virtue of which some 

proposition X is true in every possible world in which another proposition Y is true), evidential 

independence, and now, probabilistic independence. So at best, Kolmogorov has given us an 

analysis of just one concept of independence among many. Still, that would be quite an 

achievement. Von Neumann and Morgenstern certainly did us a service in giving us 'game 

theory', even if solitaire doesn't fall within its scope. 

So let us focus on probabilistic independence—and from now on when we speak simply of 

'independence', that's what we will mean. It is usual to speak simply of one proposition or event 

being independent of another, as in "A is independent of B". This is somewhat careless, 

encouraging one to forget that independence is a three-place relation among two propositions 

and a probability model. Here we part from ordinary English, and from all the other notions of 

'independence' listed above, in which independence is a two-place relation. Nevertheless, when a 

particular probability function is for some reason salient, the usual practice might seem to be 

innocuous enough (and in such cases we will sometimes follow it ourselves).  

According to the orthodox account, probabilistic independence is symmetric: if A is 

independent of B, then B is independent of A (with respect to a given probability model). This is 

obvious from the symmetric role that A and B play in (FACTORIZATION). Causal 

independence, on the other hand, is not symmetric: A can be causally independent of B without 

B being causally independent of A: your survival depends causally on a healthy distribution of 

air molecules in your vicinity while such a distribution is causally independent of your survival. 

Similarly, A can be counterfactually independent of B without B being counterfactually 

independent of A. We can have:  

B  !→  A and ¬B  !→  A (A is counterfactually independent of B) 

while having  

A  !→B and ¬A  !→  ¬B (B is counterfactually dependent on A). 
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(Lewis 1979 made much of such asymmetries in counterfactual dependence in his work on 

time’s arrow: the past, he argued, is counterfactually independent of the future but the future is 

counterfactually dependent on the past.) And regarding supervenience as a species of 

metaphysical dependence, this notion of dependence is also not symmetric: mental states may be 

dependent on physical states without physical states being dependent on mental states (think of 

multiple realizability of a given mental state). To be sure, evidential independence appears to be 

symmetric. Perhaps, however, that appearance should be questioned once we question the usual 

account of probabilistic independence, as we are now. 

Kolmogorov’s notion of independence may be the odd one out in various ways among 

several notions of independence, but that does not yet mean that it is odd. Let us now see just 

how odd it is.  

 

6. Further peculiarities of the factorizing construal of independence 

We have reflected at some length on the orthodox treatment of independence, defined in 

terms of the factorization of joint probabilities as given by (FACTORIZATION). We will call 

this the factorizing construal of independence. 

According to the factorizing construal of independence, anything with extreme probability 

has the peculiar property of being probabilistically independent of itself:   

If P(X) = 0, then P(X ∩ X) = 0 = P(X)P(X).  

If P(X) = 1, then P(X ∩ X) = 1 = P(X)P(X). 

Yet offhand, we would have thought that identity is the ultimate case of dependence (with one 

exception that we are about to note). Every possible proposition X is: 

• logically dependent on itself (since X entails X);  

• counterfactually dependent on itself (since X  !→  X and ¬X  !→  ¬X); 
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• supervenient on itself (since in every possible world in which X is the case, X is the 

case).7  

To be sure, we should be cautious about drawing morals for probabilistic dependence from other 

dependence relations. That said, offhand one would expect the probabilistic dependence of X on 

X to be maximal, not minimal. Much as we took it to be a platitude that  

for every proposition X, the probability of X given X is 1,  

so we take it to be a platitude that for every proposition X, X is dependent on X. What better 

support, or evidence, for X could there be than X itself? What proposition could X’s truth value 

be more sensitive to than X’s itself? 

Well, perhaps we should allow exactly one exception: the case where X has probability 1. 

Perhaps then X is probabilistically insensitive to itself, since its probability is already maximal. It 

seems right that its probability is unmoved by its own occurrence—it has nowhere higher to 

move! Very well then; let us admit the exception. But this very consideration only drives home 

how serious the problem is at the other end: the case where X has probability 0. The alleged self-

independence of probability zero events is disastrous by these lights, for their sensitivity to their 

own occurrence should be maximal, not minimal.  

In any case, perhaps the notion of probabilistic independence is not univocal. We may well 

have more than one such concept. Then it should come as no surprise if our intuitions are 

sometimes pulled in different ways—different concepts may be pulling them. X is logically 

dependent on itself even if it has probability 1; perhaps we should admit a notion of probabilistic 

independence that yields the same verdict? We may well want inductive logic, understood as 

probability theory, to be continuous with deductive logic.8 However, the Kolmogorovian 

orthodoxy treats probabilistic independence as if it is univocal. And we insist that there is no 

concept of independence that should regard probability zero events as independent of 

themselves. They could not be more hostage to their own occurrence, probabilistically speaking! 

                                                
7 The case of causal dependence is a little different because there are built-in logical or mereological ‘no-overlap’ 
constraints on the relata of the causal relation. See Arntzenius (1992) for discussion. 
8 Thanks to Leon Leontyev for this way of expressing the point. 
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More generally, according to the factorizing construal of independence, any proposition with 

extreme probability has the peculiar property of being probabilistically independent of anything. 

This includes anything that entails the proposition, and anything that the proposition entails. 

Much as we took it to be a platitude that 

for all X and Y, if X entails Y then the probability of Y, given X, is 1,  

so we take it to be a platitude that for every proposition X, X is dependent on anything that 

entails X. Again, we should perhaps grant probability 1 events exceptional status. But all the 

more we should not grant exceptional status to probability 0 events, as orthodoxy would have it. 

They could not be further from deserving exemption from the platitude—even allowing for more 

than one conception of probabilistic independence. 

We could perhaps tolerate these unwelcome consequences of the factorizing construal of 

independence if every probability function were regular. Then the extreme-probability 

propositions would be confined to logical truths and contradictions, and they could reasonably be 

dismissed as ‘don’t-cares’ (much as the result that in classical logic everything follows from a 

contradiction might be dismissed as a ‘don’t-care’). But, just as we saw in our discussion of 

problems for the ratio analysis, many of the propositions in question are ‘cares’: non-trivial 

propositions of genuine interest to probability theory and statistics.  

 

7.  “Equivalent” formulations of independence 

As long as all relevant conditional probabilities are well-defined, the orthodox theory has  

many other ways — via conditional probabilities — of saying that A and B are independent.  

Here are four of the simplest and most common of these ways:9 

i. P(A | B) = P(A) 

ii. P(B | A) = P(B) 

iii. P(A | B) = P(A | ¬B) 

                                                
9 It is shown in Fitelson (1999, 2001) that, despite the unified nature of the Kolmogorovian theory of probabilistic 
(in)dependence, there are many (radically) non-equivalent Kolmogorovian measures of degree of dependence (i.e., 
degree of correlation among propositions). 
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iv. P(B | A) = P(B | ¬A) 

It is crucial that we add the caveat about all salient conditional probabilities being well-defined. 

Otherwise the equivalence between the factorizing construal and these alternative, conditional 

forms of independence breaks down. Some textbooks on probability neglect to mention this 

caveat.10  This is unfortunate since, as we just saw, according to the factorizing construal, 

anything with extreme probability is probabilistically independent of itself, whereas this is not 

the case for all the conditional probability formulations of independence.  For if P(B) = 0, then 

the orthodox theory cannot deliver the mandatory verdict that the conditional probability of B, 

given itself, is 1. Thus, whereas the factorizing construal gives a verdict on the self-independence 

of such zero probability propositions, all of i – iv go silent.  Similarly, if P(B) = 1, then the 

orthodox theory goes silent on the value of P(B | ¬B). So iii and iv go silent for probability one 

propositions.  

In the remaining sections, we will consider what happens when conditional probabilities are 

defined even when their antecedents have probability zero.  We will show that when conditional 

probabilities are taken as primitive (and defined as total functions), a new and different theory of 

probabilistic independence emerges.  

 

8. Conditional Probability and Independence — Revisited 

When we adopt a Popper—and we suggest, a proper—definition of conditional probability, 

we are forced to rethink the notion of probabilistic independence.  Perhaps the easiest way to see 

this is to reconsider the case in which the unconditional probability of Z is zero.  The Popper 

analogue of the factorizing construal will say that A and B are independent (in (Ω, F, Pr)) iff: 

(POPPER FACTORIZATION)  Pr(A ∩ B,  Ω)  = Pr(A,  Ω) Pr(B,  Ω). 

                                                
10 See, for example, Pfeiffer (1990, pp. 73–84) who states 16 “equivalent” renditions of “A and B are 
probabilistically independent” (including our four, above) without mentioning that this “equivalence” depends on 
the assumption that the conditional probabilities are well-defined.  He does the same thing in his discussion of 
conditional independence (pp. 89–113).  Moreover, in the very same text (pp. 454–462), he discusses Kolmogorov’s 
more sophisticated definition of conditional probability. So, he is clearly well aware of the problem of zero 
probability conditions in the general case.  This is not atypical. 
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But if Pr(Z, Ω) = 0, then Pr(Z ∩ Z, Ω) = 0  = Pr(Z, Ω) Pr(Z, Ω). That is, the Popper analogue of 

the factorizing construal says that Z is independent of itself in this case.  However, if Pr(Z, 

Ω) = 0, then Pr(Z, Z) = 1 > Pr(Z, Ω) = 0.  So, on this conditioning construal of probabilistic 

independence, Z is maximally dependent on itself (i.e., Z is maximally positively relevant to 

itself).  So, not only are the factorizing construal and this conditioning construal of independence 

not equivalent; they are incompatible in the strongest possible sense. This means that we are now 

forced to be more precise about what we mean when we say that “X and Y are probabilistically 

independent.”   

We take it as intuitively clear that the factorizing construal is, in fact, an incorrect 

account of probabilistic independence—indeed, we claim to have just shown this.  After all, it 

seems clear that nothing could be more relevant to Z than Z itself.  The fact that Z has (the 

Popper analogue of) unconditional probability zero does nothing to undermine this intuition.  

Indeed, on any reasonable measure of incremental support, Z’s incremental support for itself will 

be maximal.  

A simple example makes this more general point quite clearly.  Let H be the hypothesis 

that a coin generated by a certain machine will land heads.  The background evidence Ω includes 

the information that the machine in question spits out coins so that their biases are uniformly 

distributed on [0,1].  Let B(b) be the proposition that the bias of the coin is b.  It is reasonable to 

assign zero probability to each of the B(b), since the governing distribution is continuous, and it 

is also reasonable to assign conditional probabilities so as to satisfy Pr(H, B(b)) = b.  In any case, 

for some values of b, B(b) will be highly relevant to H.  That is, for some values of b—namely, 

high and low ones—we will surely have Pr(H, B(b)) >> Pr(H, Ω), or Pr(H, B(b)) << Pr(H, Ω).  

Moreover, it seems intuitively obvious to us that, in such cases, we should say that B(b) and H 

are probabilistically dependent.  Alas, the orthodox account of independence cannot say this. The 

conditioning construals of independence in which B(b) is the condition do not speak at all. 
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Worse still, the other conditioning construals and the factorizing construal do speak, but one 

wishes they wouldn’t, because what they say is false: they judge B(b) and H to be independent.  

Moving to Kolmogorov’s more sophisticated treatment of conditional probability will not 

save the day. For starters, his FACTORIZATION construal is stated purely in terms of 

unconditional probabilities, so any finessing of conditional probability will make no difference 

there. But even the more sophisticated versions of construals i – iv will fail. It follows from the 

results of Seidenfeld et al. (2001) that probability zero events can be minimally rather than 

maximally dependent on themselves. Not only do such events violate the platitude that every 

event is maximally self-dependent; they could not violate it more. 

So it seems that we must abandon Kolmogorov’s factorizing and conditioning construals of 

independence. We propose replacing them with Popper-style conditioning construals. But, which 

conditioning construals?  As we mentioned above, there are many possible candidates.  We have 

already rejected the Popper analogue of the factorizing construal.  The following two candidates 

for analyzing ‘A is independent of B (in (Ω, F, Pr))’ naturally come to mind: 

(Ω CONSTRUAL)      Pr(A, B) = Pr(A, Ω)    

(NEGATION CONSTRUAL)  Pr(A, B) = Pr(A, ¬B)   

Interestingly, in the theory of Popper functions, (NEGATION CONSTRUAL) is strictly 

logically stronger than (Ω CONSTRUAL), and (Ω CONSTRUAL) is strictly logically stronger 

than (POPPER FACTORIZATION).  To see that (POPPER FACTORIZATION) does not entail 

either (Ω CONSTRUAL) or (NEGATION CONSTRUAL), suppose that Pr(A ∩  B, Ω) = 0, 

Pr(B, Ω) = 0, Pr(A, Ω) < 1, Pr(A, ¬B) < 1, and B entails A, so that Pr(A, B) = 1.  Then, Pr(A ∩  

B, Ω) = 0 = Pr(A, Ω) Pr(B, Ω), but Pr(A, B) > Pr(A, Ω), and Pr(A, B) > Pr(A, ¬B). To see that 

(Ω CONSTRUAL) does not entail (NEGATION CONSTRUAL), just let A = ¬Ω  = ∅  and B = 

Ω.  Then, Pr(A , B) = 0 = Pr(A , Ω), since B = Ω.  But Pr(A , ¬B) = 1 ≠ Pr(A , B) = 0, since ¬B = 

A.  
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 See the Appendix for axiomatic proofs of the chain of entailments (NEGATION 

CONSTRUAL) ⇒ (Ω CONSTRUAL) ⇒ (POPPER FACTORIZATION). 

Moreover, both conditioning construals are superior to (POPPER FACTORIZATION), 

since neither has the consequence that probability zero (conditional on Ω) events are independent 

of themselves; they are rightly judged as self-dependent (indeed, maximally so).  However, 

(NEGATION CONSTRUAL) disagrees with (Ω CONSTRUAL) in judging the self-dependence 

of probability one events (conditional on Ω). (NEGATION CONSTRUAL) says that they are 

self-dependent, but (Ω CONSTRUAL) says that they are self-independent. Given our earlier 

discussion, in which we considered giving probability one events exceptional status in being 

self-independent, this seems to be a point in favor of (Ω CONSTRUAL). Then again, we also 

allowed that our concept of probabilistic independence may not be univocal. Perhaps (Ω 

CONSTRUAL) and (NEGATION CONSTRUAL) codify different senses in which the 

probability of A is unmoved by how things stand with respect to B. It could be a matter of 

whether that probability is unmoved by the information that B; or a matter of whether it is 

unmoved by the answer to the question of which of B or not-B is the case.11 It is perhaps 

surprising that this distinction can make a difference; more power to the Popper formalism that it 

brings out this difference. 

In any case, we need not settle here the issue of whether one of (Ω CONSTRUAL) and 

(NEGATION CONSTRUAL) is superior to the other. What matters here is that both (Ω 

CONSTRUAL) and (NEGATION CONSTRUAL) are superior to their Kolmogorovian 

counterparts. 

There are further interesting consequences of our proposals. Probabilistic independence, 

understood either as (Ω CONSTRUAL) or (NEGATION CONSTRUAL), is not symmetric. Let 

Z have probability zero (conditional on Ω). According to (Ω CONSTRUAL), Z is independent of 

¬Z: 

                                                
11 Thanks to Hanti Lin for helpful discussion here. 
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 Pr(Z, ¬Z) = 0 = Pr(Z, Ω). 

But ¬Z is dependent on Z: 

 Pr(¬Z, Z) = 0 ≠ Pr(¬Z, W) = 1.    

Similarly, we can have Pr(A, B) = Pr(A, ¬B) without having Pr(B, A) = Pr(B, ¬A). Think of a 

random selection of a point from the [0, 1] interval. Let 

 A = the point is 1/2. 

 B = the point lies in [1/4, 3/4]. 

Then, intuitively, we should have: 

  Pr(A, B) = 0 = Pr(A, ¬B). 

Pr(B, A) = 1 ≠ 1/2 = Pr(B, ¬A). 

So on either construal, we can no longer just make claims of the form “A and B are 

dependent”.  We must now say things like “A is dependent on B” (as opposed to “B is dependent 

on A”) to make clear which direction of dependence we have in mind.  (This brings probabilistic 

independence closer to causal, counterfactual, and supervenience, which are similarly not 

symmetric, as we have seen.) On either construal, we can distinguish two (asymmetric) notions 

of dependence in the obvious ways: 

• (Ω CONSTRUAL): 

o A is positively dependent on B iff Pr(A, B) > Pr(A, Ω) 

o A is negatively dependent on B iff Pr(A, B) < Pr(A, Ω) 

• (NEGATION CONSTRUAL): 

o A is positively dependent on B iff Pr(A, B) > Pr(A, ¬B) 

o A is negatively dependent on B iff Pr(A, B) < Pr(A, ¬B) 

The generalization to n ≥ 3 propositions is not so straightforward for either the (Ω 

CONSTRUAL) or (NEGATION CONSTRUAL).  We can’t just say that “A1, …, An are 

mutually independent.”  We need to say which of the Ai are independent of (or dependent on) 

which. 
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To sum up: on a Popperian account of independence, we must specify a direction of 

independence. Claims about probabilistic (in)dependence are now of the form: “A is 

(in)dependent on (of) B, relative to a probability model M”. Properly understood, probabilistic 

independence is an asymmetric, three-place relation. 

A defender of the Kolmogorov orthodoxy might say at this point that we have done his work 

for him: we have exposed how complicated independence becomes when it is given a Popperian 

gloss. Doesn't Ockham's razor bid us to prefer the simpler theory of independence? Of course 

not. We ought not multiply senses of independence (or of anything else) beyond need. But in 

demonstrating the inadequacies of the Kolmogorov treatment, we have demonstrated that 

patently the need is there. Thales' theory that everything is made of water is spectacularly 

simpler than modern chemistry. That's hardly a reason to prefer it. As Einstein said: “Everything 

should be made as simple as possible, but not simpler.” 

 

9.  Conditional Independence — The Plot Thickens 

Things get even more interesting when we consider the notion of conditional independence.  

On the orthodox theory, this is again understood in terms of factorizing of probabilities.  

Propositions A and B are said to be conditionally independent, given C (according to a 

probability model (Ω, F, P)) iff  

P(A ∩ B | C) = P(A | C) P(B | C).   

Call this the factorizing construal of conditional independence. But, once again, on the orthodox 

view, this means that any proposition with extreme probability is conditionally and 

unconditionally probabilistically independent of all other propositions, for all conditions (with 

positive probability). This is incorrect for reasons we have given.   

Moreover, the “equivalence” between factorizing and conditioning construals of 

independence breaks down even more easily in cases of conditional independence. One 

conditioning construal of conditional independence of A and B, given C (or ‘C screening-off A 
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from B’) is that P(A | B ∩ C) = P(A | ¬ B ∩ C).  Of course, this expression is regarded as 

undefined on the orthodox theory whenever P(B ∩ C) = 0, so the theory goes silent in such a 

case.12  This is not a happy result.  As an illustration, consider the following simple twist on the 

coin example.  Let X be the proposition that the bias of the coin is on [0, a], and Y be the 

proposition that the bias of the coin is on [a, 1], with uniform distributions in each case.  

Intuitively, Pr(H, X ∩ Y) = a, even though Pr(X ∩ Y) = 0.  And for all values of a < 1, we surely 

want to say that H and X are dependent, given Y.  But, the orthodox theory cannot say this. The 

conditioning construal of conditional independence just mentioned does not say anything: P(H | 

X ∩ Y) is undefined. The factorizing construal of conditional independence says that H and X 

are independent, given Y: P(H ∩ X | Y) = 0 = P(H | Y) P(X | Y).  These construals come apart 

from each other, and neither delivers the verdict that intuition demands. 

Note that this is a case in which none of the three propositions (taken individually) has zero 

unconditional probability.  It is a case in which the conditioning event “interacts” with one of the 

other events, so as to undermine the putative “equivalence” of the factorizing and conditioning 

construals of conditional independence in the orthodox theory.   This is only more bad news for 

the orthodox accounts of conditional probability and independence.  

But it is only more good news for the Popper-style accounts that we advocate, for again they 

can handle all the requisite conditional probabilities with ease. Again, we have two construals of 

‘H is conditionally independent of X, given Y’, based respectively on the (Ω CONSTRUAL) and 

(NEGATION CONSTRUAL) respectively: 

  Pr(H, X ∩ Y) = Pr(H, Y). 

  Pr(H, X ∩ Y) = Pr(H, ¬X ∩ Y). 

                                                
12 An important special case occurs when C itself has zero unconditional probability.  When this happens, no event 
can be conditionally independent (or dependent) of any other event, given C.  The example below is even more 
compelling than this special case, since none of its individual propositions has zero probability. 
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There is no impediment to imposing the constraint that Pr(H, X ∩ Y) = a. So we have (where a 

< 1): 

Pr(H, X ∩ Y) = a ≠ Pr(H, Y) = Pr(H, bias of coin is on [a, 1]) = (1 + a)/2. 

H is dependent on X, given Y, based on the (Ω CONSTRUAL). Moreover, 

 Pr(H, X ∩ Y) = a ≠ Pr(H, ¬X ∩ Y) = Pr(H, bias of coin is on (a, 1]) = (1 + a)/2.  

H and X are adjudicated as conditionally dependent, given Y (for a < 1), based on the 

(NEGATION CONSTRUAL). Either way, our intuition is upheld. 

 

10.  A call to arms 

We conclude that it is time to bring to an end the hegemony of Kolmogorov’s 

axiomatization, and with it, the Kolmogorovian account of independence. We seek 

independence, as it were, from that account of independence. Popper’s axiomatization, and the 

conditioning construal of independence that it inspires, represent more promising alternatives. 

Long live the revolution!13 

 

Appendix: Proof of (NEGATION CONSTRUAL) ⇒ (Ω CONSTRUAL) ⇒ (POPPER 

FACTORIZATION).  

First, we prove that (Ω CONSTRUAL) ⇒ (POPPER FACTORIZATION). Indeed, we’ll prove 

the following more general result (the result in question is a special case of the following, with C 

= Ω): 

 Pr(A, B ∩ C) = Pr(A, C) ⇒ Pr(A ∩  B, C) = Pr(A, C) Pr(B, C) 

Assume Pr(A, B ∩ C) = Pr(A, C). Then, by Popper’s product axiom P4, we have  

Pr(A ∩  B, C) = Pr(A, B ∩  C) Pr(B, C) = Pr(A, C) Pr(B, C). QED. 

Now, we prove that (NEGATION CONSTRUAL) ⇒ (Ω CONSTRUAL). That is, by logic, 
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Pr(A, B ∩  Ω) = Pr(A, ¬B ∩  Ω) ⇒ Pr(A, B ∩  Ω) = Pr(A, Ω). 

Now, Pr(A, B ∩  Ω) = Pr(A, ¬B ∩  Ω) [Assumption] 

Thus, 

Pr(A, B ∩  Ω) Pr(B, Ω) = Pr(A, ¬B ∩ Ω) Pr(B, Ω) [algebra] 

But also, 

Pr(A, B ∩ Ω) Pr(B, Ω) = Pr(A ∩ B, Ω)  [Popper’s product axiom P4] 

Thus, 

Pr(A ∩ B, Ω) = Pr(A, ¬B ∩ Ω) Pr(B, Ω), 

and so 

Pr(A ∩ B, Ω) = Pr(A, ¬B ∩ Ω) (1 – Pr(¬B, Ω)) [Popper’s additivity axiom P3] 

(This axiom implies Pr(B, Ω) + Pr(¬B, Ω) = 1,   

since it is not that case that for all X, Pr(X, Ω) = 1.  The fact that 

there exists a X such that Pr(X, Ω) ≠ 1 is proven as lemma 4(t) 

in Roeper and Leblanc (1999, page 198).) 

Pr(A ∩ B, Ω) = Pr(A, ¬B ∩ Ω) – Pr(A, ¬B ∩ Ω) Pr(¬B, Ω) [algebra] 

Pr(A ∩ B, Ω) = Pr(A, ¬B ∩ Ω) – Pr(A ∩ ¬B, Ω) [Popper’s product axiom P4] 

Pr(A ∩ B, Ω) + Pr(A ∩ ¬B, Ω) = Pr(A, ¬B ∩ Ω) [algebra] 

Pr(A, Ω) = Pr(A, ¬B ∩ Ω)  

[It can be shown that Popper’s axioms imply Pr(A, Ω) = Pr(A ∩ B, Ω) + Pr(A ∩ ¬B, Ω), 

since it is not the case that for all X, Pr(X, Ω) = 1 (as above).   

This is proved as Lemma 4(i) in Roeper and Leblanc (1999, page 197).] 

Pr(A, Ω) = Pr(A, B ∩ Ω) [by our assumption] QED  

                                                                                                                                                       
13 We thank especially Leon Leontyev and Hanti Lin for very helpful comments. 
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