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'(R(a, a) v R(a, b) v R(a, c)) • (R(b, a) v R(b, b) v R(b, c)) • (R(c, a) v R(c, b) v
R (c, c))'. In terms of this concept, whose general definition will be given
presently, the central idea of the definition of confirmation here to be developed
assumes this form: A sentence 8 is confirmed by a molecule M if M entails
the 1M-development of 8. As will be seen below, this idea still requires certain
modifications if it is to yield an acceptable concept of confirmation.

In the above illustrations of the concept of the development of 8 we referred
to a domain of objects, and to their satisfying certain conditions. Thus we
left the sphere of purely syntactical analysis and made use of semantical rela­
tionR. I-Iowever, it proves possible to express the intended idea in exclusively
syntactical terms. This is done in the following definition:

4.1 Df. Let C be a finite class of individual constants (not individuals)
and 8 a sentence. Then the C-developm.ent of 8 is a sentence D c(8), which is
determined by the following recursive definition:

A) If C is empty, then D c(8) = 8.
B) If C is not empty, then:

I a. D c("-'8) = "-'D c(8).
b. D c(81 v 82) = D c(81) v D c(82).

c. D c (81 • 82) = D c(81) • D c(82).

d. D c (81 :::> 82) = D c(81) :::> D c(82).

II a. If 8 is atomic, then D c(8) = 8.
b. If 8 is of the form (~)<I> where ~ is an individual variable and <I> a sentence

or a matrix, then:
bl. If <I> contains no free occurrence of~, then Dc(S) = Dc(<I».
b2. If 4> contains free occurrences of ~, then let

be the conjunction of the following sentences, in the order here described:
The sentence obtained from <I> by replacing all free occurrences of ~ by the
alphabetically first (cf. 2.12) individual constant in C; tIle sentence obtained
analogously by means of the alphabetically second constant in C; and so
on. Then

De(S) = DeCII <l>i)·
'rEe

c. If 8 is of the form (E~)4:>, then:
cl. If <I> contains no free occurrence of ~, then D c(8) = D c(4:».
c2. If cI> contains free occurrences of ~, let

be the disjunction of the sentences described under 2.2, taken in the same
order. Then

De(S) = DeC L: cI>!).
'r EC
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Notational conventions: (a) When names of particular. sentences occur
as arguments of 'Dc', the name-forming quotes will be absorbed by the frame
'D c( )'. (b) Also, in sentences of the form D c(· • .) = - - - , where on the
right hand side a quoted sentential name would have to appear, we shall have
the quotes absorbed by the identity si~n.

Thus, e.g., if C = {'a', 'b'}, we shall write

Dc«x)P(x» = P(a) • P(b)

instead of

Dc('(x)P(x)') = CP(a) • P(b)'.

The left-hand side is simplified according to part (a), the right-hand side ac­
cording to part (b) of the notational conventions.

Illustrations oj the above definition.
4.11 Let 8 = '(x) (Ey)R(x, y)'; C = {'a', 'b', 'c'}; then:

D c(8) Dc«Ey)R(a, y) • (Ey)R(b, y) • (Ey)R(c, y» (by B II b2)

Dc«Ey)R(a, y» • Dc«Ey)R(b, y» • Dc«Ey)R(c, y» (by B I c)

Dc(R(a, a) Y R(a, b) Y R(a, c» • Dc(R(b, a) Y R(b, b) Y R(b, c»

• Dc(R(c, a) Y R(c, b) Y R(c, c» (by B II c2)

(R(a, a) Y R(a, b) Y R(a, c» • (R(b, a) Y R(b, b) Y R(b, c»

• (R(c, a) Y R(c, b) Y R(c, c» (by BIb and B II a).

This, incidentally, is the sentence which was given above as the 1M-development
of 8 for M = 'R(a, a) • "-'R(a, b) • R(c, b) • R(b, a)'.

4.12 Let C = {'a', 'b'}, 8 = '(x) (P(x) Y Q(c»'. Then, as is readily verified:
D c(8) = (P(a) Y Q(c) • (P(b) Y Q(c».

4.13 For every molecular sentence M and every finite class C of individual
constants, Dc(M) = M;

Subsequently, the expressions 'c.g.. sentence' and 'c.g. class' will serve as
abbreviations of 'completely generalized sentence' and 'class of completely
generalized sentences,' respectively.

We note the following theorems on C-development:
4.2 Theorem. If C is a finite class of individual constants and 8 1, 8 2 are c.g.

sentences such that 8 1~ 82, then D c(81) ~ D c(82).

Proof. If 8 1 ~ 82, then 8 1::>82 is analytic,IO and hence identically true for
any finite domain;ll Le., D c(81:::)82) is an analytic sentence for every finite class C
of individual constants. Now Dc(81::>82) = Dc(81) ::> Dc(82) (4.1 B I d);
therefore, the latter sentence is analytic, and by virtue of this fact and the modus
ponens rule, D c(81) ~ D c(82).

10 Cf. Hilbert and Bernays, loco cit., p. 155, or Carnap, loco cit. (see footnote 6), p. 142,
T 28-11.

11 Cf. Hilbert and Bernays, loco cit., p. 121, Theorem 1.
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4.21 Theorem. If 81, 8 2 are equivalent c.g. sentences, then D c(81), D c(82)

are equivalent for every finite class C of individual constants. (From 4.2.)
4.3 Theorem. Let C be a finite class of individual constants, K a finite

class of c.g. sentences, Dc(K) the class of the C-developments of the elements
of K, and 8 a c.g. sentence such that K ~ 8; then Dc(K) ~ Dc(8).

Proof. Let

IIT
TeK

be the conjunction of the elements of K taken in anyone order, then

II T~S;
TeK

hence,. by 4.2,

Dc(II T) --+ Dc(S);
TeK

furthermore, by 4.1,

Dc(II T)
TeK

is a conjunction of the C-developments of the elements of K, and therefore
follows from Dc(K);"thus we have

Dc(K) ~ Dc(II T) ~ Dc(8),
TeK

which proves the theorem.
4.4 Theorem. If a class K of c.g. sentences is inconsistent, then, for every

finite C, the class of the C-developments of the sentences of K is also inconsistent.
Proof. K must contain at least one sentence to be inconsistent. Let 8 E K.

Then, 'since K is inconsistent, K ~ "-J8. Hence, by 4.3, Dc(K) ~ DC("-J8), or,
by virtue of 4.1, Dc(K) ~ "-JDc(S). This shows that Dc(K) is inconsistent,
since also Dc(S) E Dc(K).

4.41 Theorem. For every finite C, a contradictory c.g. sentence has a
contradictory C-development. (From 4.4)

4.42 Theorem. For every finite C, an analytic c.g. sentence has an analytic
C-development.

Proof. If 8 is an analytic c.g. sentence, then "-J8 is a contradictory c.g.
sentence; now, by 4.1, Dc(8) is equivalent with "-JDc("-J8); and since, by 4.41,
Dc(~8) is contradictory, Dc(8) is analytic.

4.51 Note. The converse of theorem 4.4 and its corollaries does not hold:
it may happen that for a certain class C of individual constants a c.g. sentence 8
has an analytic or a contradictory C-development without being analytic or
contradictory itself. For example, let 81 = '(x)P(x) Y (x)"-JP(x)', and 82 =
(Ex)P(x) • (Ex)"-JP(x)'. Then, if C contains exactly one element, Dc(81) will be
analytic. Thus, if C = {'a'}, Dc(81) is 'P(a) Y"-JP(a)'. On the other hand,
82 can be true only in a domain of at least two individuals; for a class C con­
taining only one element its C-development is contradictory; thus, if C = {'a'},
then Dc(82) = P(a) • "-JP(a).
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By developing these illustrations a little further, it can also readily be seen
that for a given C and two completely generalized sentences 8 1, 8 2, it may happen
that D c(81) ~ D c(82), while it is not the case that 8 1 ~ 8 2• This shows that
the converse of 4.2 does not hold.

4.52 Note. None of the theorems 4.2 through 4.42 holds for all generalized
sentences, Le., including those which contain individual constants. For let
8 1 = '(x)P(x)', 8 2 = '(x)(P(x) • P(a))', C = {'b'}; then 8 1 ~ 8 2 ; but D c(81) =

'P(b)'; D c(82) = 'P(b) • P(a)', and thus neither D c(81) ~ D c(82) nor even
D c(81) ~ D c(82). This provides counter-examples for 4.2-and thus for 4.3­
as well as for 4.21; to obtain a counter-example for 4.41-and thus for 4.4­
let 8 = '(x)P(x).r-vP(a)', C = feb'}, so that D c(8) = 'P(b) • r-vP(a)', which is
non-contradictory; finally, as counter-example for 4.42, choose 8 = 'P(a) :::>
(Ex)P(x)', C = feb'}, which yields the non-analytic D c(8) = 'P(a):::>P(b)'.

5. Preliminary remarks on the subsequent definitions of confirmation.
We now turn to the systematic construction of a syntactical concept of con­
firmation. We shall begin by formulating a first definition in strict accordance
with the idea outlined in the beginning of section 4: M will be said to confirm S
if M entails the IM-development of 8. Closer examination of the concept thus
determined will reveal certain inadequacies which will then be removed by
constructing a second, revised definition; the latter, in turn, will be replaced
by a modified and more satisfactory final version. Lest the reader be alarmed
by the propsect of being needlessly led astray by a study of certain tentative
definitions which will later be abandoned, it may be well to emphasize that it is
not intended to present here all the various attempts at defining confirmation
which were made in connection with this study. The few variants that will be
considered here have been selected for systematic reasons, namely because they
represent, as it were, successive approximations of the definition finally to be
proposed; in fact, every definition subsequently to be considered presupposes the
preceding ones or certain theorems proved in connection with them.

For reasons which will be exhibited in the following section, the relation of
confirmation, Cf, will, in each of the successive stages of our discussion, be
defined in terms of a narrower relation of direct confirmation, Cfd. The manner
in which Cf is defined in terms of Cfd will remain the same throughout, and the
gradual modifications referred to will concern the definition of Cfd.

6. A fust approximation: Cfdl and Cfl • The following definition of direct
confirmation embodies the idea presented in the beginning of section 4:

6.1 Df. Cfd1(M, 8) if and only if: (a) M is a molecule; (b) 8 is a c.g. sen­
tence; and (c) M ~ D1M(8), where 1M is the class of those individual constants
which occur in lrf.

The following theorems hold for Cfd1 :

6.11 Theorem. Within the class of all c.g. sentences, Cfd1 satisfies the
general consequence condition 3.1; Le., if K is a c.g. class and M a molecule
such that Cfd1(M, T) for every T E K, and if 8 is a c.g. sentence such that
K ~ 8, then Cfd1(.NI, 8).

Proof. In vie\v of 2.32, K may be assumed to be finite. Let D]M(K) be the
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class of the 1M-developments of the elements of K. Then) sillce K ~ S, we
have DIM(K) ~ DIM(S), by 4.3; furthermore, by hypoihesis, M ~ T for every
T E DIM(K); hence: M ~ DIA1(S), and thus Cfd1(M, S).

6.12 Theorem. Cfdl satisfies the general consistency condition 3.2; i.e.J

if M is a consistent molecule and K* the class of all S such tha.t Cfdl(M, S):­
then K*+ {M} is a consistent class.

Proof. Suppose that K*+ {M} is inconsistent. 1"'llen there exists a sentence
11 such that K*+ {j}[} ~ T, K*+ {M} ~ ~T. In view of 2.32, there exists
even a finite subclass K of K* such that K+ {M} ~ T, K+ {M} ~ ~T. Let
SK be the conjunction of the elements of K. Then SK • ltf would be a contra­
dictory sentence. This will now be shown to be impossible. The core of thi8
proof is the following consideration: If SK. M is a contradictory sentence, then
it cannot be satisfied in any domain. But in the domain consisting exclusively
of the individuals mentioned in M, clearly M is satisfiable if, as was presupposed,
it is consistent. And if M is satisfied, then so is SK; for in the finite domain in
question, SK is equivalent with DIM(SK), and the latter sentence is, by hypothe­
sis, a consequence of M, and thus is satisfied whenever Mis.

This idea can be expressed more precisely as follows: Let 1M = {'aI', 'a2',
, .. , 'ak'} ; and let em', 'Sk', 'dsJc ' be abbreviations of the sentences M, SK, D]M(SK)
respectively. (Note. em' is an abbreviation for the sentence designated by
;jlf', etc. These abbreviations cannot occur in L, as no definitions are allowed in
that language; but we may introduce them into the meta-language.) The idea
that in a world containing only the individuals aI, · . · ,ak, the sentence SK
holds if DI M(SK) does, can now be expressed by the statement that the sentence

(x) ((x = at) Y (x = a2) Y • • • Y (x = ak)) :::> (dsk :::> Sk)

is analytic (not in L, which does not contain the identity sign, but in the meta­
language, whose logic has, of course, to include the lower predicate calculus
with identity sign). Now, since by hypothesis M stands in Cfd l to every Sin K,
we have M ~ DI Al(SK); thus, 'm ~ dsk ' is analytic; hence, finally,

( (x) ((x = al) Y (x = a2) Y • • • Y (x = ak)) • 1n) :::> (Sk • 1n)

is analytic. No\v, if SK. lvI, and thus 'Sk. m' were contradictory, then

(x)«x=al) v (x=~) Y . • . Y (x=ak)) • m

would be contradictory, and hence could not be satisfied in any finite domain;
Le., taking 'aI', 'a2', ... , 'ak', and all the extralogical predicates occurring in M
as uninterpreted parameters, there \vould not exist a finite domain in which those
individual and predicate constants could be so interpreted as to make the last
formula a true sentence.12 But actually, the sentence is satisfiable in a domain of
k individuals. We only have to construe 'aI', 'a2', ... , 'ak' as names of any k
individuals, and to interpret the predicates occurring in M in such a way that
M becomes a true sentence under that interpretation. And that is possible
because by hypothesis M is consistent.

12 Cf. Hilbert and Bernays, loco cit., pp. 185-186.
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6.13 Cfdl fails to satisfy the entailment condition; thus, e.g., Cfdl(M, M)
cannot hold for any molecule because of the clause 6.1 (b).

For the same reason, Cfdl violates the general consequence condition; thus,
'Pea)' stands in Cfdl to '(x)P(x)', but not to 'P(a.)'.

These shortcomings, however, can be remedied by defining, in terms of
'Cfdl', a broader concept of confirmation, 'Cfl', as follows:

6.2 Df. Cfl(M, S) if and only if (a) M is a molecule, and (b) S is a con­
sequence of a sentential class K each element T of which satisfies one of the
follo\ving conditions:

1. M'--+ T;

Clause (b) can be symbolized as follows:

(EK)«K --+ S) • (T)(T E K ::) «M,--+ T) v Cfdl(M, T))))

6.21 Theorem. Cfl satisfies the general consequence condition.
6.22 Theorem. Cfl satisfies the general consistency condition.
6.23 Theorem. Cfl satisfies the entailment condition.
6.24 Theorem. Cfdl is a proper subrelation of Cfl.
Proofs of these theorems follow.
Proof of 6.24. (a) Cfdl is a subrelation of Cfl. Let Cfdl(M, S); then there

exists a K which satisfies 6.2 (b), namely {S}; hence Cfl(M, S). (b) Cfl is
not a subrelation of Cfdl. Thus, e.g., 'Pea)' stands in Cfl (via '(x)P(x)') but
not in Cfdl to 'PCb)'.

Proof of 6.23. If M --+ S, then there exists a K which satisfies 6.2 b, namely
{M}.

Proof of 6.21. Let M be a molecule and K l a class such that Cft(M, T) for
every T E K l ; let K l --+ S. We have tp prove that Cfl(M, S). By hypothesis
and 6.2(b), every T E K l is a consequence of a class K T such that M entails or
stands in Cfdl to every element of K T. Let L: K T be the sum of these classes.
Then, clearly, S is a consequence of L: K T , Le., of a class such that M entails or
stands in Cfdl to each of its elements. Hence, by 6.2, Cfl(M, S).

Proof of 6.22. Let M be a consistent molecule and K** the class of all sen­
tences to which M stands in Cfl. Assume K**+ {M} to be inconsistent. Then
K** would be inconsistent, for M E K** by virtue of 6.23. Now, for every
T E [{**, we have by hypothesis Cfl(M, T); Le., T is a consequence of a sen­
tential class K T such that M either entails or stands in Cfdl to each of its ele­
ments. If, therefore, K* is the class of all sentences to which M stands in Cfd!,
then every sentence in K** is certainly a consequence of {M} +K*; and if K**
were inconsistent, then {M} +K* would have to be inconsistent. But that is
impossible in view of 6.12.

The concept of confirmation determined by 6.2 thus satisfies all the formal
conditions of adequacy set up above. As regards its material adequacy, how­
ever, it might be argued that while the basic idea of the definition appears
satisfactory, its formalization in 6.2 involves an unnecessary restriction. Thus,
if a test report contains a certain amount of definitely favorable evidence for a
hypothesis, and in addition some entirely irrelevant statements, then the report
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might well be considered as confirming the hypothesis. Not generally so,
however, according to the above definitions of 'Cfdl' and 'Cfl'. Let, for example,
S = '(x)P(x)'; M I = 'Pea) • PCb)', M 2 = 'Pea) • PCb) • Q(a)', Mg = 'Pea) •
PCb) • Q(e)'. Then D1M1(S) = D 1M2 (S) = 'Pea) • PCb)', and thus Cfdl(Ml, S)
and Cjdl(M2, S); and, by 6.24, Cfl(Mt, S) and Cfl(M2, S); but D1Ma(S) =
'P(a) • PCb) • pee)', and thus M~ does not stand in Cfdl to S; nor does it stand in
Cfl to Seither. (This latter statement can be proved by means of the method
used in the proof of theorem 6.3 below; we omit the details here.)

One might feel inclined to change this situation by defining 'M confirms S' by:
'M has a consequence of molecular form which stands in Cfl to S'. By this
standard, M g \vould confirm S. However, the new criterion is much too liberal:
According to it, the molecule 'Pea) • r-vP(b)' would, by virtue of its consequence
'pea)', confirn1 '(x)P(x)'; and, by virtue of its consequence '~P(b)', it would
confirm '(x)~P(x)'; thus, the consistency requirement would be violated. But
upon somewhat closer inspection the intuitive difficulty which the contemplated
modification was designed to overcome appears anyhow to be of minor sig­
nificance; the concept defined in 6.2 proves to be somewhat narrower than
intuitive usage would require; but clearly it has to be expected that a precise
redefinition of a customarily vague concept will to some extent be at variance
with the intuitive meaning of the original. Besides, the concept introduced
in 6.2 provides sufficient means for stating in what sense M g constitutes, "on the
whole," as it were, favorable evidence for S; namely thus: M 3 has consequences
of molecular form which stand in Cfl to Sl but none which stand in Dscfl to S
(i.e., in Cfl to r-vS; cf. 3.01).

But there is another consequence of the definition of 'Cfl' which requires
consideration here: The conditions which M has to satisfy to confirm a gen­
eralized, but not completely generalized hypothesis appear to be too rigorous.
Let, for example, S = '(y)R(a, y)', M I = 'R(a,a) • R(a,b)'. Now it may be argued
that by the same token by which 'Pea) • PCb)' confirms '(x)P(x)', M I should be
designated as confirming S; analogously, M2 = 'R(a, a) • R(a, b) • R(a, e)', etc.,
should represent confirming evidence for S. But, while 'Pea) • PCb)' does
stand in Cfl to '(x)P(x)', neither M I nor M 2 nor any of the analogous longer
molecules stands in Cfl to S. This will now be proved for M I ; the proof can
readily be extended to the other cases.

6.3 Theorem. Ml = 'R(a, a) • R(a, b)' does not stand in Cfl to
S = '(y)R(a, y)'.

Proof. Note that clause (b) in 6.2 is equivalent with

(EK)«T)(T E K ::> Cfdl.(llf, T)) . (K+ {M} ~ S).

Hence, if the theorem is false, then there exists a class K -in view of 2.32 it may be
assumed finite-such that K+ {MI } ~ Sand Cfdl(MI , T) for every T E K.
Let SK be the conjunction of the elements of K and let 'Sk' be an abbreviation of
that conjunction. Then SK. M l ~ S; Le., 'Sk. R(a, a) • R(a, b)' ~ '(y)R(a, y)'.
Therefore, '(Sk • R(a, a) • R(a, b)) ~ (y)R(a, y)' is an analytic sentence;13 also

13 Cf. Hilbert and Bernays, loco cit., p. 155.
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'Sk :::) «(R(a, a) • R(a., b) :::) (y)R(a, y»' is analytic. But then, in view of the
modus ponens rule, SK ~ '(R(a, a) • R(a, b» ::) (y)R(a, y)', and thus SK ~
'(y)R(a, y) v "-IR(a, a) v "-IR(a, b)'. But since SK, being con1pletely gen­
eralized, contains neither 'a' nor 'b', it follows14 from the last statement that even
SK ~ '(x)(z)(y)R(x, y) v "-IR(x, x) v "-IR(x, z»'; hence Sx ~ '(x) (y)R.Cx, y) v
"-Ilt(x, Y) v (z)"-IR(x, z»', and finally, again replacing the sentence on the right
hand side of the arro\v by an equivalent one, SK ~ '(x)«y)R(x, y) v rovR(x, x»'.
Let S' K be the sentence on the right hand side of the last formula. Then, as
Cfdl(MI , T) for every T E K, we have M l ~ D I Ml (SK); hence, since SK ~ S' K,
M I ~ DIMl (S' K) (by 4.2). But this last statement is false; for DIMl (S' K) is
equivalent to

«R(a, a) • R(a, b» v rovR(a, a» • «R(b, a) • R(b, b) v rovR(b, b).

And the second component of this conjunction does not follow from MI. This
concludes the proof, which can be extended without difficulty to M 2 = 'R(a, a) •
R(a, b) • R(a, c)' and all analogously built longer molecules.

This narrowness in the definition of 'Cfl' is obviously due to the fact that,
according to 6.2, a sentence which is not completely generalized can be confirmed
by a molecule M only by virtue of being a consequence of M and directly con­
firmed c.g. sentences; the relation of direct confirmation having so far been
restricted to c.g. sentences. We shall now proceed to define a relation of direct
confirmation, Cfd2, which contains Cfdl as a subrelation, and which is applicable
also to not-completely-generalized sentences. In terms of it, a corresponding
relation of confirmation, Cf2, will then be defined.

7. A second approximation: Cfd2 and Cf2• A definition of direct confirma­
tion which is applicable to sentences of any form can be obtained from the
definition of Cfd l (6.1) by simply dropping the requirement that S be a c.g.
sentence. This is possible because the concept of C-development, which is
crucial for the definition of direct confirmation, is defined for sentences of any
form. Thus, we obtain the definition:

7.1 Df. Cfd2(M, S) if and only if (a) M is a molecule, and (b) M ~ DIM(S).
In analogy to 6.2, we then define:
7.2 Df. Cf2(M, S) if and only if:

(a) M is a molecule; and
(b) (EK)(K ~ S) . (T)(T E K ::) «111 ~ T) v Cfd2(M, T)))).

The ne\v relation Cf2 is free from that material inadequacy of efl which was
exhibited in the end of the preceding section. Thus, e.g., each of the molecules
'R(a, a) • R(a, b)', 'R(a, a) • R(a, b) • R(a, c)', etc. stands in Cf2 (and indeed in
Cfd2) to '(y)R(a, y)'.

7.11 Note. Thougll the relation Cfd2 is more comprehensive than Cfdl ­

it contains the latter as a proper subrelation-it cannot serve as a general relation
of confirmation, for it does not satisfy all the formal requirements of adequacy.
Thus, e.g., 'R(a, a) • R(a, b)' stands in Cfd2 to the first, but not to the second

14 Cf. Hilbert and Bernays, loco cit., p. 106, schema Q.
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of the equivalent sentences '(y)R(a, y)' and '(y)(R(a, y) • R(a, c))'. This shows
that the requirements 3.1, 3.11, 3.12 are violated and gives a preliminary justi­
fication for the introduction of the further definition 7.2 above.

We note a fe,v theorems concerning Cfd2 which will be needed in subsequent
proofs.

7.12 Theorem. Cfd2 satisfies the conjunction condition 3.13.
Proof. Let M be a molecule and K a finite sentential class such that Cfd2(M,

S)-and thus M ~ D.IM(S)-for every S E K. Let SKbe the conjunction of the
elements of K; then, by 4.1 B I c, DI M(SK) is the conjunction of all DI M(S)
with S E K; hence M ~ DIM(SK) and thus Cfd2(M, SK).

7.13 Theorem. Cfd2(M, M) for every molecule M.-This follows Imme­
diately from 7.1 considering that DIM(M) = M (cf. 4.13).

7.14 Theorem. Cfd2 satisfies the general consistency condition.
Proof. Let M be a consistent molecule, and J(* the class of all S such that

Cfd2(M, S). We have to show that {M}+K* is a consistent class. Since
JJI E K* (7.12), this reduces to proving K* consistent.
Now~ if K* were inconsistent, then it ,vould contain, by virtue of 2.32, a finite

inconsistent subclass K. Let SK be the conjunction of its elements; then, by
7.12, M ~ DIM(SK), while SK is contradictory. This will now be shown to be
impossible.

1111 will contain a finite number of constants, say 'aI', 'a2', etc. SK may con­
tain individual constants; they fall into two classes (either of which may be
empty): the class CI of those constants which are elements of 1M, and the class
C2 of all others. (If, for instance, M = 'R(a, a).R(a, b)' and SK = '(y) (R(a, y) v
U(a, c, d, y)', then 1M = {'a', 'b'}, CI = {'a'}, C2 = {'c', 'd'}.) Every element
of C2 will, of course, also occur in DIM(SK). Now since none of the elements of
C2 occurs in M, and yet M ~ DIM(SK), clearly M must like\vise entail DIM(S)
for any S obtainable from SK by replacing the constants belonging to C2 by
arbitrary other constants.15 (Thus, in the previous illustration, M ~ DIM(SK),
but also M ~ DIM«y)(R(a, y) v U(a, a, e, y))), etc.) Now let us replace in
SK every element of C2 (if any) by some one element of 1M, say by 'al'. Let Sa
be the DIM of the sentence thus obtained. Then clearly M ~ Sa.

Now, if the sentence SK were contradictory, then it would not be satisfiable
in any finite domain.16 But from the preceding considerations it follows that SK
is satisfiable in a domain which has the same number of elements as 1M, say m.
Indeed, we can first choose a domain of m individuals, aI, ~, .. · , am and define
each predicate occurring in M in such a way that on that interpretation M
becomes true. (This is possible because of the presupposed consistency of M.)
Now, the following interpretation of the extra-logical constants in SK will make
SK a true sentence in the domain under consideration: 'aI', 'a2', ... , 'am', in so far
as they occur in SK, are to be names of aI, a2, ... , am respectively. All the
constants of C2 in S-K ('bl ', 'b2', etc.) are interpreted as names of al. For the

15 Cf. Hilbert and Bernays, loco cit., p. 106, schema a.

16 Cf. Hilbert and Bernays, loco cit., p. 121, Theorem 1, and the statement on satisfi­
ability, p. 128, second paragraph.
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predicates in SK, choose the interpretation mentioned before, which makes M a
true sentence. Under this interpretation, the assertion of Sg for the domain
{aI, ... , am} clearly becomes equivalent with that of Sa. But under the given
interpretation, Sa is true since M ---+ Sa. Therefore, there is at least one finite
domain in which SK is satisfiable; hence Sg cannot be contradictory.

The subsequent theorems concerning Cf2 can now readily be proved:
7.21 Theorem. Cf2 satisfies the general consequence condition.
7.22 Theorem. Cf2 satisfies the general consistency condition.
7.23 Theorem. Cf2 satisfies the entailment condition.
7.24 Theorem. Cfd2 is a proper subrelation of Cf2•

The proofs can be omitted here: they are exactly analogous to those of 6.21,
6.22, 6.23, 6.24; the proof of 7.22 makes use of the fact that Cfd2 satisfies the
general consistency condition (cf. 7.14).

7.3 Theorem. Cfl is a proper subrelation of Cf2 •

Proof. a) Let Cfl(M, S), Le.,

(EK)«K ---+ S) • (T)(T E K :::> «llf ---+ T) v Cfdl(M, T)))).

Then, since Cfdl is a subrelation of Cfd2 (cf. 7.11),

(EK)«K ---+ S) • (T)(T E K :::> «M ---+ T) v Cfd2(M, T))));

hence Cf2(M, S).
b) Cf2 is not a subrelation of Cfl: 'R(a, a). R(a, b)' stands in Cf2 to.

'(y)R(a, y)', but not in Cfl, as proved in 6.3.
7.4 Note. The question might arise whether an even more comprehensive

relation of confirmation, say Cfa, might not be obtained from Cf2 by the same
procedure that led from Cfd2 to Cf2, Le., by means of the following definition:

Cfa(M,S) if and only if M is a molecule, and

(7.41) (EK)«K ---+ S) • (T)(T E K :::> «M ---+ T) v -Gf2(M, T))))

And a reiteration of this procedure might promise a further broadening of the
relation of confirmation. Actually, however, all the relations thus obtainable
are coextensive with Cf2• It suffices to show this for Cfa.-If Cf2(M, S), then
certainly Cfa(M, S), for the class K = {S} satisfies the condition 7.41.-For
proving the converse, note first that by virtue of 7.23, the clause '(M ---+ T) v
Cf2(M, T)' in 7.41 can be replaced by the equivalent 'Cf2(M, T)'. Now let
Cfa(M, S); then S is a consequence of a sentential class K such that for every
T E K, Cf2(M, T); and this, by the definition of 'Cf2', means that every T in K
is a consequence of a class K T such that M entails or stands in Cfd2 to each of its
elements. Thus, S is a consequence of the sum of those K T , Le., of a class such
that M entails or stands in Cfd2 to each of its elements; but this means that
Cf2(M, S).

The following examples are intended to illustrate the character of the relations
Cfd2 and Cf2 •

7.61 'P(a)' stands in Cf2 to the sentence '(x)P(x)', and to all its consequences,
such as

a) 'P(a)', 'P(b)', 'P(c)', and any other full sentence of 'P';
b) '(x) «P(x) v Q(x))', '(x) (Q(x) :::> P(x))', '(x)P(x) v (Ey)Q(y)';
c) '(Ex)P(x)'.
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Also, the molecules 'P(a) • P(b)', 'P(a) • P(b) • P(c)', etc. stand in Cf2 to all of the
above sentences.

7.62 'R(a, a) • R(a, b) • R(b, a) • R(b, b)' stands in Cf2 to t(x)(y)R(x, y)', and
so does 'R(a, a)' and again 'R(b, b)'-but no other partial conjunction of the
first molecule. (Thus, while a full sentence of a predicate of degree 1 stands in
Cf2 to any full sentence of the same predicate-cf. 7.61 a-an analogous rule
does not hold for predicates of higher degree.)

7.63 Among others, each of the following molecules stands in Cf2 to
'(x)(P(x) ~ Q(x»': 'rvP(a)', 'rvP(a) V Q(a)', 'Q(a)', 'rvP(a) • Q(b)'.

7.64 Each of the molecules 'R(a, a)'1 'R(a, a) • RCb, a)', 'R(a, b) • R(b, a) •
R(c, c)' stands in Cf2 to '(x) (Ey)R(x, y)', but 'R(a, a) • R(a, b)' does not.

7.65 Cf2 does not generally satisfy the rule that if each of tw'O molecules
separately confirms a hypothesis, then so does their conjunction; for while
intuitively plausible, this rule is incompatible with the special consistency
condition 3.21. Thus, e.g., if M 1 = 'P(a) • P(b)', M 2 = 'rvP(c)', 81 = '(x)P(x)
V (x)~P(x)', then, as is readily verified, Cf2(M1, 8 1) and Cf2(M2, 8 1); but not
Cf2(MI • M 2, 81), because M 1.M2 stands in Cf2 to 82 = (Ex)P(x) • (Ex)rvP(x)',
which is incompatible with 81, and Cf2 satisfies 3.21.

Consider now the following more liberal definition of confirmation \vhich
readily suggests itself: Let Cfda(M, S) if either Cfd2(M, S) or M is a conjunction
of molecules each of which stands in Cfd2 to 8; and let Cfabe defined in terms of
Cfda in exact analogy to 7.2. Our last illustration makes it clear that this
intuitively satisfactory, more comprehensive relation would violate the con­
sistency condition; for M 1.M2 would stand in Cfda (and thus in Cf3) to either of
the incompatible sentences 8 1 and 82•

This case illustrates once more that one of the main difficulties in defining
confirmation lies in striking a balance between that liberality which seems
desirable on intuitive grounds and the formal standards of adequacy, especially
the consistency condition.

7.66 There is however one other intuitive inadequacy inherent in the con­
cepts of Cfd2 and Cf2 which can be remedied by a slight modification of the defini­
tions 7.1 and 7.2. As was pointed out in 4.51, a generalized sentence may have
an analytic or a contradictory C-development without being analytic or contra­
dictory itself. As a consequence of this fact, a molecule M may stand in Cfd2

(or in Dscfd2, i.e., the corresponding relation of direct disconfirmation; cf. 3.01)
to a generalized sentence 8 simply by virtue of the fact that the cardinal number
of 1M is so small as to make D[M(8) analytic (or contradictory, respectively),
while the content of M, intuitively speaking, neither strengthens nor weakens 8.
Let, for example, 8 1 = '(x)P(x) v (x)rvP(x)', 82 = '(Ex)P(x) • (Ex)rvP(x)',
and M = 'P(a)'. Then D1M(81) = P(a) v rvP(a), D1M(82) 'C: P(a) • rvP(a);
hence Cfd2(M, 81) and Dscfd2(M, 8 2), while by intuitive standards M will be
considered as neither confirming nor disconfirming any of the two sentences.

Similar cases can be constructed involving hypotheses in several variables.
Thus the sentence

81 = '(Ex) (Ey) (Ez) (W(x, y, z). ~W(x, z, y). rvW(y, x, z). rvW(z, y, x))'
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cannot be satisfied by any interpretation of 'W' in a domain of less than 3
individuals; indeed, if C contains exactly one or exactly two individual constants
then D c(SI) is readily found to be contradictory. This has the awkward con­
sequence that any molecule M which contains no more than two individual
constants-no matter whether it contains 'W' or not-stands in Dscfd2 to SI,
since DrM(SI) is contradictory.

These inadequacies of our definition of direct confirmation can be eliminated
by a slight modification, to which we now turn.

8. Final version of the definition of confirmation. The following pair of
definitions embodies the modifications in question:

8.1 Df. Cfd (M, S) if and only if (a) M is a molecule, (b) DrM(S) is not
analytic or S is analytic, and (c) M ~ DrM(S).

8.2 Df. Cf(1\tf, S) if and only if:
(a) M is a molecule; and
(b) (EK)«K ~ S) • (T)(T E K ::> «M~ T) v Cfd(M, T)))).

The previous illustrations might seem to s~ggest that the definiens of 'Cfd'
ought to contain, in addition to the clause (b) an analogous provision to the
effect that DIM(S) is not contradictory, or S is contradictory. This restriction,
however, is unnecessary. For while it may happen-as in the case S =
'(Ex)P(x) • (Ex)I'-IP(x)', M = 'P(a)'-that DrM(S) is contradictory \vhile S
is not, we nevertheless do not have Cfd(M, S) unless M is contradictory itself;
and the consequence that a contradictory molecule confirnls every sentence
appears as quite reasonable and is, anyhow, implied by the entailment condition
(cf. 3.32).

As is readily seen, the modified definition is free from those intuitively un­
desirable features of the previous definitions of confirmation which \vere pointed
out in 7.66; in particular, 'P(a)' neither stands in Cfd to '(x)P(x) v (x)I'-IP(x)'
nor in Dscfd to '(Ex)P(x). (Ex)I'-IP(x)'; and, in the case of the above sentence SI
containing the predicate 'W', neither M 1 nor M 2 stand in Dscfd to SI because
they do not stand in Cfd to 1'-1SI; and this is so because 1'-1SI is not analytic,
while both DrMl (I'-IS1) and Dr M2 (I'-IS1) are.

8.11 Theorem. Cfd-is a proper subrelation of Cfd2•

8.12 Theorem. Cfd satisfies the general consistency condition.-This
follows from the analogous theorem for Cfd2 (7.14) in view of 8.11.

8.21 Theorem. Cf satisfies the general consequence condition.
8.22 Theorem. Cf satisfies the general consistency condition.
8.23 Theorem. Cf satisfies the entailment condition. The proofs of these

three theorems are analogous to those of the corresponding theorems for Cf2•

8.3 Theorem. Cf(M, S) if and only if M is a molecule such that

(EI()«K ~ S) • (T)(T E K ~ Cfd(M, T)))

Proof. By virtue of 8.13, 'M ~ T' entails 'Cfd(M, 'r)'; hence the clause
'(M ~ T) v Cfd(M, T)' in 8.2 (b) is equivalent with 'Cfd(M, T)'.

8.41 Theorem. If M is an analytic molecule, then Cf(M, S) if and only if S
is analytic.

Proof. If S is analytic, then M ~ S, hence Cf(M, S) by 8.23; and if Cf(M, S),
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then, by virtue of 8.3, S is a consequence of a class K such that IY! stands in
Cfd to each T E K. Since this implies that M ~ D1M(T), D1M(T) must be
analytic; and by 8.1(b), every T of this kind must be analytic; hence also S.

8.42 Theorem. A molecule M stands in Cf to every S if and only if M is
contradictory. (From 8.23 and 8.22.)

Finally, all the illustrations and general comments concerning Cfd2 and Cf2

which are included in 7.61 through 7.65 apply lilce,vise to Cfd and Cf.
Thus, the concept of confirmation determined by the definitions 8.1 and 8.2

satisfies all our formal conditions of adequacy and at least all those tests of
material adequacy ,vhich have been referred to in the discussion of anyone of the
definitions of confirmation previously considered in this article.

The present study represents only a first attempt to arrive at a systematic
logical theory of confirmation. Its main objectives were to characterize the
issue and its significance as clearly as possible, to suggest certain conditions which
any adequate solution should satisfy, and to prove that the problem thus de­
termined can be solved in purely syntactical terms.

Ho,vever, the proof as embodied in the above construction of a syntactical
definition of confirmation is restricted to languages of the comparatively simple
logical structure of the lower functional calculus without the identity sign.
From the viewpoint of formal logic as well as of the logical analysis of science
it appears highly desirable to generalize the definition of confirmation in two
respects. First, it should be so expanded as to become applicable to more
complex language forms, such as the lower functional calculus with identity
sign, and even the higher functional calculus; and secondly, it would seem
desirable to free the definition of confirmatio~ from the restricting condition
that the confirming sentence has to be of molecular form. The generalization
of the concept of confirmation in these directions represents perhaps the most
important open problem for further research in this field.
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