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1 Introduction

The following is a plausible principle of rationality:

PROBABILISM A rational agent’s credences should always be probabilistically
coherent.

To say that an agent’s credences are probabilistically coherent is to say
that such credences can be represented by a function Cr(·) satisfying the following
constraints:

NORMALIZATION For any tautology >, Cr(>) = 1

NON-NEGATIVITY For any proposition φ, 0 ≤ Cr(φ)

FINITE ADDITIVITY If φ and ψ are incompatible propositions, then Cr(φ∨ψ) =
Cr(φ) + Cr(ψ)

It has been argued that PROBABILISM follows given the plausible assumption
that our primary epistemic goal is to represent the world as accurately as possi-
ble. Joyce [1998] and Joyce [2009] argue that for any probabilistically incoherent
credal state C that an agent might have, there is a probabilistically coherent
credal state C∗ that is guaranteed to be more accurate than C no matter what the
world is like, while the reverse is never true. Call this the accuracy-dominance
argument for PROBABILISM. Since it is plausible that a rational agent should try
to have as accurate a credal state as possible, the accuracy-dominance argument,
if successful, would seem to provide good reason to endorse PROBABILISM.

PROBABILISM, however, has some surprising consequences. In particular, it
can be shown that there are cases in which it is impossible for an agent with
moderately good access to her own credal state and a high credence in an obvious
truth to be probabilistically coherent. If PROBABILISM is true, it follows that in
certain cases rationality requires that an agent either be ignorant of her own
credences or be ignorant of an obvious truth.

We might simply accept this consequence of PROBABILISM, despite its prima
facie implausibility. In this paper, I’ll argue that this isn’t the right response.
To this end, I’ll show that the cases in which probabilistic coherence demands
either ignorance of one’s own credal state or ignorance of an obvious truth can
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be used to expose flaws in the accuracy-dominance argument for PROBABILISM.
Once these flaws are exposed, we can see that considerations of accuracy, instead
of motivating PROBABILISM, support the claim that in certain cases a rational
agent’s credences ought to be probabilistically incoherent.

The paper proceeds as follows.
In §2, I present a case in which an agent is guaranteed to be probabilistically

incoherent given that she is moderately sensitive to her own credences and has
high credence in an obvious truth.

In §3, I consider the bearing that this case has on the accuracy-dominance
argument for PROBABILISM. I first outline the accuracy-dominance argument. I
show, by appeal to our earlier case, that there are crucial steps in the argument
that are invalid. We can grant, as the argument assumes, that a credal state is de-
fective insofar as it is guaranteed to be less accurate than some other credal state.
It doesn’t follow, however, that probabilistic coherence is rationally required. For
there are cases in which the most accurate credal state that an agent can have
is one that is probabilistically incoherent. Assuming that an agent ought to try
to be as accurate as possible, it follows that in these cases an agent ought to be
probabilistically incoherent.

In §4, I present the accuracy-dominance argument for PROBABILISM in more
explicit decision-theoretic terms. In decision theory, we can sometimes argue that
an act or act-type is rationally required by showing that the act, or act-type, is
better than all the alternatives no matter what the state of the world. In this
type of case, we say that the act or act-type dominates its alternatives. It is
well known, however, that in order to apply dominance reasoning in this way,
the acts and states must be related in a particular way. We call this relation in-
dependence. In this section, I show that the accuracy-dominance argument for
probabilism, framed in explicit decision-theoretic terms, fails when it is applied to
the case discussed in §2 because the acts and states appealed to in this argument
are not independent. I show, further, that when this defect is corrected, we can
provide an accuracy-dominance argument for the conclusion that in this case it
is rationally required that the agent be probabilistically incoherent.

The case that I appeal to §§2-4 crucially involves a proposition such that
necessarily the truth-value of this proposition depends on a particular agent’s
credence in that very propositions. This raises the question of whether there is
some suitably restricted version of PROBABILISM that might still be made to work.
Is there some large interesting class of propositions such that a rational agent’s
credences over those propositions must always be probabilistically coherent?

In §5, I take up this question and argue that the answer is: no. In principle,
almost any proposition is such that an agent may rationally fail to have prob-
abilistically coherent credences in that proposition and its negation. Nonethe-
less, as a matter of fact, the conditions that allow for this are almost certainly
extremely rare. For any actual agent, there will be a very large class of propo-
sitions such that the agent’s credences in that class of propositions ought to be
probabilistically coherent. But, in principle, this need not be so.
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2 A Prima Facie Problem for Probabilism

In this section, I’ll show that PROBABILISM has the following surprising conse-
quence. In certain cases, PROBABILISM requires a rational agent to satisfy the
following disjunctive obligation: either the agent must have low credence in an
obvious truth or the agent must be insensitive to its own credal state. This dis-
junctive obligation is, I’ll argue, at least prima facie implausible, and so this case
provides us with prima facie reason to be skeptical of PROBABILISM.

In §§3-4, I’ll argue that this skepticism is warranted. This case can be used to
show that in certain situations a probabilistically incoherent credal state maxi-
mizes credal accuracy. This, I claim, gives us good reason to reject PROBABILISM.

Consider an agent who we’ll call ‘Yuko’. Let (∗) refer to the following sentence:

Yuko’s credence that (∗) is true isn’t greater than or equal to 0.5.1

We’ll use ‘Cry’ to abbreviate ‘Yuko’s credence that...’. The above can, then,
be represented as:

(∗) ¬CryT (∗) ≥ 0.5

As an instance of the T-schema we have:

(1) T (∗)↔ ¬CryT (∗) ≥ 0.5

If classical logic is correct (and I’ll assume here that it is), then we shouldn’t
accept every instance of the T-schema.2 As is well known, there are certain
instances of this schema, e.g., instances involving liar sentences, that are incon-
sistent given classical logic. We should certainly reject these biconditionals. In
the vast majority of cases, however, there is no conflict with classical logic. Given
the intuitive plausibility of these biconditionals, if there is no logical reason to
reject an instance of this schema, we should, I think, endorse it.3 (1) is perfectly
consistent with classical logic. We should, therefore, accept this claim.4

We make the following assumptions about Yuko:

1Here we achieve sentential self-reference via stipulation as in Kripke [1975]. This could also
be achieved by a coding technique such as Gödel-numbering.

2It is worth noting that if we give up the assumption that classical logic is correct, then
there are interesting ways of treating the types of cases we’ll be looking at in this section. See
[Author Suppressed] for a discussion of how to treat similar cases that arise for qualitative belief
using non-classical resources.

3There are perfectly general non-ad-hoc treatments of the truth predicate for which this
holds. This will, e.g., hold according to the theory KF. See, e.g., Field [2008] for a description
of this theory.

4For those who are worried about the truth of (1), let me note that this case could be
easily run without appeal to a truth-predicate. What is required for this case is that there be
some proposition φ for which we have: φ ↔ ¬Cry(φ) ≥ 0.5. The claim that (∗) is true is a
particularly simple case, but there are other propositions that could work. For example, we
might assume that Yuko is constituted so that whether she will make a free-throw in basketball
depends on how confident she is that she will make the shot. We can assume that she will make
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(2) Cry(T (∗)↔ ¬CryT (∗) ≥ 0.5) ≥ 1− ε

(3) [CryT (∗) ≥ 0.5]→ [Cry(CryT (∗) ≥ 0.5)) > 0.5 + ε]

(4) [¬CryT (∗) ≥ 0.5]→ [Cry(¬CryT (∗) ≥ 0.5)) > 0.5 + ε]

If ε = 0, then Yuko is completely certain of the truth expressed in (1), and is
at least mildly sensitive to her own credence in the truth of (∗). As ε increases,
Yuko’s credence in (1) decreases and her assumed sensitivity to her credence in
the truth of (∗) increases. These assumptions are jointly satisfiable as long as:
0 ≤ ε ≤ 0.5.5

We can show:

From (2) - (4), it follows that Yuko is probabilistically incoherent.

To see this, first assume: CryT (∗) ≥ 0.5. By (3), we have:

Cry(CryT (∗) ≥ 0.5) > 0.5 + ε. From (2), we know that if Yuko is
probabilistically coherent, then |Cry¬T (∗)− Cry(CryT (∗) ≥ 0.5)| ≤
ε. Thus, assuming that Yuko is probabilistically coherent, we have:
Cry¬T (∗) > 0.5. Given our original assumption, this guarantees that
CryT (∗) + Cry¬T (∗) > 1. But probabilistic coherence requires, in
general, that Cry(φ) + Cry(¬φ) = 1. On the assumption that Yuko
has credence greater or equal to 0.5 in the truth of (∗), it follows that
Yuko is probabilistically incoherent.

Next, assume: ¬CryT (∗) ≥ 0.5. By (4), we have: Cry(¬CryT (∗) ≥
0.5) > 0.5 + ε. From (2), we know that if Yuko is probabilistically co-
herent, then |CryT (∗)− Cry(¬CryT (∗) ≥ 0.5)| ≤ ε. Thus, assuming
that Yuko is probabilistically coherent we have: CryT (∗) > 0.5. But
this is incompatible with our assumption that ¬CryT (∗) ≥ 0.5. It fol-
lows that on the assumption that Yuko doesn’t have credence greater
than or equal to 0.5 in the truth of (∗) that Yuko is probabilistically
incoherent.

Since it follows that Yuko is probabilistically incoherent both on
the assumption that CryT (∗) ≥ 0.5 and on the assumption that
¬CryT (∗) ≥ 0.5, we can conclude that Yuko is probabilistically inco-
herent.

the shot, but only if she is less confident that she will make it than that she will miss. This is
no doubt an unusual situation, but there doesn’t seem to be anything impossible about things
being this way. Instead of setting up the case using the claim that (∗) is true, then, we could
use the claim that Yuko will make the relevant free-throw. We’ll look in more detail at this
type of case in §5. For now, however, I’ll stick with (1).

5If ε > 0.5, then by (3) and (4) we would either have to have Cry(CryT (∗) ≥ 0.5)) > 1
or Cry(¬CryT (∗) ≥ 0.5)) > 1. But, I assume, it is impossible for an agent to have credence
greater than 1 in any proposition. If one rejects this assumption, then one will hold that there
are more values for ε for which (2)-(4) are jointly satisfiable.
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Rational obligations, I assume, are closed under logical consequence. That
is, we have: φ |= ψ ⇒ Oφ |= Oψ. We have seen that Yuko will satisfy the
requirements imposed by PROBABILISM only if either (2) fails to hold, (3) fails to
hold, or (4) fails to hold. If PROBABILISM is true, then it follows that Yuko is
rationally obligated to be such that one of (2)-(4) fail.

For (2) to fail, Yuko must have credence in (1) below 1 − ε. For (3) to fail,
Yuko must have credence greater than or equal to 0.5 in the truth of (∗), but
have at best 0.5 + ε credence that her credence in the truth of (∗) falls in this
range. For (4) to fail, Yuko must have credence greater than or equal to 0.5 in the
truth of (∗), but have at best 0.5 + ε credence that her credence in the truth of
(∗) fails to fall in this range. PROBABILISM thus prohibits Yuko from both being
highly confident that (1) expresses a truth and being somewhat sensitive to her
own credence in the truth of (∗).

This should, I think, strike you as rather surprising. (1), after all, is an obvious
truth. As long as Yuko is aware of what sentence (∗) refers to, it would seem that
she should be rationally permitted in having a high credence in this proposition.
And it is, I think, prima facie implausible that rationality may require an agent
to be ignorant of her own credences. Given the implausibility of the claim that
Yuko is rationally required to either have a low credence in (1) or be insensitive to
her credence in the truth of (∗), we have some reason to doubt that PROBABILISM

is true.
This, of course, doesn’t provide anything like a conclusive argument against

PROBABILISM. For while it is certainly prima facie plausible that Yuko could have
high credence in (1) and be sensitive to her own credal state without thereby
being irrational, PROBABILISM is also prima facie plausible. At present, then, all
we have are a set of prima facie plausible claims that are jointly incompatible.
We don’t yet have clear reason for rejecting PROBABILISM in particular.6 In the
next section, however, I’ll show that on closer inspection this case provides us
with the materials to develop a strong argument against PROBABILISM.

3 Probabilism and Accuracy

We can assess a qualitative doxastic state in terms of how accurate it is. Consider
an agent’s attitude towards a single proposition, φ. If φ is true, we can say:

• Believing φ is more accurate than being agnostic about φ, and being ag-
nostic about φ is more accurate than disbelieving φ.

While, if φ is false, we can say:

6Cases similar to this have been used by Andy Egan and Adam Elga to argue that there are
certain surprising restrictions on what claims a rational agent may have high credence in. See
Elga and Egan [2005]. According to Egan and Elga, the conclusion that we should draw from
this case is that it is impermissible for Yuko to have a high credence in (1). I’ll discuss Egan
and Elga’s argument in §5.
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• Disbelieving φ is more accurate then being agnostic about φ, and being
agnostic about φ is more accurate than believing φ.

It’s plausible to think that our primary epistemic goal in forming beliefs is to
represent matters as accurately as we can. In forming beliefs we aim to have true
beliefs and avoid having false beliefs.

We may appeal to the fact that accuracy is our primary epistemic goal to
justify certain claims about doxastic rationality. For example, we may argue that
it is never rational to believe φ ∧ ¬φ. Since φ ∧ ¬φ is guaranteed to be false,
we are guaranteed to be more accurate if we don’t believe φ ∧ ¬φ than if we do.
Since we ought to try to be as accurate as possible in our judgments, and since
this goal is best achieved by never believing φ∧¬φ, we ought not believe φ∧¬φ.

Just as we can assess a qualitative doxastic state for accuracy, so too can
we assess a quantitative doxastic state, i.e., a credal state. Consider an agent’s
credence in single proposition φ. If φ is true, we can say:

• A higher credence in φ is more accurate than a lower credence.

While, if φ is false, we can say:

• A lower credence in φ is more accurate than a higher credence.

Just as it is plausible to think that our primary goal in forming qualitative
doxastic attitudes is to be as accurate as we can in our judgments of truth value, so
too is it plausible that our primary goal in forming quantitative doxastic attitudes
is to be as accurate as we can in our estimation of truth values.

It is a tricky question exactly how credal accuracy should be measured. There
are numerous ways of measuring the accuracy of credences in particular proposi-
tions that meet the above constraints. And there are numerous ways of measuring
the accuracy of a total credal state given the accuracy of particular credences.

It has been argued, however, in [Joyce, 1998] and [Joyce, 2009], that for any
reasonable way of measuring accuracy the following hold:

PCA 1 For any probabilistically incoherent credal state C, there is a probabilis-
tically coherent credal state C∗, such that C∗ would be more accurate than
C, no matter what the actual world is like.

PCA 2 For any probabilistically coherent credal state C∗, there is no probabilisti-
cally incoherent credal state C, such that (i) C would be at least as accurate
as C∗ no matter what the actual world is like, and (ii) C would be more
accurate than C∗ given at least one possible state of the world.

Given PCA 1 and 2, a powerful argument can be given for PROBABILISM. By
PCA 1, if an agent has a probabilistically incoherent credal state C, there is some
probabilistically coherent credal state C∗ that would have been more accurate
than C no matter what the actual world is like. Assuming that accuracy is our
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primary epistemic goal, it follows that from an epistemic perspective the agent
should see C∗ as being preferable to C. By PCA 2, there is no countervailing reason
to find any probabilistically incoherent credal state preferable to C∗. Thus, from
an epistemic perspective, an agent should always prefer being probabilistically
coherent to being probabilistically incoherent.7

What PCA 1 and PCA 2 show, if they’re correct, is that the goal of credal
accuracy is best achieved by being probabilistically coherent. Assuming that one
ought to try to have credences that are as accurate as possible, it follows that
one ought to be probabilistically coherent.

I’m happy to say that accuracy is our primary epistemic goal. Indeed, I’ll
assume that this is so throughout this paper. But this idea doesn’t support
PROBABILISM. For, both PCA 1 and PCA 2 are false. To show this, I’ll show that
there are cases in which:

There is a probabilistically incoherent credal state C such that, for
any probabilistically coherent credal state C∗, an agent would be
less accurate were her credal state to be C∗ instead of C, no matter
what the actual world is like.

In certain cases, the goal of credal accuracy is best achieved by being prob-
abilistically incoherent. Since one ought to try to have credences that are as
accurate as possible, in such cases one ought to have probabilistically incoherent
credences.

In what follows, we’ll consider an agent who has credences defined over a
finite algebra of propositions P .8 To say that P is an algebra is to say that
membership in the set is closed under negation and finite disjunction. We’ll
represent the agent’s credal state by the function Cr(·).

In arguing for PCA 1 and PCA 2 , Joyce goes to great lengths to try to show
that these claims will hold for a large number of possible ways of measuring the
accuracy of credences. For the sake of simplicity, I will focus on one of these
measures, but none of the points that follow turn essentially on any idiosyncratic
features of this measure.

We assume, then, the following:

BRIER ACCURACY Given an agent with credences Cr(·), located in a world w,
the accuracy of the agent’s credences is given by:

1− [(1/n)
∑
φ∈P

(Cr(φ)− w(φ))2]

7I find this argument quite convincing. But see Easwaran and Fitelson [forthcoming] for
an interesting argument that other epistemic goods may in certain cases rule out accuracy
dominating credal states.

8In order to ensure finiteness, I’ll assume that a proposition is identical to the set of worlds
in which it is true. Of course, for certain purposes we may want think of propositions in a more
fine-grained way, but for our purposes here nothing will be lost by taking this coarse-grained
approach. I should also note that nothing essential turns on our assumption that the algebra
over which the credences are defined is finite, but this will help simplify the presentation at
certain points.
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Here w(φ) is the truth-value of the proposition φ at the world w. This will
be 1, if φ is true at w, and 0, if it is false at w.

(1/n)
∑
φ∈P

(Cr(φ)− w(φ))2

is the so-called Brier score. Amongst those who think that PROBABILISM is sup-
ported by the doxastic goal of accuracy, this is often taken to be the best measure
of a credal state’s inaccuracy.9 Proponents of this measure of inaccuracy will take

1− [(1/n)
∑
φ∈P

(Cr(φ)− w(φ))2]

to provide our measure of accuracy. Given the popularity and plausibility of this
view, it is a nice case to focus on.

Assume that there are n propositions in P . We can represent possible credal
states as points in the space Rn. A point in this space is specified by an n-tuple
< x1, x2, ..., xn >, such that every xi ∈ R. Pick some arbitrary bijection F from
{x : 1 ≤ x ≤ n} onto P . We can then view the point < x1, x2, ..., xn > as repre-
senting a credal state Cr(·), such that Cr(F (i)) = xi. That is, < x1, x2, ..., xn >
represents a credal state in which the agent has credence xi in the proposition
represented by the i-th variable under the mapping F.

We can also represent possible-worlds in such a space. A point < x1, x2, ...,
xn > represents a possible world w just in case for every i such that 1 ≤ i ≤ n,
w(F (i)) = xi.

10 A point representing a possible world will be such that each
xi ∈ {0, 1}; although not every distribution of 0s and 1s will necessarily represent
a genuine possibility. Let’s label the set of points in Rn representing possible-
worlds W .

The set of probabilistically coherent credal states can be identified as the
convex hull ofW . This is the set of points in Rn that can be written as weighted
sums of member of W , with the weightings summing to 1.11 Let’s label this set
C.

Finally, we can define the following measure on Rn. Let x = < x1, x2, ..., xn >,
and y = < y1, y2, ..., yn >. We say:

B(x, y) =df 1− [(1/n)
n∑
i=1

(xi − yi)2]

9See Joyce [2009] for a catalog of the virtues of this measure. See also Leitgeb and Pettigrew
[2010a], Leitgeb and Pettigrew [2010b].

10What I’m calling “possible-worlds” are, of course, not maximally specific metaphysical
possibilities. Instead they are sets of such possibilities that agree on the members of P.

11A little more pedantically: Let W be a function listing the members of W, i.e., a bijective
function from some interval [1, n] of N+ onto W. The convex hull of W is the set of points
x such that there is some set Λ of non-negative numbers such that

∑
λi∈Λ

λi = 1 for which

x =
n∑
i=1

λiW (i).
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We’re now in a position to state the arguments for PCA 1 and PCA 2. The
arguments for these claims rely on the following mathematical results:

THEOREM 1 Given any point in x ∈ Rn−C, there is a point y ∈ C, such that for
every w ∈ W , B(y, w) > B(x,w).12

THEOREM 2 Given any point x ∈ C, there is no point y ∈ Rn − C such that (i)
for every w ∈ W , B(y, w) ≥ B(x,w), and (ii) for some w ∈ W , B(y, w) >
B(x,w).13

Given THEOREM 1 and BRIER ACCURACY, it is tempting to argue for PCA 1 as
follows:

(1a) By THEOREM 1, for any point x—representing a probabilistically
incoherent credal state C—there is a point y—representing a
probabilistically coherent credal state C∗—such that for every
possible world w, B(y, w) > B(x,w).

(1b) By BRIER ACCURACY, B(x,w) is a measure of the accuracy of
having the credal state represented by x in world w.

(1c) Thus, by (1a) and (1b), it follows that for any probabilistically
incoherent credal state C, there is some probabilistically coher-
ent credal state C∗, such that, for any world w, one is more
accurate if one has credence C∗ in w, than if one has credence
C in w.

PCA 1 Thus, from (1c), it follows that for any probabilistically incoher-
ent credal state C, there is a probabilistically coherent credal
state C∗, such that C∗ would be more accurate than C, no mat-
ter what the actual world is like.

Similarly, given THEOREM 2 and BRIER ACCURACY, it is tempting to argue for
PCA 2 as follows:

12For a simple proof, see, e.g., Williams [forthcoming].
13Proof sketch: Let x ∈ C and y ∈ Rn−C. We can show that there is some w ∈ W such that

B(x,w) > B(y, w).
Let H = {z : z ·(x−y) = 1/2((x ·x)−(y ·y))}. This is the hyperplane that runs perpendicular

to the vector x− y containing the point 1/2(x+ y). Let S be the half space such that S = {z :
z · (x − y) ≥ 1/2((x · x) − (y · y))}. Let S̊ denote the interior of S. Note that x ∈ S̊ and for
every z ∈ S̊, B(x, z) > B(y, z).

Since x ∈ C, there is a function W listing the members of W, i.e., a bijective function from
some interval [1, n] of N+ onto W and a set Λ of non-negative numbers such that

∑
λi∈Λ

λi = 1,

such that x =
n∑
i=1

λiW (i). Since x · (x− y) > 1/2((x · x)− (y · y)), it follows that
n∑
i=1

λi(W (i) ·

(x− y)) > 1/2((x · x)− (y · y)). This guarantees that there is some wi ∈ W such that wi ∈ S̊.
And so there is some wi ∈ W, such that B(x,w) > B(y, w).
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(2a) By THEOREM 2, for any point x—representing a probabilistically
coherent credal state C∗—there is no point y—representing a
probabilistically incoherent credal state C—such that (i) for ev-
ery possible world w, B(y, w) ≥ B(x,w), and (ii) for some pos-
sible world w, B(y, w) > B(x,w).

(2b) By BRIER ACCURACY, B(x,w) is a measure of the accuracy of
having the credal state represented by x in world w.

(2c) Thus, by (2a) and (2b), it follows that for any probabilistically
coherent credal state C∗, there is no probabilistically incoherent
credal state C, such that, (i) for any world w, one is at least as
accurate if one has credal state C in w, as one is if one has credal
C∗ in w, and (ii) for some world w, one is more accurate if one
has credal state C in w, than if one has credal state C∗ in w.

PCA 2 Thus, from (2c), it follows that for any probabilistically coherent
credal state C∗, there is no probabilistically incoherent credal
state C, such that (i) C would be at least as accurate as C∗, no
matter what the actual world is like, and (ii) C would be more
accurate than C∗, given at least one possible state of the world.

Both of these arguments, though prima facie plausible, are ultimately flawed.
There are two problems with each argument.

The first problem is with the inference, cited in (1b) and (2b), from BRIER

ACCURACY to the claim that, in our geometric model, B(x,w) measures the accu-
racy of having a credal state x in a world w. Although this may seem completely
obvious, there are good reasons to reject this inference.14 I’m going to bracket
this worry until the next section, however, since there is a more fundamental
problem. For now, then, I’ll assume that (1b) and (2b) are correct.

The more fundamental problem with this argument is that PCA 1 doesn’t
follow from (1a)-(1b), and PCA 2 doesn’t follow from (2a)-(2b). Indeed, while we
may accept both (1a)-(1b) and (2a)-(2b), both PCA 1 and PCA 2 are false. On the
way to showing this, I’ll first show that the inference from (1c) to PCA 1, and the
inference from (2c) to PCA 2, are invalid.

Recall the case of Yuko. This case featured a proposition, viz., the proposition
that (∗) is true, that was true just in case a certain agent did not have credence
at or above 0.5 in that proposition.15 Consider the smallest algebra containing
the proposition expressed by (∗), i.e., the algebra consisting of this proposition,
the negation of this proposition, the logical truth >, and the contradiction ⊥.
Since > is true no matter what, and ⊥ false no matter what, credal accuracy will

14See the discussion of (3a) in the following section.
15This claim is only correct on the assumption that (∗) refers rigidly to an interpreted sen-

tence. If we took (∗) to simply refer to a string of graphemes, then, despite the fact that, in the
actual world, (∗) is true just in case Yuko doesn’t have credence at or above 0.5 that (∗) is true,
this need not hold at some other world in which those graphemes have a different meaning. So,
let’s make that assumption.
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be maximized by having credence 1 in > and credence 0 in ⊥. I’ll assume that
Yuko has these credences in these propositions. Yuko’s possible credal states,
then, will differ in what credences are assigned to the proposition expressed by
(∗), and to its negation.

We can represent these credal states as points in R2. We’ll let x1 represent
the negation of the proposition expressed by (∗), and x2 represent the proposition
expressed by (∗). The point w1 = < 0, 1 >, then, represents the possible world
in which the proposition expressed by (∗) is true and its negation is false, while
the point w2 = < 1, 0 > represents the possible world in which this proposition
is false and its negation is true.

Let’s focus on the credal states in [0, 1]2. We can represent these states graph-
ically. In referring to the following graph, be sure to keep in mind that B(x, y)
will be greater the smaller the Euclidean distance between x and y.

< 0, 1 >

< 1, 0 >

e

dc

w1

w2

f

The probabilistically coherent states are represented by the points on the
line-segment between w1 and w2. Consider the points d = < 1, 0.5 > and e = <
0.75, 0.25 >. Point d represents a probabilistically incoherent credal state, while
point e represents a probabilistically coherent credal state. e is, in fact, one of
the points that accuracy-dominates d in the manner characterized by THEOREM

1. Thus we have: ∀w B(e, w) > B(d, w).16

In this case, however, we can see that it doesn’t follow from the fact that
∀w B(e, w) > B(d, w) that were Yuko to have credal state e she would be more
accurate than if she were to have credal state d. The reason for this is that in
this case which of w1 or w2 is actual depends on what Yuko’s credal state is. In
particular:

• If Yuko were to have credal state d, then w2 would be actual.

16A quick calculation will verify that: B(d,w1) = 0.375 < 0.4375 = B(e, w1), and B(d,w2) =
0.875 < 0.9375 = B(e, w2).
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• If Yuko were to have credal state e, then w1 would be actual.

When asking whether Yuko would be more accurate were she to have credal
state e or credal state d, the only values that we need to compare, then, are
B(d, w2) and B(e, w1). And here we see: B(d, w2) = 0.875 > 0.4375 = B(e, w1).
In this case, then, despite the fact that we have: ∀w B(e, w) > B(d, w), it’s
nonetheless true that:

Yuko would be more accurate were she to have the probabilistically
incoherent credal state d, than were she to have the probabilistically
coherent credal state e.

This case shows us that the inference from (1c) to PCA 1 isn’t valid. While
from: ∀w B(e, w) > B(d, w), we may infer (at least if we grant (1b)) that, for
every world w, e is more accurate as evaluated at w than d, we can’t infer from
this fact that Yuko would be more accurate were she to have credal state e instead
of credal state d, since which world is actual is different depending on whether
Yuko has credal state d or credal state e.

This case similarly shows us that the inference from (2c) to PCA 2 isn’t valid.
In accordance with THEOREM 2, we have that there is no point x ∈ Rn − C such
that (i) ∀w B(x,w) ≥ B(e, w), and (ii) ∃w B(x,w) > B(e, w). We may infer
from this (if we grant (2b)) that there is no probabilistically incoherent credal
state x that is at least as accurate as e as evaluated at every possible world, and
more accurate than e as evaluated at some possible world. But we can’t infer
from this fact that there is no probabilistically incoherent credal state x such
that (i) no matter what the state of the world, were x to be Yuko’s credal state,
Yuko would be at least as accurate as she would be were her credal state to be
e, and (ii) for some state of the world, were x to be Yuko’s credal state, Yuko
would be more accurate than she would were her credal state to be e. For, as
we’ve seen, Yuko would be more accurate were she to have the probabilistically
incoherent credal state d, than the probabilistically coherent credal state e. And
this subjunctive claim holds no matter which world is actual.

Having demonstrated that the inferences from (1c) and (2c) to PCA 1 and PCA

2 are invalid, we now turn to showing that the latter claims are, in fact, false. To
do this, we’ll show:

The most accurate credal state that Yuko could have is represented
by d.

By BRIER ACCURACY, we can measure the accuracy of a credal state Cr(·),
located in a world w, by:

1− [(1/n)
∑
φ∈P

(Cr(φ)− w(φ))2]

If we think of 1 − (Cr(φ) − w(φ))2 as a measure of the accuracy of having a
particular credence in the proposition φ at a world w, then we can think of the
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accuracy of a credal state as simply being the average accuracy of the credences
determined by that state in particular propositions.

The first point to note is that, with respect to the proposition expressed by
(∗), the most accurate credence that Yuko can have is 0.5. To see this, refer back
to our earlier graph. Let l be the line segment connecting points c and d. Let X
be the set of points on the graph at or above l. Let Y be the set of points below
l. We know the following facts:

(5) For every point x ∈ X, were Yuko to have credal state x, then w2 would be
actual.

(6) For every point y ∈ Y , were Yuko to have credal state y, then w1 would be
actual.

From (6), it follows that, for the members of Y , accuracy with respect to (∗)
increases as the value of the x2 co-ordinate (i.e., the vertical coordinate) increases,
with this value always being < .75.

From (5), it follows that, for the members of X, accuracy with respect to (∗)
increases as the value of the x2 co-ordinate decreases, with maximal accuracy
being 0.75. This is reached when the x2 coordinate is 0.5. This shows that the
most accurate credence that Yuko can have in the proposition expressed by (∗)
is 0.5. The credal states with this property are those located on the line l.

If Yuko has a credal state located on l, then we know that w2 is actual. In
w2, the negation of (∗) is true. Given that w2 is actual, the most accurate that
Yuko can be with respect to the negation of (∗) is to have credence 1 in that
proposition. Indeed, if this is the case, Yuko will be maximally accurate with re-
spect to the negation of (∗), i.e., there is no other possible credal state that Yuko
could have which would make her more accurate with respect to the negation of
(∗). Amongst the credal states on l, d is the only credal state in which Yuko has
credence 1 in the negation of (∗). This establishes the following:

d is the unique credal state that has the highest possible accuracy
with respect to both the proposition expressed by (∗) and its nega-
tion.

It follows that were Yuko to have some credal state other than d, she would be
less accurate with respect to at least one of these propositions without there being
any corresponding gain in her accuracy with respect to the other. If, for example,
Yuko were to have some other credal state on l, she would be less accurate with
respect to the negation of (∗) without any corresponding gain in accuracy with
respect to (∗). And if Yuko were to have some other credal state not on l, she
would be less accurate with respect to (∗) without any corresponding gain in
accuracy with respect to the negation of (∗).

Since the accuracy of a credal state is simply the average of the accuracy
of the particular credences sanctioned by that state in particular propositions,
and since credal state d is the unique credal state that maximizes accuracy with

13



respect to both (∗) and its negation, it follows that d is the most accurate credal
state that Yuko could have. Were Yuko to have any other credal state, Yuko
would be less accurate.

Since the probabilistically incoherent credal state represented by d is the most
accurate credal state that Yuko could have, it follows that both PCA 1 and PCA 2

are false. Thus, the argument for PROBABILISM outlined earlier fails.
Indeed, we’re now in a position to see that an appeal to the epistemic goal of

credal accuracy actually motivates the rejection of PROBABILISM. For, given that
one ought to try to have as accurate a credal state as one can, and given that
the most accurate credal state that Yuko can have is one that is probabilistically
incoherent, it follows that Yuko ought be probabilistically incoherent.

4 Accuracy and Decision Theory

In this section, I’ll present the accuracy-dominance argument for PROBABILISM

in more explicit decision-theoretic terms.17 Doing so helps highlight where the
dominance argument for PROBABILISM goes wrong, and how dominance reasoning
may be used to argue against PROBABILISM.

Call a quadruple: D = < A,S,U,C >, a decision problem. Both A and S
are sets of propositions. We call A the set of acts and S the set of states. Think
of the members of A as propositions describing various acts that an agent may
undertake.18 Think of the members of S as propositions describing various ways
the world might be that are relevant to the outcomes that would obtain were the
acts described by the members of A to be performed. We assume that both S and
A form partitions of the space of possible-worlds. U is a utility function that
assigns to propositions of the form Ai ∧ Sj a number that measures of the utility
that would result for the agent were the act described by Ai to be performed in
state Sj. Finally, C is a credence function that is defined on an algebra containing
all propositions of the form Ai ∧ Sj.19

Given a decision problem D, we say:

• An act A1 strongly dominates an act A2 (in D) just in case for every
Si ∈ S, U(A1 ∧ Si) > U(A2 ∧ Si).

• An act A1 weakly dominates an act A2 (in D) just in case (i) for every
Si ∈ S, U(A1 ∧ Si) ≥ U(A2 ∧ Si), and (ii) for some Si ∈ S, U(A1 ∧ Si) >
U(A2 ∧ Si).

17See Pettigrew [2011a] and Pettigrew [2011b] for a helpful survey of some of the uses of
decision theoretic machinery in epistemology.

18We’ll be somewhat promiscuous with what we consider an act. In particular, we’ll count
an agent’s coming to have a particular credal state as an act. This shouldn’t, though, be seen
as an endorsement of a questionable doxastic voluntarism.

19As we’ll see, there are further constraints that we will want to put on decision problems.
For now, however, it is useful to simply think about decision problems as having this minimal
structure.
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Let A and B be sets of acts. We say:

• A act-dominates B just in case (i) for every B ∈ B, there is some A ∈ A
such that A strongly dominates B, and (ii) there is no B ∈ B such that, for
some A ∈ A, B weakly dominates A.

Here are two putative norms that we might appeal to, given a decision prob-
lem, to single out a certain option or set of options as rationally obligatory.

DOMINANCE 1 If Ai strongly dominates all other members of A, then Ai is ra-
tionally required.

DOMINANCE 2 If A and B partition A, and A act-dominates B, then it is ratio-
nally required that one choose some option in A.

(Note that it’s crucial that for DOMINANCE 1 we assume that Ai strongly
dominates every other member of A, and that for DOMINANCE 2 we assume that
A and B partition A.)

We can now present Joyce’s argument for PROBABILISM using this decision
theoretic framework. We can represent an agent’s epistemic situation as a de-
cision problem D. We let A, the set of “acts” available to an agent, be the set
of propositions describing possible credal states, given an algebra P , that a par-
ticular agent could have. We let S, the set of states, be the set of propositions
describing possible distributions of truth-values for the members of P . We let U
be a measure of the agent’s epistemic utility, which we take to be measured by the
accuracy of an agent’s credal state given a particular distribution of truth-values.
We, then, argue as follows:

(3a) If A is the credal state represented by x, and S the state represented by w,
then, by BRIER ACCURACY, U(A ∧ S) = B(x,w).

(3b) By (3a), THEOREM 1 and THEOREM 2, it follows that, relative to D, the set
of probabilistically incoherent credal states are act-dominated by the set of
probabilistically coherent credal states.

(3c) By (3b) and DOMINANCE 2, it follows that an agent is rationally required to
have a probabilistically coherent credal state.

As with the argument in the previous section, we can locate two problems
with this argument for PROBABILISM. Again, it will help in getting clear on where
the argument breaks down to focus on the case of Yuko.

In accordance with the above argument, we can think of Yuko as facing the
following epistemic decision problem, D1

Y . We let A1
Y be the set of propositions

describing possible credences that Yuko could have in the proposition expressed
by (∗), and in its negation.20 We let S1

Y be the set of propositions describing

20We’ll continue to assume that Yuko has credence 1 in > and credence 0 in ⊥.
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possible distributions of truth-values for these propositions. S1
Y will, of course,

have two members: S1, in which the proposition expressed by (∗) is true and its
negation is false, and S2, in which these truth-values are reversed. Finally, we
assume that U1

Y (Ai ∧ Si) = B(x,w), where x is the point in R2 representing Ai
and w is the point representing Si.

The first problem in the above argument is with (3a).21 Grant BRIER ACCU-

RACY. That is, grant that given an agent with credences Cr(·), located in a world
w, the accuracy of the agent’s credences is given by:

1− [(1/n)
∑
φ∈P

(Cr(φ)− w(φ))2]

Still, it doesn’t follow that, in the decision problem at hand, if x represents credal
state A, and w represents a world state S, the epistemic utility of A∧ S is given
by B(x,w).

The reason for this is that in this decision problem not all conjunctions of
the form A ∧ S describe genuine possibilities, i.e, possible situations in which
Yuko has credal state A in state S. For example, let Ae be the proposition that
Yuko has the credal state represented by point e in our earlier graph, and let
S2 be the state represented by point w2. We know that the conjunction Ae ∧ S2

is impossible. Of course, we can assign a number to this conjunction by using
the measure B defined on R2. But this number does not represent the epistemic
utility of the possible situation in which Yuko has the credal state represented by
Ae in state S2; for there simply is no possible situation in which Yuko has this
credal state and S2 obtains.

One way of bringing out the problem here is to note that if we were to say that
B(x,w) always measures the epistemic utility of A∧S (where A is the credal state
represented by x, and S the state represented by w), then we would be committed
to inconsistent assignments of epistemic utility to sets of possible worlds. To see
this, let Ad be the proposition that Yuko has the credal state represented by
point d in our earlier graph and let S1 be the state represented by w1. Since both
Ae ∧ S2 and Ad ∧ S1 are impossible, they both describe the same set of possible
worlds, viz., the null set. But it’s easy to verify that B(e, w2) 6= B(d, w1). Even
if we could make sense of an assignment of utilities to the null set of worlds (and
I doubt we can) we should surely want to hold that this utility is unique. Taking
B(x,w) to measure epistemic utility wouldn’t allow for this.

We can draw a lesson from this first problem:

If we want to model an agent’s epistemic position as a decision
problem, we should make sure that we choose our states so that
they are compatible with each of the agent’s possible credal states.

21The problem that arises here is the same problem that arises with premisses (1b) and (2b)
in the argument in the previous section. I earlier noted that there is a problem with these
premises but deferred in depth discussion. The points that follow should make it clear why
appeal to (1b) and (2b) in our earlier argument is problematic.
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In a moment we’ll see how to do this, but first let’s look at the second problem
with the above argument.

The second problem can be located in the appeal to DOMINANCE 2. Dominance
reasoning is certainly plausible. After all, if some option (or set of options) is
better than the alternatives no matter what the world is like how could it not be
better tout court? It is well known, however, that one needs to be careful in how
one sets up a decision problem if dominance reasoning is not to lead us astray.22

Consider the following situation:

Bounty: A large sum of money has been stolen from a local crime
boss and you’ve been framed. There’s a bounty on your head paying
an exorbitant sum of money in return for your death. You can either
flee to the mountains or stay home. If you stay at home you’re very
likely to be shot, and you know this. If you flee, though, there’s a
decent chance you’ll escape alive, and you know this. You would,
however, prefer to live at your house than in the mountains. You’d
also prefer, somewhat, to be killed at home than to be killed in the
mountains. Of course, you strongly prefer living to dying (whether in
the mountains or at home). What should you do?

We might represent this situation using the following decision problem we’ll
label DB. In DB there are two acts available to you: staying home, and fleeing
to the mountains. And there are two possible states: in one state you are killed,
in another state you live. The utilities can be represented by the following matrix:

Die Live
Stay 1 5
Flee 0 3

Applying either DOMINANCE 1 or DOMINANCE 2 to this decision problem yields
the verdict that the rational thing to do is to stay at home.

But this is clearly wrong. If you stay at home then you’re almost certain to
be killed, while if you flee there’s a good chance you may escape with your life;
and you know these facts. Since you’d prefer to live rather than die, you should
flee.

Pretty much everyone agrees that in this type of case dominance reasoning
leads us astray. It turns out, however, to be a matter of some controversy ex-
actly why this reasoning fails. Everyone agrees that in order to apply dominance
reasoning to a decision problem the acts and states must in some sense be inde-
pendent. However, there is disagreement about exactly what this condition of
act-state independence amounts to.

According to evidential decision theorists, in order to apply dominance

22See Jeffrey [1983] and Joyce [1999] for discussion of some ways in which dominance reasoning
may fail.
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reasoning to a decision problem the acts and states must probabilistically inde-
pendent.23 That is, for each act A and state S, we must have: C(S|A) = C(S).

According to causal decision theorists, in order to apply dominance rea-
soning to a decision problem, the acts and states must be causally independent.24

That is, for each act A and state S, A must neither causally promote nor hinder
S.

In the decision problem we’ve used to model Bounty, our acts and states
are neither probabilistically nor causally independent. Given this fact, causal
and evidential decision theorists will agree that dominance reasoning shouldn’t
be sanctioned in this case.

In the case of D1
Y , the decision problem we’ve used to model Yuko’s epistemic

situation, one should certainly reject the appeal to dominance reasoning if one is
a causal decision theorist. For it’s clear that the acts and states in this decision
problem are not causally independent. Recall that the possible states are truth-
value distributions for the proposition expressed by (∗) and its negation, while the
acts are possible credence distributions in these propositions. Since which state
is actual depends on what Yuko’s credence in (∗) is, Yuko’s acts will causally
influence which state obtains. It follows that if one is a causal decision theorist,
then one should reject the appeal to DOMINANCE 2 in (3c).

In the case of evidential decision theory, matters are a bit more subtle, since,
in order to know whether we can apply dominance reasoning, we need to make
some assumptions about the agent’s credal state. We can show, however, that in
a large class of reasonable cases the appeal to dominance reasoning will be illicit
by the lights of evidential decision theory. And the reason for this is that there
are a large number of reasonable credal states that Yuko could have that would
make the acts and states in D1

Y probabilistically dependent.
For example, assume that Yuko is aware of the way in which the state of

the world is dependent on her credal state. In particular, assume that Yuko’s
credences are such that: Cry(S1|Ae) = 1 and Cry(S1|Ad) = 0. Since Yuko can’t
have both credence 1 and credence 0 in S1, it follows that the acts and states
in this decision problem will not be probabilistically independent. In such cases,
then, if one is an evidential decision theorist, one should reject the appeal to
DOMINANCE 2 in (3c).

The lesson to be drawn here is the following:

If we want to model an agent’s epistemic position as a decision prob-
lem and apply dominance reasoning, we should choose our states
so that they are independent of the agent’s possible credal states.

There is a simple way of reformulating the decision problem representing
Yuko’s epistemic situation that let’s us address both of the defects in the pre-
ceding argument. Instead of representing our states as possible distributions of

23See Jeffrey [1983] for the canonical development of evidential decision theory.
24For developments of causal decision theories see, e.g., Joyce [1999] and Lewis [1981].
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truth-values for the proposition expressed by (∗) and its negation, as we did in
D1
Y , we should instead take our states to be dependence hypotheses.

A dependence hypothesis is a proposition that states for each possible act,
what utility the agent would gain were that act to be performed. Let [U = u]
be a proposition specifying that an agent’s utility is u. We may think of a
dependence hypothesis as a (possibly infinite) conjunction of non-backtracking
counterfactuals of the form: Ai� [U = u], containing exactly one conjunct for
each act Ai.

In D1
Y there were two states representing the two possible distributions of

truth-values for (∗) and its negation. If, instead, we carve up the space of possible
worlds by grouping together worlds that make true the same counterfactuals
connecting credal states and epistemic utilities, then there will only be one state
in our decision problem. For both of our possible worlds w1 and w2 agree about
which world would be actual were Yuko to have a particular credal state. For
example, both w1 and w2 agree that were Yuko to have credal state e, w1 would
be actual. Thus both both w1 and w2 will agree about what epistemic value Yuko
would have were she to have a particular credal state.

Instead of representing Yuko’s epistemic situation by the decision problem
D1
Y , we should represent it by the following alternative decision problem, D2

Y .
Let S2

y be the dependency hypothesis specifying how Yuko’s epistemic utility
counterfactually depends on her credal state. We let S2

Y be the singleton set
consisting of S2

y . We let A2
Y be the set of possible credence distributions that

Yuko can have in the proposition expressed by (∗) and its negation. Finally, we
let U2

Y (A ∧ S2
y) = u↔ (S2

y |= A� [U = u]), i.e., i.e., just in case A� [U = u]
is one of the conjuncts of S2

y .
Note that the members of A2

Y are all compatible with S2
y , and are all causally

independent of S2
y . This is guaranteed, since S2

y is true in every possible world.
Moreover, S2

y will be probabilistically independent of each member of A,
given the assumption that Yuko gives credence 1 to S2

y both unconditionally and
conditional on each member of A. Given that S2

y is true in every possible world,
it’s reasonable to assume that Yuko is not rationally precluded from having a
credal state that satisfies this constraint. We’ll assume that Yuko’s credal state
does satisfy this constraint.

Since the acts and states in D2
Y are independent (in either of the relevant

senses), we can apply dominance reasoning to this decision problem to draw con-
clusions about what sort of credal state Yuko ought to have. And what dominance
reasoning tells us here is that Yuko ought to be probabilistically incoherent.

To see this, recall that in the previous section we showed that the credal state
represented by d maximizes accuracy in the following sense: were Yuko to have
any other credal state, she would be less accurate than she would be if she were
to have the credal state represented by d. There is, then, a non-backtracking
counterfactual Ad � [U = u], such that S2

y |= Ad � [U = u], and such that

for any other A ∈ A2
Y , if S2

y |= A� [U = u∗], then u∗ < u. It follows that for

every A ∈ A2
Y such that A 6= Ad, U

2
Y (Ad ∧ S2

y) > U2
Y (A ∧ S2

y). By DOMINANCE
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1, then, it follows that Yuko ought to have the credal state represented by Ad.
And since Ad is probabilistically incoherent, it follows that Yuko ought to be
probabilistically incoherent.

5 How Far Does The Argument Extend?

I’ve argued that there are cases in which an agent ought to have probabilistically
incoherent credences—at least assuming that credal accuracy is our primary epis-
temic goal. Instead of supporting PROBABILISM, considerations of credal accuracy
give us to good reason to reject this principle.

The case that we focused on, however, is unusual. This case involves a propo-
sition φ such that necessarily: φ is true just in case a certain agent’s credence
in φ is less than a particular value. Most propositions aren’t like this. Most
propositions are such that their truth-values aren’t tied in this way to what our
credences are in those propositions. This raises the question whether there is an
interesting restricted version of PROBABILISM that we may still endorse. Is there
some large algebra P such that, if we restrict our attention to P , it is true that
a rational agent must always have probabilistically coherent credences in those
propositions?

I’ll argue that the answer to this question is: no. For almost any proposition φ,
there is some possible situation in which an agent’s credences in φ and ¬φ may
be rationally probabilistically incoherent. As a matter of fact, the conditions
that allow for this are, I think, extremely rare. For actual agents, then, there
will be a large algebra—perhaps the whole algebra over which their credences
are defined—such that it is true that those agents ought to have probabilistically
coherent credences in those propositions. But this is a contingent fact.

We’ve seen that an agent’s epistemic situation with respect to an algebra of
propositions P can be represented as a decision problem D in which the set of
states S consist of maximal specifications of how the agent’s epistemic utility
counterfactually depends on her credences in the members of P . Given such a
decision problem, we can appeal to principles of rational decision making, such
as DOMINANCE 1 and DOMINANCE 2, to argue that certain credal states, or sets
of credal states, are rationally obligatory. Dominance reasoning, however, can
only be applied to a limited range of decision problems. Where there is no act
that dominates all its competitors, DOMINANCE 1 falls silent. Where there is no
set of acts that act-dominates all its competitors, DOMINANCE 2 falls silent. To
determine the rational act(s) in these cases we need a more general principle of
rational decision making.

Call a decision problem proper, if S is a set of dependency hypotheses and C
is a credence function that is probabilistically coherent over the smallest algebra
containing every proposition of the form Ai∧Sj. Given a proper decision problem
D, we can define the causal expected utility of an act A, UC(A), as follows:

UC(A) =df

∑
S∈S

C(S)U(A ∧ S)
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We can further define the evidential expected utility of an act A, UE(A), as
follows:

UE(A) =df

∑
S∈S

C(S|A)U(A ∧ S)

We can now formulate two more putative principles of rational decision mak-
ing:

CUP If C is a rational credal state and UC(A1) > UC(A2), then A1 is rationally
preferable to A2.

EUP If C is a rational credal state and UE(A1) > UE(A2), then A1 is rationally
preferable to A2.

Causal decision theorists will endorse CUP, while evidential decision theorists
will endorse EUP. Since evidential and causal expected utilities can come apart,
CUP and EUP will sometimes give contradictory verdicts. In what follows, however,
we can remain neutral on the question of which of these two principles we should
endorse.

I’ll now argue, by appeal to CUP and EUP, that even in cases in which there
is no necessary connection between the truth of a proposition and an agent’s
credence in that proposition, an agent may be rationally probabilistically inco-
herent. Even for such propositions, there are cases in which, by a rational agent’s
own lights, accuracy is better achieved by being probabilistically incoherent than
probabilistically coherent.

Consider the proposition that Yuko will make a particular free-throw. Name
this proposition FT. Clearly, there is no necessary connection between the truth-
value of FT and Yuko’s credence in this proposition.

Consider the smallest algebra containing FT. This consists of >, ⊥, FT,
and ¬FT. We’ll assume that Yuko has credence 1 in > and credence 0 in ⊥.
Yuko’s possible credal states, then, differ with respect to this algebra just over
the credences assigned to FT and ¬FT.

We may think of Yuko’s epistemic situation regarding this class of propositions
as a decision problem D3

Y . The set of acts, A3
Y , is the set of possible credences

that Yuko could have in FT and ¬FT. Unlike with D2
Y , however, there will

be more than one dependence hypothesis stating how Yuko’s epistemic utility
depends counterfactually on members of A3

Y . The reason for this is that, unlike
with (∗), there is no necessary connection between the truth-value of FT and
Yuko’s credence in FT.

Assume that as a matter of contingent fact Yuko is an extremely accurate free-
throw shooter, but only when her credence is less than 0.5 that she will make the
free-throw. In particular, assume that the following counterfactual claims hold:

(7) If Yuko were to have credence less than 0.5 in FT, then FT would be true.
[(Cry(FT) < 0.5)� FT]
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(8) If Yuko were to have credence greater than or equal to 0.5 in FT, then FT
would be false. [(Cry(FT) ≥ 0.5)� ¬FT]

It’s easy to see that (7) and (8) together entail, for any A ∈ A3
Y , a coun-

terfactual: A� [U = u], where [U = u] specifies the agent’s epistemic utility
given the credences specified in A.25 (7) and (8), thus, jointly entail a particular
dependence hypothesis and are jointly incompatible with all other dependence
hypotheses. Since they both obtain, they settle which dependence hypothesis
obtains. Call this dependence hypothesis S3

y . According to S3
y , Yuko’s epistemic

utility depends on her credences in FT and its negation in exactly the same man-
ner that her epistemic utility depends on her credences in (∗) and its negation
according to S2

y .
To show that Yuko may rationally fail to have probabilistically coherent cre-

dences in FT and its negation, we make the following assumptions:

(9) Yuko’s credence in S3
y is 0.9.

(10) Yuko’s credal state is probabilistically coherent over the smallest algebra
containing every proposition of the form Ai∧Sj, for Ai ∈ A3

Y and Sj ∈ S3
Y .

(11) Yuko’s credences are such that the members of A3
Y and the members of S3

Y

are probabilistically independent.

(12) The credal profile ascribed in (9)-(11) is rational.

There are numerous credal states that satisfy (9)-(11). Shortly, I will discuss
the further assumption that this credal profile may be rational. First, however, I’ll
show that from (9)-(12) it follows by either CUP or EUP that Yuko may rationally
fail to have probabilistically coherent credences in FT and ¬FT.

Let Ad be the member of A3
Y according to which Yuko has credence 0.5 in FT

and credence 1 in its negation. Let AP be the set of probabilistically coherent
credences in FT and its negation. We first show:

From (9)-(10), it follows that, for every A ∈ AP , UC(Ad) > UC(A).

We assume that C is a probabilistically coherent credence distribution
over the smallest algebra containing every proposition of the form
Ai ∧ Sj, for Ai ∈ A3

Y and Sj ∈ S3
Y .

25Justification: For every A ∈ A3
Y , either A |= Cry(FT) < 0.5 or A |= Cry(FT) ≥ 0.5. This

ensures that (Cry(FT) < 0.5) � FT and (Cry(FT) ≥ 0.5) � ¬FT jointly entail, for every
A ∈ A3

Y , either A� FT or A� ¬FT. The accuracy of members of A3
Y is determined solely

by whether or not FT is true or false. We have, then, for every A ∈ A3
Y , A ∧ FT |= [U = u]

and A ∧ ¬FT |= [U = u∗], for some propositions [U = u] and [U = u∗]. It follows, then, from
the fact that (Cry(FT) < 0.5)� FT and (Cry(FT) ≥ 0.5)� ¬FT entail, for every A ∈ A3

Y ,
either A� FT or A� ¬FT, that they entail, for every A ∈ A3

Y , some proposition of the
form: A� [U = u].
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The epistemic utility of having the credal state represented by Ad in
state S3

y is 0.875. This gives us a lower bound on the causal expected
utility of Ad. If C(S3

y) = x, then UC(Ad) ≥ x(0.875).

Amongst the probabilistically coherent credal states, the most ac-
curate state in S3

y will be the state represented by point f in our
geometric model. If Yuko has this credal state, she will have credence
0.5 in FT and credence 0.5 in its negation. Let Af be the proposition
according to which Yuko has this credal profile. The epistemic utility
of having the credal state represented by Af in state S3

y is 0.75. This
gives us an upper bound on the causal expected utility for A ∈ AP .
If C(S3

y) = x, then for any A ∈ AP , UC(A) ≤ x(0.75) + (1− x)1.

Given this lower bound on the expected utility of Ad, and this upper
bound on the expected utility of members of AP , we can show that
there are values of x, such that if C(S3

y) = x, then for every A ∈ AP ,
UC(Ad) > UC(A).

To show this, we first calculate the value for x at which the lower
bound for Ad equals the upper bound for members of AP . To do
this we set x(0.875) = x(0.75) + (1 − x)1, and solve for x. A quick
calculation shows that this equality holds when x = 1

1.125
≈ 0.89. It

follows that whenever x > 0.89, the lower bound for Ad will be greater
than the upper bound for the members of AP . Thus, if C(S3

y) > 0.89,
then for every A ∈ AP , UC(Ad) > UC(A).

From (9)-(10), it therefore follows that for every A ∈ AP , UC(Ad) >
UC(A).

Given this fact and our assumption that the credal profile ascribed by (9)-(10)
is rational, it follows from CUP that Ad is rationally preferable to every A ∈ AP .
If one endorses CUP, then one should hold that Yuko is not rationally required to
have probabilistically coherent credences.

From (11), it follows that for every A ∈ A, UE(A) = UC(A). Thus, we have
that UE(Ad) > UE(A), for every probabilistically coherent credal state A ∈ AP .
Given this fact and (12), it follows from EUP that Ad is rationally preferable to
every A ∈ AP . If one endorses EUP, then one should hold that Yuko is not
rationally required to have probabilistically coherent credences.

Nothing in this argument turns on any features of FT that couldn’t, at least in
principle, be shared by almost any other contingent proposition. Assuming that
this argument works, we have, then, a fairly general recipe for generating cases
in which an agent may rationally fail to have probabilistically coherent credences
in a contingent proposition and its negation.

The one substantive assumption that a proponent of CUP or EUP may question
in order to block this argument is (12), i.e, the assumption that the credal profile
imposed by (9)-(11) is rational. If one rejects this claim, then one must hold that
it is impossible for Yuko to have a credal state satisfying (9)-(11) without being
guilty of a rational failure. Why would this be?
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There are three options:

• One could hold that Yuko would be irrational in virtue of having a credal
state that is probabilistically coherent over the smallest algebra containing
every proposition of the form Ai ∧ Sj, for Ai ∈ A3

Y and Sj ∈ S3
Y .

• One could hold that Yuko would be irrational in virtue of such a credence
distribution making the members of A3

Y and S3
Y probabilistically indepen-

dent.

• One could hold that Yuko would be irrational in virtue of having a high
credence in S3

y .

I can’t see any good reason for endorsing either of the first two options. The
third option, however, has been endorsed by some authors. Let me now explain
why some have thought that it would be irrational for Yuko to have a high
credence in S3

y and why we shouldn’t agree.
Call an anti-expert about φ one who is reliably mistaken in their judgments

about φ.26 S3
y entails that Yuko is an anti-expert about FT. According to Andy

Egan and Adam Elga, it is never rational for an agent to have a high credence in
a proposition that entails that she is an anti-expert about some proposition φ.27

If this were right, then our argument for the possibility of rational probabilistic
incoherence for propositions such as FT could be blocked by rejecting (12).

Egan and Elga’s argument that it is never rational to have a high-credence
that one is an anti-expert about some proposition φ hinges on the following fact:

ANTI-EXPERTISE If an agent has a high credence that she is an anti-expert about
φ and, in addition, is sensitive to her own credence in φ then she will be
probabilistically incoherent.28

We’ve already seen a simple case illustrating this. (1) ascribes to Yuko anti-
expertise about the truth of (∗). And in §2 we demonstrate that if Yuko has a
high credence in (1) and is somewhat sensitive to her own credence in the truth
of (∗), then she is guaranteed to be probabilistically incoherent.

Egan and Elga endorse PROBABILISM. In addition, they endorse the following
principle:

26Following Sorensen [1988], we can distinguish two types of anti-expertise. Focus, for the
moment, on qualitative beliefs. We say that an agent is a commissive anti-expert about the
proposition φ, just in case either it’s the case that ¬φ and the agent believes φ, or it’s the case
that φ and the agent believes ¬φ, i.e., just in case (¬φ ∧B(φ)) ∨ (φ ∧B(¬φ)). We say that an
agent is an omissive anti-expert just in case either it’s the case that ¬φ and the agent believes
φ, or it’s the case that φ and the agent doesn’t believe φ, i.e., just in case φ ↔ ¬Bφ. If we
switch to talking about credences, we can then distinguish varying degrees of commissive and
omissive anti-expertise.

27See Elga and Egan [2005]. This same claim is defended in the case of qualitative belief in
Sorensen [1988].

28See Elga and Egan [2005] for the general argument.
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RATIONAL INTROSPECTION A rational agent must be responsive to its own credal
state.

PROBABILISM, RATIONAL INTROSPECTION and ANTI-EXPERTISE together entail that
it is rationally impermissible for an agent to have high credence in her own anti-
expertise.29 Thus, according to Egan and Elga: “It is never rational to count
oneself as an anti-expert because doing so must involve either [probabilisitic]
incoherence or poor access to one’s own beliefs.”30

The conclusion of this argument is, it must be admitted, quite surprising. In
the case of (1), we noted that as long as Yuko is aware of which sentence (∗) refers
to, it would seem, prima facie, that she should be able to have a high rational
credence in this proposition. After all, it’s obvious that (1) is true, given which
sentence (∗) refers to. Similarly, in the case of S3

y . As we set up the case, this
proposition is true. Moreover, we could assume that Yuko has excellent evidence
for its truth. Perhaps she has been the subject of extensive testing, and it has
been determined that every time she has shot a free-throw and was at least 0.5
confident that she would make it, she has missed, and that every time she has
shot a free-throw and has been less than 0.5 confident that she would make it,
she has made it. Given enough evidence of this type, it seems hard to deny that
it could be rational for Yuko to be highly confident in the truth of S3

y .
Of course, these prima facie considerations could be outweighed if we had

strong reason to endorse both PROBABILISM and RATIONAL INTROSPECTION. How-
ever, we’ve already seen that there is good reason to reject PROBABILISM. Given
this, it seems gratuitous to hold, despite its prima facie implausibility, that Yuko
can never rationally have high credence in S3

y .
There is another reason to reject Egan and Elga’s argument which is, I think,

of independent interest. Egan and Elga infer from the fact that PROBABILISM

and RATIONAL INTROSPECTION are jointly incompatible with the claim that it
is rational to believe that one is an anti-expert that it must be irrational to
believe that one is an anti-expert. There is, however, good reason to think that
PROBABILISM and RATIONAL INTROSPECTION are themselves jointly unacceptable.
Even if one is not antecedently convinced of the falsity of PROBABILISM, one should
still not be persuaded by Egan and Elga’s argument.

Here’s why we shouldn’t accept both PROBABILISM and RATIONAL INTROSPEC-

TION. We can show that if PROBABILISM is true, then in certain cases it is ratio-
nally required that an agent have poor introspective access to its credences. (In
a moment, we’ll see how this works in detail.) Given this, if we were to endorse
both PROBABILISM and RATIONAL INTROSPECTION, then we would be committed
to the existence of a rational dilemma. In particular, we would be committed
both to the claim that rationality requires of a certain agent that the agent have
good access to its credences and that the agent have poor access to its own cre-
dences. However, the following is a plausible general constraint on principles of

29This follows given a plausible multi-premiss closure principle for rational obligations: φ, ψ |=
γ ⇒ Oφ,Oψ |= Oγ.

30Elga and Egan [2005] p. 83.
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rationality:

OUGHT-CAN It must always be possible for an agent to meet the requirements
imposed by rationality.

Since there are situations in which it is impossible to meet all of the require-
ments imposed by PROBABILISM and RATIONAL INTROSPECTION, it follows, given
OUGHT-CAN, that we shouldn’t endorse both of these principles.

Of course, one might simply bite the bullet here and accept that an agent may
sometimes be faced with a rational dilemma. But this seems to me to be poorly
motivated. I think we do better if we let OUGHT-CAN guide our judgments in
this case, and infer that PROBABILISM and RATIONAL INTROSPECTION aren’t both
correct.

To see how an agent may be doomed to probabilistic incoherence just given
a moderate sensitivity to its own credal state, let us consider another agent who
we’ll call ‘Hiro’.

Let (#) name the following sentence:

Hiro’s credence in the proposition expressed by (#) isn’t greater
than or equal to 0.5.

We’ll use ‘Crh’ to abbreviate ‘Hiro’s credence in...’ and we’ll use ‘ρ’ to ab-
breviate ‘the proposition expressed by’. The above can, then, be represented
as:

(#) ¬Crhρ(#) ≥ 0.5

Note that since both ‘(#)’ and ‘ ‘¬Crhρ(#) ≥ 0.5’ ’ refer to the same sentence,
we have:

(13) ρ(#) = ρ‘¬Crhρ(#) ≥ 0.5’

We’ll assume the following facts about Hiro’s introspective powers. We’ll
assume that if Hiro has credence greater than or equal to 0.5 in the proposition
expressed by (#), then Hiro has credence greater than 0.5 in the proposition that
he has credence greater than or equal to 0.5 in the proposition expressed by (#).
We’ll also assume that if Hiro does not have credence greater than or equal to 0.5
in the proposition expressed by (#), then Hiro has credence greater than 0.5 in
the proposition that he does not have credence greater than or equal to 0.5 in the
proposition expressed by (#). We can represent these assumptions as follows:

(14) [Crhρ(#) ≥ 0.5]→ [Crh(ρ‘Crhρ(#) ≥ 0.5’) > 0.5]

(15) [¬Crhρ(#) ≥ 0.5]→ [Crh(ρ‘¬Crhρ(#) ≥ 0.5’) > 0.5]
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We can show:

From (13) - (15), it follows that Hiro is probabilistically incoherent.

Assume: ¬Crhρ(#) ≥ 0.5. By (13), we can substitute ‘ ρ‘¬Crhρ(#)
≥ 0.5’ ’ for ‘ρ(#)’ within attitude ascriptions salva veritate. Thus,
from our assumption and (13), we have: ¬Crh(ρ‘¬Crhρ(#) ≥ 0.5’)
> 0.5. But from our assumption, it follows, given (15), that we have:
Crh(ρ‘¬Crhρ(#) ≥ 0.5’) > 0.5.

Since the assumption that ¬Crhρ(#) ≥ 0.5 leads to a contradiction,
it follows, given (13)-(15), that Crhρ(#) ≥ 0.5, i.e., that Hiro has cre-
dence at least as great as 0.5 in the proposition expressed by (#). But
now we can show that Hiro is doomed to probabilistic incoherence.

For probabilistic coherence requires that Hiro’s credence in the propo-
sition expressed by (#) and his credence in its negation sum to one,
i.e., that Crh(ρ‘¬Crhρ(#) ≥ 0.5’) +Crh(ρ‘Crhρ(#) ≥ 0.5’) = 1. But
given that Hiro has credence at least as great as 0.5 in the proposition
expressed by (#), we can show that it follows that Crh(ρ‘¬Crhρ(#) ≥
0.5’) + Crh(ρ‘Crhρ(#) ≥ 0.5’) > 1.

From Crhρ(#) ≥ 0.5, it follows, given (13), that: Crh(ρ‘¬Crhρ(#) ≥
0.5’) > 0.5. But from Crhρ(#) ≥ 0.5 and (15) it follows that:
Crh(ρ‘Crhρ(#) ≥ 0.5’) > 0.5. Thus, we have: Crh(ρ‘¬Crhρ(#) ≥
0.5’) + Crh(ρ‘Crhρ(#) ≥ 0.5’) > 1.

We have seen that Hiro will satisfy the requirements imposed by PROBABILISM

only if either (14) or (15) fail to hold. If PROBABILISM is true, it follows that it
is a requirement of rationality that Hiro be such that either (i) he has credence
greater than or equal to 0.5 in the proposition expressed by (#), but has at best
0.5 credence, i.e., is at best agnostic, that his credence in this proposition is in
this range, or (ii) he fails to have credence greater than or equal to 0.5 in the
proposition expressed by (#), but has at best 0.5 credence, i.e., is at best agnostic,
that his credence in this proposition fails to be in this range. PROBABILISM, thus,
demands that Hiro be insensitive to his own credal state.

One natural worry about this case is the appeal to propositions. Why should
we assume that (#) does in fact express a proposition that could serve as the
object of Hiro’s doxastic attitudes? I take it that the worry here stems from the
self-referential nature of (#). In response, let me say the following.

First, we should fix on some diagnostic tests for whether a sentence φ expresses
a proposition. I take it that a sufficient condition for φ to express a proposition
is if φ can be embedded under metaphysical or doxastic operators in a way that
results in a true sentence. For the resultant sentence could be true only if it
expressed a proposition; and such a sentence could express a proposition only if
its component sentences expressed propositions. A sentence’s failure to express
a proposition is something that infects any sentence of which it is a part.
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Given this, we can show that a sentence is not, in general, precluded from
expressing a proposition in virtue of the fact that it contains a term that purports
to refer to the proposition expressed by that sentence.

One way to achieve sentential self-reference is via stipulation, as in the case
of (#). Another is via a definite description that picks out the sentence in which
the definite description occurs. Imagine, for example, that in room 301 there is a
single blackboard, and on that blackboard is written the following sentence: ‘The
proposition expressed by the sentence on the blackboard in room 301 is not true.’
In this case, the definite description: ‘the sentence on the blackboard in room
301’, refers to the very sentence of which that definite description is a constituent.
And so the definite description: ‘the proposition expressed by the sentence on
the blackboard in room 301’ purports to refer to the proposition expressed by
that sentence.

To argue that this sentence does indeed express a proposition it suffices to
argue that this sentence can embed under metaphysical and doxastic operators
in a way that results in a true sentence.

It seems fairly obvious that this sentence can embed under doxastic operators
and yield a true sentence. For example, let John be someone who believes that
there is just one sentence written on the blackboard in 301 and that that sentence
is: ‘2 + 2 = 5’. Let John further believe that the proposition expressed by the
sentence written on the blackboard in 301 is the proposition that 2 + 2 = 5 and
that this is not true. Given these beliefs it would seem that John believes that
the proposition expressed by the sentence written on the blackboard in 301 is not
true. It would seem, then, that we can perfectly well embed: ‘The proposition
expressed by the sentence on the blackboard in room 301 is not true.’, under
the operator ‘John believes that...’ and get a true sentence. But if that’s the
case then it must be that ‘The proposition expressed by the sentence on the
blackboard in room 301 is not true.’ expresses a proposition.

Similarly, it seems clear that this sentence can embed under metaphysical
modal operators and produce a true sentence. Consider a possible world in which
the sentence written on the blackboard in 301 is ‘2 + 2 = 5’. We assume that in
this world the proposition expressed by the sentence written on the blackboard
in 301 is just the proposition that 2 + 2 = 5. In this world, then, the proposition
expressed by the sentence written on the blackboard in room 301 is not true. But
then it follows that it is possible that the proposition expressed by the sentence
written on the blackboard in room 301 is not true.31 It would seem, then, that
we can embed: ‘The proposition expressed by the sentence on the blackboard in
room 301 is not true.’, under the operator ‘It is possible that...’ and get a true
sentence. And if that’s the case, then ‘The proposition expressed by the sentence
on the blackboard in room 301 is not true.’ must express a proposition.

The above reflections show that a sentence is not barred from expressing a
proposition simply in virtue of containing a term that purports to refer to the
proposition expressed by that sentence. The fact that (#) contains such a term

31Of course, this is only true on the de dicto reading of the above sentence.
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does not, then, provide us with good reason to deny that this sentence expresses
a proposition. In the absence a more convincing reason to the contrary, I think
we should, therefore, assume that (#) does indeed express a proposition that can
serve as the object of Hiro’s doxastic attitudes.

Given that (#) expresses a proposition, we can see that there are going to
be cases in which an agent with moderate introspective powers is doomed to
probabilistic incoherence. For this reason, we shouldn’t accept both PROBABILISM

and RATIONAL INTROSPECTION.
We’ve seen two reasons that we shouldn’t accept Egan and Elga’s argument

that it is irrational for an agent to self-ascribe anti-expertise. Although one
could try to block our earlier argument for the claim it is rational for Yuko to
have probabilistically incoherent credences in FT and its negation by maintaining
that it is irrational for Yuko to have a high credence in S3

y , this has been shown
to be poorly motivated.

Even for a contingent proposition such as FT, then, there can be situations
in which, by a rational agent’s own lights, accuracy isn’t maximized by having
probabilistically coherent credences. Assuming that an agent ought to try to
make her credences as accurate as possible, in such cases an agent may rationally
fail to have probabilistically incoherent credences.

PROBABILISM, then, doesn’t just fail when we look at propositions such as that
expressed by (∗) that concern an agent’s own credences. In principle, almost any
proposition could be such that an agent could rationally fail to have credences in
that proposition and its negation that sum to 1.

Of course, in order for this argument to apply in a particular case, an agent
must rationally have high confidence that there is a certain counterfactual con-
nection between her having a low credence in a particular proposition and the
proposition being true. Such counterfactual connections are rare, as are cases in
which an agent has evidence supporting such connections. As a matter of con-
tingent fact, then, I think it is plausible that for any actual agent there will be
some large algebra of propositions P , such that the agent’s credences over this
set of propositions ought to be probabilistically coherent. But things could have
been otherwise.

6 Conclusion

I began this paper by showing that PROBABILISM has a surprising consequence.
In certain cases, PROBABILISM demands that an agent either be insensitive to her
own credal state or be ignorant of an obvious truth. Looking more closely at this
case, we have seen that it provides us with the material to mount a strong case
against PROBABILISM.

A prima facie compelling argument for PROBABILISM claims that probabilistic
coherence is rationally required because it serves the goal of representing the world
as accurately as possible. I’ve argued that the central premiss of this argument
is false. In certain cases, credal accuracy is best served by being probabilistically

29



incoherent. Considerations of accuracy, instead of providing us with a reason to
accept PROBABILISM, provide us with a reason to reject this principle.
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