where σ_i^2 is the variance in dimension i. The maximum scaled difference (used by Maxwell and Buddemeier 2002, for coastal typology) is defined by

$$\max_i \frac{(x_i - y_i)^2}{\sigma_i^2}.$$

17.3 Similarities and distances for binary data

Usually, such similarities s range from 0 to 1 or from -1 to 1; the corresponding distances are usually $1 - s$ or $\frac{1-s}{2}$, respectively.

- **Hamann similarity**
 The Hamann similarity 1961, is a similarity on $\{0, 1\}^n$, defined by
 $$\frac{2|X \Delta Y|}{n} - 1 = \frac{n - 2|X \cap Y|}{n}.$$

- **Rand similarity**
 The Rand similarity (or Sokal–Michener’s simple matching) is a similarity on $\{0, 1\}^n$, defined by
 $$\frac{|X \Delta Y|}{n} = 1 - \frac{|X \cap Y|}{n}.$$
 Its square root is called the Euclidean similarity. The corresponding metric $\frac{|X \Delta Y|}{n}$ is called the variance or Manhattan similarity; cf. Penrose size distance.

- **Sokal–Sneath similarity 1**
 The Sokal–Sneath similarity 1 is a similarity on $\{0, 1\}^n$, defined by
 $$\frac{2|X \Delta Y|}{n + |X \Delta Y|}.$$

- **Sokal–Sneath similarity 2**
 The Sokal–Sneath similarity 2 is a similarity on $\{0, 1\}^n$, defined by
 $$\frac{|X \cap Y|}{|X \cup Y| + |X \Delta Y|}.$$

- **Sokal–Sneath similarity 3**
 The Sokal–Sneath similarity 3 is a similarity on $\{0, 1\}^n$, defined by
 $$\frac{|X \Delta Y|}{|X \Delta Y|}.$$
• **Russel–Rao similarity**
 The **Russel–Rao similarity** is a similarity on \(\{0,1\}^n\), defined by
 \[
 \frac{|X \cap Y|}{n}.
 \]

• **Simpson similarity**
 The **Simpson similarity** (overlap similarity) is a similarity on \(\{0,1\}^n\), defined by
 \[
 \frac{|X \cap Y|}{\min\{|X|,|Y|\}}.
 \]

• **Forbes similarity**
 The **Forbes similarity** is a similarity on \(\{0,1\}^n\), defined by
 \[
 \frac{n|X \cap Y|}{|X||Y|}.
 \]

• **Braun–Blanquet similarity**
 The **Braun–Blanquet similarity** is a similarity on \(\{0,1\}^n\), defined by
 \[
 \frac{|X \cap Y|}{\max\{|X|,|Y|\}}.
 \]

 The average between it and the **Simpson similarity** is the **Dice similarity**.

• **Roger–Tanimoto similarity**
 The **Roger–Tanimoto similarity** 1960, is a similarity on \(\{0,1\}^n\), defined by
 \[
 \frac{|X \Delta Y|}{n + |X \Delta Y|}.
 \]

• **Faith similarity**
 The **Faith similarity** is a similarity on \(\{0,1\}^n\), defined by
 \[
 \frac{|X \cap Y| + |X \Delta Y|}{2n}.
 \]

• **Tversky similarity**
 The **Tversky similarity** is a similarity on \(\{0,1\}^n\), defined by
 \[
 \frac{|X \cap Y|}{a|X \Delta Y| + b|X \cap Y|}.
 \]

It becomes the **Tanimoto, Dice** and (the binary case of) **Kulczynsky 1 similarities** for \((a,b) = (1,1), \left(\frac{1}{2},1\right)\) and \((1,0)\), respectively.
• Mountford similarity
The Mountford similarity 1962, is a similarity on \(\{0, 1\}^n \), defined by
\[
\frac{2|X \cap Y|}{|X||Y \setminus X| + |Y||X \setminus Y|}.
\]

• Gower–Legendre similarity
The Gower–Legendre similarity is a similarity on \(\{0, 1\}^n \), defined by
\[
\frac{|X \Delta Y|}{a|X \Delta Y| + |X \Delta Y|} = \frac{|X \Delta Y|}{n + (a - 1)|X \Delta Y|}.
\]

• Anderberg similarity
The Anderberg similarity (or Sokal–Sneath 4 similarity) is a similarity on \(\{0, 1\}^n \), defined by
\[
\frac{|X \cap Y|}{4} \left(\frac{1}{|X|} + \frac{1}{|Y|} \right) + \frac{|X \cup Y|}{4} \left(\frac{1}{|X|} + \frac{1}{|Y|} \right).
\]

• Yule Q similarity
The Yule Q similarity (Yule 1900) is a similarity on \(\{0, 1\}^n \), defined by
\[
\frac{|X \cap Y| \cdot |X \cup Y| - |X\setminus Y| \cdot |Y\setminus X|}{|X \cap Y| \cdot |X \cup Y| + |X\setminus Y| \cdot |Y\setminus X|}.
\]

• Yule Y similarity of colligation
The Yule Y similarity of colligation (Yule 1912) is a similarity on \(\{0, 1\}^n \), defined by
\[
\frac{\sqrt{|X \cap Y| \cdot |X \cup Y|} - \sqrt{|X\setminus Y| \cdot |Y\setminus X|}}{\sqrt{|X \cap Y| \cdot |X \cup Y|} + \sqrt{|X\setminus Y| \cdot |Y\setminus X|}}.
\]

• Dispersion similarity
The dispersion similarity is a similarity on \(\{0, 1\}^n \), defined by
\[
\frac{|X \cap Y| \cdot |X \cup Y| - |X\setminus Y| \cdot |Y\setminus X|}{n^2}.
\]

• Pearson \(\phi \) similarity
The Pearson \(\phi \) similarity is a similarity on \(\{0, 1\}^n \), defined by
\[
\frac{|X \cap Y| \cdot |X \cup Y| - |X\setminus Y| \cdot |Y\setminus X|}{\sqrt{|X| \cdot |X| \cdot |Y| \cdot |Y|}}.
\]
• **Gower similarity 2**
 The **Gower similarity** 2 (or **Sokal–Sneath similarity** 5) is a similarity on \(\{0, 1\}^n \), defined by
 \[
 \frac{|X \cap Y| \cdot |X \cup Y|}{\sqrt{|X| \cdot |X| \cdot |Y| \cdot |Y|}}.
 \]

• **Pattern difference**
 The **pattern difference** is a distance on \(\{0, 1\}^n \), defined by
 \[
 4\frac{|X \setminus Y| \cdot |Y \setminus X|}{n^2}.
 \]

• **Q_0-difference**
 The **Q_0-difference** is a distance on \(\{0, 1\}^n \), defined by
 \[
 \frac{|X \setminus Y| \cdot |Y \setminus X|}{|X \cap Y| \cdot |X \cup Y|}.
 \]

17.4 Correlation similarities and distances

• **Covariance similarity**
 The **covariance similarity** is a similarity on \(\mathbb{R}^n \), defined by
 \[
 \sum \frac{(x_i - \bar{x})(y_i - \bar{y})}{n} = \frac{\sum x_i y_i}{n} - \bar{x} \cdot \bar{y}.
 \]

• **Correlation similarity**
 The **correlation similarity** (or **Pearson correlation**, or, by its full name, **Pearson product-moment correlation linear coefficient**) \(s \) is a similarity on \(\mathbb{R}^n \), defined by
 \[
 \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_j - \bar{x})^2} \sqrt{\sum (y_j - \bar{y})^2}}.
 \]
 The dissimilarities \(1 - s \) and \(1 - s^2 \) are called the **Pearson correlation distance** and **squared Pearson distance**, respectively. Moreover,
 \[
 \sqrt{2(1 - s)} = \sqrt{\sum \left(\frac{x_i - \bar{x}}{\sqrt{\sum (x_j - \bar{x})^2}} - \frac{y_i - \bar{y}}{\sqrt{\sum (y_j - \bar{y})^2}} \right)}
 \]
 is a normalization of the Euclidean distance (cf., a different one, **normalized \(l_p \)-distance** above in this chapter).

 In the case \(\bar{x} = \bar{y} = 0 \), the correlation similarity becomes
 \[
 \frac{(x, y)}{\|x\|_2 \cdot \|y\|_2}.
 \]