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Abstract
There are many things—call them ‘experts’—that you
should defer to in forming your opinions. The trouble
is, many experts are modest: they’re less than certain
that they are worthy of deference. When this happens,
the standard theories of deference break down: the most
popular (“Reflection”-style) principles collapse to incon-
sistency, while their most popular (“New-Reflection”-
style) variants allow you to defer to someone while
regarding them as an anti-expert. We propose a middle
way: deferring to someone involves preferring to make
any decision using their opinions instead of your own.
In a slogan, deferring opinions is deferring decisions. Gen-
eralizing the proposal of Dorst (2020a), we first formu-
late a new principle that shows exactly how your opin-
ions must relate to an expert’s for this to be so. We then
build off the results of Levinstein (2019) and Campbell-
Moore (2020) to show that this principle is also equiv-
alent to the constraint that you must always expect the
expert’s estimates to be more accurate than your own.
Finally, we characterize the conditions an expert’s opin-
ions must meet to be worthy of deference in this sense,
showing how they sit naturally between the too-strong
constraints of Reflection and the too-weak constraints of
New Reflection.
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Some people are fools. It’s best to ignore them in forming your opinions—and from here on out,
we will.
Others are not. In fact, there are many things—call them ‘experts’—that it’s best to defer to in

forming your opinions. This paper offers a theory of how.
Experts include people who are smarter and better informed than you, but also things like your

current evidence and the objective chances. Although such experts are clearlyworthy of deference
in some sense, it’s tricky to say exactlywhat that sense is. The trouble is that it’s possible for experts
to bemodest: to be less than certain that their opinions are indeedworthy of deference.1 The person
who is in fact smarter and better informed than you might not be sure about that. Your evidence
might in fact support 𝑞, but also assign some probability to the claim that your evidence doesn’t
support 𝑞. And the objective chances (at least on certain Humean theories) might assign non-
zero chance to undermining futures: futures such that, if they came about, the objective chances
would now have been different from what they actually are. When any of these things happen,
the standard theory of deference—which is built around “Reflection” principles—breaks down.2
A better theory is needed.3
This paper offers one. Building on Dorst (2020a), we suggest that the right deference principle

should encode the idea—call it ‘Value’—that you defer to an expert when you’d prefer tomake any
decision using their opinions instead of your own (cf. Huttegger 2014; Schoenfield 2016b; Nissan-
Rozen and Spectre 2019). As we’ll sometimes say: deference is a preference to give someone power
of attorney. In a slogan: deferring opinions is deferring decisions.
Unlike Reflection, Value allows modesty. Nevertheless, it turns out to be a surprisingly strong

constraint. The most popular way of fixing Reflection to allow modesty (“New-Reflection”4)
allows for radical failures of Value. And we’ll see that even deference understood along the pre-
cise lines suggested by Dorst (2020a) himself (“Trust”) does not entail Value in full generality.
But his suggestion can be modified to yield a deference principle (“Total Trust”) which is exactly
equivalent to Value—and which, we argue, offers an account of deference that’s better than those
currently on offer.
Moreover, although this account was built for modest experts, it turns out to have implications

for deference to immodest ones as well. This may be surprising, as it’s well known that when
experts are immodest, Value is equivalent to Reflection (Skyrms 1990; Huttegger 2014). However,
that result holds only because the standard accounts of deference—including our statement of
Value above—are accounts of global deference: of how to defer to an expert on every question. This
type of deference is appropriate for some experts (the objective chances, your current evidence),
but not for others: you defer to the weather forecaster about tomorrow’s weather, but not about
whether you should throw out the bananas you bought last weekend. Thus we also need a notion
of local deference: deferring to an expert’s opinions on certain questions, but not others.
To formalize local deference, we can relativize our principles to a given question 𝑄—for exam-

ple, you Value an expert with respect to tomorrow’s weather iff, for any decision whose outcomes
are determined by tomorrow’s weather, you’d like to give them power of attorney on that decision.
In a surprising twist, it turns out that Value and Reflection are not equivalent when relativized to
questions in this way, even when the expert is immodest (§5). Thus our argument that Value is the
correct account of (global) deference to modest experts suggests that it may also have an impor-
tant role to play in understanding (local) deference more generally. Nevertheless, our hands will
be plenty full just getting a theory of global, modest deference on the table—so we’ll largely sup-
press talk of local deference until the end.
Here’s the plan. §1 sharpens both the problem raised by modest experts and our proposal for

how to fix it. §2 generalizes Dorst’s deference principle and proves that this generalization is
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indeed equivalent to Value. §3 then explores how Value—which, with its focus on decisions, can
seem like a pragmatic deference principle—relates to a purely epistemic variant of the same idea.
Building on the results of Levinstein (2019) and Campbell-Moore (2020), we show that Value is
equivalent to Epistemic Value: the claim that you should expect the expert’s estimates to be more
accurate than your own on any reasonable way of measuring their accuracy. §4 then character-
izes the conditions the potential experts’ opinions must meet in order to be worthy of deference
in our sense, comparing them to those imposed by Reflection and New Reflection. §5 concludes
by turning to local deference and several other open questions.
One theme of this paper is that allowing experts to be modest opens up a largely unexplored

domain of potential deference principles. In an attempt to help make this domain more tractable,
we’ve included a Mathematica notebook that contains functions for generating, visualizing, and
exploring the models of modesty used throughout.5
Finally: the goal of this paper is to develop and defend a philosophical idea about deference.

That defense is built upon a series of equivalence and non-equivalence results, which in turn
require a fair bit of technical exposition to establish. Nevertheless, we hope that those uninter-
ested in the technicalities will care about the philosophy. So for those who care about deference
but not about hyperplanes, we’ve done our best to hide the technicalities in endnotes, “Proof”
paragraphs, and appendices—these can (and perhaps should) be skippedwithout loss to the philo-
sophical argument.

1 DEFERRING OPINIONS AS DEFERRING DECISIONS

Fix on some particular expert—say, your current evidence. Let ‘𝑃’ be a definite description for
‘the expert’s probabilities, whatever they are’. There are various possibilities for what those proba-
bilities might be, which we model with a probability frame ⟨𝑾, ⟩.6 (For introductions to how
models of this kind work, see e.g. Williamson 2008, 2019; Dorst 2019b, 2020b.) ‘𝑤’ is a rigid des-
ignator for the probability distribution the expert has at world 𝑤.7 Propositions are modelled as
subsets of𝑊. Using a standard move frommodal logic (Hintikka 1962; Kripke 1963), this includes
propositions about the expert’s probabilities: the proposition that the expert assigns probability 𝑡
to 𝑞, written ‘[𝑃(𝑞) = 𝑡]’, is simply the set of worlds𝑤 such that𝑤(𝑞) = 𝑡; the proposition that the
expert has probability function 𝑥, written ‘[𝑃 = 𝑥]’, is simply the set of 𝑤 such that 𝑤 = 𝑥;
and so on. For the expert to bemodest at𝑤 is for them to assign non-zero probability to ‘the expert’s
probabilities’ (picked out non-rigidly) being different from their own (picked out rigidly).8
Here’s a simple example. There are two possibilities, 𝑊 = {𝑎, 𝑏}. 𝑃 represents rational cre-

dences. The evidence you have is ambiguous, so it’s rational to be unsure what the rational
response to the evidence is (Christensen 2010; Elga 2013; Lasonen-Aarnio 2013, 2015; Carr 2019b;
Dorst 2019b, 2020a). At world 𝑎 it’s rational to be 70% confident you’re at world 𝑎; at world 𝑏,
it’s rational to be only 40% confident of this. Thus 𝑎(𝑎) = 0.7 while 𝑏(𝑎) = 0.4. There are two
compact ways to represent such a frame. The first is aMarkov diagram in which nodes represent
worlds, and the arrow from node 𝑤 to node 𝑣 is labelled with the probability 𝑤 assigns to 𝑣,
𝑤(𝑣). The second represents the frame as a (row-)stochastic matrix, in which row 𝑖, column 𝑗
represents 𝑃𝑤𝑖(𝑤𝑗). These two representations are given in Figure 1.
This frame represents a modest expert since, for example, at 𝑎 the rational credence function

is unsure whether it’s rational to assign credence 0.7 or 0.4 to 𝑎: 𝑎(𝑎) > 0 and 𝑎(𝑏) > 0, thus𝑎(𝑃(𝑎) = 0.7) > 0 and 𝑎(𝑃(𝑎) = 0.4) > 0.
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F IGURE 1 Amodest frame, in
Markov-diagram (left) and
stochastic-matrix (right) forms

A probability frame represents various hypotheses about what the expert’s probabilities might
be. To formulate deference principles, we need to add a further probability distribution 𝝅 over
𝑊, which represent the opinions of the individual deferring to the expert.9 While ‘𝑃’ is a definite
description for ‘the expert probability function, whatever it is’, ‘𝜋’ (along with other lowercase
Greek letters, like ‘𝜌’) is a rigid designator for a particular probability function whose values are
fixed and known.
Structure in place, let’s consider some deference principles: principles attempting to specify

how 𝜋 and ⟨𝑊,⟩ need to be related for 𝜋 to be deferring to ⟨𝑊,⟩. The most natural such
principle is that to defer to the expert is to adopt their opinions as your own, conditional on any
given hypothesis about what those opinions might be:10

Reflection: 𝜋(⋅|𝑃 = 𝜌) = 𝜌
Conditional on the expert having a certain set of opinions, adopt those opinions.

Let us say that 𝜋 reflects a frame ⟨𝑊,⟩ iff it meets this condition.
Unfortunately, the conditions imposed byReflection are too strong. In particular, it’s impossible

for any distribution to reflect a frame while assigning non-zero probability to the possibility that
the expert is modest (Hall 1994; Lewis 1994; Elga 2013). The reason is simple enough. Suppose you
leave open that a modest candidate 𝑤 might be the expert. Since it’s modest, it assigns less than
maximal credence to the claim that it’s the expert:𝑤(𝑃 = 𝑤) < 1. But conditional on it being the
expert, you should be certain that it’s the expert: 𝜋(𝑃 = 𝑤|𝑃 = 𝑤) = 1. Therefore conditional
on this fact, you don’t adopt the opinions of 𝑤: 𝜋(⋅|𝑃 = 𝑤) ≠ 𝑤. For example, in the frame
from Figure 1, 𝑎(𝑃 = 𝑎) = 0.7, but 𝜋(𝑃 = 𝑎|𝑃 = 𝑎) = 1.11
Thus if Reflection were the correct theory of deference, it would be impossible to defer to an

expert unless you’re sure they’re immodest. But deferring to someone while leaving open that
they might be modest is clearly possible. So reflecting a frame isn’t necessary for 𝜋 to count as
deferring to it—Reflection cannot be the full theory of deference.
In response to this problem, several philosophers have argued that we shouldmodify Reflection

as follows:

New Reflection: 𝜋(⋅|𝑃 = 𝜌) = 𝜌(⋅|𝑃 = 𝜌)
Conditional on the expert having a certain set of opinions, adopt the opinions they would have
were they to learn that fact.

Say that𝜋 new-reflects a frame iff this condition holds. NewReflection is equivalent to Reflec-
tion when the expert is certain to be immodest (since then for all 𝑤, 𝑤 = 𝑤(⋅ |𝑃 = 𝑤)); but
New Reflection permits deference to modest experts.
Moreover, defenders of New Reflection have an attractive story to tell about why this princi-

ple should hold even when Reflection fails (Hall 1994; Lewis 1994; Elga 2013). The idea is that
the condition that 𝑃 = 𝑤 gives additional information—information that the expert, being mod-
est, doesn’t have. So when you reason hypothetically on that assumption, you shouldn’t adopt
the expert’s unconditional opinions, which fail to take this information into account; rather,
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F IGURE 2 A frame unworthy of deference. Left: Markov diagram. Right: stochastic-matrix

you should adopt the opinion the expert would have once made aware of this information,
i.e. 𝑤(⋅ |𝑃 = 𝑤).
This is a compelling explanation for why Reflection is not required for deference to experts

whomight be modest; and it also makes clear why, by contrast, New Reflection really is necessary
for such deference. But it’s worth noting that it provides no direct reason to think that obeying
New Reflection is sufficient for deference. Moreover, there’s good reason to think that it’s not. The
problem is that—even when the expert knows everything that you do—New Reflection imposes
virtually no constraints on what you think about the expert’s unconditional opinions.
To see this, notice that we can equivalently state NewReflection as follows (Stalnaker 2019). Let

the informed expert opinions, 𝑷, be the opinions the expert would have were their modesty to
be removed—i.e. were they to be informed that they are the expert: ̂𝒘 ∶= 𝑤(⋅|𝑃 = 𝑤). Then
New Reflection is equivalent to:

New Reflection (informed version): 𝜋(⋅|𝑃 = 𝜌) = 𝜌
Conditional on the informed expert having a certain set of opinions, adopt those opinions.12

New Reflection thus says simply to reflect the informed expert, and is silent on what you should
think about the expert’s unconditional opinions.
This is a problem. It means that you can new-reflect a frame even if you are certain that the

expert is mistaken. Consider a toy example from Dorst (2020a, §6), represented in Figure 2 below.
𝑊 contains only twopossibilities,𝑎 and 𝑏, and𝑎(𝑏) = 𝑏(𝑎) = 0.8: both candidates for the expert
assign higher probability to the false hypothesis about which of the two is the expert than the non-
expert does. (For example, if 𝑎 is actual, then the expert, 𝑎, assigns this a low probability of 0.2,
while the non-expert, 𝑏, assigns it a high probability of 0.8.) Thus, for instance, conditional on
the expert’s credence in 𝑎 being high, 𝑎 is definitely false; and conditional on that credence being
low, 𝑎 is definitely true—the expert’s credences are (known to be) anti-correlated with the truth.
Meanwhile, suppose𝜋 is 50-50 between 𝑎 and 𝑏, so it doesn’t know anything that𝑎 and𝑏 don’t.
(All three are sure of {𝑎, 𝑏}, and nothing stronger.) Surely, if 𝜋 captures your credences, you do not
count as deferring to this frame—the opinions (as you see them) are those of an anti-expert, not an
expert. But note that [𝑃 = 𝑎] = {𝑎} and [𝑃 = 𝑏] = {𝑏}, so 𝜋 new-reflects this frame.13 Upshot: 𝜋
new-reflecting a frame cannot be sufficient for 𝜋 to count as deferring to it; and so NewReflection
cannot be the full theory of deference.
(What are we doing when we give a purely formal example like this? After all, on some inter-

pretations of 𝜋 and 𝑃, there may be general explanations for why structures like Figure 2 are
impossible—for instance, perhaps the correct Humean account of objective chance will rule out
the possibility of the chances having this structure (Levinstein 2019). Nevertheless, on other inter-
pretations of ‘𝑃’ (such as ‘the fool’s credences’), this scenario is perfectly possible. And more gen-
erally, the point of this example is to illustrate that New Reflection is missing something: the
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complete theory of deference should predict that 𝜋 doesn’t defer to 𝑃 if it has this structure, yet
New Reflection fails to do so.)
Intuitively, what goes wrong in the above example is that𝜋 does not regard the expert’s (uncon-

ditional) opinions as tracking the facts. There is both a pragmatic and a purely epistemic version
of this complaint. The pragmatic version points out that 𝜋 does not regard the expert’s opinions
as good ones to use in making decisions: faced with a bet on which of 𝑎 or 𝑏 is actual, 𝜋 would
rather decide for itself than let the expert decide. After all, 𝜋 knows that the the expert will make
the wrong decision—that they’ll bet on 𝑎 iff 𝑃(𝑎) > 𝑃(𝑏), which happens iff 𝑃 = 𝑏, i.e. iff 𝑏 is
actual and it’s a losing bet. Conversely, they’ll bet on 𝑏 iff 𝑎 is actual. Either way, they’ll take the
wrong bet—and whatever 𝜋 thinks of itself, it can’t think that it’s bound to take the wrong bet.14
Meanwhile, the epistemic version of this complaint points out that 𝜋 regards itself as closer to the
truth about which of 𝑎 or 𝑏 is actual than the expert: if 𝑎 is actual, then 𝜋 is more confident of it
than the expert is (𝜋(𝑎) = 0.5 > 0.2 = 𝑎(𝑎)), and if 𝑏 is actual then 𝜋 is more confident of it than
the expert is (𝜋(𝑏) = 0.5 > 0.2 = 𝑏(𝑏)).
Let’s focus (till §3) on the pragmatic version. This suggests a new constraint on what deference

requires: deference in opinions requires deference in decisions. That is, deference to an expert
requires that, for any decision problem, you would prefer to give the expert power of attorney: to
use their probabilities to make the decision rather than use your own. As we’ll put it: you value an
expert’s opinions when you always expect the decisions those opinions warrant to be better than
your own.
Here’s how to formalize this idea. (If it’s intuitive enough, skip the next two paragraphs.) Let an

option be a function from𝑊 to real numbers, with 𝑶(𝒘) representing the utility that would be
achieved (for whatever personwe aremodelingwith𝜋) if𝑂were to be chosen at𝑤. Let adecision
problem on 𝑊 be a finite set of options . For example, to represent the decision of whether
to bet on 𝑎 or 𝑏, let  = {𝑂𝑎, 𝑂𝑏} where 𝑂𝑎 =

{
1 if 𝑎
−1 if 𝑏

, and 𝑂𝑏 =

{
−1 if 𝑎
1 if 𝑏

. Relative to a

probability distribution 𝜌, we can calculate the expected value of an option𝑂 as aweighted average
of the various values it might take, with weights determined by how likely it is to take them:
𝔼𝔼𝔼𝝆(𝑶) ∶=

∑
𝑤
𝜌(𝑤)𝑂(𝑤) (we write 𝑬𝒘𝑬𝒘𝑬𝒘(𝑶) to abbreviate 𝔼𝑤(𝑂)). For example, in our above anti-

expert frame (Figure 2), 𝔼𝜋(𝑂𝑎) = 0.5(1) + 0.5(−1) = 0, while 𝔼𝑎(𝑂𝑎) = 0.2(1) + 0.8(−1) = −0.6
and 𝔼𝑎(𝑂𝑏) = 0.2(−1) + 0.8(1) = 0.6.
Given a frame ⟨𝑊,⟩ and a decision problem  on𝑊, let a strategy 𝑺 be a way of choosing

options based on the expert’s probabilities: a function from 𝑊 to , 𝑤 ↦ 𝑆𝑤 such that 𝑆𝑤 = 𝑆𝑣
whenever 𝑤 = 𝑣. A strategy 𝑆 is recommended by the (expert modeled by the) frame for the
decision-problem  iff the option 𝑆𝑤 it selects at each world 𝑤 is one that maximizes expected
utility according to the the expert’s credences at 𝑤: 𝔼𝑤(𝑆𝑤) ≥ 𝔼𝑤(𝑂) for every 𝑂 ∈ . In other
words, if a strategy is recommended, then following it is simply letting the expert decide how to
respond to on your behalf. For example, note that 𝔼𝑎(𝑂𝑏) = 0.6 > −0.6 = 𝔼𝑎(𝑂𝑏), and similarly
𝔼𝑏(𝑂𝑎) = 0.6 > −0.6 = 𝔼𝑏(𝑂𝑏). Thus the strategy that the frame in Figure 2 recommends for is
to take the bet on 𝑏 (𝑂𝑏) at world 𝑎, and the bet on 𝑎 (𝑂𝑎) at world 𝑏. As we can see, a strategy
involves taking different options at different worlds. Abusing notation ever-so slightly, we’ll write
𝔼𝔼𝔼𝝅(𝑺) for the expected utility of following the strategy according to 𝜋: 𝔼𝜋(𝑆) ∶=

∑
𝑤
𝜋(𝑤)𝑆𝑤(𝑤).

Note that in our example, this value is negative, since 𝜋 knows that the expert, whoever it is,
recommends taking thewrong bet:𝔼𝜋(𝑆) = 𝜋(𝑎)𝑆𝑎(𝑎) + 𝜋(𝑏)𝑆𝑏(𝑏) = 0.5𝑂𝑏(𝑎) + 0.5𝑂𝑎(𝑏) = −1.
This is less than the expected value of simply betting on 𝑎, come what may: 𝔼𝜋(𝑂𝑎) = 0. Thus 𝜋
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F IGURE 3 A probability function that values a modest frame

prefers not to give the (anti-)expert power of attorney in the above frame—it’s better off choosing
for itself!
Generalizing, the proposal is that 𝜋 defers to a frame iff it values that frame:

Value: If 𝑆 is recommended for , then for all 𝑂 ∈ : 𝔼𝜋(𝑆) ≥ 𝔼𝜋(𝑂).
For any decision problem, prefer giving the expert power of attorney to decide on your behalf,
rather than deciding for yourself.

In other words: no matter what decision you face, the expected utility of adopting a strategy rec-
ommended by the expert is always at least as high as bypassing the expert and picking an option
using your own probabilities.15
That’s the proposal. How does it relate to Reflection and New Reflection?
If 𝜋 reflects a frame, it values it.16 And if a frame is immodest, 𝜋 reflects it if and only if 𝜋 values

it.17 But this is not true in general: 𝜋 can value a frame without reflecting it—and, in particular,
without that frame being immodest. To get a feel for why, consider a case in which 𝜋 is 50-50
between 𝑎 and 𝑏 but 𝑎(𝑎) = 0.9 and 𝑏(𝑏) = 0.8, in Figure 3. This frame is modest, so 𝜋 doesn’t
reflect it—for example, 𝜋(𝑎|𝑃 = 𝑎) = 1 ≠ 0.9 = 𝑎(𝑎). But 𝜋 values the frame. For if 𝑎 is true
then the expert is more confident of it than 𝜋 is; and if 𝑏 is true, likewise. As a result, 𝑃 is closer
to the truth than 𝜋 for every proposition, and at every world. Thus, obviously, 𝜋 would prefer to
give the expert power of attorney. Since this expert is modest, Value must be a weaker constraint
than Reflection.18
Meanwhile, Value is a stronger constraint than New Reflection. 𝜋 values a frame only if it new-

reflects it.19 But, as we’ve seen, 𝜋 does not value frames in which the expert’s opinions are anti-
correlated with the truth, even when it new-reflects them (Figure 2).
Finally, note that Value is equivalent to a natural formulation of a ban on Dutch-bookability. In

particular, imagine that 𝜋 is your prior and 𝑃 is the posterior credences you will have after some
transition in beliefs. A fixed-option Dutch book is a pair of decision problems—both including
a “no bet” option with 0 payout, one presented before and the other presented after the belief-
transition—such that doing the rational thing before and after is guaranteed to result in a loss.20
If𝜋 fails to value 𝑃, it is possible to construct a fixed-optionDutch book against the transition from
𝜋 to 𝑃.21 No such book can be made if 𝜋 values 𝑃; in fact, there can’t even be a pair of decision
problems which both include a “no bet” option but result in an expected loss.22
Value thus looks like a plausible candidate for threading the needle between the overly strong

Reflection and the overly weak New Reflection. What we need now is a clearer picture of what
Value requires. In particular, we’d like a characterization of Value that tells us directly how 𝜋

and 𝑃’s opinions must relate (§2), that explains how the pragmatic-looking Value relates to purely
epistemic forms of deference (§3), and that tells us what the expert’s opinionsmust be like in order
to be valuable (§4). Off to it.
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2 IMPROVING TRUST, GENERATING VALUE

As a deference principle, Value is cumbersome—we’d like to be able to say, directly, how 𝜋’s opin-
ions must relate to 𝑃’s in order for 𝜋 to value 𝑃. Dorst (2020a) takes a step in the right direction.
At a first-pass, he proposes as a deference principle:

Simple Trust: 𝜋(𝑞 |𝑃(𝑞) ≥ 𝑡) ≥ 𝑡
Conditional on the expert being confident of 𝑞, be confident of 𝑞.

This principle looks independently appealing. It says that you regard the information that the
expert favors 𝑞 to at least a certain extent as also favoring 𝑞 to at least that extent. Note that this
is not affected by the criticism of Reflection we discussed earlier. For, while it may be that the
expert doesn’t know that the expert favors 𝑞 to at least degree 𝑡—so that learning this information
might change their opinions—the asymmetric nature of ‘at least degree 𝑡’ plausibly means that
this added information can only favor 𝑞 further: it’ll change the expert’s opinions in a predictable
direction. Thus you know that upon learning what you’ve learned, the expert’s credence will still
be at least 𝑡, so it makes sense for your credence be at least 𝑡 upon learning this (Dorst 2020a,
§§4–5).23
As Dorst (2020a) emphasizes, Simple Trust is symmetric—substituting ¬𝑝 for 𝑞 and 1 − 𝑠 for 𝑡

gives us the principle that conditional on the expert being doubtful of 𝑝, you should be doubtful
of 𝑝: 𝜋(𝑝|𝑃(𝑝) ≤ 𝑠) ≤ 𝑠. Thus Simple Trust says that when you learn whether the expert favors or
disfavors 𝑞 (whether 𝑃(𝑞) ≥ 𝑡 or 𝑃(𝑞) < 𝑡), you should agree with the expert in (dis)favoring 𝑞.24
Dorst shows that Simple Trust is connected to Value. He first generalizes Simple Trust to apply

to conditional probabilities as well as unconditional ones, yielding:

Trust: 𝜋(𝑞|𝑝 ∧ [𝑃(𝑞|𝑝) ≥ 𝑡]) ≥ 𝑡
Conditional on the expert being confident of 𝑞 conditional on 𝑝, be confident of 𝑞 conditional
on 𝑝.

He then shows that Trust follows from Value (Dorst 2020a, Theorem 7.2) and that, in a natural
subclass of frames, Value also follows from Trust (Theorem 7.4).25 He further conjectures that the
two are equivalent more generally.
Unfortunately, he’s wrong:

Fact 2.1. There are 𝜋, ⟨𝑊,⟩ such that 𝜋 trusts ⟨𝑊,⟩ without valuing it.
Proof. Let 𝜋 =

(
0.17 0.56 0.27

)
and ⟨𝑊,⟩ = ⎛⎜⎜⎝

0.45 0.10 0.45

0.15 0.70 0.15

0.30 0.10 0.60

⎞⎟⎟⎠. Using the checkTrust function
in the Mathematica notebook shows that 𝜋 trusts the frame.26 But let 𝑂0 = 0 everywhere and let
𝑂1(𝑤1) = 29,𝑂1(𝑤2) = −3, and𝑂1(𝑤3) = −13. Each𝑖 in the frame has higher expectation for𝑂1
than𝑂0, so the recommended strategy is to take𝑂1 everywhere. Thus 𝔼𝜋(𝑆) = 𝐸𝜋(𝑂1) = −0.26 <
0 = 𝔼𝜋(𝑂0); Value fails. □

Nevertheless, it turns out that Trust can naturally be generalized to yield a principle that really
is equivalent to Value.
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The simplest way to motivate the generalization invokes the idea of a random variable—
a function (any function) from worlds to numbers. Think of this as a definite description for a
number—‘the number of planets’; ‘the weight of this cow’, ‘the amount of utility you’d get from
eating cake’, etc. (Notice that options, in the sense used to specify decision problems, are simply
random variables.) If you’re unsure what value a random variable takes, you can form an estimate
of it by averaging the various possibilities to try to be as close as possible. Precisely: the expected
value of a random variable relative to a distribution𝜋 is a weighted average of the various possible
values it might take, with weights determined by how likely they are to be actual.27 Note that a
proposition 𝑞 is interchangeable with its indicator variable 𝟙𝑞, i.e. the variable that assigns 1 to
worlds where 𝑞 is true and 0 to those where it’s false. The probability assigned to a proposition
equals the estimate assigned to its indicator variable: 𝔼𝜋(𝟙𝑞) = 𝜋(𝑞)1 + 𝜋(¬𝑞)0 = 𝜋(𝑞).
Thought of in this way, Simple Trust says that for certain random variables—namely, indica-

tor variables—conditional on the expert’s estimate of that variable being at least 𝑡, you have an
estimate that’s at least 𝑡. To formalize this, let ‘𝔼𝔼𝔼(𝑿)’ be a definite description for the expert’s
expectation of 𝑋 (so, for example, [𝔼(𝑋) ≥ 𝑡] = {𝑤 ∶ 𝔼𝑤(𝑋) ≥ 𝑡}). Then Simple Trust is simply
the requirement that, for every indicator variable 𝟙𝑞: 𝔼𝜋(𝟙𝑞|𝔼(𝟙𝑞) ≥ 𝑡) ≥ 𝑡.
It’s then easy to spot a generalization. Say that 𝜋 totally trusts a frame iff:

Total Trust: For any variable 𝑋: 𝔼𝜋(𝑋 |𝔼(𝑋) ≥ 𝑡) ≥ 𝑡
Conditional on the expert having a high estimate for 𝑋, have a high estimate for 𝑋.28

Total Trust is of the same form as Trust—both [𝔼(𝑋) ≥ 𝑡] and [𝑃(𝑞) ≥ 𝑡] (i.e., [𝔼(𝟙𝑞) ≥ 𝑡]) assert
that the expert’s probability function has a certain lower-bounded feature: its estimate of some
quantity (𝑋, or 𝟙𝑞) is above a given threshold. So while Total Trust is stronger than Simple Trust,
it formalizes a similar idea. In particular, it is likewise not affected by the criticism of Reflectionwe
discussed earlier. While it may be that the expert doesn’t know that the expert has a high estimate
for 𝑋—so that this is new information that the expert has not yet taken into account—the asym-
metric nature of ‘high estimate’ plausibly means that this added information can only increase
their estimate for 𝑋, meaning you know that it’ll still be high once this information is added.
Like Trust, Total Trust is again symmetric: 𝜋 totally trusts a frame iff for all 𝑌, 𝑠:

𝔼𝜋(𝑌|𝔼(𝑌) ≤ 𝑠) ≤ 𝑠. Thus Total Trust says that upon learning whether the expert’s estimate for
𝑋 is high or not (whether 𝔼(𝑋) ≥ 𝑡 or 𝔼(𝑋) < 𝑡), you should follow their estimate across this
dividing line. (But, again, it does not follow that we can combine these conditions to arrive at
𝔼𝜋(𝑋|𝑡 ≤ 𝔼(𝑋) ≤ 𝑡) = 𝑡.)
Total Trust is also, in some respects, more elegant. While Trust is stronger than Simple

Trust, Total Trust already implies the analogous principle for conditional estimates (endnote
36): 𝔼𝜋(𝑋|𝑞 ∧ [𝔼(𝑋|𝑞) ≥ 𝑡]) ≥ 𝑡; that means Total Trust implies Trust (let 𝑋 be an indicator vari-
able), and hence that Total Trust implies NewReflection aswell (see endnote 37 below).Moreover,
Total Trust also implies a version of itself which applies to comparisons of two estimates, rather
than comparisons of an estimate with a threshold.29
Most importantly, Total Trust is equivalent to Value:

Theorem 2.2. 𝜋 totally trusts ⟨𝑊,⟩ iff 𝜋 values ⟨𝑊,⟩.30
Proof Sketch. (⇒)∶ Suppose 𝔼𝜋(𝑆) < 𝔼𝜋(𝑂) for some 𝑂 ∈ , so 𝔼𝜋(𝑂 − 𝑆) > 0. Assume (without
loss of generality, as an excruciating proof in the appendix shows) that for each 𝑖 in the frame,
there is a unique 𝑂 ∈  with maximal expectation. Then, finding a pair ⟨𝑗, 𝑂𝑗⟩ that maximizes
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the quantity 𝔼𝑗(𝑂𝑗 − 𝑆) in the frame, there will be a 𝑡 > 0 such that [𝔼(𝑂𝑗 − 𝑆) ≥ 𝑡] includes all
and only worlds 𝑤 where 𝑆𝑤 = 𝑂𝑗 and hence (𝑂𝑗 − 𝑆)(𝑤) = 0. Thus 𝔼𝜋(𝑂𝑗 − 𝑆|𝔼(𝑂𝑗 − 𝑆) ≥ 𝑡) =
0 < 𝑡; Total Trust fails.
(⇐)∶ If 𝔼𝜋(𝑋|𝔼(𝑋) ≥ 𝑡) ≤ 𝑡 − 𝜀 for some 𝑋, 𝑡 and 𝜀 > 0, then we let our options be  = {𝑋,𝑌}

where 𝑌 = 𝑡 − 𝑎𝜀 for 0 < 𝑎 < 1 at all worlds. As 𝑎 → 0, we reach a point at which if 𝑆 is recom-
mended, 𝑆 selects 𝑋 at 𝑤 if 𝑤 ∈ [𝔼(𝑋) ≥ 𝑡], and selects 𝑌 otherwise. Thus 𝔼𝜋(𝑆) is an average of
𝔼𝜋(𝑆|𝔼(𝑋) < 𝑡) = 𝔼𝜋(𝑌|𝔼(𝑋) < 𝑡) = 𝑡 − 𝑎𝜀 and 𝔼𝜋(𝑆|𝔼(𝑋) ≥ 𝑡) = 𝔼𝜋(𝑋|𝔼(𝑋) ≥ 𝑡) ≤ 𝑡 − 𝜀 < 𝑡 −
𝑎𝜀, and so is less than 𝔼𝜋(𝑌) = 𝑡 − 𝑎𝜀; Value fails. □

Whydoes Total Trust succeedwhere Simple Trust and Trust failed? Inspecting the proof, clearly
part of the answer is that Total Trust can apply directly to arbitrary random variables—the lan-
guage of Value and its “options”—whereas Trust is restricted to propositions. But to understand
why this restriction is limiting, and to identify another sense in which Total Trust is a natural
generalization of Trust, it helps to visualize what these various principles require.31 (Readers less
interested in the details can skip to the next section without significant loss of continuity.)
To do this, think of a probability function 𝜋 defined over 𝑛 worlds as a vector in 𝑛-dimensional

Euclidean space, where the 𝑖th coordinate is 𝜋(𝑤𝑖). We can then represent probability functions
as points in a barycentric plot: a simplex (the 𝑛-dimensional generalization of a triangle) in which
the extreme points are those which assign maximal probability to a single world. For a 3-world
frame, this simplex is a 2D equilateral triangle. To see how this works, look at the top left triangle
in Figure 4—ignore the shaded regions and arrows for now. In this figure, any point within the
triangle represents a probability function. The red point in the bottom left, labeled 𝑤1, represents
the probability function that assigns 1 to𝑤1 and 0 to each of𝑤2 and𝑤3. (In Euclidean 3-space, this
is the point

(
1 0 0

)
.) Similarly, the gray point labeled𝑤2 at the top represents the probability func-

tion that assigns 0 to 𝑤1 and 𝑤3, and 1 to 𝑤2. (The point
(
0 1 0

)
.) Within the triangle, how close

each dot is to these extreme points represents how confident it is in the corresponding world. For
instance,1 is equally confident in𝑤1 and𝑤3, hence it is in themiddle of the triangle, but ismuch
less confident of 𝑤2, hence it is much further away from the top. (Exactly, 1 = (

0.45 0.1 0.45
)
.)

In contrast, 3 is equally doubtful of 𝑤2, but is slightly more confident of 𝑤3 than of 𝑤1, so it is
the same vertical height as 1 but is shifted further to the right. (Exactly, 3 = (

0.3 0.1 0.6
)
.)

Using such diagrams, we can visualize what our various Trust principles require.
Start with Simple Trust. This requires that conditional on the expert being confident of 𝑞—that

is, conditional on 𝑃 being in the set {𝜌 ∶ 𝜌(𝑞) ≥ 𝑡}—𝜋 must also be confident of 𝑞 (must also be
in this set). In our diagrams, such “probability-threshold” sets correspond to those probability
functions that fall on one side of a certain straight cut through the space. For example, the gray
region on the top left of Figure 4 is the set of functions that assign at least 2

3
to {𝑤2}; and the

blue region on the top right is the set of functions that assign at least 2
3
to {𝑤2, 𝑤3}. A “cut” is a

hyperplane—a flat surface in 𝑛-dimensional space (see below). All the probability functions that
are in the probability-threshold set are those that fall above this hyperplane.
Simple Trust says that conditional on the expert being in this set, you should be in this set. Since

Simple Trust is symmetric, it also says that conditional on the expert being outside this set (in the
non-shaded region), you should be outside this set. What Simple Trust amounts to is thus: trust
the expert’s judgment when you learn which side of a probability-threshold cut they’re on. As can
be seen, 𝜋 in the top row of Figure 4 satisfies this criterion for the two cuts we displayed: the
solid arrows indicate where 𝜋 moves when it conditions on 𝑃 being in the shaded set (𝑃(𝑞) ≥ 𝑡);
the dotted arrow indicates where it moves when it conditions on 𝑃 being in the non-shaded set
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F IGURE 4 A frame and probability function 𝜋 displayed with several different cuts. Top: Two
probability-threshold sets governed by Simple Trust. Gray region (left figure) comprises {𝜌 ∶ 𝜌(𝑤2) ≥ 2

3
}; blue

region (right figure) comprises {𝜌 ∶ 𝜌({𝑤2, 𝑤3}) ≥ 2

3
}. Solid arrows represent where 𝜋 moves when it conditions

on 𝑃 being in the shaded set; dotted arrows are where it move when it conditions on 𝑃 being in the non-shaded
set.Middle: Two conditional-probability-threshold sets governed by Trust. Gray region (left figure) comprises
{𝜌 ∶ 𝜌(𝑤2|{𝑤1, 𝑤2}) ≥ 1∕4}; blue region (right figure) comprises {𝜌 ∶ 𝜌(𝑤3|{𝑤2, 𝑤3}) ≥ 5∕6}. Solid arrow represents
where 𝜋 moves when it conditions on 𝑃 being in the shaded set; dotted arrow represents where it moves when it
conditions on 𝑃 not being in the shaded set. Bottom: A cut governed by Total Trust. 𝜋 does not trust the expert’s
judgment across this cut—conditional on the expert being to the left of the cut, 𝜋 stays to the right, where it
already is—meaning that Total Trust fails

(𝑃(𝑞) < 𝑡). For instance, the solid gray arrow in the top left maps 𝜋 to 𝑤2 (makes 𝜋 certain of
𝑤2) since 𝑤2 is the only world 𝑤 such that 𝑤(𝑤2) ≥ 2

3
—as can be seen by the fact that 2 is the

only world in the gray region. Now turn from Simple Trust to Trust. This generalization matters
because it introduces additional cuts. In our simple three-world diagrams, the cuts associatedwith
probability thresholds are all and only those that are parallel to one of the sides of the triangle. By
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strengthening Simple Trust to Trust, we require that you trust the expert’s judgment about certain
additional cuts—namely those corresponding to conditional probability thresholds. In our three-
world diagrams, this adds all the cuts that intersect one of the vertices—see the middle row of
Figure 4 for two examples. Though it is tricky to verify in full generality, it turns out that 𝜋 trusts
𝑃’s judgment about all such cuts, i.e. 𝜋 trusts this frame.
Turn, finally, to Total Trust. The key realization is that there are further cuts beyond those gov-

erned by Trust: not every cut corresponds to a conditional-probability threshold. In particular,
consider the purple region in the bottom row of Figure 4. This region is bounded by a cut; and
since this cut separates 𝜋 and the 𝑖 , 𝜋 clearly does not trust the expert’s judgment across this
cut. After all, 𝜋 is already certain that the expert is on the other side; so conditional on the expert
being on that side, 𝜋 remains exactly where it is.
Now for the big reveal: the case we’ve been diagramming is in fact the case that we used above

(Fact 2.1) to show that𝜋 can trust a framewithout valuing it. So the fact that𝜋 agrees with 𝑃 across
all of the cuts corresponding to probability and conditional-probability thresholds just is the fact
that 𝜋 trusts this frame. And the purple line separating 𝜋 from the frame represents the set of
probability functions𝜌 such that𝔼𝜌(𝑂1) = 0—where𝑂1 is as defined in the decision problemused
to show that𝜋 doesn’t value the frame, and 0 is the fixed utility of the alternative option𝑂0. So the
failure of 𝜋 to value the frame corresponds to its failure to trust the expert about these additional
cuts; requiring 𝜋 to trust the expert about every cut would clearly be sufficient for eliminating this
example.32
There is, in fact, a more general connection between “cuts” and random variables such as

𝑂1. For a cut is a hyperplane, and a hyperplane is specified by a linear equation; so a “cut” is
a set {𝜌 ∶ 𝜌(𝑤1)𝑥1 +⋯+ 𝜌(𝑤𝑛)𝑥𝑛 = 𝑡}, for some 𝑥1, … , 𝑥𝑛, 𝑡 ∈ ℝ. The two sides into which this
cut separates probability-space are the sets {𝜌 ∶ 𝜌(𝑤1)𝑥1 +⋯+ 𝜌(𝑤𝑛)𝑥𝑛 ≥ 𝑡} and {𝜌 ∶ 𝜌(𝑤1)𝑥1 +
⋯+ 𝜌(𝑤𝑛)𝑥𝑛 ≤ 𝑡}. But now we can think of 𝑥1, 𝑥2, … , 𝑥𝑛 as the values of some random variable
𝑋, meaning that a cut is simply a set {𝜌 ∶ 𝔼𝜌(𝑋) = 𝑡} for some 𝑡 and 𝑋, and the two sides are
{𝜌 ∶ 𝔼𝜌(𝑋) ≥ 𝑡} and {𝜌 ∶ 𝔼𝜌(𝑋) ≤ 𝑡}. The requirement to trust the expert’s judgment about every
cut is thus exactly the requirement that, for every random variable 𝑋 and threshold 𝑡, your expec-
tation for 𝑋 conditional on the expert’s expectation being greater than 𝑡 should also be greater
than 𝑡 (and mutatis mutandis for smaller than 𝑡). That is, it is simply the principle Total Trust.
That is why Total Trust succeeds where Simple Trust and Trust failed.
This way of thinking about our Trust principles may suggest ideas for even stronger ones. After

all, why should the principle be restricted to cuts, i.e. hyperplanes, i.e. flat surfaces. Wouldn’t it be
natural to also require 𝜋 to trust the expert’s judgment about bent surfaces? Or to go further yet
and simply require that, for any condition 𝐶 on probability distributions, 𝜋 should agree with the
expert onwhether to exhibit𝐶 when it learns whether the expert does so—that is,𝜋(⋅| ∈ 𝐶) ∈ 𝐶

and 𝜋(⋅| ∉ 𝐶) ∉ 𝐶?
But any such strengthened requirement would be too demanding for reasons quite orthogo-

nal to anything arising from modesty. Suppose that there are two candidate expert distributions,
𝜌1 and 𝜌2, with extreme probabilities: that 𝜌1(𝑞) = 1 and 𝜌2(𝑞) = 0. 𝜋 can clearly defer to this
expert even if, upon learning that the expert’s credences are either 𝜌1 or 𝜌2, 𝜋 assigns a probabil-
ity between 0 and 1 to 𝑞—conditional on the expert knowingwhether 𝑞, youmay still be uncertain
whether 𝑞! (EvenReflection allows this.) But assigning 𝑞 a probability between 0 and 1 conditional
on 𝑃 being either 𝜌1 or 𝜌2 means that 𝜋 does not agree with the expert on whether to exhibit the
condition {𝜌 ∶ 𝜌(𝑞) = 1 or 𝜌(𝑞) = 0}. More generally, say that a set𝐶 of probability distributions is
convex if it contains every distribution that is a weighted average of others it contains.33 It seems
that you can defer to an expert by adopting any weighted average of the possible opinions of the
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expert. (This, too, is allowed by Reflection.) So if 𝐶 is not convex, 𝜋 can defer to  even though
though 𝜋(⋅|𝑃 ∈ 𝐶) ∉ 𝐶. So at most it makes sense to require 𝜋(⋅| ∈ 𝐶) ∈ 𝐶 if 𝐶 is convex.
But notice: hyperplanes are the only divisions that divide probability space into two convex

sets.34 So if we want a principle that respects the basic shape of Total Trust—requiring you to
trust the expert’s judgment on either side of a division—that principle should be no stronger than
Total Trust itself.35 This observation helps situate the relative strengths of Reflection, Total Trust,
and Simple Trust. In particular, Reflection can be equivalently stated using convex sets:

Reflection (convexity version): 𝜋(⋅|𝑃 ∈ 𝐶) ∈ 𝐶, for any convex 𝐶.
Likewise for Total Trust. Say that a set 𝐵 is biconvex iff both 𝐵 and its complement are convex.

Then since a set is biconvex iff its boundary is a hyperplane (endnote 34), Total Trust is equivalent
to:

Total Trust (convexity version): 𝜋(⋅|𝑃 ∈ 𝐵) ∈ 𝐵, for any biconvex 𝐵.
This formulation of Total Trust is perhaps the most formally useful; it allows us to easily show

that Total Trust implies a variety of other principles. For instance, Total Trust implies a seemingly
more general conditional-expectation version of our above formulation.36 This shows that Total
Trust implies Trust (let 𝑋 be an indicator variable), which in turn shows that Total Trust implies
New Reflection.37 Likewise, Total Trust implies that conditional on the expert’s average credence
across a set of propositions {𝑞𝑖} being at least 𝑡, your average credence should also be at least 𝑡.38
Finally, this convexity formulation allows us see why Simple Trust remains a natural compo-

nent of Total Trust. Suppose we restrict ourselves to proposition-level formulations of such def-
erence principles—that is, ones that use only conditions on 𝑃 that can be stated in terms of the
expert’s opinion about a single proposition 𝑞. The set of convex proposition-level conditions are
those of the form 𝑃 ∈ {𝜌 ∶ 𝜌(𝑞) ∈ [𝑙, ℎ]}, i.e. those that say that the expert’s credence in a given 𝑞
is within a given range [𝑙, ℎ]. This leads to a proposition-level formulation that is only very slightly
weaker than Reflection as formulated above: 𝜋(𝑞|𝑃(𝑞) ∈ [𝑙, ℎ]) ∈ [𝑙, ℎ] (see Gallow 2017). Mean-
while, the set of biconvex proposition-level conditions are those of the form 𝑃 ∈ {𝜌 ∶ 𝜌(𝑞) ≥ 𝑡},
i.e. those that say the expert’s credence in a given 𝑞 is above a given threshold 𝑡. That is, restrict-
ing Total Trust to proposition-level conditions gives us exactly Simple Trust: 𝜋(𝑞|𝑃(𝑞) ≥ 𝑡) ≥ 𝑡.
Thus Simple Trust is the strongest component of Total Trust (i.e. Value) that we can formulate if
we restrict ourselves to deference principles built around single propositions. That restriction is
where Simple Trust went wrong.
A similar lesson applies to New Reflection. If we restrict ourselves to learning about the full

distribution of 𝑃—i.e. propositions of the form [𝑃 = 𝜌]—then New Reflection is the strongest
thing we can say. More precisely, New Reflection is the strongest principle that follows from Total
Trust (i.e. Value) of the form 𝜋(⋅|𝑃 = 𝜌) ∈ 𝐶, for some 𝐶.
The obvious lesson from these two instances is that the form of potential deference principles

we countenance can easily impose problematic restrictions in our search for the correct one. It is
only when a range of different forms coincide—as they do with Value, the various formulations
of Total Trust, and several other formulations we’ll see below—that we can have confidence in
the principle we end up with.
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3 THE VALUE OF ACCURACY

We’ve now shown that Total Trust captures the pragmatic version of Value we’ve been focus-
ing on: the principle that, no matter what decision you face, you should always prefer to let the
expert decide for you rather than decide yourself. But there is also an epistemic version of this
constraint—namely, that you should always expect the expert to be more accurate than you are.
In other words, if all you care about is getting to the truth, you should prefer to have the expert’s
credences, rather than your own:

Epistemic Value (rough): Always expect the expert’s opinions to be more accurate than your
own, under any reasonable way of measuring accuracy.

It’s straightforward to see that Value entails Epistemic Value. After all, here’s a decision-
problem: adopt a credence function, and receive utility in proportion to its accuracy. Standardly,
every candidate for the expert (every probability function) must expect itself to be more accu-
rate than any particular alternative candidate—this is the strict propriety constraint on accuracy
measures required for virtually all the major results in the literature.39 This entails that the rec-
ommended strategy 𝑆 in such a decision problem is always simply to adopt the expert’s credences,
whatever they are. Since Value entails that this strategy has higher expected utility than simply
stickingwith your credence function, it entails that you expect the expert to bemore accurate than
you.40
The converse, however, is not straightforward: why should expecting the expert to be more

accurate than you (have preferable credences for one type of decision—namely, what opinions to
have) necessarily mean that you prefer to use their opinions for all possible decisions? A natural
first thought is that the reason you prefer to use the expert’s opinions tomake decisions is that you
expect them to be more accurate than yours. But, as we’ll see, it turns out that the tenability of
this thought depends heavily on howwide the range of reasonable ways of measuring accuracy is.
In particular, the recent work of Levinstein (2019) can be marshaled to show both a close con-

nection but also a potential divergence between Value and Epistemic Value. There is a large lit-
erature devoted to measures of accuracy (‘scoring rules’) and the constraints they can be used to
impose on rational opinions.41 By filling in ‘any reasonable way of measuring accuracy’ in Epis-
temic Valuewith the standard class of scoring rules used in this literature, Levinstein (2019) shows
that this version of Epistemic Value is equivalent to Simple Trust.
Since we now know that Simple Trust is substantially weaker than Value, this raises the pos-

sibility that Epistemic Value and Value might come apart. But as we’ll show, we need not accept
that conclusion. The results of Campbell-Moore (2020) suggests that we can broaden our view
of what counts as a ‘reasonable way of measuring accuracy’ by broadening what sort of state we
can measure the accuracy of: instead of just measuring the accuracy of credences in propositions,
we can measure the accuracy of estimates of random variables. Once we broaden our view in
this way, we’ll show that Epistemic Value does indeed turn out to be equivalent to Value. (Those
uninterested in the details can skip to §3.1.)
First, we need to get clear onwhat Levinstein (2019) shows. Let 𝐼𝑞 be a local inaccuracymeasure

for a given proposition 𝑞: it takes a probability function, 𝛿, and truth-value of 𝑞, 𝟙𝑞 and outputs a
non-negative real number measuring the divergence between the probability and the truth of 𝑞—
i.e. how inaccurate 𝛿 is about 𝑞. 𝐼𝑞(𝛿) can then be treated as a random variable—‘the inaccuracy
of 𝛿 about 𝑞, whatever it is.’ Say that 𝐼𝑞 is truth-directed iff being closer to the truth-value of 𝑞
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makes a probability function more accurate (less inaccurate).42 Say that 𝐼𝑞 is strictly proper iff
every probability function expects itself to be more accurate than any other (rigidly designated)
probability function.43
Now let 𝐼 be a global inaccuracymeasurewhich takes a probability function 𝛿 and aworld𝑤 and

outputs its overall inaccuracy at 𝑤. Say 𝐼 is additive iff it is a sum of local inaccuracy measures.44
Say that an additive 𝐼 is truth-directed and strictly proper iff all its component local scoring rules
are truth-directed and strictly proper. The favored class of scoring rules within the epistemic util-
ity literature is the class of additive, truth-directed, strictly proper scoring rules (Predd et al. 2009;
Pettigrew 2016; Levinstein 2017a; Campbell-Moore and Levinstein 2020). So suppose we assume
that these are all and only the reasonable ways of measuring accuracy; then Epistemic Value cor-
responds to Simple Trust.
Notice that 𝐼(𝑃) and 𝐼𝑞(𝑃) can be treated as random variables for ‘the inaccuracy of the expert’s

opinions, whatever they are’: 𝐼𝑞(𝑃)(𝑤) = 𝐼𝑞(𝑤,𝑤), etc. Now fixing some particular 𝑞, say that
𝜋 simply trusts 𝑃 with respect to 𝑞 iff for all 𝑡: 𝜋(𝑞|𝑃(𝑞) ≥ 𝑡) ≥ 𝑡 and 𝜋(𝑞|𝑃(𝑞) ≤ 𝑡) ≤ 𝑡. Then we
have:

Theorem 3.1 (Levinstein 2019). 𝜋 simply trusts 𝑃 with respect to 𝑞 iff for every continuous,45 truth-
directed, strictly proper local scoring rule 𝐼𝑞 , 𝔼𝜋(𝐼𝑞(𝑃)) ≤ 𝔼𝜋(𝐼𝑞(𝜋)), with equality if and only if
𝜋(𝑃(𝑞) = 𝜋(𝑞)) = 1.

A corollary is that 𝜋 simply trusts 𝑃 (for all propositions) if and only if for every continuous,
truth-directed, strictly proper, and additive global scoring rule 𝐼, 𝔼𝜋(𝐼(𝑃)) ≤ 𝔼𝜋(𝐼(𝜋)).
What to make of this result? If this is the correct class of ‘reasonable ways of measuring accu-

racy’, then—since Simple Trust is strictlyweaker thanTotal Trust—it follows that EpistemicValue
is strictly weaker than Value.
But an alternative reading is possible: the result may suggest that the standard way of thinking

about scoring rules is overly narrow; they do not capture every reasonable way of measuring accu-
racy. To see why, return to the example used in Fact 2.1 and the bottom row of Figure 4. As we’ve
seen, in that example 𝜋 trusts 𝑃, and therefore expects 𝑃 to be more accurate than itself on all of
the ways of measuring accuracy that Theorem 3.1 countenances. Yet there is an issue on which,
it seems, 𝜋 may sensibly not expect 𝑃 to be more accurate than itself on—namely, the value of
the random variable 𝑂1. 𝜋 estimates 𝑂1 to have a value of −0.26, while every candidate expert
function estimates it to have a value of at least 0.3—this was why we were able to separate 𝜋 from
the frame using the purple cut in the bottom row of Figure 4.
Visually, there’s an intuitive sense in which 𝜋 could expect itself to be more accurate about 𝑂1

than the expert—namely, it’s on the correct side of the line dividing the purple fromwhite region.
For example, supposewemeasure accuracy this way: to have an accurate estimate of𝑂1, it matters
a lot whether your estimate is on the correct side of 0, but very little how close it is beyond that.
On that way of measuring accuracy of estimates, 𝜋 will expect itself to be more accurate about 𝑂1
than the expert.46
This suggests that we should follow the work of Campbell-Moore (2020) and consider scor-

ing rules that apply to arbitrary estimates—not just to estimates of indicator random variables,
i.e. probabilities of propositions. If we do so, we’ll find that Value and Epistemic value will
align exactly.
Precisely, let an estimate-inaccuracymeasure for a random variable𝑋 take a estimate 𝑒 ∈ ℝ,

a world 𝑤, and output the inaccuracy of 𝑒 at 𝑤, denoted 𝐼𝑋(𝑒, 𝑤). Writing 𝐼𝑋(𝜋) to abbreviate
𝐼𝑋(𝔼𝜋(𝑋)), say that 𝐼𝑋 is generally strictly proper (gsp) iff any probability function expects its
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own estimate of𝑋 to bemore accurate than any other (rigidly designated) estimate.47 For tractabil-
ity, assume 𝐼𝑋 is absolutely continuous in its first argument.
In a recent paper, Campbell-Moore (2020) has shown that Schervish’s (1989) well-known char-

acterization of strictly proper local inaccuracy measures can be generalized to characterize gsp
estimate-inaccuracy measures as well. Using this more general characterization, we can show
that our pragmatic version of value does coincide with a version of Epistemic Value—namely,
the version we get if we say that the class of ‘reasonable ways of measuring (in)accuracy’ cor-
respond exactly to the generally strictly proper estimate-scoring rules. In fact, we can show an
even tighter connection than that—one that outstrips in both directions the argument that Value
implies Epistemic Value from above. For we can show that totally trusting an expert with respect
to a given variable 𝑋 is equivalent to expecting their estimate of 𝑋 to be more accurate than your
own under an way of measuring the accuracy of such an estimate.
Precisely, let 𝐼𝑋(𝑃) be the inaccuracy of the expert’s estimate for 𝑋, whatever it is: 𝐼𝑋(𝑃, 𝑤) =

𝐼𝑋(𝔼𝑤(𝑋), 𝑤). Say that 𝜋 epistemically values the 𝑃 with respect to 𝑋 iff it expects 𝑃’s esti-
mate of 𝑋 to be more accurate than its own, on any (generally strictly proper) way of measuring
accuracy.48 And say that 𝜋 totally trusts 𝑃 with respect to 𝑋 iff for all 𝑡: 𝔼𝜋(𝑋|𝔼(𝑋) ≥ 𝑡) ≥ 𝑡 and
𝔼𝜋(𝑋|𝔼(𝑋) ≤ 𝑡) ≤ 𝑡. Then:
Theorem 3.2. 𝜋 totally trusts 𝑃 with respect to 𝑋 iff 𝜋 epistemically values 𝑃 with respect to 𝑋.49

Proof Sketch. (⇒): Let 𝔼𝜋(𝑋) = 𝑒. Given Total Trust, we show:

𝔼𝜋(𝐼𝑋(𝑃) |𝔼(𝑋) > 𝑒) < 𝔼𝜋(𝐼𝑋(𝑒) |𝔼(𝑋) > 𝑒) (1)

This suffices for the proof since a symmetric argument shows:

𝔼𝜋(𝐼𝑋(𝑃) |𝔼(𝑋) < 𝑒) < 𝔼𝜋(𝐼𝑋(𝑒) |𝔼(𝑋) < 𝑒) (2)

Jointly equations (1) and (2) entail this direction of the theorem.
To prove equation (1): Let 𝑤1,… ,𝑤𝑝 be the worlds where for each 𝑖, 𝔼𝑖(𝑋) > 𝑒. Without loss of

generality, assume that for each 𝑖 < 𝑝, 𝔼𝑖(𝑋) > 𝔼𝑖+1(𝑋). We then prove by induction for all 𝑘 with
1 ≤ 𝑘 ≤ 𝑝 and for any 𝑠 < 𝔼𝑘(𝑋):

𝔼𝜋(𝐼𝑋(𝑃) |𝔼(𝑋) ≥ 𝔼𝑘(𝑋)) < 𝔼𝜋(𝐼𝑋(𝑠) |𝔼(𝑋) ≥ 𝔼𝑘(𝑋))
(⇐): Suppose that 𝔼𝜋(𝑋 |𝔼(𝑋) ≥ 𝑡) < 𝑡 for some 𝑡. (The case where 𝔼𝜋(𝑋 |𝔼(𝑋) < 𝑡) ≥ 𝑡 can be
treated similarly.) Then there is some region (𝛼, 𝛽)where for all 𝑡 ∈ (𝛼, 𝛽),𝔼𝜋(𝑋 |𝔼(𝑋) ≥ 𝑡) < 𝑡. In
Appendix B.3.1, we show how to make a gsp that pays special attention (𝛼, 𝛽). It is then relatively
straightforward to show that 𝔼𝜋(𝐼𝑋(𝑒)) < 𝔼𝜋(𝐼𝑋(𝑃)) for this rule. □

It follows immediately fromTheorems 2.2 and 3.2 that Value is equivalent to Epistemic Value—
at least, it is if we understand the ‘reasonable ways of measuring accuracy’ as the set of all gsp
estimate-inaccuracy measures:

Epistemic Value: For any 𝑋 and gsp 𝐼𝑋 , 𝔼𝜋(𝐼𝑋(𝑃)) ≤ 𝔼𝜋(𝐼𝑋(𝜋)) with equality if and only if
𝜋(𝔼(𝑋) = 𝔼𝜋(𝑋)) = 1.
Always expect the expert’s estimates to be more accurate than your own.
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As with Theorem 3.1, this result immediately generalizes to additive, “global” estimate-
inaccuracy which measure the inaccuracy of a given probability function by a sum of the inac-
curacies of its various estimates.

3.1 Upshots

By Theorem 3.2, you expect an expert’s estimate of a particular quantity 𝑋 to be more accurate
than your own on every reasonable way of measuring accuracy iff you totally trust their estimate
of that quantity. This result carries with it some philosophical subtleties, so let’s pause to take
a look.
First subtlety: recall that many potential experts are only local experts—you should only trust

them on a restricted range of questions (Introduction). Unlike Theorems 2.2 and 4.1, Theorem 3.2
is a local equivalence result. Fix some particular quantity 𝑋—say, the number of inches of rain
we’ll have next week. And fix on some potential expert—say, the weather forecaster. The result
says that you totally trust the forecasterabout howmuch rainwe’ll have iff you expect their estimate
to be more accurate than your own on every reasonable way of measuring its accuracy. This holds
even if you don’t totally trust them on other questions (like what to do with the now-far-too-
old bananas). This is significant because it shows that the connection between Total Trust and
EpistemicValue is a very tight one. In particular, the connection is not restricted tomodest experts.
As we’ll discuss below (§5), you can totally trust an immodest expert with respect to a certain
question (or with respect to certain quantities) even without reflecting them with respect to that
question. By Theorem 3.2, you will then likewise expect them to be more accurate than you with
respect to that question. Thus this theorem shows that even when it comes to immodest experts,
Total Trust carves out a formally and philosophically natural notion of deference that is weaker
than Reflection.
Second subtlety: note that the biconditional connecting Total Trust to Epistemic Value goes

through only on a very permissive account of the reasonable ways of measuring accuracy. If there
aremore constraints on reasonable ways of measuring accuracy beyond them being gsp estimate-
inaccuracy measures, then we would lose the right-to-left direction of the proof, and Epistemic
Value might not entail Value. Yet some have argued that there are further constraints—for exam-
ple, that the Brier score (squared Euclidean distance) is the uniquely reasonable scoring rule
(Joyce 2009; Pettigrew 2015, 2016). What should we make of this discrepancy?
One possibility is to endorse a form of subjectivism aboutmeasuring accuracy: individuals have

complete latitude (amongst the gsp estimate-inaccuracy measures) to choose how they are going
to value accuracy. The proper formulation of Epistemic Value should then guarantee that if they
defer to an expert, then however they decide to measure accuracy, they will expect the expert to be
more accurate than their own credence function. A second reaction would be a form of objec-
tivism, combined with an epistemic-robustness constraint: although there is a uniquely ratio-
nal way of measuring accuracy, reasonable people can be uncertain what it is (amongst the gsp
estimate-inaccuracy measures). The proper formulation of Epistemic Value should then guaran-
tee that no matter how this uncertainty is distributed, if they defer to an expert then they’ll expect
them to bemore accurate than their own credence function. A final option is a form of supervalua-
tionism: it’s indeterminate (amongst the gsp estimate-inaccuracy measures) what the correct way
of measuring accuracy is, but if you defer to an expert then it’s determinately true that you expect
them to be more accurate than you—therefore, they must be more accurate on all suchmeasures.
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We are neutral between these three approaches. But we do think that Theorem 3.2 lends some
support to a reading along one of these lines—i.e. to a pluralistic approach to accuracy-measures.
For it turns out that the universal quantification over accuracy measures is extremely important
in the above argument: merely requiring that𝜋 expects 𝑃 to bemore accurate than itself according
to (say) the propositional Brier score, does not entail any interesting deference principle—not even
Simple Trust or New Reflection.50 Interestingly, requiring 𝜋 to expect all of 𝑃’s estimates to be
more accurate than its own asmeasured by squared Euclidean distancemay entail NewReflection
(we’ve been unable to find a counterexample). But New Reflection does not entail this constraint,
and the constraint still does not entail even Simple Trust.51
Thus insofar as there’s reason to want a tight connection between deference and expected accu-

racy, there’s reason to be pluralist about the acceptableways ofmeasuring accuracy.And,we think,
there is such reason: after all, it’s intuitive to think that when you value an expert, the explanation
for why you prefer to use their opinions to make decisions is that you expect their opinions to be
more accurate than your own. As we’ve seen, this intuition is correct iff the reasonable ways to
measure accuracy correspond to the set of gsp estimate-inaccuracy measures.

4 THE GEOMETRY OF DESERVED DEFERENCE

So far we’ve shown how to generalize Trust to arrive at a deference principle—Total Trust—that
can be stated as a constraint on the relationship between your opinions and the expert’s, andwhich
characterizes what it takes to value an expert’s opinions for the sake of making good decisions or
accurate estimates. But this doesn’t yet tell us exactly what constraints the various candidates for
the expert must meet in order to deserve 𝜋’s deference. In particular, we’d like a characterization
of these constraints along with the relationship 𝜋 must bear to them such that, if we are given
a probability function and a frame, we can (efficiently) check whether the function values that
frame. (Compare: in epistemic logic, we don’t simply want to know which axioms are equivalent
the KK principle that 𝐾𝑞 → 𝐾𝐾𝑞; we also want to know that a frame validates this principle iff
it is transitive.) This section will give such a characterization, revealing another way in which
Total Trust is a natural middle ground between Reflection and New Reflection. (This will require
attention to some technicalities; if you are just here for the philosophy, you may prefer to skip to
§5.)
The characterization begins, once more, by looking at pictures. Compare frames 𝐹1 and 𝐹2,

described and pictured in the first two rows of Figure 5. The two frames look very similar: in
both, each 𝑖 is more confident of𝑤𝑖 than of the other worlds; in both 2 thinks𝑤1 is more likely
than 𝑤3; in the second, it just does so to a slightly greater extent. But while there are probability
distributions that totally trust the first frame (for example, the uniform distribution 𝜋 = (1

3
,
1

3
,
1

3
),

or any other distribution in the triangle delineated by the𝑖), there are no probability distributions
that totally trust the second. Why the difference?
Notice that in 𝐹2 we can separate2 from the rest of the frame using a cut that does not include

𝑤2 (right side of second picture-row of Figure 5). As a result, conditional on the expert being to
the left of this cut, 𝜋 moves directly to 𝑤2, and does not trust the expert on this cut.52 In contrast,
we cannot do the same in 𝐹1: any cut that is shallow enough to include only 2 will also include
𝑤2, so 𝜋 will map to 𝑤2 and trust 𝑃 across about this cut (middle picture row of Figure 5; gray
region and solid arrow on the left); and any cut steep enough to exclude 𝑤2 will include 1, and
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F IGURE 5 Two frames. 𝜋 = ( 1
3
,
1

3
,
1

3
) values 𝐹1 (left column) but not 𝐹2 (right column). Top: The frames are

the same except that in 𝐹2, 2 is slightly further weighted towards 𝑤1 over 𝑤3.Middle: In 𝐹2 we can use a cut to
separate 2 from its world (𝑤2) and the other 𝑖 (right); in 𝐹1 we cannot (left): any cut shallow enough to exclude
1 (gray region) will include 𝑤2, so will map 𝜋 to 𝑤2 (solid arrow); any cut steep enough to include 1 (hatched
region) will include the ( 1

2
,
1

2
, 0) point it maps 𝜋 to (dotted arrow). Bottom: Shaded triangles represent the convex

hulls of {̂1,2,3} (red/left), {1, ̂2,3} (gray/top), {1,2, ̂3} (blue/right). Note that in 𝐹1, 2 falls within the
gray hull, while in 𝐹2 it does not.

so map 𝜋 to the left side of the triangle, again trusting the expert about the cut (orange hatched
region and dashed arrow).
What makes for the difference? The answer is easy to visualize. First, recall that ̂𝑤 ∶=𝑤(⋅|𝑃 = 𝑤) is the expert’s informed opinions—those they’d have upon learning that they are

the expert (§1). Since in 𝐹1 and 𝐹2 each 𝑤 is unique, this means that ̂𝑤 is certain it’s at 𝑤, so
is represented by the extreme point in the triangle that’s certain it’s at 𝑤: ̂1 is at the bottom left
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corner, ̂2 is the top corner, etc. Now notice the differing relationship between the𝑖 and the ̂𝑖 in
𝐹1 and 𝐹2. The convex hull of a set of points 𝜌1, … , 𝜌𝑛 is the smallest convex set containing them
all, i.e. the set of points obtainable by averaging them.53 On the bottom picture-row of Figure 5
we’ve plotted the convex hulls (shaded triangles) of {̂1,2,3} (red/left), {1, ̂2,3} (gray/top),
and {1,2, ̂3} (blue/right). Once we do so, the difference betwen 𝐹1 and 𝐹2 jumps out: in the
former, 2 falls insides the gray convex hull of {1, ̂2,3}, while in the latter it does not. This is
what allowed us to separate 2 from the rest of the frame and 𝑤2, generating a Value failure for
𝐹2.
It also points us to a characterization. Say that a candidate 𝑖 ismodestly informed iff their

opinions are an average of their own informed opinions ̂𝑖 along with the (uninformed) opinions𝑗 of the other candidates they think might be an expert.54 This is the key constraint. 𝜋 totally
trusts (i.e. values) a frame iff all the candidates for the expert are modestly informed, and 𝜋 is an
average of them:

Theorem 4.1. 𝜋 totally trusts ⟨𝑊,⟩ iff each 𝑖 ∈ 𝐶𝜋 is modestly informed and 𝜋 is in their con-
vex hull.

Proof Sketch. (⇒∶) If 𝜋 is not in the convex hull of the 𝑖 , we can separate it from them using a
cut as we did in the bottom row of Figure 4, in which case Total Trust fails. And if one of the 𝑖
is not modestly informed, we can use a cut to separate it from its worlds and the other 𝑗 like we
did in the bottom of Figure 5, leading to a Total Trust failure.
(⇐∶) If Total Trust fails, then Value fails, so 𝔼𝜋(𝑂 − 𝑆) > 0 for some , 𝑂 ∈ , and recom-

mended 𝑆. There must be some extreme point 𝑖 in the frame that maximizes this divergence.
The trouble is, if 𝑖 is modestly informed then 𝔼𝑖(𝑂 − 𝑆) is an average of 𝔼𝑖(𝑂 − 𝑆) (which is
0, since 𝑂 maximizes 𝔼𝑖 and so 𝑆𝑖 = 𝑂) and the other 𝔼𝑗(𝑂 − 𝑆) (which are less extreme than
𝔼𝑖(𝑂 − 𝑆)). This contradicts the assumption that 𝑖 is an extreme point, so it must not be mod-
estly informed. □

How should we understand this result—and, in particular, the constraint that each candidate
be modestly informed?
First, to get some intuition for the constraint, consider what it amounts to in one standard case

of higher-order evidence: you and some peers do some reasoning and each come to have a certain
“hunch”; but then you realize your hunches differ, conclude that you might not have reasoned
properly, and so adjust your opinions to take account of your higher-order doubts. For each 𝑖,
we can think of the informed opinion ̂𝑖 as the “hunch” of the person who reasoned properly
at world 𝑖55—after all, they’re the opinions that person would have if they had no higher-order
doubts about their reasoning. Meanwhile, 𝑖 represents the “all-doubts-considered” opinions of
the person who reasoned properly at world 𝑖—those which that person has once they’ve taken
their higher-order doubts into consideration. To require the rational person’s (all-doubts consid-
ered) opinions to be modestly informed is thus to insist that they are some kind of average of
the hunch of the well-reasoning individual, ̂𝑖 , and the all-doubts-considered opinions of those
who reasoned poorly. It thus permits both an extreme “right reasons” response (which maintains
that the all-doubts considered opinions of the well-reasoning individual should simply be their
hunch; Titelbaum 2015) and an extreme “conciliationist” response (which maintains that every-
one’s all-doubts-considered opinions should coincide; Elga 2007), and everything that falls strictly
between these.
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F IGURE 6 Projection onto 2D of a set of points illustrating why each 𝑖 can’t stably be a a nontrivial
average of itself and 𝐶−

𝑖
unless it is an average of 𝐶−

𝑖
. Left: Orange region is convex hull of 𝐶−1 ; since 1 falls

outside it, it is more extreme than 𝐶−1 ; thus averaging 1 with this pulls it towards the others. (In contrast, the red
dotted line delineates the convex hull of {̂1} ∪ 𝐶−1 , meaning that 1 can stably be an average of these
points—i.e. it can stably be modestly informed.) Right: The process iterates as new extreme points are pulled
towards the others, illustrating why Reflection makes modesty unstable

Now let’s turn to seeing how the modestly-informed constraint relates to those imposed by
Reflection and New Reflection. A helpful way to do so is to focus on what our various principles
require of the expert candidates, assuming that they all defer to the expert.56 Say that a frame
validates a deference principle Φ iff every 𝑖 in the frame defers to it Φ-wise. Reflection then is
equivalent to the requirement that each𝑖 is either immodest or an average of the other candidates
it leaves open:

Fact 4.2. ⟨𝑊,⟩ validates Reflection iff for each 𝑖 ∈ 𝑊: either 𝑖 is immodest or 𝑖 is in the convex
hull of 𝐶−

𝑖
.57

Why is this true? In particular, why does Reflection require that if 𝑖 is modest, then 𝑖 is an
average of the other candidates, excluding itself? Reflection immediately implies that 𝑖 can be
written as an average of itself along with the other candidates, 𝐶−

𝑖
.58 Moreover, if 𝑖 is modest,

then 𝑖(𝑃 = 𝑗) > 0 for some 𝑗 ∈ 𝐶−𝑖 ; so then this average is nontrivial in the sense that it gives
at least someweight to the other candidates𝐶−

𝑖
. Now, in order for a point to fall outside the convex

hull of the other candidates, it must be more extreme than of them in some direction (Figure 6).
It’s then easy to see that any nontrivial average of such a point and the other candidates would be
less extreme than the point itself. (If 𝑥 > 𝑦1, … , 𝑦𝑛, then any average of 𝑥 with the 𝑦𝑖 will be less
than 𝑥.) Since 𝑖 is such a nontrivial average, and can’t be less extreme than itself, it follows that𝑖 must already be in the convex hull of the other candidates 𝐶−𝑖 .
Moreover, it is this feature whichmakes Reflection incompatible with modest experts. For con-

sider the set of all the candidate experts. By the reasoning above, none of its extreme points can be
modest. So all of its extreme points are immodest, and thus assign probability 0 to any candidate
other than themselves. In particular, they all assign probability 0 to every modest candidate. And
since any other candidate must be in their convex hull (otherwise it would be an extreme point),
it follows that any other candidate also assigns probability 0 to every modest candidate; so modest
candidates might as well not be included in the frame. The problem, in essence, is that Reflection
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requires 𝑖 to be an average of itself and the other candidates it leaves open; but a point 𝑖 can’t
be used to anchor itself outside of the hull of the other candidates it gives weight to.
NewReflection solves this problem by having each𝑖 be an average of a different set of points—

the informed ̂𝑗—rather than the 𝑗 themselves:
Fact 4.3. ⟨𝑊,⟩ validates New Reflection iff for each 𝑖 ∈ 𝑊: 𝑖 is in the convex hull of {̂𝑗 ∶ 𝑗 ∈
𝐶𝑖}.59

This does solve the instability problem just identified—but notice that it walks back much fur-
ther from Reflection than is needed to do so. It replaces every point 𝑗 that Reflection told 𝑖 to
be pulled towards with its informed version, ̂𝑗 . But the reason Reflection was unstable was not
because each candidate 𝑖 was pulled towards the others 𝑗—it was that 𝑖 had nothing distinct
from itself to pull back with. Thus we didn’t need to replace all the 𝑗 with their informed selves;
it suffices to replace 𝑖 with its informed self ̂𝑖 to make it so that 𝑖 can stably give weight to the
other candidates without being pulled into their convex hull. To see this, notice that in Figure 6,
1 is in the convex hull of ̂1 (left corner of the triangle) with the other points, as delineated by
the red dotted line. This is just to say that𝑖 is in the convex hull of ̂1 and𝐶−1—i.e. that it is stably
both modest and modestly informed.
Thus the constraint that 𝑖 be modestly informed combines the insights of both Reflection and

New Reflection. From Reflection, it takes the idea that 𝑖 should be pulled towards the unin-
formed opinions of the other candidates 𝑗 ∈ 𝐶−𝑖 it leaves open. From New Reflection, it takes
the idea that in order to do so stably,𝑖 must pull back with some anchor point other than itself—
in particular, with its informed self ̂𝑖—which, since it’s not sensitive to higher-order doubts, can
stably pull back.
Nevertheless, we may wonder why it has to be 𝑖 ’s informed self (̂𝑖) in particular that serves

as the anchor, as opposed to some other point more extreme than 𝐶−
𝑖
. To see why this is so, con-

sider one final way to reach the constraint that 𝑖 be modestly informed. In particular, notice that
Fact 4.2 entails that there’s another formulation of the requirements of Reflection—namely, that
𝑖 must be an average of its informed self and the (uninformed) opinions of the other candidates,
where the weights in this average are extreme. That is, where 𝜆𝑖𝑗 ≥ 0 are non-negative weights
that sum to 1, we have:

Corollary 4.4. ⟨𝑊,⟩ validates Reflection iff for each 𝑖 ∈ 𝑊: 𝑖 is modestly informed with extreme
weights, i.e. 𝑖 = 𝜆𝑖𝑖̂𝑖 +∑

𝑗∈𝐶−𝑖 𝜆𝑖𝑗𝑗 , with either 𝜆𝑖𝑖 = 1 or 𝜆𝑖𝑖 = 0.60

Oncewewrite Reflection this way, we can see that there are two completely discontinuousways
to satisfy it: the first is to have your opinionsmatch your informed opinions (if 𝜆𝑖𝑖 = 1); the second
is to have them match an average of the other candidates’ uninformed opinions (if 𝜆𝑖𝑖 = 0). Once
we see this bifurcation, it’s natural to generalize it by allowing intermediate averages between
these two extremes—giving some weight to your informed self and some weight to the other can-
didates uninformed opinions (0 < 𝜆𝑖𝑖 < 1). That generalization is simply the requirement that 𝑖
be modestly informed:

Corollary 4.5. ⟨𝑊,⟩ validates Total Trust iff for each 𝑖 ∈ 𝑊,𝑖 ismodestly informed:𝑖 = 𝜆𝑖𝑖̂𝑖 +∑
𝑗∈𝐶−𝑖 𝜆𝑖𝑗𝑗 with 0 ≤ 𝜆𝑖𝑖 ≤ 1.61
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In short, Value retains the core idea of Reflection—namely, that your opinions should be pulled
between your own informedopinions and the other candidates uninformedones—but generalizes
it to allow the balance between these two forces to be intermediate.

5 OPEN QUESTIONS

Many of the things we’d like to defer to—people, evidence, chances—can be unsure whether they
are worthy of deference. In such contexts the standard theories of deference break down. We’ve
proposed Value as new theory of deference: you defer to an expert if you’d always prefer for them
to make decisions on your behalf—in a slogan, deferring opinions is deferring decisions. Following
Dorst (2020a), we observed that this theory is equivalent to the standard theories (Reflection and
New Reflection) in the context of immodesty, but it both allows modesty (unlike Reflection) and
rules out deference to anti-experts orDutch-bookable ones (unlikeNewReflection) (§1). However,
we also showed that we lacked a general theory of modest Value (§2).
The point of this paper has been to give one. As we’ve seen, you value an expert iff you totally

trust their estimates (§2), iff you expect their estimates to be more accurate than yours on any rea-
sonable way ofmeasuring accuracy (§3), iff all the expert candidates’ opinions can be factored into
their informed opinions along with their higher-order doubts, and your opinions are an average
of theirs (§4). Collecting our theorems, we have the following characterization:

Theorem 5.1 (Characterization of Value). The following are equivalent:

⋅ 𝜋 values ⟨𝑊,⟩;
For any , if 𝑆 is recommended for , then ∀𝑂 ∈ , 𝔼𝜋(𝑆) ≥ 𝔼𝜋(𝑂);
There’s no fixed-option Dutch Book against transitioning from 𝜋 to 𝑃.

⋅ 𝜋 totally trusts ⟨𝑊,⟩:
𝔼𝜋(𝑋|𝔼(𝑋) ≥ 𝑡) ≥ 𝑡, for all 𝑋;
𝜋(⋅|𝑃 ∈ 𝐵) ∈ 𝐵 for any biconvex 𝐵.

⋅ 𝜋 epistemically values ⟨𝑊,⟩:
𝔼𝜋(𝐼𝑋(𝑃)) ≤ 𝔼𝜋(𝐼𝑋(𝜋)), for all 𝑋 and gsp 𝐼𝑋 .

⋅ 𝜋 is in the convex hull of 𝐶𝜋, and each 𝑖 ∈ 𝐶𝜋 is modestly informed:
𝜋 =

∑
𝑖∈𝐶𝜋

𝜆𝑖𝑖 and for each 𝑖 ∈ 𝐶𝜋 ∶ 𝑖 = 𝜆𝑖𝑖̂𝑖 + ∑
𝑗∈𝐶−𝑖

𝜆𝑖𝑗𝑗.

Theory in hand, we can draw out both formal lessons and philosophical questions.
The most obvious formal lesson is this. In the context of immodesty, deference can seem

simple—all the plausible theories (Reflection, New Reflection, Value, Trust, etc.) coincide. But
once we allow modest experts, important differences emerge. We’ve argued that probing these
differences singles out Value as the most plausible, general account of deference. Nevertheless,
within the space that modesty opens up, there’s clearly a wide range of different deference princi-
ples that deserve to be explored (cf. Dorst 2020b).We hope that themethods we’ve found so useful
here (asking computers; drawing pictures) will also be helpful in such further explorations.
Turning to philosophical questions, we’d like to focus on two. First, there are a variety of things

that most philosophers agree we should defer to: objective chances (Lewis 1980; Levinstein 2019);
our rational and more-informed future selves (van Fraassen 1984; Salow 2018); our own evidence
(Good 1967; Dorst 2020a); and so on. If we are right, that means we must value such experts—
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which in turn imposes structural constraints on what their opinions might be. For example, to
value an expert, their opinions must obey positive access: if the expert is certain of 𝑞, they must
be certain that the expert is certain of 𝑞; if 𝑃(𝑞) = 1, then 𝑃(𝑃(𝑞) = 1) = 1 (Dorst 2020a, Fact 8.2).
That raises a question: what substantive facts about these various experts explain why their opin-
ions obey such structural features? What is it about objective chances (or rational credences, or
evidential probabilities) that guarantees that they obey (say) positive access—and which theories
of them can deliver this result? Thus theories of deference can be used to impose adequacy condi-
tions on substantive accounts of chance (C. Dorst 2019; Gallow 2019a), diachronic rationality (cf.
Schoenfield 2016b; Gallow 2019b), evidence (cf. Lasonen-Aarnio 2019; Das 2020a), and so on.
Second, every theory we’ve explored here is a theory of global deference—of what it takes to

defer to an expert on all your opinions. As we mentioned at the beginning, this is an appropriate
notion of deference for some experts (present chances, your current evidence) but not for others.
We defer to Nate Silver about who’ll win the election, but not about what the weather will be;
we defer to our political opponents about what their favorite news network says, but not about
whether it’s correct; we defer to our future self about how busy we’ll be next month, but not about
howmuchwe shouldwork today; and so on.Most real-world deference is local deference:we defer
to an expert’s opinions about some questions but not others. Such limited deference is clearly both
pervasive and philosophically important.
It’s also formally interesting, for it turns out that question-sensitivity adds evenmore variability

to our growing gamut of deference principles. Thinking of a question 𝑄 as a partition of logical
space (Hamblin 1976; Roberts 2012), we can relativize all our principles to such questions. You
reflect an expert with respect to 𝑄 iff for any partial answer to 𝑄, you adopt the expert’s credence
in that answer upon learning what it is.62 You totally trust an expert with respect to 𝑄 iff for any
quantity whose values are determined by the answer to𝑄, you have a high estimate for that quan-
tity upon learning that their estimate is high.63 You value an expert with respect to 𝑄 iff for any
decision-problem whose utilities are determined by the answer to 𝑄, you’d like to give the expert
power of attorney for that decision.64
Once we add such question-sensitivity, things get even more interesting. For example, you

totally trust a frame with respect to every 2-cell question (𝑄 = {𝑞, ¬𝑞}) iff you simply trust it (with
respect to every question). As we’ve seen in Theorem 3.2, you totally trust an expert with respect
to a question iff you expect their estimates of quantities determined by that question to be more
accurate than your own on every reasonable way of measuring accuracy. We conjecture that, sim-
ilarly, you totally trust an expert with respect to a question iff you value them with respect to that
question.65
Finally—and perhapsmost importantly—it turns out that you can totally trust, value, and epis-

temically value an immodest expert with respect to 𝑄without reflecting them with respect to 𝑄.66
Thismeans that even in the context of immodesty, the epistemic and pragmatic incentives to defer
to someone do not always suffice to justify Reflection—they sometimes justify only Total Trust.
That opens up further questions. How exactly do the local versions of Reflection and Total Trust
relate? Is the latter indeed equivalent to (local) Value? And, more generally, how will the various
theories of deference stack up once we turn our attention to the incredibly-common but under-
explored domain of local, question-relative deference?
We don’t know. So we should end on a modest note: although we think that our theory of

deference does better than those currently on offer, there remains plenty of room for deference to
be done better yet.
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ENDNOTES
1 Letting ‘𝑃’ be a definite description for the expert’s opinions, whatever they are, the expert is modest iff they are
less than certain that they are indeed the expert: there is some 𝑞, 𝑡 such that 𝑃(𝑞) = 𝑡 but 𝑃(𝑃(𝑞) = 𝑡) < 1. We
follow Elga (2013) in the ‘modest’ terminology; note that it is orthogonal to the sense of ‘immodesty’ (or ‘strict
propriety’) used as a constraint on accuracy scoring rules (Lewis 1971; Gibbard 2008; Joyce 2009; Pettigrew 2016;
Horowitz 2018). See §3 for discussion.

2 We here use ‘Reflection’ to refer to a variety of principles of the same structure; in this sense, the principles
discussed byMiller (1966); Lewis (1980); Skyrms (1980); van Fraassen (1984); Gaifman (1988);Williamson (2000);
Christensen (2007, 2010); Briggs (2009a, 2009b); Roush (2009, 2016); Elga (2013) and Mahtani (2017) are all
Reflection principles. The tension withmodesty is already noted by Lewis (1980); Elga (2013) gives a particularly
clear and general explanation.

3 We’re following Pettigrew and Titelbaum (2014) in framing our problem as finding the right form of a deference
principle across these various domains. We don’t claim that there’s a pretheoretic notion of ‘deference’ to ana-
lyze; rather, we use ‘deference’ as a name for the relation that should hold between your opinions and (at least
some of) the various expert probabilities discussed above.

4 See Hall (1994); Lewis (1994); Elga (2007, 2013); Pettigrew and Titelbaum (2014); Gallow (2019b); Christensen
(2020). For different criticisms New Reflection, see Lasonen-Aarnio (2015).

5 Available at https://www.kevindorst.com/DDB_notebook.html. The code was largely written by K.D. As you’ll
notice, he’s no programmer. But it works.

6 𝑊 is a finite set of worlds, and  is a function from worlds 𝑤 to probability functions 𝑤 that are defined
over the subsets of𝑊. Convention: technical terms are bolded when defined; the definitions are collected in
Appendix A; bolded symbols always have the same meaning as their unbolded counterparts.

7 This formalismassumes that at eachworld there is a unique, precise probability function thatmodels the expert’s
opinions (cf. White 2005; Schoenfield 2012, 2014; Schultheis 2018; Carr 2019b).

8 Precisely: 𝑤(𝑃 = 𝑣) > 0 for 𝑣 ≠ 𝑤 ; i.e. there’s a 𝑣 ∈ 𝑊 such that 𝑤(𝑣) > 0 and 𝑣 ≠ 𝑤 .
9 When the relevant opinions are themselves candidates for being the expert, we don’t need this additional struc-
ture, since𝜋will be guaranteed to be one of the𝑤 (Dorst 2020a, fn. 14). But in some cases the deferring opinions
will not be candidate experts: you might know that, whoever the smartest and best-informed person is, it defi-
nitely isn’t you.

10 Here and throughout we leave implicit the restriction that the conditional probability is well-defined.
11 Reflection has also been proposed as specifying the conditions under which shifting opinions from𝜋 to 𝑃 counts
as a “genuine learning experience” (Jeffrey 1988; Graves 1989; Skyrms 1990, 1997; Myrvold 2012; Huttegger 2013,
2014, 2017). The above suggests that this is too demanding, since one can surely regard the shift to some new
opinions as a genuine learning experience even when those new opinions are modest (i.e., in this context, less
than perfectly introspective). We think, instead, that the transition represents a genuine learning experience
only if 𝜋 defers to 𝑃—where deference, as we’ll argue, need not require Reflection.

12 Why are the two versions equivalent? Take any 𝑤 ∈ [𝑃 = 𝜌], so ̂𝑤 ∶= 𝑤(⋅|𝑃 = 𝑤) = 𝜌, and hence
𝜌(𝑃 = 𝑤) = 1. Thus if 𝑥 ≠ 𝑤 , then ̂𝑥 ∶= 𝑥(⋅|𝑃 = 𝑥), so ̂𝑥(𝑃 = 𝑤) = 0, and ̂𝑥 ≠ 𝜌. On the other hand
since if 𝑥 = 𝑤 then ̂𝑥 = 𝜌, we have that [𝑃 = 𝜌] = [𝑃 = 𝑤]. Thus 𝜋(⋅|𝑃 = 𝜌) = 𝜌 iff 𝜋(⋅|𝑃 = 𝑤) = 𝜌 =̂𝑤 = 𝑤(⋅|𝑃 = 𝑤); see Stalnaker (2019) and Dorst (2019b) for discussion.

https://www.kevindorst.com/DDB_notebook.html
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13 Precisely: 𝑎(𝑎|𝑃 = 𝑎) = 1 = 𝜋(𝑎|𝑃 = 𝑎) and 𝑏(𝑏|𝑃 = 𝑏) = 1 = 𝜋(𝑏|𝑃 = 𝑏).
14 Here it’s important to note that ‘𝜋’ is a rigid designator for a fixed and known probability function, rather than
a definite description for (e.g.) ‘Your opinions, whatever they are’, which, like ‘𝑃’, could refer to different prob-
ability functions at different worlds.

15 Value is related to a substantial literature arising out of Good (1967) about the conditions under whichwe should
obtain additional information before deciding (e.g. Blackwell 1953; Savage 1954; Brown 1976; Skyrms 1990; Oddie
1997;Williamson 2000; Kadane et al. 2008; Myrvold 2012; Buchak 2013; Huttegger 2014; Bradley and Steele 2016;
Ahmed and Salow 2018; Campbell-Moore and Salow 2019; Das 2020a; Pettigrew 2020). See Salow (2020) for a
philosophical overview. Working in this tradition, Geanakoplos (1989) was effectively the first to investigate the
possibility of satisfying Value when probabilities are modest, although he doesn’t formulate his project in this
way. He works within a sub-class of probability frames known as prior frames (endnote 25), thus our character-
ization (Theorem 4.1) will generalize his Theorem 1.

16 By total expectation and thenReflection,wehave𝔼𝜋(𝑆) =
∑
𝑤
𝜋(𝑃 = 𝑤)𝔼𝜋(𝑆|𝑃 = 𝑤) = ∑

𝑤
𝜋(𝑃 = 𝑤)𝔼𝑤(𝑆).

Since Reflection implies that the frame is immodest, 𝔼𝑤(𝑆) = 𝔼𝑤(𝑆𝑤) ≥ 𝔼𝑤(𝑂), meaning that the above sum is
at least as great at

∑
𝑤
𝜋(𝑃 = 𝑤)𝔼𝑤(𝑂) = ∑

𝑤
𝜋(𝑃 = 𝑤)𝔼𝜋(𝑂|𝑃 = 𝑤) = 𝔼𝜋(𝑂). See Skyrms (1990); Huttegger

(2014).
17 Note that 𝜋 values a frame only if it new-reflects it (see endnote 19). So if the frame is immodest, then𝑖 = ̂𝑖 , so
𝜋 new-reflects the frame iff it reflects it, and hence𝜋 values it only if it reflects it; endnote 16 proves the converse.
Again see Skyrms (1990); Huttegger (2014).

18 This frame also shows that Value does not entail another common weakening of Reflection—namely, that your
credence must equal your best estimate of the expert’s credence: 𝜋(𝑞) = 𝔼𝜋(𝑃(𝑞)) (Ismael 2008, 2015; Salow
2018, 2019; Gallow 2019b). For 𝜋(𝑎) = 0.5, yet 𝔼𝜋(𝑃(𝑎)) = 𝜋(𝑎) ⋅ 0.9 + 𝜋(𝑏) ⋅ 0.2 = 0.55. Unlike Reflection, such
“estimate-matching” principles do not entail Value—note, for instance, that in our anti-expert frame in Figure 2,
we do have 𝜋(𝑞) = 𝔼𝜋(𝑃(𝑞)) for all 𝑞.

19 If New Reflection fails, we can make a conditional bet which the frame recommends taking but 𝜋 doesn’t
want to take. Precisely: if (WLOG) 𝜋(𝑞|𝑃 = 𝑤) < 𝑡 < 𝑤(𝑞|𝑃 = 𝑤), then let 𝑂0 yield 0 everywhere and 𝑂1
be a conditional bet which yields 0 if 𝑃 ≠ 𝑤 , 1 − 𝑡 if 𝑞 ∧ [𝑃 = 𝑤], and −𝑡 if ¬𝑞 ∧ [𝑃 = 𝑤]. Then 𝑤 takes
the bet, and every option has 0 utility when 𝑃 ≠ 𝑤 , so 𝔼𝜋(𝑆) = 𝜋(𝑃 ≠ 𝑤)0 + 𝜋(𝑃 = 𝑤)𝔼𝜋(𝑂1|𝑃 = 𝑤), and
𝔼𝜋(𝑂1|𝑃 = 𝑤) < 𝑡(1 − 𝑡) + (1 − 𝑡)(−𝑡) = 0, so 𝔼𝜋(𝑆) < 0 = 𝔼𝜋(𝑂0); Value fails.

20 Precisely, it is a pair of decision problems1 and2 that both include a constant (“no bet”)𝑂0 = 0 option, where
𝑂 ∈ 1 maximizes expectation amongst1 relative to 𝜋 and 𝑆 is a strategy recommended for2 by 𝑃, such that
𝑂(𝑤) + 𝑆𝑤(𝑤) < 0 at every 𝑤 ∈ 𝑊.

21 Suppose 𝜋 doesn’t value 𝑃. Then there is a decision problem, an option𝑂 ∈  and a strategy 𝑆 recommended
by 𝑃 for such that 𝔼𝜋(𝑂) > 𝔼𝜋(𝑆). Let1 = {𝑂0, 𝑂 − 𝑆 − 𝜖} for 0 < 𝜖 < 𝔼𝜋(𝑂) − 𝔼𝜋(𝑆), and let2 = {𝑂′ − 𝑂 ∶
𝑂′ ∈ }. Note that 𝑂0 = 𝑂 − 𝑂 ∈ 2, so both decision problems include a “no bet” option. Then 𝔼𝜋(𝑂 − 𝑆 −
𝜖) = 𝔼𝜋(𝑂) − 𝔼𝜋(𝑆) − 𝜖 > 0, so𝑂 − 𝑆 − 𝜖maximizes expectation from1 relative to𝜋. Moreover, since𝐸𝑤(𝑂′ −
𝑂) = 𝐸𝑤(𝑂

′) − 𝐸𝑤(𝑂), and 𝑆 is recommended for, 𝔼𝑤(𝑆𝑤 − 𝑂) ≥ 𝔼𝑤(𝑂′ − 𝑂) for every𝑂′ ∈ ; so the strategy
𝑆′ such that 𝑆′𝑤 = 𝑆𝑤 − 𝑂 is recommended for2 by 𝑃. But for anyworld𝑤:𝑂(𝑤) − 𝑆(𝑤) − 𝜖 + 𝑆′𝑤(𝑤) = 𝑂(𝑤) −
𝑆𝑤(𝑤) − 𝜖 + 𝑆𝑤(𝑤) − 𝑂(𝑤) = −𝜖 < 0; the combined course of action guarantees a loss.

22 An expected loss implies that 𝔼𝜋(𝑂 + 𝑆) = 𝔼𝜋(𝑂) + 𝔼𝜋(𝑆) < 0 for some 𝑂 with maximal 𝜋-expectation. But by
definition, 𝔼𝜋(𝑂) ≥ 𝔼𝜋(𝑂0) = 0, and by Value, 𝔼𝜋(𝑆) ≥ 𝔼𝜋(𝑂0) = 0.

Note: the formulation of these claims in terms of fixed options touches on a subtle but important point.
Williamson (2000, Ch. 10) shows that many modest transitions—including some that Geanakoplos (1989) and
Dorst (2020a) show to satisfy Value—are such that you can be offered a fixed set of bets such that, if at the later
time you pay for each bet the maximal price that 𝑃 is willing to pay, you should expect a loss. Das (2020a) gener-
alizes this result, and strengthens it to show that you can also be forced into sure losses in this fashion. The way
to reconcile these results with the above is that whenwe fix a bet but vary howmuch you pay for it across worlds,
we are (in the technical sense) giving you different options  at different worlds: a bet that pays out $1 if 𝑞 and
$0 if ¬𝑞, but which you must you pay $0.60 for at worlds𝑤 where 𝑤(𝑞) = 0.61 and $0.70 for at worlds 𝑥 where
𝑥(𝑞) = 0.71 is not a single option, but is instead 𝑂1 =

{
0.40 if𝑞
−0.60 if ¬𝑞

at 𝑤 and 𝑂2 =

{
0.30 if 𝑞
−0.70 if ¬𝑞

at 𝑥.
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The philosophical import of this fact is subtle. We are inclined to think that it casts doubt on the claim that such
(non-fixed-option) Dutch books demonstrate irrationality, but this is an issue that deserves more discussion.

23 For example, note that in Figure 1, [𝑃(𝑎) ≥ 0.7] = {𝑎} and [𝑃(𝑏) ≥ 0.6] = {𝑏}. Thus for any 𝜋: 𝜋(𝑎|𝑃(𝑎) ≥ 0.7) =
1 ≥ 0.7, and 𝜋(𝑏|𝑃(𝑏) ≥ 0.6) = 1 ≥ 0.6; learning which world the expert favors should lead you to favor that
world as well—just even more so.

24 It’s tempting to combine the two conditions to infer that Simple Trust implies that 𝑃(𝑞|[𝑃(𝑞) ≥ 𝑡] ∧ [𝑃(𝑞) ≤ 𝑡]) =
𝑡, but Simple Trust does not imply this due to the non-monotonicity of probabilistic support (Dorst 2020a, §4.1).

25 The special subclass is the class of prior frames. A prior frame ⟨𝑊,  , 𝜋⟩ consist of a set of worlds𝑊, a function 
from worlds 𝑤 to sets of worlds 𝑤 , and a probability distribution 𝜋 that’s regular over𝑊. We can then recover
a probability frame by defining 𝑤 = 𝜋(⋅ | 𝑤). Informally, we can think of 𝑤 as the set of worlds which the
expert’s evidence at 𝑤 fails to rule out, and of 𝜋 as representing an initial probability distribution indicating
what the expert takes the various bodies of evidence to support. On such an interpretation, prior frames allow
for uncertainty about what evidence the expert has, but not for uncertainty about what they take these bodies of
evidence to support. Prior frames are the focus in much of the related work (e.g. Geanakoplos 1989; Williamson
2000 2014, 2018; Cresto 2012; Lederman 2015; Lasonen-Aarnio 2015; Campbell-Moore 2016; Salow 2018, 2019; Das
2020a, 2020b), in part because they are more tractable. Nevertheless, there are compelling reasons to consider
the wider class of probability frames. Prior frames build in a wide range of modeling assumptions about the
candidate experts—for example, that they all share the same prior and all update by conditioning that prior on
propositional evidence. On some interpretations (e.g. 𝑃 = ‘my present evidence’) these assumptions are highly
controversial; on others (e.g. 𝑃 = ‘the opinions of the smartest person in the room’), they are simply wrong. So
when we can do without these assumptions, we should. Nevertheless, prior frames remain a useful, tractable
starting point for most investigations.

26 The checkTrust function asks whether for each 𝑖 in a given frame, 𝑖 trusts the frame. To check that 𝜋 trusts
the frame (as well as that each 𝑖 in the frame trusts the frame), one should enter the whole structure as if 𝜋 is

a world in the frame that always gets 0 probability, like so:

⎛⎜⎜⎜⎜⎝
0 0.17 0.56 0.27

0 0.45 0.10 0.45

0 0.15 0.70 0.15

0 0.30 0.10 0.60

⎞⎟⎟⎟⎟⎠
.

27 𝔼𝔼𝔼𝝅(𝑿) ∶=
∑
𝑤
𝜋(𝑤)𝑋(𝑤). Note that (total expectation:) for any partition 𝑄, 𝔼𝜋(𝑋) =

∑
𝑞∈𝑄

𝜋(𝑞)𝔼𝜋(𝑋|𝑞), where
𝔼𝜋(𝑋|𝑞) = ∑

𝑤
𝜋(𝑤|𝑞)𝑋(𝑤).

28 For aficionados: this principle can be re-stated in terms of convex sets; see Total Trust (convexity version) below.
29 That is, Total Trust implies that for any 𝑋,𝑌: 𝔼𝜋(𝑋|𝔼(𝑋) ≥ 𝔼(𝑌)) ≥ 𝔼𝜋(𝑌|𝔼(𝑋) ≥ 𝔼(𝑌)). Note that by linear-
ity of expectations, 𝔼(𝑋) ≥ 𝐸(𝑌) iff 𝔼(𝑋 − 𝑌) ≥ 0; hence 𝔼𝜋(𝑋|𝔼(𝑋) ≥ 𝔼(𝑌)) < 𝔼𝜋(𝑌|𝔼(𝑋) ≥ 𝔼(𝑌)) implies
𝔼𝜋(𝑋 − 𝑌|𝔼(𝑋 − 𝑌) ≥ 0) < 0, violating Total Trust.

30 For more difficult theorems we include only proof sketches in the main text; full proofs can be found in
Appendix B.

31 Indeed, if there’s one methodological moral that we take away from this paper, it’s that we should’ve long ago
taken to heart the advice of Hanti Lin and Kevin Kelly (Lin and Kelly 2012a, 2012b) and drawn pictures of prob-
ability frames. This was what led us to discover most of the results to come. In fact, arguably one of the reasons
that characterizations within prior frames (endnote 25) have come so much more easily than in probability
frames is that the former are easier to draw.

32 If, looking at this diagram, you are thinking “why not just say that 𝜋 is in the convex hull of (within the triangle
circumscribed by) {1,2,3}?”, the answer is that this condition is necessary but not sufficient for Value—as
proven below in Theorem 4.1 and illustrated by Figure 2 above.

33 Formally: 𝐶 is convex if 𝛿 ∈ 𝐶 whenever 𝛿 =
∑
𝑖
𝜆𝑖𝜌𝑖 for some 𝜌1, … , 𝜌𝑛 ∈ 𝐶 with 𝜆𝑖 ≥ 0 such that∑𝑖

𝜆𝑖 = 1.
34 Precisely: if both 𝐵 and 𝐵𝑐 are convex, then by the hyperplane separation theorem, their boundary is a hyper-
plane. Recall that we are restricting attention to finite probability frames, so we don’t need to worry about
strengthening the 𝔼(𝑋) ≥ 𝑡 condition in Total Trust to deal with edge cases. In particular, 𝐶 = {𝑤 ∶ 𝑤 ∈ 𝐵}
and 𝐷 = {𝑤 ∶ 𝑤 ∉ 𝐵} are both finite, so their convex hulls are closed and compact, meaning that there is a
hyperplane strongly separating them: ∃𝑌, 𝑡, 𝜀 > 0 such that 𝐶 ⊂ {𝜌 ∶ 𝔼𝜌(𝑌) ≥ 𝑡} and 𝐷 ⊂ {𝜌 ∶ 𝔼𝜌(𝑌) ≤ 𝑡 − 𝜀}.

35 There may be more to be said about why the idea behind Total Trust does not motivate any stronger princi-
ples. One hypothesis builds on the “directed” nature of the set of probability functions above a cut. Intuitively,
{𝜌 ∶ 𝜌(𝑞) ≥ 𝑡} is directed towards 𝑞-worlds and away from ¬𝑞 worlds. Indeed, this can be made precise and
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generalized: any set 𝐴 = {𝜌 ∶ 𝔼𝜌(𝑋) ≥ 𝑡} has a unique direction associated with it—namely, that of the vector
𝑋. Moreover, any (non-empty) such set will contain at least one extreme point (world) of the simplex, and the
angle between 𝑋 and any extreme point inside 𝐴 is less than that between 𝑋 and any extreme point outside of
𝐴. Thus any such 𝐴 is directed at certain worlds and away from others. The same is not true of sets that are not
determined by one of our cuts, even if they are convex. This might give a sense for why conditioning on such
an 𝐴 should effect a shift in a predictable direction, while conditioning on another set, even a convex one, is
unconstrained—and hence why Total Trust should be true, but any generalization of it would overstep themark
the way Reflection does.

36 For any 𝑋, 𝑡 and 𝑞 ⊆ 𝑊: 𝔼𝜋(𝑋|𝑞 ∧ [𝔼(𝑋|𝑞) ≥ 𝑡]) ≥ 𝑡. Note that 𝐵 = {𝜌 ∶ 𝔼𝜌(𝑋|𝑞) ≥ 𝑡} is biconvex. To see
this, first note that if 𝛿 =

∑
𝑖
𝜆𝑖𝜌𝑖 , then 𝛿(⋅|𝑞) is also a convex mixture of the 𝜌𝑖(⋅|𝑞): for any 𝑝, 𝛿(𝑝|𝑞) =

𝛿(𝑝∧𝑞)

𝛿(𝑞)
=

∑
𝑖
𝜆𝑖𝜌𝑖 (𝑞)

𝜌𝑖 (𝑝∧𝑞)

𝜌𝑖 (𝑞)∑
𝑘
𝜆𝑘𝜌𝑘(𝑞)

=
∑
𝑖
(

𝜆𝑖𝜌𝑖 (𝑞)∑
𝑘
𝜆𝑘𝜌𝑘(𝑞)

𝜌𝑖(𝑝|𝑞)); so 𝛿(⋅|𝑞) = ∑
𝑖
(

𝜆𝑖𝜌𝑖 (𝑞)∑
𝑘
𝜆𝑘𝜌𝑘(𝑞)

𝜌𝑖(⋅|𝑞)). Note that this mixture gives pos-
itive weight only to the 𝜌𝑖 for which 𝜌𝑖(⋅|𝑞) is well-defined. Now, for any 𝜌𝑖 ∈ 𝐵 and non-negative 𝜆𝑖 that sum
to 1,

∑
𝑖
𝜆𝑖𝔼𝜌𝑖 (𝑋|𝑞) ≥ ∑

𝑖
𝜆𝑖𝑡 = 𝑡, so

∑
𝑖
𝜆𝑖𝜌𝑖 ∈ 𝐵. Likewise, for any 𝛿𝑖 ∈ 𝐵𝑐 , if 𝔼𝛿𝑖 (𝑋|𝑞) is well-defined then it’s

less than 𝑡, so
∑
𝑖
𝜆𝑖𝔼𝛿𝑖 (𝑋|𝑞) < ∑

𝑖
𝜆𝑖𝑡 = 𝑡, so

∑
𝑖
𝜆𝑖𝛿𝑖 ∈ 𝐵

𝑐 . Thus 𝐵 is biconvex, so by Total Trust, we have that
𝜋∗ ∶= 𝜋(⋅|𝑃 ∈ 𝐵) ∈ 𝐵, and thus 𝔼𝜋(𝑋|𝑞 ∧ [𝔼(𝑋|𝑞) ≥ 𝑡]) = 𝔼𝜋∗ (𝑋|𝑞) ≥ 𝑡.

37 For arbitrary 𝑞, suppose 𝑗(𝑞|𝑃 = 𝑗) = 𝑠. Then [𝑃 = 𝑗] ∧ [𝑃(𝑞|𝑃 = 𝑗) ≥ 𝑠] = [𝑃 = 𝑗] and similarly [𝑃 =𝑗] ∧ [𝑃(𝑞|𝑃 = 𝑗) ≤ 𝑠] = [𝑃 = 𝑗]; so by Trust, 𝜋(𝑞|𝑃 = 𝑗) = 𝜋(𝑞|[𝑃 = 𝑗] ∧ [𝑃(𝑞|𝑃 = 𝑗) ≥ 𝑠) ≥ 𝑠, and also
𝜋(𝑞|𝑃 = 𝑗) = 𝜋(𝑞|[𝑃 = 𝑗] ∧ [𝑃(𝑞|𝑃 = 𝑗) ≤ 𝑠) ≤ 𝑠, so 𝜋(𝑞|𝑃 = 𝑗) = 𝑠. Since 𝑞 was arbitrary, that means
Trust implies New Reflection.

38 That is,
∑
𝑖

1

𝑛
𝜋(𝑞𝑖|∑𝑖

1

𝑛
𝑃(𝑞𝑖) ≥ 𝑡) ≥ 𝑡. Note that 𝐵 = {𝜌 ∶ ∑

𝑖

𝜌(𝑞𝑖 )

𝑛
≥ 𝑡} is a biconvex set, since if 𝜌𝑗 ∈ 𝐵, then∑

𝑖

1

𝑛

∑
𝑗
𝜆𝑗𝜌𝑗(𝑞𝑖) =

∑
𝑗

∑
𝑖

1

𝑛
𝜆𝑗𝜌𝑗(𝑞𝑖) =

∑
𝑗
𝜆𝑗

∑
𝑖

𝜌𝑗 (𝑞𝑖 )

𝑛
≥ ∑

𝑗
𝜆𝑗𝑡 ≥ 𝑡, so∑𝑗

𝜆𝑗𝜌𝑗 ∈ 𝐵; by parallel reasoning 𝐵𝑐 is
also convex. Hence 𝜋(⋅|𝑃 ∈ 𝐵) ∈ 𝐵, and the result holds.

39 E.g. Greaves and Wallace (2006); Joyce (2009); Predd et al. (2009); Pettigrew (2016). Note that this property is
sometimes called “immodesty” (Lewis 1971)—terminology that is orthogonal to our own (endnote 1).

40 Precisely: let𝐴 be any strictly proper accuracy measure (so ∀𝜌, 𝛿 ∶ 𝔼𝜌(𝐴(𝜌)) > 𝔼𝜌(𝐴(𝛿)) if 𝛿 ≠ 𝜌) and let the set
of options be those which yield utility matching the accuracy of either 𝜋 or some function in the frame 𝑖 :  =

{𝐴(𝜌) ∶ 𝜌 ∈ {𝜋} ∪ {𝑤 ∶ 𝑤 ∈ 𝑊}}. (Recall that our frames our finite, so that this is a finite set of options.) Then by
strict propriety, for any 𝑖 ∈ 𝑊 and 𝜌 ≠ 𝑖 in {𝜋} ∪ {𝑤 ∶ 𝑤 ∈ 𝑊}, we have𝔼𝑖(𝐴(𝑖 )) > 𝔼𝑖(𝐴(𝜌)), i.e. ∀𝑂 ≠ 𝐴(𝑖 ),
𝔼𝑖(𝐴(𝑖 )) > 𝔼𝑖(𝑂); hence the uniquely recommended strategy 𝑆 is such that for all 𝑖, 𝑆𝑖 = 𝐴(𝑖 ), and 𝑆 picks out
“the accuracy of the expert credence function,whatever it is”: for all𝑤,𝑆(𝑤) = 𝐴(𝑤, 𝑤). ByValue,we know that
𝔼𝜋(𝐴(𝜋)) ≤ 𝔼𝜋(𝑆) = 𝔼𝜋(𝐴(𝑃)). Since 𝐴 was an arbitrary strictly proper measure, it follows that Value implies
that 𝜋 expects the expert to be at least as accurate as itself under any such measure.

41 See Rosenkrantz (1981); Schervish (1989); Oddie (1997); Joyce (1998, 2009); Greaves and Wallace (2006); Predd
et al. (2009); Schoenfield (2016b, 2016a, 2017); Pettigrew (2016); Carr (2017, 2019a); De Bona and Staffel (2017);
Levinstein (2017b); Campbell-Moore and Salow (2019, 2020); Campbell-Moore (2020); Campbell-Moore and
Levinstein (2020); Konek and Levinstein (2019), and many others.

42 Precisely: if |𝛿(𝑞) − 𝑖| < |𝜌(𝑞) − 𝑖|, then 𝐼𝑞(𝛿, 𝑖) < 𝐼𝑞(𝜌, 𝑖) for 𝑖 = 0, 1.
43 Precisely: for any 𝛿, 𝜌, 𝔼𝛿(𝐼𝑞(𝛿)) ≤ 𝔼𝛿(𝐼𝑞(𝜌)) with equality iff 𝛿(𝑞) = 𝜌(𝑞).
44 Precisely: there are local inaccuracy measures 𝐼𝑞 such that for all 𝑤, 𝛿, 𝐼(𝛿, 𝑤) =

∑
𝑞⊆𝑊

𝐼𝑞(𝛿, 𝟙𝑞(𝑤)).
45 See Levinstein (2019), Appendix A for the details.
46 Precisely: using the Schervish-style characterization from §B.3.2, letting 𝑒 = 𝔼𝜋(𝑋), 𝑓(𝑡) ={

1 if 𝑡 ∈ [−0.1, 0.1]
0.001 otherwise

and 𝐼𝑋(𝜋, 𝑤) = ∫ max(𝑒,𝑋(𝑤))

min(𝑒,𝑋(𝑤))
|𝑡 − 𝑋(𝑤)|𝑓(d𝑡), then this is a generally strictly proper

scoring rule and we have 𝔼𝜋(𝐼𝑂1 (𝑃)) = 1.107 > 1.082 = 𝔼𝜋(𝐼𝑂1 (𝜋)).
47 Precisely: for any probabilistic 𝜋, 𝔼𝜋(𝐼𝑋(𝜋)) < 𝔼𝜋(𝐼𝑋(𝑠)) whenever 𝔼𝜋(𝑋) ≠ 𝑠.
48 Precisely: for any gsp 𝐼𝑋 , 𝔼𝜋(𝐼𝑋(𝑃)) ≤ 𝔼𝜋(𝐼𝑋(𝜋)), with equality only if 𝜋(𝔼(𝑋) = 𝔼𝜋(𝑋)) = 1.
49 Appendix B.3 gives two proofs of this result, one using Campbell-Moore’s (2020) Schervish-style characteriza-
tion, and the other using purely elementarymethods; the latter is heavily indebted to help fromCatrinCampbell-
Moore and Daniel Rothschild.
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50 Let our frame be
⎛⎜⎜⎝
0.9 0.1 0

0.9 0.1 0

0.4 0.1 0.5

⎞⎟⎟⎠ and let 𝜋 = 3 = (
0.4 0.1 0.5

)
. 𝜋(𝑤1|𝑃(𝑤𝑠) ≥ 0.9) = 0.8 and 𝜋(𝑤1|𝑃 = 1) =

0.8 ≠ 0.9 = 1(𝑤1|𝑃 = 1), so 𝜋 neither (simply) trusts nor new-reflects this frame. Nevertheless, for every
𝑞 ⊆ 𝑊, 𝜋 expects 𝑃 to have a better Brier score with respect to 𝑞 than itself.

51 Recall that Figure 2 shows that 𝜋 can new-reflect 𝑃 while knowing that 𝑃 is less accurate than 𝜋. And let-

ting 𝜋 =
(
0.8 0.1 0.1

)
and ⟨𝑊,⟩ = ⎛⎜⎜⎝

0.6 0.2 0.2

0 1 0

0 0 1

⎞⎟⎟⎠ yields an example in which 𝜋 expects 𝑃 to be more accurate
than it on every random variable, according to squared Euclidean distance, yet 𝜋(𝑃({𝑤2, 𝑤3}) ≥ 0.4) = 1 while
𝜋({𝑤2, 𝑤3}) = 0.2 < 0.4, so Simple Trust fails. Thanks to Richard Pettigrew for the example.

52 Precisely, for 𝑋 =
(
5 −1 −10

)
, the purple region is {𝜌 ∶ 𝔼𝜌(𝑋) ≥ 0}, so 𝔼𝜋(𝑋|𝔼(𝑋) ≥ 0) < 0.

53 Precisely, CH({𝜌1, … , 𝜌𝑛}) = {𝛿 ∶ ∃𝜆𝑖 ≥ 0 and ∑
𝜆𝑖 = 1 such that 𝛿 =

∑
𝜆𝑖𝜌𝑖}.

54 Precisely, let 𝑪𝝆 ∶= {𝛿 ∶ 𝜌(𝑃 = 𝛿) > 0} be the set of Candidates that 𝜌 thinks might be the expert (abbreviating
𝐶𝑖 to 𝑪𝒊 for 𝑖 in the frame), and let 𝑪−𝝆 = 𝐶𝜌 ⧵ {𝜌} be those candidates other than 𝜌 itself. Then 𝑖 is modestly
informed iff 𝑖 is in the convex hull of {̂𝑖 } ∪ 𝐶−𝑖 , i.e. iff there are non-negative weights 𝜆𝑖𝑗 that sum to 1 such
that 𝑖 = 𝜆𝑖𝑖̂𝑖 +∑

𝑗∈𝐶−𝑖 𝜆𝑖𝑗𝑗 .
55 Or, if you prefer, as what the “first-order evidence” warrants at that world (Dorst 2019b).
56 Notably, while 𝜋 reflects/values/totally-trusts ⟨𝑊,⟩ only if every 𝑖 ∈ 𝑊𝜋 reflects/values/totally-trusts 𝑃, 𝜋
can new-reflect ⟨𝑊,⟩ even when 𝑖 ∈ 𝑊𝜋 doesn’t new-reflect ⟨𝑊,⟩. Thus the requirement that New Reflec-
tion is valid on a frame is stronger than the requirement that some𝜋 that assigns positive probability to all𝑤 ∈ 𝑊
new-reflects it. If one should defer only to those who defer to themselves, this is simply another argument that
New Reflection is too weak for deference.

57 Proof.(⇒∶) If 𝑖 (𝑃 = 𝑖 ) > 0 then 𝑖 must be immodest since 𝑖 (𝑃 = 𝑖|𝑃 = 𝑖 ) = 1. If not, then 𝐶𝑖 = 𝐶−𝑖 , so by
total probability and Reflection 𝑖 = ∑

𝑗∈𝐶−𝑖 𝑖 (𝑃 = 𝑗)𝑗 .
(⇐∶) Let 𝐴 ∶= {𝑖 ∶ 𝑖 ∈ 𝑊}, let 𝐵 be the extreme points of 𝐴’s convex hull. Every 𝑖 ∈ 𝐵must be immodest,

since if 𝑖 is an extreme point then it’s not in CH(𝐴 − {𝑖 }), and so not in the convex hull of 𝐶−𝑖 ; so Reflec-
tion holds throughout 𝐵. For 𝑗 ∈ 𝐴 − 𝐵, 𝑗 is in the convex hull of the immodest 𝐵, so 𝑗(𝑃 ∈ 𝐵) = 1, hence
𝑗 = ∑

𝑖∈𝐵 𝜆𝑖𝑖 . Taking any 𝑞 and 𝑘 , we have 𝑗(𝑞|𝑃 = 𝑘) = 𝑗 (𝑞∧[𝑃=𝑘])
𝑗 (𝑃=𝑘) =

∑
𝑖
𝜆𝑖𝑖 (𝑞∧[𝑃=𝑘])∑
𝑖
𝜆𝑖 (𝑃=𝑘) =

𝜆𝑘𝑘(𝑞∧[𝑃=𝑘])
𝜆𝑘𝑘(𝑃=𝑘) =

𝑘(𝑞). (The last two equalities comes from the fact that each 𝑖 ∈ 𝐵 is immodest.) Hence Reflection holds
throughout 𝐴 − 𝐵.

58 By total probability and then Reflection, 𝑖 = ∑
𝑗∈𝐶𝑖 𝑖 (𝑃 = 𝑗)𝑖 (⋅|𝑃 = 𝑗) = ∑

𝑗∈𝐶𝑖 𝑖 (𝑃 = 𝑗)𝑗 =
𝑖 (𝑃 = 𝑖 )𝑖 +∑

𝑗∈𝐶−𝑖 𝑖 (𝑃 = 𝑗)𝑗 .
59 Proof.(⇒∶) If 𝑖 satisfies New Reflection, then by total probability and then New Reflection we have 𝑖 =∑

𝑗∈𝐶𝑖 𝑖 (𝑃 = 𝑗)𝑖 (⋅|𝑃 = 𝑗) = ∑
𝑗∈𝐶𝑖 𝑖 (𝑃 = 𝑗)̂𝑗 , so 𝑖 is in the CH of {̂𝑗;𝑖 ∈ 𝐶𝑖}.

(⇐∶) Suppose 𝑖 = ∑
𝑗∈𝐶𝑖 𝜆𝑗̂𝑗 . Taking any 𝑞 and ̂𝑘 for which 𝑖 (⋅|𝑃 = ̂𝑘) is defined, we have

𝑖 (𝑞|𝑃 = ̂𝑘) = 𝑖 (𝑞∧[𝑃=̂𝑘])
𝑖 (𝑃=̂𝑘) =

∑
𝑗
𝜆𝑗 ̂𝑗 (𝑞∧[𝑃=̂𝑘])∑
𝑗
𝜆𝑗 (𝑃=̂𝑘) =

𝜆𝑘 ̂𝑘(𝑞∧[𝑃=̂𝑘])
𝜆𝑘 ̂𝑘(𝑃=̂𝑘) = ̂𝑘(𝑞). (The last two equalities come from the

fact that each ̂𝑗 is immodest.) Hence New Reflection (informed version) holds.
60 By Fact 4.2, each 𝑖 is either immodest or in the convex hull of 𝐶−𝑖 . If the former, then 𝑖 = ̂𝑖 , so 𝜆𝑖𝑖 = 1; and if
the latter, then 𝑖 = ∑

𝑗∈𝐶−𝑖 𝜆𝑖𝑗𝑗 , so 𝜆𝑖𝑖 = 0.
61 By Theorem4.1,𝑖 totally trusts the frame iff it’s in the convex hull of𝐶𝑖 and𝐶𝑖 ismodestly informed. If𝑖 assigns
positive probability to itself, then it’s automatically in the convex hull of 𝑖 ∈ 𝐶𝑖 , and so the only requirement is
that all of 𝐶𝑖 (including 𝑖) be modestly informed. If 𝑖 does not assign positive probability to itself, then since
𝐶𝑖 = 𝐶

−
𝑖
, it’s in the convex hull of 𝐶𝑖 iff it’s modestly informed. Note: Whereas the weights 𝜆𝑖𝑗 in Facts 4.2, 4.3,

and 4.4 turn out to always equal 𝑖 (𝑃 = 𝑗), this will not in general be true for the weights 𝜆𝑖𝑗 used in Corol-
lary 4.5.

62 Precisely: if 𝑞 =
⋃
𝑞𝑖 , for 𝑞𝑖 ∈ 𝑄, then 𝜋(𝑞|𝑃 = 𝜌) = 𝜌(𝑞).

63 Precisely: if 𝑋 is such that for all 𝑤, 𝑤′ in the same 𝑄-cell, 𝑋(𝑤) = 𝑋(𝑤′), then 𝔼𝜋(𝑋|𝔼(𝑋) ≥ 𝑡) ≥ 𝑡.
64 Precisely: if for all 𝑂 ∈ , 𝑂(𝑤) = 𝑂(𝑤′) whenever 𝑤 and 𝑤′ are in the same 𝑄-cell, then if 𝑆 is recommended
for , 𝔼𝜋(𝑆) ≥ 𝔼𝜋(𝑂), for any 𝑂 ∈ .
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65 The right-to-left direction is true and easy to prove using the same reasoning as that in Lemma B.1; it’s the left-
to-right direction which is open. Levinstein (2017b) shows how scoring rules for individual propositions can be
thought of as measuring the expected practical (dis)utility of having a certain credence in a given proposition
when it is uncertain what decision problem you face whose outcome is determined solely by the truth-value
of the proposition in question. Since Levinstein’s (2019) result shows that Simple Trust is enough to expect an
expert to be at least as accurate as you are for a given proposition (and therefore to have a credence with higher-
expected utility), we believe it’s likely the left-to-right direction holds as well. However, it is unclear how or
whether the identification of propositional scoring rules with pragmatic expected disutility generalizes to gsp
scoring rules.

66 Let ⟨𝑊,⟩ =
⎛⎜⎜⎜⎜⎝
1 0 0 0

0 0.6 0.4 0

0 0.6 0.4 0

0 0 0 1

⎞⎟⎟⎟⎟⎠
and 𝜋 = (

1

4
,
1

4
,
1

4
,
1

4
), let 𝑞 = {𝑤1, 𝑤2} and 𝑄 = {𝑞, ¬𝑞}. Then 𝜋(𝑞|𝑃(𝑞) = 0.6) =

𝜋(𝑞|{2, 3}) = 0.5, so 𝜋 doesn’t reflect ⟨𝑊,⟩ with respect to 𝑄; and since the frame is immodest, 𝜋 likewise
does not new-reflect it with respect to 𝑄. Nevertheless, 𝜋 does totally trust ⟨𝑊,⟩ with respect to 𝑄, since, for
instance, 𝜋(𝑞|𝑃(𝑞) ≥ 0.6) = 𝜋(𝑞|{1, 2, 3}) = 2∕3 and 𝜋(𝑞|𝑃(𝑞) ≤ 0.6) = 𝜋(𝑞|{2, 3, 4}) = 1∕3; and, in fact, 𝜋 values
this frame with respect to 𝑄.

67 If you’re wondering why we said the Schervish-style proof is more illuminating, this scoring rule is one rea-
son. We constructed this rule using the Campbell-Moore, Schervish-style characterization, setting 𝜆(d𝑡) = 2d𝑡
everywhere except [𝛼, 𝛽], where instead it is 2𝐶d𝑡. Then we made B.A.L. compute the integrals.
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APPENDIX A: GLOSSARY
Definitions of technical terms and symbols are repeated here, in alphabetical order:

⋅ Biconvex set: A set of points in 𝐵 ⊆ ℝ𝑛 is biconvex iff both it and its complement ℝ𝑛 ⧵ 𝐵 are
convex.

⋅ 𝑪𝝅, 𝑪𝒊, 𝑪
−
𝝅 : 𝐶𝜋 is the set of candidates that 𝜋 leaves open might be the expert: 𝐶𝜋 ∶= {𝜌 ∶

𝜋(𝑃 = 𝜌) > 0}. For 𝑖 that occur in a frame, 𝐶𝑖 abbreviates 𝐶𝑖 . 𝐶−𝜋 ∶= 𝐶𝜋 ⧵ {𝜋} are the can-
didates it leaves open other than itself.

⋅ Convex: A set of points 𝐶 ⊆ ℝ𝑛 is convex iff it contains any average of the points it contains: if
𝑐1, … , 𝑐𝑛 ∈ 𝐶, then for any 𝜆𝑖 ≥ 0 that sum to 1,

∑
𝑖
𝜆𝑖𝑐𝑖 ∈ 𝐶.

⋅ Convex hull, CH: The convex hull of a set of points 𝜌1, … , 𝜌𝑛 is the set of points that
can be obtained by taking averages of them: CH({𝜌1, … , 𝜌𝑛}) = {𝜌 ∶ ∃𝜆𝑖 ≥ 0 and ∑

𝑖
𝜆𝑖 =

1 such that 𝜌 =
∑
𝑖
𝜆𝑖𝜌𝑖}.

⋅ Cut: A cut through probability space ℝ𝑛 is a hyperplane, i.e. a set of the form {𝜋 ∶ 𝔼𝜋(𝑋) = 𝑡}

for some random variable 𝑋 and threshold 𝑡.
⋅ Decision problem,: A finite set of optionswhich are functions from worlds𝑤 to numbers
(utilities) 𝑂(𝑤).

⋅ Estimate-inaccuracymeasure, 𝑰𝑿(𝒆), 𝑰𝑿(𝝅), 𝑰𝑿(𝑷): Given a random variable 𝑋, an estimate-
inaccuracymeasure 𝐼𝑋 takes an estimate 𝑒 ∈ ℝ and aworld𝑤 and outputs the inaccuracy of 𝑒 at
𝑤, 𝐼𝑋(𝑒, 𝑤) ∈ ℝ. ‘𝐼𝑋(𝜋)’ abbreviates the inaccuracy of 𝜋’s estimate: 𝐼𝑋(𝜋) = 𝐼𝑋(𝔼𝜋(𝑋)). ‘𝐼𝑋(𝑃)’
is a definite description for the inaccuracy of the expert’s estimate, whatever it is: 𝐼𝑋(𝑃)(𝑤) ∶=
𝐼𝑋(𝔼𝑤(𝑋), 𝑤).

⋅ Epistemic Value: 𝜋 epistemically values a frame iff for any random variable 𝑋 and generally
strictly proper estimate-inaccuracy measure 𝐼𝑋 , 𝔼𝜋(𝐼𝑋(𝑃)) ≤ 𝔼𝜋(𝐼𝑋(𝜋)), with equality if and
only if 𝜋(𝔼(𝑋) = 𝔼𝜋(𝑋)) = 1.

⋅ Expected value,𝔼𝔼𝔼𝝅(𝑿),𝔼𝔼𝔼𝒘,𝔼𝔼𝔼(𝑿),𝔼𝔼𝔼𝝅(𝑺): the expected value (estimate) of a random variable𝑋
relative to 𝜋 is 𝔼𝜋(𝑋) =

∑
𝑤
𝜋(𝑤)𝑋(𝑤). For probability functions𝑤 in the frame we abbreviate

𝔼𝑤 to 𝔼𝑤. ‘𝔼(𝑋)’ is a definite description for the expert’s estimate of𝑋, whatever it is. 𝔼𝜋(𝑆) ∶=∑
𝑤
𝜋(𝑤)𝑆𝑤(𝑤) is the expected utility of following strategy 𝑆.

⋅ Fixed-option Dutch book: Given a 𝜋 and frame ⟨𝑊,⟩, a fixed-option Dutch book is a pair of
decision problems1 and2, each of which contain a “no bet” 0-option, such that𝑂maximizes
expected value amongst 1 relative to 𝜋, 𝑆 is recommended for 2 by the frame, and for all
𝑤 ∈ 𝑊, 𝑂(𝑤) + 𝑆𝑤(𝑤) < 0.

https://doi.org/10.1111/phpe.12156
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⋅ Generally strictly proper (gsp): An estimate-inaccuracy measure 𝐼𝑋 is gsp iff for any proba-
bilistic 𝜋, 𝔼𝜋(𝐼𝑋(𝜋)) ≤ 𝔼𝜋(𝐼𝑋(𝜌)) with equality only if 𝔼𝜋(𝑋) = 𝔼𝜌(𝑋).

⋅ Indicator variable,𝟙𝑞: A randomvariable such that𝟙𝑞(𝑤) = 1 if𝑤 ∈ 𝑞 and𝟙𝑞(𝑤) = 0 if𝑤 ∉ 𝑞.
⋅ Informed expert, 𝑷, ̂𝒘: The opinions the expert would have were they informed that they
were the expert: ̂𝑤 ∶= 𝑤(⋅|𝑃 = 𝑤). ‘𝑃’ is a definite description for the informed expert opin-
ions, whatever they are.

⋅ Modestly informed: A candidate𝑖 ismodestly informed iff it’s in the convex hull of {̂𝑖} ∪ 𝐶−𝑖 ,
iff 𝑖 = 𝜆𝑖𝑖̂𝑖 +∑

𝑗∈𝐶−𝑖 𝜆𝑖𝑗𝑗 for 𝜆𝑖𝑗 ≥ 0 such that
∑
𝑗
𝜆ij = 1.

⋅ NewReflection:𝜋 new-reflects a frame iff for every function 𝜌,𝜋(⋅|𝑃 = 𝜌) = 𝜌(⋅|𝑃 = 𝜌). Equiv-
alently (informed version): 𝜋(⋅|𝑃 = 𝜌) = 𝜌.

⋅ Option,𝑶: An option𝑂 is a function fromworlds𝑤 to real numbers𝑂(𝑤) represented the utility
that would be achieved by taking option 𝑂 at 𝑤.

⋅ ‘𝑷’, ‘𝒘’, ‘𝝅 ’, and ‘𝝆’: ‘𝑃’ is a definite description for the expert credence function, whatever it
is. ‘𝑤 ’ is a rigid designator for the credence function the expert has at world 𝑤. ‘𝜋’ (along with
other lower-case Greek letters, like ‘𝜌’) is a rigid designator for an arbitrary probability function.

⋅ [𝑷 ∈ 𝑪] ∶= {𝑤 ∈ 𝑊 ∶ 𝑤 ∈ 𝐶} is the proposition (set of worlds in a probability frame ⟨𝑊,⟩)
that the expert’s credence function is in the set 𝐶.

⋅ Probability frame ⟨𝑾, ⟩: A finite set of worlds𝑊 and a function  from worlds 𝑤 ∈ 𝑊 to
probability distributions 𝑤 defined over the subsets of𝑊, thought of as the expert’s credences
at 𝑤.

⋅ Random variable, 𝑿: A random variable 𝑋 is any function from worlds 𝑤 to real numbers
𝑋(𝑤).

⋅ Reflection: 𝜋 reflects a frame iff for every function 𝜌, 𝜋(⋅|𝑃 = 𝜌) = 𝜌. Equivalently, iff for every
convex set 𝐶: 𝜋(⋅|𝑃 ∈ 𝐶) ∈ 𝐶.

⋅ Simple Trust: 𝜋 simply trusts a frame iff, for all 𝑞, 𝑡: 𝜋(𝑞|𝑃(𝑞) ≥ 𝑡) ≥ 𝑡.
⋅ Strategy, 𝑺: given a decision problem, a strategy is a function fromworlds𝑤 to options 𝑆𝑤 ∈ 
such that 𝑆𝑤 = 𝑆𝑣 whenever𝑤 = 𝑣. 𝑆 is recommended for by a frame iff, for each𝑤 ∈ 𝑊, 𝑆𝑤
maximizes expected utility relative to 𝑤 amongst the options: 𝔼𝑤(𝑆𝑤) ≥ 𝔼𝑤(𝑂) for any 𝑂 ∈ .

⋅ Total Trust: 𝜋 totally trusts a frame iff for any random variable 𝑋 and threshold 𝑡 ∈ ℝ,
𝔼𝜋(𝑋|𝔼(𝑋) ≥ 𝑡) ≥ 𝑡. Equivalently, for every biconvex set 𝐵, 𝜋(⋅|𝑃 ∈ 𝐵) ∈ 𝐵.

⋅ Trust: 𝜋 trusts a frame iff for any 𝑞, 𝑝, 𝑡: 𝜋(𝑞|𝑝 ∧ [𝑃(𝑞|𝑝) ≥ 𝑡]) ≥ 𝑡.
⋅ Validates: A frame ⟨𝑊,⟩ validates a deference principleΦ iff for every 𝑖 ∈ 𝑊,𝑖 defersΦ-wise
to the frame.

⋅ Value: 𝜋 values a frame ⟨𝑊,⟩ iff for any decision problem , any recommended strategy has
higher expected utility than any option: if 𝑆 is recommended for  by the frame, then 𝔼𝜋(𝑆) =∑
𝑣
𝜋(𝑣)𝑆𝑣(𝑣) ≥ 𝔼𝜋(𝑂) for any 𝑂 ∈ .

⋅ 𝑾𝝅 ∶ {𝑤 ∈ 𝑊 ∶ 𝜋(𝑤) > 0}.

APPENDIX B: PROOFS
For both efficiency and technical reasons we will prove the main results using a slightly different
structure than the theorems stated in the text. Rather than proving a series of biconditionals, will
will first prove a cycle, and then use all of these results together for the final link. In particular,
for technical reasons it is much harder to prove the full version of Value directly; instead, we first
work with a potentially weaker version (which we’ll later show to in fact be equivalent):
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Weak Value: Given any , there exists some recommended strategy 𝑆 such that for all 𝑂 ∈ :
𝔼𝜋(𝑆) ≥ 𝔼𝜋(𝑂).

The difference is that Value universally quantifies over recommended strategies, whereas Weak
Value existentially quantifies over them. Note that for frames-plus-decision-problems for which
the recommended strategy is unique, Weak Value holds iff Value does.
We’ll proceed as follows. We’ll first (§B.1) prove that 𝜋 weakly values a frame only if 𝜋 totally

trusts it. We’ll then prove that 𝜋 totally trusts a frame only if 𝜋 is in the convex hull of 𝐶𝜋 and each𝑖 ∈ 𝐶𝜋 is modestly informed. We’ll then show that if this condition holds, then 𝜋 weakly values
the frame. This shows that these three conditions are equivalent. Next (§B.2), we’ll show that,
together, they entail that 𝜋 values the frame—thus establishing Theorems 2.2 and 4.1. Finally,
in §B.3 we’ll prove Theorem 3.2—that Total Trust is equivalent to epistemic value—directly.
Together, these results establish Theorem 5.1.

B.1 Weak Value⇔ Total Trust⇔Modestly Informed
Lemma B.1. If 𝜋 weakly values ⟨𝑊,⟩, 𝜋 totally trusts it.
Proof. Supposing 𝜋 doesn’t totally trust ⟨𝑊,⟩, we find a decision problem using the same
random variable on which Value fails and in which there is a unique recommended strategy—
therefore, Weak Value fails too.
If𝜋 doesn’t totally trust the frame, there is an𝑋, 𝑡 such that𝔼𝜋(𝑋|𝔼(𝑋) ≥ 𝑡) = 𝑎 < 𝑡. (Note that

this implies 𝜋(𝔼(𝑋) ≥ 𝑡) > 0.) Find the maximum 𝑏 < 𝑡 such that ∃𝑤 ∈ 𝑊: 𝔼𝑤(𝑋) = 𝑏, and let 𝑠
be any number strictly betweenmax(𝑎, 𝑏) and 𝑡. Let 𝑌 be a random variable that takes values 𝑠 at
all worlds, and let  = {𝑋,𝑌}.
By construction, for all 𝑥 ∈ [𝔼(𝑋) ≥ 𝑡], 𝔼𝑥(𝑋) > 𝔼𝑥(𝑌); and for all 𝑦 ∈ [𝔼(𝑋) < 𝑡], 𝔼𝑦(𝑋) <

𝔼𝑦(𝑌). Thus there is a uniquely recommended strategy 𝑆—namely, 𝑆𝑤 = 𝑋 iff 𝑤 ∈ [𝔼(𝑋) ≥ 𝑡]
and 𝑆𝑤 = 𝑌 iff 𝑤 ∈ [𝔼(𝑋) < 𝑡]. Noting that 𝔼𝜋(𝑋|𝔼(𝑋) ≥ 𝑡) < 𝑠 and that 𝔼𝜋(𝑌|𝔼(𝑋) < 𝑡) = 𝑠 if
defined, we then have:

𝔼𝜋(𝑆) = 𝜋(𝔼(𝑋) ≥ 𝑡) ⋅ 𝔼𝜋(𝑋|𝔼(𝑋) ≥ 𝑡) + 𝜋(𝔼(𝑋) < 𝑡) ⋅ 𝔼𝜋(𝑌|𝔼(𝑋) < 𝑡)
< 𝜋(𝔼(𝑋) ≥ 𝑡 ⋅ 𝑠 + 𝜋(𝔼(𝑋) < 𝑡) ⋅ 𝑠

= 𝑠 = 𝔼𝜋(𝑌).

We thus have 𝔼𝜋(𝑌) > 𝔼𝜋(𝑆); Weak Value fails. □

The next step is to prove:

Lemma B.2. If 𝜋 totally trusts ⟨𝑊,⟩, then 𝜋 is in the convex hull of 𝐶𝜋 and each 𝑖 ∈ 𝐶𝜋 is
modestly informed.

To do so, we first prove some lemmas about the properties of 𝐶𝜋 if all the candidates are mod-
estly informed; in particular, we want to show that that assuming 𝜋 is in the convex hull of 𝐶𝜋,
all the candidates are modestly informed iff a more general condition (class-convexity, defined
below) holds.
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RemarkB.3. When𝜋 =
∑
𝑖
𝜆𝑖𝑖 , or𝑗 = 𝜆𝑗𝑗̂𝑗 +∑

𝑖∈𝐶−𝑖 𝜆𝑗𝑖𝑖 , theremaywell bemultiple worlds
𝑤 ≠ 𝑤′ such that 𝑤 = 𝑖 = 𝑤′ . Nevertheless, we can always choose a single representative
world 𝑖 in each such equivalence class, and in what follows we write the terms 𝜆𝑗𝑖 (etc.) assuming
we have done so.

Lemma B.4. Take any nonempty set of points 𝐴 = {1, … ,𝑛} that are each modestly informed,
so 𝑖 = 𝜆𝑖𝑖̂𝑖 +∑

𝑗∈𝐶−𝑖 𝜆𝑖𝑗𝑗 , and which assign weight only to each other, so 𝜆𝑖𝑗 > 0 only if 𝑗 ∈ 𝐴.
Then 𝜆𝑖𝑖 > 0 for some 𝑖 in 𝐴.
Proof. Suppose not: each 𝑖 = ∑

𝑗∈𝐶−𝑖 𝜆𝑖𝑗𝑗 where each 𝐶−𝑖 ⊂ {1, … ,𝑛}. Then each 𝑖 is in
the convex hull of the other 𝑗 , meaning that CH(𝐴) has at most one extreme point and there-
fore is a singleton. But since 1 ∉ 𝐶−1 , 1 = ∑

𝑗∈𝐶−1 𝜆1𝑗𝑗 = 0, contradicting the fact that 1 is a
probability function. □

Definition B.5. Let𝑾𝝅 be the set of worlds seen by 𝜋: {𝑤 ∈ 𝑊 ∶ 𝜋(𝑤) > 0}.

LemmaB.6 (Transitivity). If each 𝑖 in 𝐶𝜋 is modestly informed and 𝜋 is in their convex hull, then
they all are such that 𝑖(𝑊𝜋) = 1

Proof. Let 𝑊′
𝜋 ∶= {𝑤 ∈ 𝑊𝜋 ∶ 𝑤(𝑊𝜋) = 1}. 𝑊′

𝜋 is nonempty, otherwise 𝜋 is not in 𝐶𝜋’s con-
vex hull. We first note that every 𝑖 for 𝑖 ∈ 𝑊′

𝜋, is a mixture of ̂𝑖 and {𝑗 ∶ 𝑗 ∈ 𝑊′
𝜋}. For 𝑖 =

𝜆𝑖𝑖̂𝑖 +∑
𝑗∈𝐶−𝑖 𝜆𝑖𝑗𝑗 , and since 𝑖(𝑊𝜋) = 1, 𝐶𝑖 ⊆ {𝑗 ∶ 𝑗 ∈ 𝑊𝜋}; yet for any 𝑗 with 𝑗 ∈ 𝑊𝜋 but

not in 𝑊′
𝜋, 𝑗(𝑊𝜋) < 1, so 𝑗(𝑥) > 0 for 𝑥 ∉ 𝑊𝜋; hence if 𝜆𝑖𝑗 > 0, then 𝑖(𝑥) ≥ 𝜆𝑖𝑗𝑗(𝑥) > 0,

contradicting the assumption that 𝑖(𝑊𝜋) = 1.
Next we show that for 𝑖 ∈ 𝑊′

𝜋, 𝑖(𝑊′
𝜋) = 1. Suppose not, so 𝑖(𝑥) > 0 for 𝑥 ∈ 𝑊𝜋 but not in

𝑊′
𝜋. Let 𝑡 ∶= max𝑤∈𝑊′

𝜋
(𝑤(𝑥)), and let𝑀 ∶= {𝑤 ∈ 𝑊′

𝜋 ∶ 𝑤(𝑥) = 𝑡} and 𝑚 ∈ 𝑀. Note that (by
the above) 𝜆𝑚𝑗 > 0 only if 𝑗 ∈ 𝑊′

𝜋; hence 𝜆𝑚𝑗 > 0 only if 𝑗(𝑥) ≤ 𝑡. Thus if 𝜆𝑚𝑘 > 0 for 𝑘 ∉ 𝑀,
𝑗(𝑥) would average to less than 𝑡; so 𝜆𝑚𝑗 > 0 only if 𝑗 ∈ 𝑀. Notice also that since ̂𝑚(𝑥) = 0
(since𝑥(𝑊𝜋) < 1 but𝑚(𝑊𝜋) = 1), wemust similarly have that 𝜆𝑚𝑚 = 0, for𝑚(𝑥) ≤ 𝜆𝑚𝑚 ⋅ 0 +
(1 − 𝜆𝑚𝑚)𝑡. Hence we have that for all𝑚 ∈ 𝑀: 𝜆𝑚𝑚 = 0 but 𝜆𝑚𝑗 > 0 only if 𝑗 ∈ 𝑀; i.e. each such
𝑚 is modestly informed, assign weight only to each other, and assign no weight to themselves. By
Lemma B.4, this is a contradiction; so we have that 𝑖(𝑊′

𝜋) = 1.
We can now show that 𝑊𝜋 ⧵𝑊

′
𝜋 = ∅. For we know that 𝜋 =

∑
𝑖
𝜆𝑖𝑖 for 𝑖 ∈ 𝐶𝜋. Since

𝜋(𝑊𝜋) = 1 we know 𝜆𝑖 > 0 only if 𝑖(𝑊𝜋) = 1, hence 𝜆𝑖 > 0 only if 𝑖 ∈ 𝑊′
𝜋. But since we now

know that all such 𝑖 have 𝑖(𝑊′
𝜋) = 1, it follows that 𝜋(𝑊′

𝜋) = 1, i.e.𝑊𝜋 = 𝑊
′
𝜋. Hence for all

𝑖 ∈ 𝑊𝜋 = 𝑊
′
𝜋, we have 𝑖(𝑊𝜋) = 𝑖(𝑊′

𝜋) = 1. □

Lemma B.7 (Reflexivity). If each 𝑖 ∈ 𝐶𝜋 is modestly informed and 𝜋 is in their convex hull, then
for all 𝑖 ∈ 𝑊𝜋, 𝑖(𝑖) > 0.
Proof. Suppose 𝜋(𝑖) > 0 but 𝑖(𝑖) = 0. Since 𝜋 = ∑

𝑗∈𝐶𝜋 𝜆𝑗𝑗 , there must be some 𝑗 ∈ 𝑊𝜋

such that 𝑗(𝑖) > 0. Let 𝑡 = max𝑗∈𝑊𝜋
(𝑗(𝑖)) and 𝑀 ∶= {𝑗 ∈ 𝑊𝜋 ∶ 𝑗(𝑖) = 𝑡}, and 𝑚 ∈ 𝑀. By

Lemma B.6, 𝑚(𝑊𝜋) = 1, so 𝜆𝑚𝑘 > 0 only if 𝑘 ∈ 𝑊𝜋, so only if 𝑘(𝑖) ≤ 𝑡. Thus if 𝜆𝑚𝑘 > 0 for
𝑘 ∉ 𝑀,𝑚(𝑖)must average to less than 𝑡; but it doesn’t. Similarly, note that since ̂𝑚(𝑖) = 0 (since𝑖 ≠ 𝑚), we must likewise have that 𝜆𝑚𝑚 = 0. So 𝑀 is a nonempty set of worlds which assign
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weight 𝜆𝑚𝑘 > 0 only to each other and not to themselves—contradicting Lemma B.4. Hence if
𝑖 ∈ 𝑊𝜋, then 𝑖(𝑖) > 0. □

Definition B.8. 𝑊𝜋 is class-convex iff each candidate 𝑖 is in the convex hull of its informed
self and the other candidates in𝑊𝜋 (as opposed to the other candidates it leaves open, for modest-
informedness): for all 𝑖 ∈ 𝐶𝜋, 𝑖 = 𝜆𝑖𝑖̂𝑖 +∑

𝑗≠𝑖∶𝑗∈𝐶𝜋 𝜆𝑖𝑗𝑗 .
Lemma B.9 (Class-Convexity). If 𝜋 is in the convex hull of 𝐶𝜋, then 𝑊𝜋 is class-convex iff each𝑖 ∈ 𝐶𝜋 is modestly informed.
Proof. (⇒) ∶ Suppose 𝑊𝜋 is class-convex but there is a 𝑖 ∈ 𝐶𝜋 that’s not modestly informed.
Since𝑊𝜋 is class-convex, 𝑖 is in the convex hull of its informed self and the other candidates in
𝑊𝜋: 𝑖 = 𝜆𝑖𝑖̂𝑖 +∑

𝑗≠𝑖∶𝑗∈𝐶𝜋 𝜆𝑖𝑗𝑗 . By Lemma B.6, 𝑖(𝑊𝜋) = 1, so 𝐶𝑖 ⊆ 𝐶𝜋. Since 𝑖 is not in
the convex hull of ̂𝑖 and 𝐶−𝑖 , this means there is some 𝑗 ∈ 𝐶𝜋 but 𝑗 ∉ 𝐶𝑖 such that 𝜆𝑖𝑗 > 0. By
Lemma B.7, 𝑗(𝑗) > 0, hence 𝑖(𝑗) ≥ 𝜆𝑖𝑗𝑗 > 0. But since 𝑗 ∉ 𝐶𝑖 , 𝑖(𝑗) = 0—contradiction.
(⇐) ∶ If𝑊𝜋 is not class-convex, then there is a 𝑖 that’s not in the convex hull of ̂𝑖 and {𝑗 ≠

𝑖 ∶ 𝑗 ∈ 𝐶𝜋}. Since by Lemma B.6 𝐶𝑖 ⊆ 𝐶𝜋, it follows that 𝑖 is not in the convex hull of ̂𝑖 and
𝐶−
𝑖
, so it not modestly informed. □

We’re now in a position to prove Lemma B.2, repeated here:

Lemma B.10. If 𝜋 totally trusts ⟨𝑊,⟩, then 𝜋 is in the convex hull of 𝐶𝜋 and each 𝑖 ∈ 𝐶𝜋 is
modestly informed.

Proof. Suppose 𝜋 is not in the convex hull of 𝐶𝜋. Then by the hyperplane separation theorem,
there is an 𝑋, 𝑡 strongly separating them: i.e., 𝔼𝜋(𝑋) < 𝑡 but for all 𝑖 ∈ 𝐶𝜋, 𝔼𝑖(𝑋) ≥ 𝑡. Then
𝜋(𝔼(𝑋) ≥ 𝑡) = 1, so 𝔼𝜋(𝑋|𝔼(𝑋) ≥ 𝑡) = 𝔼𝜋(𝑋) < 𝑡; Total Trust fails.
Now suppose that 𝜋 is in the convex hull of 𝐶𝜋 yet some 𝑖 ∈ 𝐶𝜋 is not modestly informed. By

Lemma B.9, this means 𝑊𝜋 is not class-convex, so some 𝑗 is not in the convex hull of ̂𝑗 and
{𝑘 ≠ 𝑗 ∶ 𝑘 ∈ 𝐶𝜋}. By the hyperplane separation theorem, there must be an 𝑋, 𝑡 that strongly
separates them: 𝔼𝑗(𝑋) ≥ 𝑡, but 𝔼𝑗(𝑋) < 𝑡 and likewise for all 𝑘 ≠ 𝑖 in 𝐶𝜋, 𝔼𝑘(𝑋) < 𝑡. By the lat-
ter fact, [𝔼(𝑋) ≥ 𝑡] = [𝑃 = 𝑗]. If Total Trust held, we’d have 𝔼𝜋(𝑋|𝔼(𝑋) ≥ 𝑡) = 𝔼𝜋(𝑋|𝑃 = 𝑗) =
𝔼𝑗(𝑋) ≥ 𝑡 (since, by endnotes 36 and 37, Total Trust entails New Reflection); but by the above,
𝔼𝑗(𝑋) < 𝑡; so Total Trust fails. □

Next, we prove the last link in this cycle:

LemmaB.11. If𝜋 is in the convex hull of𝐶𝜋 and each𝑖 ∈ 𝐶𝜋 is modestly informed, then𝜋 weakly
values ⟨𝑊,⟩.
Proof. By Lemma B.9, we know that 𝑊𝜋 is class convex, and by Lemma B.6, each 𝑖 ∈ 𝐶𝜋 has𝑖(𝑊𝜋) = 1. Thus throughout we restrict quantification over worlds to those in𝑊𝜋.
We first prove that each 𝑖 in 𝐶𝜋 weakly values the frame, and moreover that there is always a

single strategy that they all value. Suppose not, so there is a decision problem  such that for any
recommended strategy 𝑆, there is a world 𝑖 and an option 𝑂 ∈  such that 𝔼𝑖(𝑂) > 𝔼𝑖(𝑆), hence
𝔼𝑖(𝑂 − 𝑆) > 0. For any 𝑗, let𝑗 ∶= {𝑂 ∶ (∀𝑂

′)𝔼𝑗(𝑂) ≥ 𝔼𝑗(𝑂′)} be the set of optionswithmaximal
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(uninformed) expected utility atworld 𝑗; so any 𝑆 such that for all 𝑗 ∈ 𝑊, 𝑆𝑗 ∈𝑗 will be a recom-
mended strategy. Choose a strategy 𝑆 such that for all 𝑗 ∈ 𝑊: 𝑆𝑗maximizes informed expected util-
ity amongst the options withmaximal (uninformed) expected utility: ∀𝑂′ ∈𝑗 ,𝔼𝑗(𝑆𝑗) ≥ 𝔼𝑗(𝑂′).
This is a recommended strategy, and so still we have some 𝑖, 𝑂 such that 𝔼𝑖(𝑂 − 𝑆) > 0. We use
this fact to show that class-convexity must fail, contradicting our hypothesis.
Find a pair ⟨𝑂′,𝑚⟩ that maximizes this divergence in the frame: 𝔼𝑚(𝑂′ − 𝑆) = 𝛼 =

max⟨𝑂′′,𝑗⟩(𝔼𝑗(𝑂′′ − 𝑆)). (It exists, since the number of options and worlds are both finite.) Let
𝑀 ∶= {𝑗 ∈ 𝑊 ∶ 𝔼𝑗(𝑂

′ − 𝑆) = 𝛼} be the set of worlds with this maximal divergence. Note three
facts about𝑀:

F1: If 𝑘 ∉ 𝑀, then 𝔼𝑘(𝑂′ − 𝑆) < 𝛼, by construction.
F2: If 𝑗 ∈ 𝑀, then 𝑂′ has maximal expected value amongst . (If not, then 𝛼 is not the maximal

divergence after all, for there is an𝑂′′ such that𝔼𝑗(𝑂′′) > 𝔼𝑗(𝑂′), and therefore𝔼𝑗(𝑂′′ − 𝑆) >
𝔼𝑗(𝑂

′ − 𝑆) = 𝛼.)
F3: If 𝑗 ∈ 𝑀, then 𝔼𝑗(𝑂′ − 𝑆) ≤ 0 < 𝛼, since 𝑂′ maximizes 𝔼𝑗 , and 𝑆𝑗 has maximal informed

expected value amongst such options, so 𝔼𝑗(𝑆𝑗) ≥ 𝔼𝑗(𝑂′). Since ̂𝑗(𝑆 = 𝑆𝑗) = 1 since ̂𝑗
knows what 𝑃 is, it follows that 𝔼𝑗(𝑆) = 𝔼𝑗(𝑆𝑗) ≥ 𝔼𝑗(𝑂′), so 𝔼𝑗(𝑂′ − 𝑆) ≤ 0.

Now let𝐴 ∶= CH({𝑘 ∶ 𝑘 ∉ 𝑀} ∪ {̂𝑗 ∶ 𝑗 ∈ 𝑀}) be the convex hull of the uninformed opinions
outside𝑀 and the informed opinions inside it. By F1 andF3,∀𝜌 ∈ 𝐴: we have that𝔼𝜌(𝑂′ − 𝑆) < 𝛼,
while for all 𝑗 ∈ 𝑀: 𝔼𝑗(𝑂′ − 𝑆) ≥ 𝛼. Thus ⟨𝑂′ − 𝑆, 𝛼⟩ determines a hyperplane that separates all
the 𝑗 (for 𝑗 ∈ 𝑀) from 𝐴, meaning 𝑗 is not in 𝐴.
We now strengthen this conclusion to show that there must be a 𝑖 for 𝑖 ∈ 𝑀 on which class-

convexity fails, i.e. 𝑖 ∉ 𝐴𝑖 ∶= CH({̂𝑖} ∪ {𝑗 ≠ 𝑖 ∶ 𝑗 ∈ 𝐶𝜋}). Note that
𝐴𝑖 ⊆ 𝐴

∗
𝑖
∶= CH({̂𝑗 ∶ 𝑗 ∈ 𝑀} ∪ {𝑘 ∶ 𝑘 ∉ 𝑀} ∪ {𝑗 ≠ 𝑖 ∶ 𝑗 ∈ 𝑀})
= CH(𝐴 ∪ {𝑗 ≠ 𝑖 ∶ 𝑗 ∈ 𝑀})

so it’ll suffice to show that 𝑖 is separable from 𝐴∗
𝑖
.

Take a 𝑖 that is extreme within the convex hull of {𝑗 ∶ 𝑗 ∈ 𝑀}, so 𝑖 is not in the convex
hull of {𝑗 ≠ 𝑖 ∶ 𝑗 ∈ 𝑀}. Suppose, for reductio, that 𝑖 is in the convex hull of 𝐴∗𝑖 , so there are
𝜌𝑘 ∈ 𝐴 such that 𝑖 = ∑

𝑘
𝜆𝑘𝜌𝑘 +

∑
𝑗≠𝑖∶𝑗∈𝑀 𝜆𝑗𝑗 . Now, if 𝜆𝑘 = 0 for all 𝜌𝑘, then 𝑖 would be in

the convex hull of {𝑗 ≠ 𝑖 ∶ 𝑗 ∈ 𝑀}, contradicting the assumption that it’s extreme within𝑀; so
𝜆𝑘 > 0 for some 𝜌𝑘. But we know that 𝔼𝜌(𝑂′ − 𝑆) ≤ 𝛼 − 𝜀 for 𝜀 > 0, while 𝔼𝑗(𝑂′ − 𝑆) = 𝛼 for all
𝑗 ∈ 𝑀; hence 𝔼𝑖(𝑂′ − 𝑆) ≤ 𝜆𝑘(𝛼 − 𝜀) + (1 − 𝜆𝑘)𝛼 < 𝛼, contradicting the assumption that 𝑖 ∈ 𝑀.
Thus 𝑖 is not in 𝐴∗𝑖 , and hence it is not in 𝐴𝑖 , so𝑊𝜋 is not class-convex.
This establishes that for any decision problem , there is a strategy 𝑆 such that for all 𝑖 ∈ 𝑊𝜋

and 𝑂 ∈ , 𝔼𝑖(𝑆) ≥ 𝔼𝑖(𝑂), so 𝔼𝑖(𝑆 − 𝑂) ≥ 0. Note that since 𝜋 is in the convex hull of the 𝑖 for
𝑖 ∈ 𝑊𝜋, this means that for any such, there is an 𝑆 such that for all𝑂, 𝔼𝜋(𝑆 − 𝑂) = ∑

𝑖
𝜆𝑖𝔼𝑖(𝑆 −

𝑂) ≥ ∑
𝑖
𝜆𝑖0 = 0, and hence 𝔼𝜋(𝑆) ≥ 𝔼𝜋(𝑂), and so 𝜋 weakly values the frame. □

By Lemma B.1, 𝜋 weakly values a frame only if 𝜋 totally trusts it; by Lemma B.2, 𝜋 totally trusts
it only if 𝜋 is in the convex hull of 𝐶𝜋 and each𝑖 ∈ 𝐶𝜋 is modestly informed; by Lemma B.11 only
if 𝜋 weakly values the frame. Hence we’ve shown that these three conditions are equivalent.
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B.2 Weak Value⇔ Value
Having established that Weak Value is equivalent to both Total Trust and our convex-hull-plus-
modestly-informed constraint, we now prove that together all these principles entail full Value.
Since full Value (obviously) entails Weak Value (since there always is at least one recommended
strategy), this will establish that all these conditions are equivalent.
We first show a helpful Lemma about the decomposition of modestly informed 𝑖:

Lemma B.12. If 𝜋 is in the convex hull of 𝐶𝜋 and each 𝑖 ∈ 𝐶𝜋 is modestly informed, so 𝑖 =
𝜆𝑖𝑖̂𝑖 +∑

𝑗∈𝐶−𝑖 𝜆𝑖𝑗𝑗 , then 𝜆𝑖𝑖 > 0.
Proof. Note that by the results of §B.1, both 𝜋 and all the 𝑖 must totally trust the frame. Suppose
𝜆𝑖𝑖 = 0, so 𝑖 is in the convex hull of 𝐶−

𝑖
. Take 𝑘 ∈ argmax𝑗∈𝐶−𝑖 (𝑘(𝑃 = 𝑖)). Since 𝑖 is in

the convex hull of 𝐶−
𝑖
, 𝑖(𝑃 = 𝑖) ≤ 𝑘(𝑃 = 𝑖). If there is a 𝑤 ∈ [𝑃 = 𝑖] such that 𝑡 = 𝑘(𝑤) >𝑖(𝑤), then 𝜋(𝑤|𝑃(𝑤) ≥ 𝑡) = 0, contradicting (Simple) Trust. Thus for all 𝑤 ∈ [𝑃 = 𝑖], 𝑖(𝑤) ≥𝑘(𝑤), hence we have equality: 𝑖(𝑃 = 𝑖) = 𝑘(𝑃 = 𝑖). Since nevertheless 𝑖 ≠ 𝑘, there must

be an 𝑥 ∉ [𝑃 = 𝑖] such that 𝑘(𝑥) > 𝑖(𝑥) and hence 𝑘(¬{𝑥}) < 𝑖(¬{𝑥}). Thus we have that

𝑡′ ∶= 𝑘(𝑃 = 𝑖|¬{𝑥}) = 𝑘(𝑃 = 𝑖)
𝑘(¬{𝑥}) >

𝑖(𝑃 = 𝑖)
𝑖(¬{𝑥}) = 𝑖(𝑃 = 𝑖|¬{𝑥})

Thus if there’s someworld in𝑊𝜋 that’s not 𝑥 andwhere [𝑃(𝑃 = 𝑖|¬{𝑥}) ≥ 𝑡′] holds, we have that
𝜋(𝑃 = 𝑖|¬{𝑥} ∧ [𝑃(𝑃 = 𝑖|¬{𝑥}) ≥ 𝑡′]) is well-defined and equal to 0 < 𝑡′ (since no𝑤 ∈ [𝑃 = 𝑖]
is such a world), contradicting the fact that 𝜋 trusts the frame. Conversely, if there is no such
world, that means that 𝑘 = 𝑥 and so then 𝑘(𝑃(𝑃 = 𝑖|¬{𝑥}) < 𝑡′|¬{𝑥}) = 1. It follows that Trust
fails at 𝑘, since we have that 𝑘(𝑃 = 𝑖|¬{𝑥} ∧ [𝑃(𝑃 = 𝑖|¬{𝑥}) < 𝑡′]) = 𝑘(𝑃 = 𝑖|¬{𝑥}) ≥ 𝑡′,
contradicting the fact that 𝑘 trusts the frame. □

We’re now in a position to prove that Weak Value entails full Value. The strategy is to take a
case where Value fails, and show that we can modify it by slightly adjusting the available options
to make there be a unique recommended strategy, to generate a case where Weak Value fails. To
do so, we will need to use our knowledge about what the frame must look like for Weak Value to
hold, using the Lemmas B.1–B.12.

Lemma B.13. 𝜋 weakly values a frame iff it values it.

Proof. The⇐ direction is immediate, so we show the⇒ direction. Suppose 𝜋 weakly values the
frame ⟨𝑊,⟩. By Lemmas B.1–B.11 we know that 𝜋 also totally trusts the frame and that each
𝑖 ∈ 𝐶𝜋 is modestly informed and that 𝜋 is in their convex hull. Moreover, since for each𝑖 ∈ 𝐶𝜋,
by Lemma B.6 we know that 𝐶𝑖 ⊆ 𝐶𝜋, we know that all 𝑗 ∈ 𝐶𝑖 are modestly informed; and since
by Lemma 𝐵.7 we have that 𝑖(𝑖) > 0, 𝑖 ∈ 𝐶𝑖 and so 𝑖 is automatically in the convex hull of 𝐶𝑖 .
Thus applying Lemmas B.1–B.11 with𝑖 substituted for𝜋, we have that each𝑖 also weakly values
and totally trusts the frame.
Suppose, for reductio, that 𝜋 doesn’t value the frame, so that there is a decision problem  =

{𝑂1, … , 𝑂𝑚} and a recommended strategy 𝑆 such that𝔼𝜋(𝑂 − 𝑆) > 0 for some𝑂 ∈ .Wewill show
that we can alter the decision problem to make one on which there is a unique recommended
strategy, and on which 𝜋 still fails to value the frame—and hence, that Weak Value fails as well
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(since when there is a unique recommended strategy,Weak Value holds for that decision problem
iff Value does).
Relabel things so that {1, … ,𝑛} = 𝐶𝜋, and consider the set of options they select under 𝑆:

{𝑆1, … , 𝑆𝑛} ⊆ . We are going to remove all these options from the decision problem, and replace
them with ones 𝑆𝑡

𝑖
that are identical to 𝑆𝑖 except they yield an additional 𝑡 value when 𝑃 = 𝑖 . In

particular, for any 𝑡 ≥ 0 and 𝑖, let

𝑆𝑡
𝑖
(𝑤) ∶=

{
𝑆𝑖(𝑤) + 𝑡 if 𝑤 = 𝑖
𝑆𝑖(𝑤) otherwise

Since 𝐶𝜋 is all modestly informed, for all 𝑖 ∈ 𝐶𝜋 we have that
𝔼𝑖
(
𝑆𝑡
𝑖
− 𝑆𝑖

)
= 𝜆𝑖𝑖𝔼𝑖

(
𝑆𝑡
𝑖
− 𝑆𝑖

)
+

∑
𝑗∈𝐶−𝑖

𝜆𝑖𝑗𝔼𝑗
(
𝑆𝑡
𝑖
− 𝑆𝑖

)
where 𝔼𝑖(𝑆𝑡𝑖 − 𝑆𝑖) = 𝑡 and 𝔼𝑗(𝑆

𝑡
𝑖
− 𝑆𝑖) ≥ 0 by definition of 𝑆𝑡𝑖 , and 𝜆𝑖𝑖 > 0 by Lemma B.12. Viewing

this equation as a function of 𝑡, notice that it is continuous and monotonically increasing in 𝑡;
moreover, when 𝑡 = 0, 𝔼𝑖(𝑆𝑡𝑖 − 𝑆𝑖) = 0, and as 𝑡 → ∞, 𝜆𝑖𝑖𝑡 → ∞ and thus 𝔼𝑖(𝑆𝑡𝑖 − 𝑆𝑖) → ∞. As a
result, for any𝛼 ≥ 0, by the intermediate value theorem there is a unique 𝑡𝑖 such that𝔼𝑖(𝑆

𝑡𝑖
𝑖
− 𝑆𝑖) =

𝛼. (Note that as 𝛼 → 0, likewise 𝑡𝑖 → 0.)
Consider an arbitrary 𝛼 > 0 and for each 𝑖 choose 𝑡𝑖 > 0 such that 𝔼𝑖(𝑆𝑡𝑖𝑖 − 𝑆𝑖) = 𝛼. Now con-

sider a new decision-problem ∗ ∶= ( − {𝑆1, … , 𝑆𝑛}) ∪ {𝑆𝑡11 , … , 𝑆𝑡𝑛𝑛 }. We first show that for any
𝛼 > 0, there is a uniquely recommended strategy for ∗; we then show that if 𝛼 is small enough,
this will be a decision-problem on which Value (and hence Weak Value) fails.
We know that for each 𝑖 , 𝔼𝑖(𝑆𝑖) was maximal amongst the options in . Letting  =  −

{𝑆1, … , 𝑆𝑛}, note that ∗ =  ∪ {𝑆
𝑡1
1 , … , 𝑆

𝑡𝑛
𝑛 }. For any 𝑂 ∈  , we know that 𝔼𝑖(𝑆

𝑡𝑖
𝑖
) > 𝔼𝑖(𝑆𝑖) ≥

𝔼𝑖(𝑂). So to show that each 𝑆𝑡𝑖
𝑖
is the unique option that maximizes expected utility accord-

ing to 𝑖 , it suffices to show that if 𝑖 ≠ 𝑗 , then 𝔼𝑖(𝑆𝑡𝑖𝑖 ) > 𝔼𝑖(𝑆𝑡𝑗𝑗 ). Notice that this holds iff
𝔼𝑖(𝑆

𝑡𝑖
𝑖
− 𝑆𝑖) > 𝔼𝑖(𝑆

𝑡𝑗
𝑗
− 𝑆𝑖), and since 𝔼𝑖(𝑆𝑖) ≥ 𝔼𝑖(𝑆𝑗), it suffices to show that

𝔼𝑖

(
𝑆
𝑡𝑖
𝑖
− 𝑆𝑖

)
> 𝔼𝑖

(
𝑆
𝑡𝑗
𝑗
− 𝑆𝑗

)
(∗)

Note that since 𝔼𝑖(𝑆
𝑡𝑖
𝑖
− 𝑆𝑖) = 𝛼 = 𝔼𝑗(𝑆

𝑡𝑗
𝑗
− 𝑆𝑗), it suffices to show that

𝔼𝑗

(
𝑆
𝑡𝑗
𝑗
− 𝑆𝑗

)
> 𝔼𝑖

(
𝑆
𝑡𝑗
𝑗
− 𝑆𝑗

)
(∗∗)

First note that for all 𝑘 ≠ 𝑗 , we have that 𝔼𝑘(𝑆
𝑡𝑗
𝑗
− 𝑆𝑗) ≤ 𝔼𝑗(𝑆𝑡𝑗𝑗 − 𝑆𝑗). For suppose

not, and instead 𝔼𝑘(𝑆
𝑡𝑗
𝑗
− 𝑆𝑗) ≥ 𝑠 > 𝔼𝑗(𝑆𝑡𝑗𝑗 − 𝑆𝑗) > 0. Then [𝔼(𝑆

𝑡𝑗
𝑗
− 𝑆𝑗) ≥ 𝑠] is nonempty

and entails 𝑃 ≠ 𝑗 , therefore by definition of 𝑆
𝑡𝑗
𝑗
, [𝔼(𝑆

𝑡𝑗
𝑗
− 𝑆𝑗) ≥ 𝑠] ⊆ [𝑆𝑡𝑗𝑗 − 𝑆𝑗 = 0], hence

𝔼𝜋(𝑆
𝑡𝑗
𝑗
− 𝑆𝑗|𝔼(𝑆𝑡𝑗𝑗 − 𝑆𝑗) ≥ 𝑠) = 0 < 𝑠, violating Total Trust. Thus 𝔼𝑘(𝑆𝑡𝑗𝑗 − 𝑆𝑗) ≤ 𝔼𝑗(𝑆𝑡𝑗𝑗 − 𝑆𝑗) for
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all 𝑘. Given this, for 𝑗 ≠ 𝑖 we have that

𝔼𝑖

(
𝑆
𝑡𝑗
𝑗
− 𝑆𝑗

)
= 𝜆𝑖𝑖𝔼𝑖

(
𝑆
𝑡𝑗
𝑗
− 𝑆𝑗

)
+

∑
𝑘∈𝐶−𝑖

𝜆𝑖𝑘𝔼𝑘

(
𝑆
𝑡𝑗
𝑗
− 𝑆𝑗

)
≤ 𝜆𝑖𝑖0 +

∑
𝑘∈𝐶−𝑖

𝜆𝑖𝑘𝔼𝑗

(
𝑆
𝑡𝑗
𝑗
− 𝑆𝑗

)
= (1 − 𝜆𝑖𝑖)𝔼𝑗

(
𝑆
𝑡𝑗
𝑗
− 𝑆𝑗

)
< 𝔼𝑗

(
𝑆
𝑡𝑗
𝑗
− 𝑆𝑗

)
The last line follows from the fact that, by LemmaB.12, 𝜆𝑖𝑖 > 0. This establishes (**), and therefore
(*), and therefore that for all 𝑖 , 𝑆𝑡𝑖𝑖 is an option that uniquely maximizes expected value, i.e. that
the strategy 𝑆∗ such that 𝑆∗

𝑖
= 𝑆

𝑡𝑖
𝑖
, for each 𝑖 , is the uniquely recommended strategy for ∗, for

an arbitrary 𝛼 > 0.
From here we show that Weak Value fails. We know that 𝔼𝜋(𝑂 − 𝑆) > 0; say it equals 𝛽 > 0.

We know moreover that no matter which 𝛼 > 0 we choose in modifying  to ∗, we’ll have an
option 𝑂∗ ∈ ∗ such that 𝔼𝜋(𝑂∗) ≥ 𝔼𝜋(𝑂) (since our modifications only replace options with
more valuable ones). Finally, note that for any 𝑤 ∈ 𝑊𝜋, there’s a 𝑖 such that 𝑤 = 𝑖 , so (𝑆∗ −
𝑆)(𝑤) = (𝑆

𝑡𝑖
𝑖
− 𝑆𝑖)(𝑤) = 𝑡𝑖 . Hence this divergence 𝑆∗ − 𝑆 is upper-bounded across all worlds by

the maximal 𝑡𝑖 used to modify the options 𝑆𝑖 to 𝑆
𝑡𝑖
𝑖
. Recalling that as 𝛼 → 0, all such 𝑡𝑖 → 0, we

can choose an 𝛼 > 0 small enough so that 𝑡1, … , 𝑡𝑛 < 𝛽, in which casewe have the𝔼𝜋(𝑆∗ − 𝑆) < 𝛽.
It follows that

𝔼𝜋(𝑂 − 𝑆) = 𝛽 > 0

⇒ 𝔼𝜋(𝑂 − 𝑆) − 𝔼𝜋(𝑆
∗ − 𝑆) > 0

⇒ 𝔼𝜋(𝑂 − 𝑆 − 𝑆
∗ + 𝑆) > 0

⇒ 𝔼𝜋(𝑂 − 𝑆
∗) > 0

And, since 𝔼𝜋(𝑂∗) ≥ 𝔼𝜋(𝑂), we have that 𝔼𝜋(𝑂∗ − 𝑆∗) > 0, i.e. 𝔼𝜋(𝑂∗) > 𝔼𝜋(𝑆∗), which is just to
say that 𝜋 does not value the frame on this decision-problem ∗. Since 𝑆∗ is the uniquely rec-
ommended strategy on this decision problem, it follows that 𝜋 doesn’t weakly value the frame,
completing the proof. □

Combining Lemmas B.1, B.2, B.11, and B.13, we’ve now established:

Theorem B.14. The following are equivalent:

⋅ 𝜋 values ⟨𝑊,⟩.
⋅ 𝜋 weakly values ⟨𝑊,⟩.
⋅ 𝜋 totally trusts ⟨𝑊,⟩.
⋅ 𝜋 is in the convex hull of 𝐶𝜋 an each 𝑖 ∈ 𝐶𝜋 is modestly informed.
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What remains to be done in order to establish our full characterization result, Theorem 5.1, is
to prove Theorem 3.2, which we do in the next subsection.

B.3 Accuracy theorem
We give two different proofs of Theorem 3.2 to establish the connection between Total Trust and
Epistemic Value. The second (§B.3.2) is the one we started with, using Campbell-Moore’s (2020)
characterization of gsp estimate-inaccuracy measures. It is in some ways more illuminating, at
least for those familiar with Schervish (1989)’s construction of scoring rules. However it also has
a high barrier to entry. Catrin Campbell-Moore and Daniel Rothschild later helped us figure out
how to give a proof using only elementary methods (§B.3.1); we begin with this one.
Since Theorem 3.2 is local—i.e., concerns only a single random variable—we fix 𝑋 for the rest

of this appendix. We also adopt the following conventions:

∙ To save space, we set 𝔼𝜋(𝑋) ∶= 𝑒.
∙ We let 𝔼(𝑋) take values in 𝑎0 < ⋯ < 𝑎𝑚.
∙ We let 𝑋 take values in 𝑣0 < ⋯ < 𝑣𝑛.

For convenience we restate the result here:

Theorem 3.2. 𝜋 totally trusts 𝑃 with respect to𝑋 iff 𝔼𝜋(𝐼𝑋(𝑃)) ≤ 𝔼𝜋(𝐼𝑋(𝑒)) for gsp scoring rules 𝐼𝑋 ,
with equality if and only if 𝜋(𝔼(𝑋) = 𝑒) = 1.

Elementary-methods proof
For the elementary-methods proof, we first note that Campbell-Moore (2020) proves that
every gsp estimate-inaccuracy measure is value-directed, which generalizes the constraint of
truth-directedness to estimates generally: If 𝑒1 < 𝑒2 ≤ 𝑋(𝑤) or 𝑒1 > 𝑒2 ≥ 𝑋(𝑤), then 𝐼𝑋(𝑒1, 𝑤) >
𝐼𝑋(𝑒2, 𝑤).
Next, we will need the following concept:

Monotone Strict Propriety Let 𝐼𝑋 be a gsp. We say that 𝐼𝑋 ismonotone strictly proper if for any
probability function 𝜋:
⋅ If 𝑒 ≤ 𝑠 < 𝑡 ≤ 𝑣𝑛, then 𝔼𝜋(𝐼𝑋(𝑡)) > 𝔼𝜋(𝐼𝑋(𝑠))
⋅ If 𝑣0 ≤ 𝑠 < 𝑡 ≤ 𝑒, then 𝔼𝜋(𝐼𝑋(𝑡)) < 𝔼𝜋(𝐼𝑋(𝑠))

The idea behind this definition is just that as estimates get closer to 𝑒, 𝜋 expects them to be less
inaccurate. Since for any gsp 𝐼𝑋 ,𝜋 expects its own estimate to be the least inaccurate, the following
lemma is not surprising, but the proof (due to Catrin Campbell-Moore) is rather tricky.

Lemma B.15. If 𝐼𝑋 is a gsp, then 𝐼𝑋 is monotone strictly proper.

Proof. We show that if 𝑒 ≤ 𝑠 < 𝑡 < 𝑣𝑛, then 𝔼𝜋(𝐼𝑋(𝑡)) > 𝔼𝜋(𝐼𝑋(𝑠)). The second condition is
entirely symmetric.
Fix 𝑠 and 𝑡 with 𝑠 < 𝑡. We focus on probability functions 𝜌 such that (i) if 𝑣𝑖 ≤ 𝑠, 𝜌(𝑋 = 𝑣𝑖) ≤

𝜋(𝑋 = 𝑣𝑖), (ii) if 𝑠 < 𝑣𝑖 < 𝑡, 𝜌(𝑋 = 𝑣𝑖) = 𝜋(𝑋 = 𝑣𝑖), and (iii) if 𝑡 ≤ 𝑣𝑖 , 𝜌(𝑋 = 𝑣𝑖) ≥ 𝜋(𝑋 = 𝑣𝑖). Let
𝑄 be the set of all such 𝜌.
Since 𝐼𝑋 is a gsp, it is value-directed. So, if 𝑣𝑖 ≤ 𝑠, 𝐼𝑋(𝑡, 𝑣𝑖) > 𝐼𝑋(𝑠, 𝑣𝑖), and if 𝑡 ≤ 𝑣𝑖 , 𝐼𝑋(𝑡, 𝑣𝑖) <

𝐼𝑋(𝑠, 𝑉𝑖). So, for any 𝜌 ∈ 𝑄, 𝔼𝜌(𝐼𝑋(𝑡) − 𝐼𝑋(𝑠)) ≤ 𝔼𝜋(𝐼𝑋(𝑡) − 𝐼𝑋(𝑠)).



Deference done better 141

We show that there exists a 𝜌 ∈ 𝑄 such that 𝔼𝜌(𝑋) = 𝑠. Let:

𝜌⋆(𝑋 = 𝑣𝑖) =

⎧⎪⎨⎪⎩
0 if 𝑣𝑖 ≤ 𝑠
𝜋(𝑋 = 𝑣𝑖) if 𝑠 < 𝑣𝑖 < 𝑣𝑛
𝜋(𝑋 = 𝑣𝑛) + 𝜋(𝑋 ≤ 𝑠) if 𝑣𝑖 = 𝑣𝑛

Clearly 𝜌⋆ = argmax𝜌∈𝑄 𝔼𝜌(𝑋).
Given the definition of 𝜌⋆, we see 𝑠 < 𝔼𝜌⋆(𝑋). Note that 𝜋 ∈ 𝑄 and that 𝑄 is convex. So since

𝑒 ≤ 𝑠 ≤ 𝔼𝜌⋆(𝑋), there is indeed some 𝜌 ∈ 𝑄 such that 𝔼𝜌(𝑋) = 𝑠. By strict propriety, 𝔼𝜌(𝐼𝑋(𝑡) −
𝐼𝑋(𝑠)) > 0, and aswe’ve already established𝔼𝜋(𝐼𝑋(𝑡) − 𝐼𝑋(𝑠)) > 𝔼𝜌(𝐼𝑋(𝑡) − 𝐼𝑋(𝑠)). This completes
the proof. □

We can now prove Theorem 3.2 with elementary methods. The left-to-right direction is due to
Daniel Rothschild.

Proof. We first prove the left-to-right direction. Given Total Trust, we show:

𝔼𝜋(𝐼𝑋(𝑃) |𝔼(𝑋) > 𝑒) < 𝔼𝜋(𝐼𝑋(𝑒) |𝔼(𝑋) > 𝑒) (B1)

This suffices for the proof since a symmetric argument shows:

𝔼𝜋(𝐼𝑋(𝑃) |𝔼(𝑋) < 𝑒) < 𝔼𝜋(𝐼𝑋(𝑒) |𝔼(𝑋) < 𝑒) (B2)

Jointly equations (B1) and (B2) entail this direction of the theorem.
To prove equation (B1): Let 𝑤1,… ,𝑤𝑝 be the worlds where for each 𝑖, 𝔼𝑖(𝑋) > 𝑒. Without loss

of generality, assume that for each 𝑖 < 𝑝, 𝔼𝑖(𝑋) > 𝔼𝑖+1(𝑋). (In what follows, it will be clear that if
𝔼𝑤(𝑋) = 𝔼𝑤′(𝑋) then they can be treated together.)
We will prove by induction for all 𝑘 with 1 ≤ 𝑘 ≤ 𝑝 and for any 𝑠 < 𝔼𝑘(𝑋):

𝔼𝜋(𝐼𝑋(𝑃) |𝔼(𝑋) ≥ 𝔼𝑘(𝑋)) < 𝔼𝜋(𝐼𝑋(𝑠) |𝔼(𝑋) ≥ 𝔼𝑘(𝑋)) (B3)

When 𝑘 = 𝑝, equation (B3) entails (B1), since 𝔼𝑝(𝑋) is the lowest value 𝔼(𝑋) can take while still
being greater than 𝑒.
Base case: 𝑘 = 1, so 𝔼𝑘(𝑋) is at its maximum value. Therefore,

𝔼𝜋(𝐼𝑋(𝑃) |𝔼(𝑋) ≥ 𝔼1(𝑋)) = 𝔼𝜋(𝐼𝑋(1) |𝔼(𝑋) ≥ 𝔼1(𝑋)) (B4)

By total trust in 𝑋, we know that 𝔼𝜋(𝑋 |𝔼(𝑋) ≥ 𝔼1(𝑋)) ≥ 𝔼1(𝑋). Since 𝐼𝑋 is monotone strictly
proper by Lemma B.15, we have then established the base case:

𝔼𝜋(𝐼𝑋(𝑃) |𝔼(𝑋) ≥ 𝔼1(𝑋)) < 𝔼𝜋(𝐼𝑋(𝑠) |𝔼(𝑋) ≥ 𝔼1(𝑋)) (B5)

for any 𝑠 < 𝔼1(𝑋).
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Inductive Step: Suppose equation (B3) holds for all 𝑘 < 𝑖. By Total Trust in 𝑋 and monotone
strict propriety, we have that for any 𝑠 < 𝔼𝑖(𝑋):

𝔼𝜋(𝐼𝑋(𝑖) |𝔼(𝑋) ≥ 𝔼𝑖(𝑋)) < 𝔼𝜋(𝐼𝑋(𝑠) |𝔼(𝑋) ≥ 𝔼𝑖(𝑋)) (B6)

Since 𝔼𝑖(𝑋) < 𝔼𝑖−1(𝑋), the inductive hypothesis tells us that:

𝔼𝜋(𝐼𝑋(𝑃) |𝔼(𝑋) ≥ 𝔼𝑖−1(𝑋)) < 𝔼𝜋(𝐼𝑋(𝑖) |𝔼(𝑋) ≥ 𝔼𝑖−1(𝑋)) (B7)

Since [𝔼(𝑋) ≥ 𝔼𝑖(𝑋)] = [𝔼(𝑋) = 𝔼𝑖(𝑋)] ∪ [𝔼(𝑋) ≥ 𝔼𝑖−1(𝑋)], (B7) implies that
𝔼𝜋(𝐼𝑋(𝑃) |𝔼(𝑋) ≥ 𝔼𝑖(𝑋)) < 𝔼𝜋(𝐼𝑋(𝑖) |𝔼(𝑋) ≥ 𝔼𝑖(𝑋)) (B8)

Combining (B6) and (B8), we have that for any 𝑠 < 𝔼𝑖(𝑋):

𝔼𝜋(𝐼𝑋(𝑃) |𝔼(𝑋) ≥ 𝔼𝑖(𝑋)) < 𝔼𝜋(𝐼𝑋(𝑠) |𝔼(𝑋) ≥ 𝔼𝑖(𝑋))
as desired.
To show the right-to-left direction: Suppose 𝜋 does not totally trust 𝑃 with respect to 𝑋. We

consider the case where there exists 𝑡 such that 𝔼𝜋(𝑋 |𝔼(𝑋) ≥ 𝑡) < 𝑡 (as the case where there is
a 𝑡 such that 𝔼𝜋(𝑋 |𝔼(𝑋) ≤ 𝑡) > 𝑡 is symmetric). Since 𝔼(𝑋) can take only finitely many values
(𝑎0, … , 𝑎𝑚), there is some region (𝛼, 𝛽) with 𝛼 < 𝛽 where Total Trust fails. I.e., for all 𝑡 ∈ (𝛼, 𝛽),
𝔼𝜋(𝑋 |𝔼(𝑋) ≥ 𝑡) < 𝑡.
We construct a gsp where 𝔼𝜋(𝐼𝑋(𝑒)) < 𝔼𝜋(𝐼𝑋(𝑃)). For convenience (so that we only need six

instead of nine cases in the scoring rule defined below), we choose 𝛼, 𝛽 such that: there is no 𝑣𝑖 ,
𝑎𝑖 in (𝛼, 𝛽), and moreover 𝑒 ∉ (𝛼, 𝛽). This is always possible since there are only finitely many 𝑣𝑖
and 𝑎𝑖 .
We define the following scoring rule for some (large) constant 𝐶 > 0:

𝐼𝑋(𝑥, 𝑣𝑖) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(𝑥 − 𝑣𝑖)
2 if 𝑥 ≤ 𝛼 and 𝑣𝑖 < 𝛼

(𝛼 − 𝑣𝑖)
2 + 𝐶(𝑥 − 𝛼)(𝑥 + 𝛼 − 2𝑣𝑖) if 𝛼 < 𝑥 < 𝛽 and 𝑣𝑖 < 𝛼

(𝛼 − 𝑣𝑖)
2 + 𝐶(𝛽 − 𝛼)(𝛽 + 𝛼 − 2𝑣𝑖)

+(𝑥 − 𝛽)(𝑥 + 𝛽 − 2𝑣𝑖) if 𝑥 ≥ 𝛽 and 𝑣𝑖 < 𝛼
(𝛼 − 𝑥)(2𝑣𝑖 − 𝛼 − 𝑥) + 𝐶(𝛽 − 𝛼)(2𝑣𝑖 − 𝛽 − 𝛼)

+(𝛽 − 𝑣𝑖)
2 if 𝑥 ≤ 𝛼 and 𝑣𝑖 > 𝛽

(𝛽 − 𝑣𝑖)
2 + 𝐶(𝛽 − 𝑥)(2𝑣𝑖 − 𝛽 − 𝑥) if 𝛼 < 𝑥 < 𝛽 and 𝑣𝑖 > 𝛽

(𝑥 − 𝑣𝑖)
2 if 𝑥 ≥ 𝛽 and 𝑣𝑖 > 𝛽

We leave it to the reader to verify that 𝐼𝑋(𝑥, 𝑣𝑖) is a gsp scoring rule.67
Suppose that 𝑒 < 𝛼. (The case where 𝑒 > 𝛽 can be treated similarly.) Note that:

𝔼𝜋(𝐼𝑋(𝑃) − 𝐼𝑋(𝑒)) =

𝑛∑
𝑖=0

𝑚∑
𝑗=0

𝜋(𝑣𝑖, 𝑎𝑗)(𝐼𝑋(𝑎𝑗, 𝑣𝑖) − 𝐼𝑋(𝑒, 𝑣𝑖)) (B9)
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where we write 𝜋(𝑣𝑖, 𝑎𝑗) for 𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) = 𝑎𝑗). We want to show that for 𝐶 large enough (B9)
is positive.
We can break (B9) up into four separate summations: (i) when 𝑣𝑖, 𝑎𝑗 < 𝛼, (ii) when 𝑣𝑖 < 𝛼,

but 𝑎𝑗 > 𝛽, (iii) when 𝑣𝑖 > 𝛽, but 𝑎𝑗 < 𝛼, and (iv) when 𝑣𝑖, 𝑎𝑗 > 𝛽. When we look at 𝐼𝑋 , these
correspond, respectively, to:∑

𝑣𝑖<𝛼

∑
𝑎𝑗<𝛼

𝜋(𝑣𝑖, 𝑎𝑗)((𝑎𝑗 − 𝑣𝑖)
2 − (𝑒 − 𝑣𝑖)

2) (B10)

∑
𝑣𝑖<𝛼

∑
𝑎𝑗>𝛽

((𝛼 − 𝑣𝑖)
2 + (𝑎𝑗 − 𝛽)(𝑎𝑗 + 𝛽 − 2𝑣𝑖)

+ 𝐶(𝛽 − 𝛼)(𝛽 + 𝛼 − 2𝑣𝑖) − (𝑒 − 𝑣𝑖)
2)) (B11)

∑
𝑣𝑖>𝛽

∑
𝑎𝑗<𝛼

𝜋(𝑣𝑖, 𝑎𝑗)(𝑎𝑗 − 𝑒)(𝑎𝑗 + 𝑒 − 2𝑣𝑖)) (B12)

∑
𝑣𝑖>𝛽

∑
𝑎𝑗>𝛽

𝜋 (𝑣𝑖, 𝑎𝑗)((𝑎𝑗 − 𝑣𝑖)
2 − (𝑎 − 𝑒)(2𝑣𝑖 − 𝛼 − 𝑒) − (𝛽 − 𝑣𝑖)

2

+ 𝐶(𝛽 − 𝛼)(𝛽 + 𝛼 − 2𝑣𝑖)) (B13)

Summing these four expressions gives us (B9).
It’s easy to see that we can ignore the contributions of (B10) and (B12), since 𝐶 does not appear.
We also can ignore all terms in (B11) and (B13) that do not involve 𝐶. That is, we only need to

consider: ∑
𝑣𝑖<𝛼

∑
𝑎𝑗>𝛽

𝜋(𝑣𝑖, 𝑎𝑗)(𝐶(𝛽 − 𝛼)(𝛽 + 𝛼 − 2𝑣𝑖)) +
∑
𝑣𝑖>𝛽

∑
𝑎𝑗>𝛽

(𝐶(𝛽 − 𝛼)(𝛽 + 𝛼 − 2𝑣𝑖)) (B14)

For sufficiently large 𝐶, (B14) is positive if and only if (B9) is positive.
We divide (B14) by 𝐶 and see that:

(B14)∕𝐶 =
∑
𝑖

𝜋(𝑣𝑖, 𝔼(𝑋) > 𝛽)((𝛽 − 𝛼)(𝛽 + 𝛼 − 2𝑣𝑖)) (B15)

= 𝜋(𝔼(𝑋) > 𝛽)
∑
𝑖

𝜋(𝑣𝑖 |𝔼(𝑋) > 𝛽)((𝛽 − 𝛼)(𝛽 + 𝛼 − 2𝑣𝑖)) (B16)

= 𝜋(𝔼(𝑋) > 𝛽)(𝛽 − 𝛼)(𝛽 + 𝛼 − 2𝔼𝜋(𝑋 |𝔼(𝑋) > 𝛽)) (B17)
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In (B17), 𝜋(𝔼(𝑋) > 𝛽) > 0 and 𝛽 − 𝛼 > 0. Given how we chose 𝛼, 𝛽, 𝔼𝜋(𝑋 |𝔼(𝑋) > 𝛽) =
𝔼𝜋(𝑋 |𝔼(𝑋) > 𝛼) < 𝛼. So since 𝛽 > 𝛼, 𝛽 + 𝛼 − 2𝔼𝜋(𝑋 |𝔼(𝑋) > 𝛽) > 0. So (B17) and therefore (B9)
are both positive as desired. □

Schervish-style proof
We now turn to the slightly more in-depth but (we think) illuminating Schervish-style proof. For
simplicity, we’ll assume, without loss of generality, that perfect accuracy receives a score of 0. I.e.,
if 𝑋 is a random variable, then 𝐼𝑋(𝑥, 𝑤) = 0 if and only if 𝑥 = 𝑋(𝑤), where 𝑋(𝑤) is 𝑋’s value at𝑤.
Schervish (1989) proves that for indicator variables, we can construct essentially arbitrary

strictly proper scoring rules by placing various measures over the [0,1] interval as follows. (For
an intuitive explanation of Schervish’s theorem, see Levinstein 2017b.)

TheoremB.16 (Schervish 1989). Let𝑋 be an indicator variable, and let 𝐼𝑋(𝑥, 𝑖) be a function from
[0, 1] × {0, 1} toℝ ∪ {∞}. Suppose 𝐼𝑋(𝑖, 𝑖) = 0, and 𝐼𝑋(𝑥, 𝑖) is strictly increasing (decreasing) for 𝑖 = 0
(𝑖 = 1), that 𝐼𝑋 is continuous in its first argument over (0,1), and such that 𝐼𝑋(𝑖, 𝑗) = lim𝑡→𝑖 𝐼𝑋(𝑡, 𝑗)

for 𝑖, 𝑗 = 0, 1. Then 𝐼𝑋 is a strictly proper scoring rule if and only if there exists a measure 𝜆 on [0,1]
such that:

𝐼𝑋(𝑥, 1) = ∫
1

𝑥

(1 − 𝑡) 𝜆(d𝑡)

𝐼𝑋(𝑥, 0) = ∫
𝑥

0

𝑡 𝜆(d𝑡)

for all 𝑥, where 𝜆 gives positive measure to every interval [𝑎, 𝑏) where 𝑏 > 𝑎.

For example, if we let 𝜆(d𝑡) = 2d𝑡, then 𝐼𝑋(𝑥, 1) = (1 − 𝑥)2, and 𝐼𝑋(𝑥, 0) = 𝑥2, which is the
familiar Brier score.
Campbell-Moore (2020) generalizes Schervish’s result to construct generalized strictly proper

scoring rules for estimates.

Theorem B.17 (Campbell-Moore 2020). Let 𝑋 be a real-valued random variable such that 𝑣0 ≤
𝑋 ≤ 𝑣𝑛, and let 𝐼𝑋(𝑥, 𝑘) be a function from [𝑣0, 𝑣𝑛] × [𝑣0, 𝑣𝑛] toℝ. Suppose 𝐼𝑋(𝑥, 𝑥) = 0 and 𝐼𝑋(𝑥, 𝑦)
is strictly increasing as |𝑥 − 𝑦| increases. Suppose further that 𝐼𝑋(𝑥, 𝑘) is absolutely continuous in its
first argument over (𝑣0, 𝑣𝑛). Then 𝐼𝑋 is a generalized strictly proper scoring rule iff there exists a
measure 𝜆 on [𝑣0, 𝑣𝑛] such that:

𝐼𝑋(𝑥, 𝑘) = ∫
𝑥

𝑘

𝑘 − 𝑥 𝜆(d𝑡)

for all 𝑥, where 𝜆 gives positive measure to every interval [𝑎, 𝑏) where 𝑏 > 𝑎.

A few quick remarks. First, we require any gsp to be absolutely continuous in its first argument
so that we can use the Lebesgue integral. (It is unclear if there is a way to relax this restriction.)
Second, in the above result, we define the integral ∫ 𝑏

𝑎
𝑓(𝑡) 𝜆(d𝑡) = − ∫ 𝑎

𝑏
𝑓(𝑡) 𝜆(d𝑡). This ensures

∫ 𝑥
𝑘
𝑘 − 𝑥 𝜆(d𝑡) ≥ 0. Second, we’ve written the result so that 𝑋 is bounded. This does not restrict

us at all, since we’re assuming all frames have finitely many worlds.
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Campbell-Moore’s result let’s us easily generalize standard rules. For instance, if we again let
𝜆(d𝑡) = 2d𝑡 over [𝑣0, 𝑣𝑛] (where 𝑣0 (𝑣𝑛) is the minimum (maximum) value of 𝑋 in the frame),
then 𝐼𝑋(𝑥, 𝑘) = (𝑘 − 𝑥)2, which is the natural analog of the Brier score for estimates.
We now establish a useful lemma:

Lemma B.18. If 𝜋 totally trusts 𝑃 with respect to 𝑋, then for all 𝑡 ∈ [0, 1]:

1. 𝔼𝜋(𝑋𝟙𝔼(𝑋)≤𝑡) − 𝑡 ⋅ 𝜋(𝔼(𝑋) ≤ 𝑡) ≤ 0;
2. 𝑡 ⋅ 𝜋(𝔼(𝑋) > 𝑡) − 𝔼𝜋(𝑋𝟙𝔼(𝑋)>𝑡) ≤ 0 with strict inequality if 𝜋(𝔼(𝑋) > 𝑡) > 0.
Furthermore, if 𝜋 does not totally trust 𝑃 with respect to 𝑋, then there exist 𝑥, 𝑦 with 𝑥 < 𝑦 such that
for all 𝑡 in [𝑥, 𝑦] either:

3. 𝔼𝜋(𝑋𝟙𝔼(𝑋)≤𝑡) − 𝑡 ⋅ 𝜋(𝔼(𝑋) ≤ 𝑡) > 0; or
4. 𝑡 ⋅ 𝜋(𝔼(𝑋) > 𝑡) − 𝔼𝜋(𝑋𝟙𝔼(𝑋)>𝑡) > 0.

Proof. If 𝜋(𝔼(𝑋) ≤ 𝑡) = 0, then 𝔼𝜋(𝑋𝟙𝔼(𝑋)≤𝑡) = 0, so (1) holds trivially. Likewise, if 𝜋(𝔼(𝑋) > 𝑡) =
0, then 𝔼𝜋(𝑋𝟙𝔼(𝑋)>𝑡) = 0, so (2) holds trivially.
Suppose that 𝜋(𝔼(𝑋) ≤ 𝑡) > 0 and 𝜋 totally trusts 𝑃. Then 𝔼𝜋(𝑋 |𝔼(𝑋) ≤ 𝑡) ≤ 𝑡. Expanding the

definition of conditional expectation:

𝑛∑
𝑖=0

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡)
𝜋(𝔼(𝑋) ≤ 𝑡) 𝑣𝑖 ≤ 𝑡 (B18)

Multiplying both sides by 𝜋(𝔼(𝑋) ≤ 𝑡) and then appealing to the definition of expectation, we get
that if 𝜋 totally trusts 𝑃, then 𝔼𝜋(𝑋𝟙𝔼(𝑋)≤𝑡) − 𝑡 ⋅ 𝜋(𝔼(𝑋) ≤ 𝑡) ≤ 0.
We can obtain (2) through a similar derivation.
Now suppose 𝜋 does not totally trust 𝑃. So, there exists some 𝑡 such that 𝔼𝜋(𝑋 |𝔼(𝑋) ≤ 𝑡) > 𝑡

or 𝔼𝜋(𝑋 |𝔼(𝑋) > 𝑡) ≤ 𝑡. Suppose it’s the former. Then for such a 𝑡:
𝑛∑
𝑖=0

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡)
𝜋(𝔼(𝑋) ≤ 𝑡) 𝑣𝑖 > 𝑡 (B19)

Again, multiplying both sides by 𝜋(𝔼(𝑋) ≤ 𝑡) and appealing to the definition of expectation,
we have 𝔼𝜋(𝑋𝟙𝔼(𝑋)≤𝑡) − 𝑡 ⋅ 𝜋(𝔼(𝑋) ≤ 𝑡) > 0. Since 𝔼(𝑋) can take on only finitely many values,
[𝔼(𝑋) ≤ 𝑡] is equivalent to either [𝔼(𝑋) ≤ 𝑡 + 𝜀] or [𝔼(𝑋) ≤ 𝑡 − 𝜀] for some sufficiently small 𝜀. A
parallel argument shows that if 𝔼𝜋(𝑋 |𝔼(𝑋) > 𝑡) ≤ 𝑡, (4) holds. □

Lemma B.19. If 𝐼𝑋 is a generalized strictly proper scoring rule generated by measure 𝜆 and 𝑃 is
coherent, then:

𝔼𝜋(𝐼𝑋(𝑃)) = ∫
𝑒

𝑣0

𝔼𝜋(𝑋𝟙𝔼(𝑋)≤𝑡) − 𝑡 ⋅ 𝜋(𝔼(𝑋) ≤ 𝑡) 𝜆(d𝑡) (B20)
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+∫
𝑣𝑛

𝑒

𝑡 ⋅ 𝜋(𝔼(𝑋) > 𝑡) − 𝔼𝜋(𝑋𝟙𝔼(𝑋)>𝑡) 𝜆(d𝑡)

+ 𝔼𝜋(𝐼𝑋(𝑒))

= ∫
𝑣0

𝑒

𝑡 ⋅ 𝜋(𝔼(𝑋) > 𝑡) − 𝔼𝜋(𝑋𝟙𝔼(𝑋)>𝑡) 𝜆(d𝑡) (B21)

+∫
𝑒

𝑣𝑛

𝔼𝜋(𝑋𝟙𝔼(𝑋)≤𝑡) − 𝑡 ⋅ 𝜋(𝔼(𝑋) ≤ 𝑡) 𝜆(d𝑡)
+ 𝔼𝜋(𝐼𝑋(𝑒))

Proof. By the definition of expectation and Theorem B.17, we have:

𝔼𝜋(𝐼𝑋(𝑒)) =

𝑛∑
𝑖=0

𝜋(𝑋 = 𝑣𝑖)∫
𝑣𝑖

𝑒

(𝑣𝑖 − 𝑡) 𝜆(d𝑡) (B22)

(Recall: We are defining the integral so that ∫ 𝑣𝑖
𝑒
𝑓(𝑡) 𝜆(d𝑡) = − ∫ 𝑒

𝑣𝑖
𝑓(𝑡) 𝜆(d𝑡).)

We now show that Equation (B20) holds. We have:

𝔼𝜋(𝐼𝑋(𝑃)) =

𝑛∑
𝑖=0

𝑚∑
𝑗=0

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) = 𝑎𝑗)∫
𝑣𝑖

𝑎𝑗

(𝑣𝑖 − 𝑡) 𝜆(d𝑡) (B23)

Fix 𝑣𝑖 in the above equation and consider the inside summation:

𝑚∑
𝑗=0

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) = 𝑎𝑗)∫
𝑣𝑖

𝑎𝑗

(𝑣𝑖 − 𝑡) 𝜆(d𝑡) (B24)

First, divide up the 𝑎𝑗 ’s so that 𝑎0 < … < 𝑎𝑙 ≤ 𝑣𝑖 and 𝑣𝑖 ≤ 𝑎𝑙+1 < … < 𝑎𝑚. So, we can re-write
expression (B24) as:

𝑙∑
𝑗=0

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) = 𝑎𝑗)∫
𝑣𝑖

𝑎𝑗

(𝑣𝑖 − 𝑡) 𝜆(d𝑡) (B25)

+

𝑚∑
𝑗=𝑙+1

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) = 𝑎𝑗)∫
𝑣𝑖

𝑎𝑗

(𝑣𝑖 − 𝑡) 𝜆(d𝑡) (B26)

Consider the first summand on line (B25). We first integrate from 𝑎0 to 𝑣𝑖 , then from 𝑎1 (which is
greater than 𝑎0) to 𝑣𝑖 , then from 𝑎2 to 𝑣𝑖 , etc. So we can re-write line (B25) as:

𝑙∑
𝑗=0

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) ∈ {𝑎0, … , 𝑎𝑗})∫
min(𝑎𝑗+1,𝑣𝑖)

𝑎𝑗

(𝑣𝑖 − 𝑡) 𝜆(d𝑡)
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=

𝑙∑
𝑗=0

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑎𝑗)∫
min(𝑎𝑗+1,𝑣𝑖)

𝑎𝑗

(𝑣𝑖 − 𝑡) 𝜆(d𝑡)

=

𝑙∑
𝑗=0

∫
min(𝑎𝑗+1,𝑣𝑖)

𝑎𝑗

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡)(𝑣𝑖 − 𝑡) 𝜆(d𝑡)

= ∫
𝑣𝑖

𝑎0

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡)(𝑣𝑖 − 𝑡) 𝜆(d𝑡)

= ∫
𝑣𝑖

𝑣0

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡)(𝑣𝑖 − 𝑡) 𝜆(d𝑡) (B27)

The second equality comes from the fact that if 𝑎𝑗 ≤ 𝑡 ≤ 𝑎𝑗+1, then 𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡) = 𝜋(𝑋 =
𝑣𝑖, 𝔼(𝑋) ≤ 𝑎𝑗). The last equality comes from the fact that since 𝑃 is coherent, 𝑎0 ≥ 𝑣0. So,
∫ 𝑎0
𝑣0
𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡)(𝑣𝑖 − 𝑡) 𝜆(d𝑡) = 0.

Applying a similar manipulation to line (B26), we have that the expression on line (B24) is
equivalent to:

∫
𝑣𝑖

𝑣0

𝜋 (𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡)(𝑣𝑖 − 𝑡) 𝜆(d𝑡)

+∫
𝑣𝑚

𝑣𝑖

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) > 𝑡)(𝑡 − 𝑣𝑖) 𝜆(d𝑡) (B28)

Suppose first that 𝑣𝑖 < 𝑒. Then we can re-write expression (B28) as:

∫
𝑣𝑖

𝑣0

𝜋 (𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡)(𝑣𝑖 − 𝑡) 𝜆(d𝑡)

+∫
𝑒

𝑣𝑖

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) > 𝑡)(𝑡 − 𝑣𝑖) 𝜆(d𝑡)

+∫
𝑣𝑚

𝑒

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) > 𝑡)(𝑡 − 𝑣𝑖) 𝜆(d𝑡)

= ∫
𝑣𝑖

𝑣0

𝜋 (𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡)(𝑣𝑖 − 𝑡) 𝜆(d𝑡)

+∫
𝑒

𝑣𝑖

[𝜋(𝑋 = 𝑣𝑖) − 𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡)](𝑡 − 𝑣𝑖) 𝜆(d𝑡)

+∫
𝑣𝑚

𝑒

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) > 𝑡)(𝑡 − 𝑣𝑖) 𝜆(d𝑡)

= ∫
𝑣𝑖

𝑣0

𝜋 (𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡)(𝑣𝑖 − 𝑡) 𝜆(d𝑡)
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+∫
𝑒

𝑣𝑖

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡)(𝑣𝑖 − 𝑡) 𝜆(d𝑡)

+∫
𝑣𝑖

𝑒

𝜋(𝑋 = 𝑣𝑖)(𝑣𝑖 − 𝑡) 𝜆(d𝑡)

+∫
𝑣𝑚

𝑒

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) > 𝑡)(𝑡 − 𝑣𝑖) 𝜆(d𝑡)

= ∫
𝑒

𝑣0

𝜋 (𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡)(𝑣𝑖 − 𝑡) 𝜆(d𝑡) (B29)

+∫
𝑣𝑚

𝑒

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) > 𝑡)(𝑡 − 𝑣𝑖) 𝜆(d𝑡)

+∫
𝑣𝑖

𝑒

𝜋(𝑋 = 𝑣𝑖)(𝑣𝑖 − 𝑡) 𝜆(d𝑡)

The second line on the right-hand side of the first equality comes from the law of total probability,
since 𝜋(𝑋 = 𝑣𝑖) = 𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡) + 𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) > 𝑡).
If 𝑒 < 𝑣𝑖 , we can show using a similar derivation that the expression (B28) is still equivalent

to expression (B29). So, since expressions (B28) and (B29) are always equivalent, we can rewrite
equation (B23) as:

𝔼𝜋(𝐼𝑋(𝑃)) =

𝑛∑
𝑖=0

(
∫

𝑒

𝑣0

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡)(𝑣𝑖 − 𝑡) 𝜆(d𝑡) (B30)

+∫
𝑣𝑚

𝑒

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) > 𝑡)(𝑡 − 𝑣𝑖) 𝜆(d𝑡) (B31)

+∫
𝑣𝑖

𝑒

𝜋(𝑋 = 𝑣𝑖)(𝑣𝑖 − 𝑡) 𝜆(d𝑡)

)
(B32)

First, note the summation of the integrals on line (B32) is equivalent to 𝔼𝜋(𝐼𝑋(𝑒)), i.e.:

𝑛∑
𝑖=0

∫
𝑣𝑖

𝑒

𝜋(𝑋 = 𝑣𝑖)(𝑣𝑖 − 𝑡) 𝜆(d𝑡) = 𝔼𝜋(𝐼𝑋(𝑒)) (B33)

Second, note that the first and second summations on lines (B30) and (B31) simplify as well to:

𝑛∑
𝑖=0

∫
𝑒

𝑣0

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡)(𝑣𝑖 − 𝑡) 𝜆(d𝑡) = ∫
𝑒

𝑣0

𝔼𝜋(𝑋𝟙𝔼(𝑋)≤𝑡) − 𝑡𝜋(𝔼(𝑋) ≤ 𝑡) 𝜆(d𝑡) (B34)
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𝑛∑
𝑖=0

∫
𝑣𝑚

𝑒

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) > 𝑡)(𝑡 − 𝑣𝑖) 𝜆(d𝑡) = ∫
𝑣𝑚

𝑒

𝑡𝜋(𝔼(𝑋) > 𝑡) − 𝔼𝜋(𝑋𝟙𝔼(𝑋)>𝑡) 𝜆(d𝑡) (B35)

If we plug the right-hand sides of Equations (B33), (B34), and (B35) into lines (B30)–(B32), we see
that Equation (B20) holds, which completes the proof of Equation (B20).
To see that Equation (B21) holds, note that in the derivation of line (B27) from line (B25), we

integrated 𝑣𝑖 − 𝑡 first from 𝑎0 to 𝑣𝑖 , then from 𝑎1 to 𝑣𝑖, …, and then from 𝑎𝑙 to 𝑣𝑖 . By the integration
convention we’ve adopted, we instead could have integrated 𝑡 − 𝑣𝑖 first from 𝑣𝑖 to 𝑎𝑙, then from 𝑣𝑖
to 𝑎𝑙−1, …, then from 𝑣𝑖 to 𝑎0. Instead of line (B27), we would have:

∫
𝑣0

𝑣𝑖

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) > 𝑡)(𝑡 − 𝑣𝑖) 𝜆(d𝑡) (B36)

And by an analogous treatment of line (B26), we would see that line (B24) is equivalent to:

∫
𝑣0

𝑣𝑖

𝜋 (𝑋 = 𝑣𝑖, 𝔼(𝑋) > 𝑡)(𝑡 − 𝑣𝑖) 𝜆(d𝑡)

+∫
𝑣𝑖

𝑣𝑚

𝜋(𝑋 = 𝑣𝑖, 𝔼(𝑋) ≤ 𝑡)(𝑣𝑖 − 𝑡) 𝜆(d𝑡)

The rest of the proof goes on to use a mirror image of the above derivation to obtain Equa-
tion (B21). □

Using these Lemmas, we’re now in a position to prove our main accuracy result, Theorem 3.2.

Proof. We first prove the left-to-right direction. Suppose 𝜋 totally trusts 𝑃. By Lemma B.19, Equa-
tion (B20) holds. By Fact (B.18), the first two terms in Equation (B20) are less than or equal to 0
and the last term is 𝔼𝜋(𝐼𝑋(𝑒)). So 𝔼𝜋(𝐼𝑋(𝑃)) ≤ 𝔼𝜋(𝐼𝑋(𝑒)) as desired.
To show that 𝔼𝜋(𝐼𝑋(𝑃)) = 𝔼𝜋(𝐼𝑋(𝑒)) when and only when 𝜋(𝔼(𝑋) = 𝑒) = 1, consider the first

two integrands in Equation (B20). As noted in Fact B.18, the second integrand will be less than 0
for all 𝑡 such that 𝜋(𝔼(𝑋) > 𝑡) > 0. It’s also easy to see that the first integrand will be negative for
all 𝑡 such that both 𝜋(𝔼(𝑋) = 𝑡) = 0 and 𝜋(𝔼(𝑋) ≤ 𝑡) > 0. Unless 𝜋(𝔼(𝑋) = 𝑒) = 1, then, the inte-
grands will be sometimes negative over some range (since there are only finitely possible values
of 𝔼(𝑋)). Therefore, the inequality is strict when 𝜋(𝔼(𝑋) = 𝑒) < 1.
To prove the right-to-left direction, suppose 𝜋 does not totally trust 𝑃. We will show there is

then some gsp scoring rule 𝐼𝑋 such that 𝔼𝜋(𝐼𝑋(𝑃)) > 𝔼𝜋(𝐼𝑋(𝑒)).
Since 𝜋 does not totally trust 𝑃, we appeal to items (3) and (4) of Fact B.18. There exists some

interval [𝑥, 𝑦] such that at least one of the following holds:

1. 𝑦 ≤ 𝑒 and for all 𝑡 ∈ [𝑥, 𝑦], 𝔼𝜋(𝑋𝟙𝔼(𝑋)≤𝑡) − 𝑡𝜋(𝔼(𝑋) ≤ 𝑡) > 0,
2. 𝑦 ≤ 𝑒 and for all 𝑡 ∈ [𝑥, 𝑦], 𝑡𝜋(𝔼(𝑋) > 𝑡) − 𝔼𝜋(𝑋𝟙𝔼(𝑋)>𝑡) > 0
3. 𝑒 ≤ 𝑥 and for all 𝑡 ∈ [𝑥, 𝑦], 𝔼𝜋(𝑋𝟙𝔼(𝑋)≤𝑡) − 𝑡𝜋(𝔼(𝑋) ≤ 𝑡) > 0, or
4. 𝑒 < 𝑥 and for all 𝑡 ∈ [𝑥, 𝑦], 𝑡𝜋(𝔼(𝑋) > 𝑡) − 𝔼𝜋(𝑋𝟙𝔼(𝑋)>𝑡) > 0
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We choose 𝜆 such that 𝜆([𝑣0, 𝑥]) and 𝜆([𝑦, 𝑣𝑚]) < 𝜀 with 𝜆([𝑎, 𝑏]) = 𝑏 − 𝑎 for 𝑎, 𝑏 ∈ [𝑥, 𝑦]. If
(1) or (4) hold, 𝜀 sufficiently small, we force the sum of the first two terms in Equation (B20) to
be positive. If (2) or (3) hold, we force the sum of the terms in Equation (B21) to be positive. This
completes the proof. □
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