% This OTTER input file generates a 47-step proof of distributivity % in the positive fragment of Ln. Here, we use the infix operators % ->, &, and V instead of the polish C, K, and A, respectively. op(400,xfx,[->,&,V]). set(hyper_res). assign(max_weight, 1). set(ancestor_subsume). clear(print_kept). clear(print_new_demod). clear(print_back_demod). clear(print_back_sub). clear(print_given). set(order_history). set(input_sos_first). assign(equiv_hint_wt, 1). set(keep_hint_subsumers). % Turning the following flag on causes OTTER to generate a proof object % which shows ALL instantiations and unifications in the proof. set(build_proof_object). list(hints). % 47-step proof of ditrbutvity in positive fragment of Ln P((x-> (y V x))& (z-> (z V u))). P((x-> ((y->z)& (u->z)))-> (x-> ((y V u)->z))). P((x-> ((y->z)& (y->u)))-> (x-> (y-> (z&u)))). P((x->y)-> (x-> (z V y))). P((x->y)-> (x-> (y V z))). P((((x->y)-> (z->y))->u)-> ((z->x)->u)). P(((x V y)->z)-> (x->z)). P((x->y)-> ((z&x)->y)). P(((x->y)->z)-> (y->z)). P(x-> (y->y)). P(x-> ((y&z)->y)). P((x V y)-> (y V x)). P((x-> (y->z))-> ((u->y)-> (x-> (u->z)))). P(((x->y)->z)-> (((x V u)->y)->z)). P(x-> ((x->y)->y)). P((x->x)& (y-> (z->z))). P((x-> (y->y))& (z->z)). P((x-> ((y&z)->y))& ((u->v)-> ((w&u)->v))). P((x-> (y V z))-> (x-> (z V y))). P((x-> (y->z))-> (y-> (x->z))). P(x-> (x& (y->y))). P(x-> ((y->y)&x)). P((x->y)-> (((z&u)->z)& ((v&x)->y))). P((x->y)-> (((y->x)->x)->y)). P((x->y)-> ((x V y)->y)). P((x->y)-> ((y V x)->y)). P((x->y)-> ((z&x)-> (z&y))). P((x-> ((y->z)->z))-> ((z->y)-> (x->y))). P((((x V y)->y)->z)-> ((x->y)->z)). P((x-> (y->z))-> (x-> ((u&y)-> (u&z)))). P((x-> (y V z))-> (((y->x)->x)-> (y V z))). P((x->y)-> ((z& (x V y))->y)). P((x->y)-> ((z& (y V x))-> (z&y))). P(((x->y)->y)-> (x V y)). P((((x& (y V z))->z)->u)-> ((y->z)->u)). P((((x& (y V z))-> (x&y))->u)-> ((z->y)->u)). P((x->y) V (y->x)). P((x->y)-> ((z& (x V y))-> (u V y))). P((x->y)-> ((z& (y V x))-> ((z&y) V u))). P(((x->y)-> ((z& (x V y))-> (u V y)))& ((v->w)-> ((v6& (w V v))-> ((v6&w) V v7)))). P(((x->y) V (y->x))-> ((z& (x V y))-> ((z&x) V y))). P((x& (y V z))-> ((x&y) V z)). P((x& (y V z))-> (z V (x&y))). P(((x&y)->x)& ((z& (u V v))-> (v V (z&u)))). P((x-> (y& (z V u)))-> (x-> (u V (y&z)))). P((x& (y V z))-> (x& (z V (x&y)))). P((x& (y V z))-> ((x&y) V (x&z))). end_of_list. list(usable). x=x. % Condensed Detachment Rule (CD) -P(x -> y) | -P(x) | P(y). % Condensed Adjunction Rule (CA) -P(x) | -P(y) | P(x & y). end_of_list. list(sos). % Axioms for minimal system M+ P((x & y) -> x) #label(M1). P((x & y) -> y) #label(M2). P(x -> (x V y)) #label(M3). P(y -> (x V y)) #label(M4). P(((x -> y) & (x -> z)) -> (x -> (y & z))) #label(M5). P(((x -> z) & (y -> z)) -> ((x V y) -> z)) #label(M6). P(x -> x) #label(M7). P((y -> z) -> ((x -> y) -> (x -> z))) #label(M8). P((x -> y) -> ((y -> z) -> (x -> z))) #label(M9). % Additional implicational axioms for Ln P(x -> (y -> x)) #label(A1). P(((x -> y) -> y) -> ((y -> x) -> x)) #label(A3). P(((x -> y) -> (y -> x)) -> (y -> x)) #label(A5). end_of_list. list(passive). % Denial of distributivity -P((a & (b V c)) -> ((a & b) V (a & c))). end_of_list.