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Abstract. Certain distributivity results for �Lukasiewicz’s infinite-valued logic �Lℵ0

are proved axiomatically (for the first time) with the help of the automated reasoning
program Otter [16]. In addition, non-distributivity results are established for a
wide variety of positive substructural logics by the use of logical matrices discovered
with the automated model finding programs Mace [15] and MaGIC [25].
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1. Motivation

This research was originally motivated by the following uncharacteristic
remark made by Rose and Rosser in their classic paper on �Lukasiewicz’s
infinite-valued logic �Lℵ0 [23, pp. 11-12]:

With both A and B serving as disjunctions and both K and L serving as
conjunctions, one can write a number of possible distributive laws. Some are
not valid, and of the valid ones we have been able to prove only two from the
axiom schemes A1-A4.

We took up the challenge to prove the valid �Lℵ0 distributivity results
that Rose and Rosser had been unable to establish axiomatically.1 Our
success lead us to a much deeper understanding of distributivity, not
only in �Lℵ0, but in a wide variety of positive sentential logics, both
classical and non-classical. Much of what we learned is reported here.

2. Polish Notation and Other Conventions

We will adopt the well-known Polish notation of �Lukasiewicz. In par-
ticular, ‘C’ stands for implication, ‘N ’ for negation, ‘A’ for disjunction,
and ‘K’ for conjunction. Lower case letters ‘p’, ‘q’, etc., are used as
sentential or propositional variables. To illustrate how Polish notation
differs from infix and prefix notation (both of which are supported by
Otter), we show how a distributive law looks in each of the three:

Polish: CKpAqrAKpqKpr

Infix: (p & (q ∨ r)) → ((p & q) ∨ (p & r))
Prefix: C(K(p, A(q, r)), A(K(p, q), K(p, r)))

1 Note added in proof: Beavers [2] has independently taken up this challenge.
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We choose Polish notation not just because of its historical dominance
in this area, but also because of its syntactic economy. Some of the
proofs we will present are quite complex and would be difficult to parse
and/or typeset in either the infix or the prefix notation used by Otter.

The proofs presented in this paper have been translated directly
from Otter output files into our Polish notation.2 Hyperresolution
is used, throughout, to implement all logical rules of inference in the
systems presented. The notation ‘[i, j, k]’ written to the left of each
formula in our proofs is shorthand for ‘the present formula was obtained
by applying the rule at line i (via a single hyperresolution step), with
the formula at line j as major premise and the formula at line k as minor
premise.’ Rules of inference are stated using commas to separate the
premises of the rule, and a double arrow ‘⇒’ to indicate its conclusion.
For instance, modus ponens (or detachment) looks like: ‘Cpq, p ⇒ q’.

3. �Lukasiewicz’s Infinite-Valued Logic �Lℵ0

3.1. The Semantics of �Lℵ0

The semantics of the infinite-valued logic �Lℵ0 were first presented by
�Lukasiewicz [13, pp. 129-130]. His original motivation was to provide a
“numerical interpretation” of the sentential variables which appear in
Whitehead and Russell’s Principia Mathematica. This numerical inter-
pretation was intended to (i) provide a way to show that “some logical
laws are independent of the others,” and (ii) to extend �Lukasiewicz’s
three-valued logic [13, pp. 87-109] to a logic with infinitely many values
or “degrees of probability corresponding to various possibilities.”3

We find �Lukasiewicz’s original presentation of the semantics some-
what cumbersome to apply. What follows is Wajsberg’s [28, p. 123,
note 8] simplification of the semantics for �Lℵ0. We introduce a valuation
function v which assigns rational numbers on the closed unit interval
[0, 1] to each atomic sentence in the language of �Lℵ0. The values v
assigns to complex �Lℵ0 sentences are determined recursively, as follows:

v(Cpq) = q −̇ p =




0 if p ≥ q,

q − p if p < q.
v(Kpq) = max(p, q)

v(Apq) = min(p, q) v(Np) = 1 − p

2 See www.mcs.anl.gov/˜fitelson/distrib/ for relevant input files.
3 See [11, pp. 569–572] for the historical development of the thoughts of

�Lukasiewicz and his contemporaries on many-valued logics. See [26] for a recent
survey of interpretations and applications of many-valued logics, including �Lℵ0 .
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In other words, v assigns a conditional of the form Cpq the value
q −̇ p, where −̇ is cutoff subtraction, v assigns a conjunction Kpq the
maximum of the values of p and q, v assigns a disjunction Apq the
minimum of the values of p and q, and v assigns a negation Np the
value 1 − p.4 Thinking in terms of cutoff subtraction, max, and min,
makes calculating the values of complex �Lℵ0 sentences relatively easy.

There is just one designated value in this semantics: zero. For any
sentence p of �Lℵ0, p is said to be semantically valid in �Lℵ0 just in case
v(p) = 0, for all valuations v. As an illustration, we now present a proof
that the following distributive law is semantically valid in �Lℵ0.

CKpAqrAKpqKpr(1)

The proof that (1) is valid in �Lℵ0 involves calculating v[(1)] in six cases,
corresponding to all of the different ways in which p, q, and r can be
partially ordered, according to any possible valuation v.5 To this end,
we present the following “�Lℵ0 truth-table” for the formula (1).

Six Cases v(Aqr) v(KpAqr) v(Kpq) v(Kpr) v(AKpqKpr) v[(1)]

p ≤ q ≤ r q q q r q 0

p ≤ r ≤ q r r q r r 0

q ≤ p ≤ r q p p r p 0

q ≤ r ≤ p q p p p p 0

r ≤ p ≤ q r p q p p 0

r ≤ q ≤ p r p p p p 0

Proving that the Distributive Law (1) is Valid in �Lℵ0

Inspection of the above table reveals that every possible valuation v is
such that v[(1)] = 0. Therefore, (1) is semantically valid in �Lℵ0. In the

4 Strictly speaking, we should always write ‘v(p)’ when we talk about the value v
assigns to the sentence p. But, we will, for simplicity, often write things like ‘p ≤ q’,
where it is understood in such cases that ‘p’ and ‘q’ denote the numerical values
that v assigns to the sentences p and q, respectively (not the sentences themselves).

5 Wajsberg [28, p. 125, Theorem 17] proves that the set of valid �Lℵ0 sentences is
decidable. The validity of (1) is equivalent to a conjunction of six statements in the
first-order theory of the rationals. For example, the first case can be rephrased as:

(∀p)(∀q)(∀r)[p ≤ q & q ≤ r ⇒ max(p,min(q, r)) −̇min(max(p, q),max(p, r)) = 0]

Generally, the �Lℵ0 -validity of a sentence p is equivalent to a conjunction of univer-
sally quantified Boolean combinations of linear equalities and inequalities. For this
class of first-order formulas, Wajsberg proves a quantifier elimination theorem, along
the lines of Langford’s [12] decidability proof for the theory of dense linear orders.
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sections that follow, we will provide various axiomatic proofs of (1).
An axiomatic proof of (1) eluded Rose and Rosser [23].

3.2. The Axiomatics of �Lℵ0

�Lukasiewicz [13, pp. 143-144] conjectured that the following set of five6

axiom schemes (A1–A5) and the single rule (CD) of detachment7 is
complete with respect to the semantics of �Lℵ0 described above.

(CD) Cpq, p ⇒ q

(A1) CpCqp

(A2) CCpqCCqrCpr

(A3) CCCpqqCCqpp

(A4) CCNpNqCqp

(A5) CCCpqCqpCqp

�Lukasiewicz’s conjecture is rumored to have been proven first by his
student Mordchaj Wajsberg [13, p. 144] [28, p. 105]. However, Wajs-
berg’s proof was never made public. Rose and Rosser [23] were the first
to publish a proof of the completeness of A1–A5. Since then, others
have provided completeness proofs with respect to more general classes
of algebraic structures [6, 7].

In �Lℵ0, A and K are defined in terms of C and N , as follows:

Apq =df CCpqq
Kpq =df NCCNpNqNq

In the next section, we will report an Otter proof of the distribu-
tivity of K over A (expressed in terms of C and N ), from A1–A4.

6 Axiom A5 was shown to be dependent by both Meredith [17] and Chang [5].
Recently, Wos [31, §11.4.3] has used Otter to find much shorter and more elegant
proofs of the dependence of A5 (see footnote 10). Since A5 is dependent, we will
restrict ourselves to axioms A1–A4 when working in the C-N fragment of �Lℵ0 .
Although A5 is dependent, it plays a crucial role in our proofs of distributivity.

7 �Lukasiewicz and his contemporaries allowed themselves both the rule of de-
tachment and the rule of arbitrary substitution (or instantiation) into theorems. In
the late 1950’s, Meredith (as explained by Prior [19, Appendix II]) eliminated the
arbitrariness of the rule of substitution by insisting that all instantiations be most
general (much like what we would now call most general unification). This was the
birth of condensed detachment (CD), which is easily implemented in Otter using
hyperresolution. (CD) is the main rule of inference used throughout this paper, and
it is what makes the automation of logical calculi feasible [31, page 11]. See [10]
for a detailed discussion of the history and automated implementation of condensed
detachment, as well as a proof of its equivalence to detachment and substitution.
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3.3. Distributivity in �Lℵ0 I: From the C-N Axioms A1–A4

As we have shown above, it is not difficult to verify that the following
distributive law (now expressed in terms of the underlying implication
and negation connectives C and N ) is valid in the semantics of �Lℵ0.

CNCCNpNCCqrrNCCqrrCCNCCNpNqNqNCCNpNrNrNCCNpNrNr(2)

Therefore, using the completeness result of Rose and Rosser [23], we
may infer that a condensed detachment proof of (2) from the axioms
A1–A4 must exist. This is one of the (two8) distributive laws that Rose
and Rosser [23] were unable to prove from the axioms A1–A4 of �Lℵ0.

Obtaining a pure CD proof of (2) from A1–A4 proved to be quite a
challenge. We began by using Otter to find CD proofs of as many as
possible of the (fifty or so) lemmas that Rose and Rosser [23, pp. 6-13]
prove from A1–A4. We were able to obtain Otter proofs of almost
all of Rose and Rosser’s lemmas. But, the distributivity laws still re-
mained beyond our reach. At this point, we used a technique developed
by Wos and McCune [32] which combines equational reasoning with
CD reasoning. We exploited various metatheoretic equalities (and a
metatheoretic substitution lemma), which were established by Rose
and Rosser.9 Eventually, this led to a proof of (2) which used both
paramodulation and demodulation, as well as CD. This initial, bi-
directional, equality/CD proof was then converted, first into a forward,
paramodulation/CD proof (with the help of Bob Veroff), and then into
a pure CD proof, using an Otter technique developed by Mccune
[32, 14] for translating equality substitution steps into CD steps in
certain logical calculi, including �Lukasiewicz’s infinite-valued logic �Lℵ0.

Our first pure CD proof of (2) from A1–A4 was nearly 100 steps
long and made extensive use of double negation terms (i.e., terms of
the form ‘NNp’). Larry Wos, using a variety of Otter techniques
(some of which are discussed in [30]), was eventually able to find an
85 step proof which is free of ‘NNp’ terms (we call such proofs “term-

8 The other distributive law that Rose and Rosser were unable to prove
from A1–A4 is that disjunction A distributes over conjunction K (i.e., that
CKApqAprApKqr follows from A1–A4). With the help of Otter, we have also
obtained proofs of this form of distributivity. We omit these proofs both due to space
considerations, and because the results reported here are, ultimately, sufficient (given
that K and A form a lattice under the ordering imposed by C in �Lℵ0 , see section 4.3
for discussion) to establish both the K-over-A and the A-over-K directions.

9 For instance, the equalities NNp = p [23, (3.4)] and Cpq = CNqNp [23, (3.5)]
are very useful for finding “hybrid” equality/CD proofs of this kind, as are many
of the other equalities that are established by Rose and Rosser. It is interesting to
note that we have recently used Otter to generate a 19 step paramodulation proof
of (2), using only equalities that were proven by Rose and Rosser themselves.
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avoidant”). Here is Wos’s term-avoidant Otter proof of (2).10,11

1. [CD] Cpq, p ⇒ q
2. [A1] CpCqp
3. [A2] CCpqCCqrCpr
4. [A3] CCCpqqCCqpp
5. [A4] CCNpNqCqp
6. [1,3,3] CCCCpqCrqsCCrps
7. [1,3,2] CCCpqrCqr
8. [1,3,4] CCCCpqqrCCCqppr
9. [1,3,5] CCCpqrCCNqNpr
10. [1,6,6] CCpCqrCCsqCpCsr
11. [1,6,3] CCpqCCCprsCCqrs
12. [1,3,7] CCCpqrCCCspqr
13. [1,7,5] CNpCpq
14. [1,7,4] CpCCpqq
15. [1,12,7] CCCpCqrsCrs
16. [1,11,13] CCCNpqrCCCpsqr
17. [1,12,14] CCCpqrCCCqrss
18. [1,10,14] CCpCqrCqCpr
19. [1,3,15] CCCpqrCCCsCtpqr
20. [1,16,5] CCCpqNrCrp
21. [1,3,18] CCCpCqrsCCqCprs
22. [1,18,3] CCpqCCrpCrq
23. [1,10,22] CCpCqrCCrsCpCqs
24. [1,22,18] CCpCqCrsCpCrCqs
25. [1,22,4] CCpCCqrrCpCCrqq
26. [1,23,9] CCpqCCCrspCCNsNrq
27. [1,24,24] CCpCqCrsCrCpCqs
28. [1,24,25] CCpCCqrrCCrqCpq
29. [1,27,3] CpCCpqCCqrr
30. [1,23,28] CCCpqrCCpCCqssCCsqr
31. [1,21,28] CCCpqCrqCCqpCrp

10 Wos’s proof of (2) contains, as a strict sub-proof, a 41 step term-avoidant proof
of axiom A5 (line 74 of the proof) from axioms A1–A4. This gives the above proof of
(2) the added distinction of containing a radically different proof of the dependence
of A5 than is traditionally seen in the literature (e.g., the proofs of Meredith [17]
and Chang [5] make extensive use of double-negation). Using Otter, Wos [31,
§11.4.3] has discovered a 32 step term-avoidant dependence proof. His Otter proof
is significantly more elegant than the proofs previously reported in the literature.

11 Some technical details: This Otter proof is an 85 step, level 34 proof which
uses 6 distinct variables and requires a max weight of 48. If you want to see all the
gory details behind our proofs, Otter’s build proof object feature [14] allows the
user to see all of the unifications and instantiations involved in any Otter proof.
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32. [1,30,20] CCCpqCCNrssCCsNrCrp
33. [1,11,31] CCCCCpqCrqstCCCCqpCrpst
34. [1,3,31] CCCCpqCrqsCCCqpCrps
35. [1,32,5] CCpNqCqNp
36. [1,33,31] CCCCpqCrqCsCrpCCCrpCqpCsCqp
37. [1,33,24] CCCCpqCrqCsCtuCCCqpCrpCtCsu
38. [1,18,35] CpCCqNpNq
39. [1,22,36] CCpCCCqrCsrCtCsqCpCCCsqCrqCtCrq
40. [1,10,38] CCpCqNrCrCpNq
41. [1,39,29] CCpqCCCrpCqpCCCrqCrpCqp
42. [1,16,40] CCCpqCrNsCsCNpNr
43. [1,40,38] CpCqNCpNq
44. [1,6,42] CCpqCrCNqNp
45. [1,23,43] CCNCpNqrCpCqr
46. [1,9,43] CCNpNqCrNCCqpNr
47. [1,28,44] CCCNpNqrCCqpr
48. [1,3,45] CCCpCqrsCCNCpNqrs
49. [1,11,46] CCCCNpNqrsCCCtNCCqpNtrs
50. [1,23,47] CCpqCCCNrNspCCsrq
51. [1,8,47] CCCNpNqNqCCpqNp
52. [1,3,47] CCCCpqrsCCCNqNprs
53. [1,22,48] CCpCCqCrstCpCCNCqNrst
54. [1,22,49] CCpCCCNqNrstCpCCCuNCCrqNust
55. [1,50,5] CCCNpNqCNrNsCCqpCsr
56. [1,7,51] CNpCCqpNq
57. [1,34,55] CCCNpNqCNrNqCCpqCpr
58. [1,55,35] CCNpqCNqp
59. [1,18,56] CCpqCNqNp
60. [1,10,56] CCpCqrCNrCpNq
61. [1,22,57] CCpCCNqNrCNsNrCpCCqrCqs
62. [1,22,58] CCpCNqrCpCNrq
63. [1,26,59] CCCpqCrsCCNqNpCNsNr
64. [1,59,51] CNCCpqNpNCCNpNqNq
65. [1,62,60] CCpCqrCNCpNqr
66. [1,61,63] CCCpqCprCCqpCqr
67. [1,22,64] CCpNCCqrNqCpNCCNqNrNr
68. [1,52,66] CCCNpNqCqrCCpqCpr
69. [1,10,66] CCpCqrCCCrqCrsCpCqs
70. [1,66,17] CCpCCqpqCpq
71. [1,11,67] CCCCpNCCqrNqstCCCpNCCNqNrNrst
72. [1,3,68] CCCCpqCprsCCCNpNqCqrs
73. [1,69,5] CCCpqCprCCNpNqCqr
74. [1,21,70] CCCpqCqpCqp
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75. [1,22,71] CCpCCCqNCCrsNrtuCpCCCqNCCNrNsNstu
76. [1,22,72] CCpCCCqrCqstCpCCCNqNrCrst
77. [1,19,74] CCCpCqCrsCsrCsr
78. [1,22,76] CCpCqCCCrsCrtuCpCqCCCNrNsCstu
79. [1,4,77] CCCpqCrCsCqpCrCsCqp
80. [1,79,41] CCCpqCrqCCCprCpqCrq
81. [1,76,80] CCCpqCrqCCCNpNrCrqCrq
82. [1,54,81] CCCpqCrqCCCsNCCrpNsCrqCrq
83. [1,75,82] CCCpqCrqCCCrNCCNrNpNpCrqCrq
84. [1,25,83] CCCpqCrqCCCrqCrNCCNrNpNpCrNCCNrNpNp
85. [1,37,84] CCCpqCrqCrCCCrpCrNCCNrNqNqNCCNrNqNq
86. [1,21,85] CCpCCqrrCpCCCpqCpNCCNpNrNrNCCNpNrNr
87. [1,73,86] CCNpNCCqrrCCCqrrCCCpqCpNCCNpNrNrNCCNpNrNr

88. [1,78,87] CCNpNCCqrrCCCqrrCCCNpNqCqNCCNpNrNrNCCNpNrNr

89. [1,65,88] CNCCNpNCCqrrNCCqrrCCCNpNqCqNCCNpNrNrNCCNpNrNr

90. [1,53,89] CNCCNpNCCqrrNCCqrrCCNCCNpNqNqNCCNpNrNrNCCNpNrNr

4. An Axiomatic Framework for Positive Sentential Logics

4.1. A Minimal Positive Sentential Logic M+

We will take as our minimal (non-distributive) positive logic, the fol-
lowing set of two rules and nine axioms. We call this system M+.12

(CD) Cpq, p ⇒ q

(CA) p, q ⇒ Kpq

(M1) CKpqp

(M2) CKpqq

(M3) CpApq

(M4) CqApq

(M5) CKCpqCprCpKqr

(M6) CKCprCqrCApqr

(M7) Cpp

(M8) CCqrCCpqCpr

(M9) CCpqCCqrCpr13

12 M+ is the same as the positive fragment of Slaney’s [25] system LTW. In other
words, M+ is just the non-distributive, positive fragment of the system TW. The
name TW traces back to [4]. See, for instance, [20, pp. 59-60] and [21, pp. 39-40] for
outlines of the hierarchy of substructural logics (in which TW+ is near the bottom).

13 Axiom M9 is A2 from �Lℵ0 . This fact will be used without comment hereafter.
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(CA) is called the rule of (condensed) adjunction. Axioms M1–M6
encode basic lattice properties for conjunction (K) and disjunction
(A), with respect to the order imposed by the conditional (C). Axioms
M7–M9 ensure that the conditional has certain minimal properties,
such as reflexivity and transitivity. The axioms and rules of M+ are
valid in a wide class of sentential logics, including the vast majority of
substructural logics, as well as intuitionistic logic, �Lℵ0 (see footnote 16),
and classical logic [20, pp. 59-60].

As it stands, M+ is non-distributive (see section 4.4 for a proof of
this claim). That is, the distributivity formula (1) is not deducible from
the rules and axioms of our minimal system M+. In the next section,
we will present a set of (classical) C-axioms which is sufficient to force
distributivity in M+. We will also provide a (classical) proof of this.

4.2. Three Classical C-Axioms That Make M+
Distributive

Adding certain sets of implicational axioms to M+ will force distribu-
tivity. One such set consists of the following three classical C-axioms:

(C1) CpCqp
(C2) CCpCqrCqCpr
(C3) CCpCpqCpq

Each of C1–C3 is a theorem in both intuitionistic sentential logic and
classical sentential logic. The following proof exemplifies how distribu-
tivity is traditionally established, both intuitionistically and classically:

1. [CD] Cpq, p ⇒ q
2. [CA] p, q ⇒ Kpq
3. [M1] CKpqp
4. [M2] CKpqq
5. [M3] CpApq
6. [M4] CqApq
7. [M5] CKCpqCprCpKqr
8. [M6] CKCprCqrCApqr
9. [M7] Cpp
10. [M8] CCqrCCpqCpr
11. [M9] CCpqCCqrCpr
12. [C1] CpCqp
13. [C2] CCpCqrCqCpr
14. [C3] CCpCpqCpq
15. [2,6,5] KCpAqpCrArs
16. [1,10,7] CCpKCqrCqsCpCqKrs
17. [1,10,5] CCpqCpAqr
18. [1,11,4] CCpqCKprq
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19. [1,11,3] CCpqCKrpq
20. [1,12,9] CpCqq
21. [1,12,6] CpCqArq
22. [1,8,15] CApqAqp
23. [1,10,17] CCpCqrCpCqArs
24. [2,20,12] KCpCqqCrCsr
25. [1,13,21] CpCqArp
26. [1,10,22] CCpAqrCpArq
27. [1,7,24] CpKCqqCrp
28. [1,16,27] CpCqKqp
29. [1,23,28] CpCqAKqpr
30. [2,29,25] KCpCqAKqprCsCtAus
31. [1,8,30] CApqCrAKrpq
32. [1,19,31] CKpAqrCsAKsqr
33. [1,13,32] CpCKqArsAKprs
34. [1,18,33] CKpqCKrAstAKpst
35. [1,14,34] CKpAqrAKpqr
36. [1,26,35] CKpAqrArKpq
37. [2,4,36] KCKpqpCKrAstAtKrs
38. [1,10,36] CCpKqArsCpAsKqr
39. [1,7,37] CKpAqrKpArKpq
40. [1,38,39] CKpAqrAKpqKpr

This proof makes essential use of C3 (a.k.a., “contraction”), which is
not a theorem of �Lℵ0.14 In the next section, we will show that adding the
three �Lℵ0 C-axioms A1, A3, and A5 to M+ also forces distributivity.
Not only will this provide a proof that �L+

ℵ0
(hence, �Lℵ0) is distributive,

it will also provide a novel alternative way to establish distributivity in
classical logic (since A1, A3, and A5 are all classical tautologies).15

4.3. Distributivity in �Lℵ0 II: From M+
to �L

+
ℵ0

with C-Axioms

It is not difficult to show that all of the axioms and rules of our minimal
system M+ are theorems of �Lℵ0.16 Moreover, it was shown by Rose [22]
that axioms A1, A2, A3, and A5 (plus the rule (CD), of course) form
a complete axiomatization for the implicational fragment (i.e., the C
fragment) of �Lℵ0. So, a natural question to ask is whether the system
consisting of M+, plus the implicational axioms A1, A3, and A5 form

14 For a proof that (1) does not follow from M+, C1, and C2, see section 4.4.
Note: C1 and C2 are theorems of �Lℵ0 . C1 is A1, and C2 is theorem (2.6) in [23].

15 A5 is not intuitionistically valid. So, this proof of (1) is non-intuitionistic.
16 Specifically, (M1) is (3.13) in Rose and Rosser [23], (M2) is their (3.14), (M3) is

(2.4), (M4) is (2.5), (M5) is (3.19) (in axiom form), (M6) is (2.20) (in axiom form),
(M7) is (2.10), (M8) is (2.8), and (CA) is (3.22) (in rule form).
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a complete axiomatization of the positive fragment (i.e., the C-K-A
fragment) of �Lℵ0. Interestingly, the answer to this question is “yes.”17

By reasoning in the positive fragment �L+
ℵ0

of �Lℵ0, we were able to find
a proof of (1). While our substitution and detachment proof of (1) did
not directly yield a condensed detachment proof of (1), it did provide
us with enough insight to eventually coax Otter to generate a pure
hyperresolution proof of (1). This was achieved using a combination
of the resonance and hints strategies developed by Larry Wos [29] and
Bob Veroff [27], respectively. The following Otter proof captures the
essence of our original hand proof of (1) in �L+

ℵ0
.

1. [CD] Cpq, p ⇒ q
2. [CA] p, q ⇒ Kpq
3. [M1] CKpqp
4. [M2] CKpqq
5. [M3] CpApq
6. [M4] CqApq
7. [M5] CKCpqCprCpKqr
8. [M6] CKCprCqrCApqr
9. [M7] Cpp
10. [M8] CCqrCCpqCpr
11. [M9] CCpqCCqrCpr
12. [A1] CpCqp
13. [A3] CCCpqqCCqpp
14. [A5] CCCpqCqpCqp
15. [1,10,8] CCpKCqrCsrCpCAqsr
16. [1,10,7] CCpKCqrCqsCpCqKrs
17. [1,10,6] CCpqCpArq
18. [1,10,5] CCpqCpAqr
19. [1,11,11] CCCCpqCrqsCCrps
20. [1,11,5] CCApqrCpr
21. [1,11,4] CCpqCKrpq
22. [1,11,12] CCCpqrCqr
23. [1,12,3] CpCKqrq
24. [1,12,9] CpCqq
25. [1,19,19] CCpCqrCCsqCpCsr
26. [1,11,20] CCCpqrCCApsqr

17 With some care, the completeness of M+, plus A1, A3, and A5 for �L+
ℵ0

can be
established using [24, Theorem 4.1, p. 434]. Some authors (e.g., [26]) have interpreted
Scott’s [24] results as showing that �L+

ℵ0
is sound and complete with respect to

abelian ordered groups. This is not correct. Pace Urquhart [26, p. 104], Axiom A3
of �L+

ℵ0
is not valid in such structures. What Scott proves is that �L+

ℵ0
is sound and

complete with respect to the non-negative fragment of abelian ordered groups. So,
the statement of Scott’s soundness theorem [24, Theorem 3.1, p. 424] is misleading.
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27. [1,22,13] CpCCpqq
28. [2,23,21] KCpCKqrqCCstCKust
29. [2,9,24] KCppCqCrr
30. [2,24,9] KCpCqqCrr
31. [1,25,27] CCpCqrCqCpr
32. [1,7,28] CCpqKCKrsrCKtpq
33. [1,7,29] CpKpCqq
34. [1,7,30] CpKCqqp
35. [1,31,13] CCpqCCCqppq
36. [1,16,32] CCpqCKrpKrq
37. [1,15,33] CCpqCApqq
38. [1,15,34] CCpqCAqpq
39. [1,25,35] CCpCCqrrCCrqCpq
40. [1,10,36] CCpCqrCpCKsqKsr
41. [1,11,37] CCCApqqrCCpqr
42. [1,39,26] CCpAqrCCCqppAqr
43. [1,40,38] CCpqCKrAqpKrq
44. [1,41,21] CCpqCKrApqq
45. [1,42,6] CCCpqqApq
46. [1,11,43] CCCKpAqrKpqsCCrqs
47. [1,11,44] CCCKpAqrrsCCqrs
48. [1,45,14] ACpqCqp
49. [1,46,18] CCpqCKrAqpAKrqs
50. [1,47,17] CCpqCKrApqAsq
51. [2,50,49] KCCpqCKrApqAsqCCtuCKvAutAKvuw
52. [1,8,51] CACpqCqpCKrApqAKrpq
53. [1,52,48] CKpAqrAKpqr
54. [2,6,5] KCpAqpCrArs
55. [1,8,54] CApqAqp
56. [1,10,55] CCpAqrCpArq
57. [1,56,53] CKpAqrArKpq
58. [2,3,57] KCKpqpCKrAstAtKrs
59. [1,10,57] CCpKqArsCpAsKqr
60. [1,7,58] CKpAqrKpArKpq
61. [1,59,60] CKpAqrAKpqKpr

We find this proof more intuitive and explanatory than the C-N frag-
ment proof reported in section 3.3. The most important step of this
high-level proof is showing that, once axioms A1, A3, and A5 are
added to M+, Apq is provably equivalent to CCpqq (step 45). Once this
equivalence is established, the following important linearity formula
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follows immediately, by axiom A5 (step 48).

ACpqCqp(3)

It follows from (3) that the lattice ordering imposed by C in �L+
ℵ0

is
total. It is well known that all totally ordered lattices are distributive.

4.4. Non-Distributivity in Some Substructural Logics

We have already seen two sets of C axioms which force the distribu-
tivity of K over A (and vice versa) in M+. It is well known that many
substructural extensions of M+ are non-distributive [3]. However, as
far as we know, the non-distributivity of many of these substructural
logics has never been established (in the literature) by the presenta-
tion of logical matrices in which all the axioms and rules of the logic
are satisfied, but distributivity is violated. For instance, the relevance
logic R+ (sans distributivity axiom), which is given by M+, plus the
following two additional C axioms:

(R1) CCpCpqCpq

(R2) CCpCqrCqCpr

is known to be non-distributive, but we have never seen matrices which
establish this fact about R+.

The M3 −N5 theorem from lattice theory [8, page 134] tells us that
the smallest non-distributive lattices are of order 5. So, the smallest
matrices which violate (1), but obey the lattice properties implicit in
M+ will contain at least five elements. As a result, using a general
purpose model finding program such as Mace [15] to look for matrices
of the kind we need is not feasible, unless one can find a way to prune
the search space considerably. The M3 − N5 theorem provides exactly
the kind of information needed to shrink the search space. By exploiting
the M3 − N5 theorem, we were able to create Mace input files that
narrow the space of 5 element models to a very small number of possible
candidates which are either of the M3 or the N5 structure. This enabled
us to find the following 5 element matrices, thus establishing the non-
distributivity of R+.18,19

18 There are two designated values for these matrices: 1 and 4 (indicated by ∗).
19 Of course, these matrices also suffice to show that M+ is non-distributive. And,

since E+ (the positive fragment of Anderson and Belnap’s [1] system E) is strictly
weaker than R+, they also establish that E+ is non-distributive. Moreover, our ma-
trices also satisfy the ‘mingle ’ axiom CpCpp, thus establishing that the system RM+

is not distributive. Finally, these matrices also satisfy the linearity or connectedness
condition (3). Therefore, adding linearity toRM+ doesn’t yield distributivity either.
See [9] for a detailed discussion of E, R, RM, and other relevant sentential logics.
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C 0 1 2 3 4

0 1 1 1 1 1
∗1 0 1 2 3 2
2 3 1 1 3 1
3 2 1 2 1 2

∗4 0 1 2 3 4

K 0 1 2 3 4

0 0 0 0 0 0
∗1 0 1 2 3 4
2 0 2 2 0 2
3 0 3 0 3 0

∗4 0 4 2 0 4

A 0 1 2 3 4

0 0 1 2 3 4
∗1 1 1 1 1 1
2 2 1 2 1 4
3 3 1 1 3 1

∗4 4 1 4 1 4

Matrices which Establish the Non-Distributivity of R+

A more difficult example concerns the logic BCK+, which is given
by M+, plus the following two additional C axioms.20

(BCK1) CpCqp

(BCK2) CCpCqrCqCpr

BCK+ is shown in [18] to be non-distributive by a complicated metathe-
oretic argument to the effect that the distributivity formula (1) cannot
be derived in a (cut-free) Gentzen system for BCK+. Using our M3−N5

Mace technique, we were able to show that there are no 5-element
matrices in which all the axioms and rules of BCK+ are satisfied but
the distributivity formula (1) is violated. For several weeks, we tried to
extend our Mace technique to spaces with dimension greater than five,
to no avail. The search space just got too big, and our M3 − N5 tricks
were of little help in making the space manageable for Mace searches.

Eventually, we stumbled upon John Slaney’s program MaGIC [25],
which is a model finding program designed and optimized specifically
for substructural logics of the kind we were studying. Amazingly, in
just a few seconds, MaGIC found the following 6 element matrices for
C, K, and A which establish the non-distributivity of BCK+.21

C 0 1 2 3 4 5

0 5 5 5 5 5 5
1 4 5 4 4 5 5
2 4 4 5 4 5 5
3 4 4 4 5 5 5
4 4 4 4 4 5 5

∗5 0 1 2 3 4 5

K 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 0 0 1 1
2 0 0 2 0 2 2
3 0 0 0 3 3 3
4 0 1 2 3 4 4

∗5 0 1 2 3 4 5

A 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 1 4 4 4 5
2 2 4 2 4 4 5
3 3 4 4 3 4 5
4 4 4 4 4 4 5

∗5 5 5 5 5 5 5

Matrices which Establish the Non-Distributivity of BCK+

20 Note: axiom BCK1 is none other than axiom A1 from �Lℵ0 , i.e., formula C1
(a.k.a., “weakening”), and BCK2 is none other than the formula C2 (a.k.a., “per-
mutation”). Recall, both BCK1 and BCK2 were used in our distributivity proof in
section 4.2. So, the fact that BCK+ lacks “contraction” (viz., C3) is crucial here.

21 The only designated value in these matrices is 5 (indicated by ∗).
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We end this section by noting that non-distributive matrices of
dimension less than 9 exist for all fragments of �L+

ℵ0
, except those con-

taining both axiom A1 and axiom A3 (over and above M+). This raises
an interesting and challenging open question: Is axiom A5 necessary for
the distributivity of �L+

ℵ0
? That is, can distributivity be deduced from

M+, A1, and A3 alone? And, if not, are there finite logical matrices
which establish that (1) does not follow from M+, A1, and A3?

5. Conclusion: Some Lessons Learned

Our investigations into distributivity in positive sentential logics were
greatly enhanced by the automated reasoning programsOtter, Mace,
and MaGIC. Along the way, we have learned a couple of important
lessons about automated reasoning in sentential logics:

− Otter (and other, general-purpose resolution theorem provers) is
very good at reasoning in systems with few rules, few axioms, and
few connectives. But, its effectiveness seems to decrease markedly
as the number of rules, axioms, and connectives increases. In the
underlying C-N fragment of �Lℵ0, which has only 1 rule, 4 axioms,
and 2 connectives, Otter was able to find proofs of many im-
portant lemmas, and to fill-in some large gaps in our “hybrid”
equality/CD proof sketches of various distributivity theorems. In
fact, we are now able to get Otter to prove the C-N rendition of
distributivity (2) on its own, without any guidance. Indeed, Otter

can generate many novel and elegant proofs of (2). On the other
hand, in the high-level C-K-A fragment of �Lℵ0, which has 2 rules, 9
axioms, and 3 connectives, Otter seems to get bogged down in the
syntactic complexity, thus requiring substantially more guidance to
obtain the desired theorems. It is interesting that we humans seem
to be better at reasoning in systems with more connectives, axioms,
and rules (which tends to be correlated with shorter formulas in
proofs, as is evidenced by our proofs of (1) and (2)); whereas,
Otter seems to thrive on a minimum of connectives, rules and
axioms (independently of how long the formulas get). We would
like to see strategies developed to improve Otter’s performance in
axiomatic systems with numerous rules, axioms, and connectives.

− When searching for matrices to establish independence results in
sentential logics (as we have done here for distributivity in sub-
structural logics), it is often necessary (because of the massive and
exponentially increasing search spaces) to use some technique for
pruning or optimizing the search space. We were able to exploit the

16 Harris & Fitelson

M3−N5 theorem from lattice theory to greatly reduce the number
of candidate matrices in our Mace searches for non-distributive
lattices. However, when it came to lattices of order greater than
5, our M3 − N5 tricks were of little help, and we were forced
to use MaGIC, which has built-in optimizations for the class of
substructural logics we were investigating. Special purpose model
finders like MaGIC are of great value in problems of this kind.
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