Q & A Session: Bonus Material

Branden Fitelson

Branden Fitelson

Q & A Session: Bonus Material

11

Full Belief & Judgment Aggregation

Comparative Probability & Pr-Representability

• Some (*e.g.*, Duddy and Piggins) worry that our naïve (Hamming) measure of inaccuracy "double-counts".

The most widely used metric in the literature is the Hamming metric. This is simply the number of propositions over which the two individuals disagree. So the distance between $\{B(p), B(q), B(p \& q)\}$ and $\{B(p), D(q), D(p \& q)\}$ is 2. But therein lies the problem. The proposition $\neg(p \& q)$ is a logical consequence of p and $\neg q$, and p & q is a logical consequence of p and q. So, given that the individuals both accept p, the disagreement over p & q is implied by the disagreement over q. The Hamming metric appears to be double counting because it ignores the fact that the propositions are logically interconnected.

- One might have thought that the robustness of our result $(\mathcal{R}) \Rightarrow (WADA)$ allows us to sidestep this problem.
- However, no constant/rigid weighting scheme + additive distance measure can (generally) accommodate these types of "relative informativeness" relations among propositions.

Full Belief & Judgment Aggregation

Comparative Probability & Pr-Representability

• Sharon Ryan (now on website) gives an argument *for* (CB) as a rational requirement, which uses these three premises.

The Closure of Rational Belief Principle (CRBP). If S rationally believes p at t and S knows (at t) that p entails q, then it would be rational for S to believe q at t.

The No Known Contradictions Principle (NKCP). If *S* knows (at *t*) that \bot is a logical contradiction, then it would *not* be rational for *S* to believe \bot (at *t*).

The Conjunction Principle (CP).

If *S* rationally believes p at t and *S* rationally believes q at t, then it would be rational for *S* to believe $\lceil p \& q \rceil$ at t.

- Ryan's (CRBP) & (NKCP) have analogues in our framework (which *are* coherence requirements). But, (CP) does *not*.
- (SPC) If $p \models q$, then any **B** s.t. $\{B(p), D(q)\} \subseteq \mathbf{B}$ is incoherent.
- (NCB) Any **B** such that $\{B(\bot)\}\subseteq \mathbf{B}$ is incoherent.
- \neg (CP) *Not* every **B** s.t. {B(p), B(q), D(p & q)} \subseteq **B** is incoherent.

Branden Fitelson

Q & A Session: Bonus Material

2

Full Belief & Judgment Aggregation $\circ \circ \bullet \circ \circ \circ$

Comparative Probability & Pr-Representability

- People who voice the "double counting" worry tend to presuppose that *deductive cogency* is a rational requirement. In particular, they tend to presuppose:
- (MPC) If $\{p_1, ..., p_n\}$ entails q, then any belief set **B** containing $\{B(p_1), ..., B(p_n), D(q)\}$ is *epistemically incoherent*.
- We call this (MPC), because it is similar to *multi-premise closure*. Of course, we *reject* (MPC). However, we *accept*:
- (SPC) If p entails q, then any belief set \mathbf{B} containing $\{B(p), D(q)\}$ is *epistemically incoherent*.
- (SPC) follows from (WADA). So, *some* degree of sensitivity to "relative informativeness" emerges from our approach.
- We think this is *the right amount* of sensitivity to "relative informativeness." So, we are not too bothered by the DCW.
- It is an open question whether there is a way of defining distance such that (MPC) follows from (WADA) [or (\mathcal{R})].

Branden Fitelson O & A Session: Bonus Material

Branden Fitelson O & A

O & A Session: Bonus Material

- Briggs, Cariani, Easwaran & Fitelson (now on website) apply "coherence" to *aggregation paradoxes*. Coherence *can* fail to be preserved by majority rule, but only on weird agendas.
- Consider a language w/16 state descriptions $s_1, ..., s_{16}$. Let:

$p \stackrel{\text{\tiny def}}{=} s_1 \vee s_2 \vee s_3 \vee s_4$	$q \stackrel{\text{\tiny def}}{=} s_1 \vee s_5 \vee s_6 \vee s_7$
$\gamma \stackrel{\text{\tiny def}}{=} s_2 \vee s_5 \vee s_8 \vee s_9$	$s \stackrel{\text{\tiny def}}{=} s_3 \vee s_6 \vee s_8 \vee s_{10}$
$t \stackrel{\text{def}}{=} S_4 \vee S_7 \vee S_9 \vee S_{10}$	$\Sigma \stackrel{\text{def}}{=} \{p,q,r,s,t\}$

- (i) Any two sentences in Σ are logically consistent.
 - because any pair shares a state description.
- (ii) Any three sentences in Σ are logically inconsistent.
 - because every state description occurs exactly twice.
- (iii) Any four sentences in Σ are coherent (if jointly believed).
 - Non-dominance is ensured by the fact that some such judgment sets will *fail* to contain a subset β such that, at every world, a majority of β 's members are inaccurate.
- (iv) Σ is incoherent (if jointly believed: $B(\Sigma)$).
 - At every w, most of $B(\Sigma)$'s members are inaccurate.

Branden Fitelson

Q & A Session: Bonus Material

Full Belief & Judgment Aggregation

Comparative Probability & Pr-Representability

Full Belief & Judgment Aggregation $\circ \circ \circ \circ \circ \bullet$

Comparative Probability & Pr-Representability

- Our main result for full belief implies that if **B** is representable by some Pr-function *via* a "strict $\frac{1}{2}$ -threshold," then **B** must be coherent (*viz...* non-dominated).
- For majority acceptance on individually consistent and complete inputs this is clearly true. The probability function in question is just the pattern of individual votes:

For all
$$p$$
, $Pr^*(p) \stackrel{\text{def}}{=} \frac{\# \text{ of judges for } p}{\# \text{ of total judges}}$

- To verify this, note that $Pr^*(\cdot)$ satisfies the Pr-axioms. Additivity is the only axiom that deserves comment.
 - Suppose p, q are m.e. If p is accepted by $\frac{r}{v}$ of the judges and q is accepted by $\frac{s}{v}$ of the judges, then (by consistency + completeness) $p \vee q$ will be accepted by $\frac{r+s}{v}$ of the judges.
- \therefore By our main result and the existence of $Pr^{\star}(\cdot)$, it follows that majority rule on consistent and complete profiles always yields *coherent* aggregations. That is, if judges satisfy (CB), then their majority aggregate satisfies (WADA).

Full Belief & Judgment Aggregation

Branden Fitelson

• Recall, our axioms for *comparative probability* (which we called \mathbb{C}_2) were as follows (where $p \succeq q \stackrel{\text{def}}{=} p \succ q \lor p \sim q$).

q r

В

B

D

B

В

В

B

• Each judge can be *coherent* because judgment sets with 4/5

beliefs (and 1/5 disbeliefs) over Σ can be *non*-dominated.

• This is because there will be worlds in which a majority of

make state description s_1 true, p, q and $\neg t$ are all true.)

any judgment set containing these judgments must be

• On the next slide, we'll sketch a proof of our positive JA-Theorem. The key will be to use $(\mathcal{R}) \Rightarrow (WADA)$.

such judgments are accurate. (For example: in worlds that

• However the (80%!) majority believes *all* members of Σ . And,

dominated. So, majority rule doesn't preserve coherence. □

Q & A Session: Bonus Material

В

В В

В

В D

 J_2

 J_3

Majority

S t \overline{D}

В

D

Totality. $(p \geq q) \vee (q \geq p)$.

Transitivity. If $p \succeq q$ and $q \succeq r$, then $p \succeq r$.

- (A1) $\top \succ \bot$.
- (A2) If $p \models q$, then $q \succeq p$.
- (A5) If $\langle p, q \rangle$ and $\langle p, r \rangle$ are mutually exclusive, then:

$$q \succeq r \Longleftrightarrow (p \vee q) \succeq (p \vee r).$$

- de Finetti conjectured that these axioms were sufficient to ensure *full* representability of \succeq by a probability function (\mathbb{C}_4).
- de Finetti reported that there are no (\mathbb{C}_4) -counterexamples involving algebras \mathcal{B}_n containing $n \leq 4$ states. [This is non-trivial to do by hand, but easy with today's computers.]
- Interestingly, there are (\mathbb{C}_3) -counterexamples when $n \geq 5$. This was discovered several years later by Kraft et. al..

Branden Fitelson

O & A Session: Bonus Material

• We won't write down the entire Kraft *et. al.* ordering \geq as it involves a complete ranking of 32 propositions. Instead, we focus only the following, salient 8-proposition fragment.

≥	\mathfrak{s}_1	$\mathfrak{s}_2 \vee \mathfrak{s}_4$	$\mathfrak{s}_3 \vee \mathfrak{s}_4$	$\mathfrak{s}_1 \vee \mathfrak{s}_2$	s ₂ ∨ s ₅	$\mathfrak{s}_1 \vee \mathfrak{s}_4$	$\mathfrak{s}_1\vee\mathfrak{s}_2\vee\mathfrak{s}_4$	$\mathfrak{s}_3 \vee \mathfrak{s}_5$
\mathfrak{s}_1	1	1	0	0	0	0	0	0
$\mathfrak{s}_2 \vee \mathfrak{s}_4$	0	1	0	0	0	0	0	0
$\mathfrak{s}_3 \vee \mathfrak{s}_4$	1	1	1	1	0	0	0	0
$\mathfrak{s}_1 \vee \mathfrak{s}_2$	1	1	0	1	0	0	0	0
$\mathfrak{s}_2 \vee \mathfrak{s}_5$	1	1	1	1	1	1	0	0
$\mathfrak{s}_1 \vee \mathfrak{s}_4$	1	1	1	1	0	1	0	0
$\mathfrak{s}_1 \vee \mathfrak{s}_2 \vee \mathfrak{s}_4$	1	1	1	1	1	1	1	1
\$ 3 ∨ \$ 5	1	1	1	1	1	1	0	1

- This example satisfies (\mathbb{C}_2) , but violates (\mathbb{C}_3) .
- Dana Scott gave necessary and sufficient conditions for full Pr-representability (\mathbb{C}_4); and, Fishburn gave similar conditions for partial Pr-representability (\mathbb{C}_3).

Branden Fitelson

Q & A Session: Bonus Material

Full Belief & Judgment Aggregation

Comparative Probability & Pr-Representability

Comparative Probability & Pr-Representability

- Here is Scott's Axiom, which is an infinite schema.
 - (SA) Let $X, Y \in \prod_m \mathcal{B}$ be (arbitrary) sequences of propositions (from \mathcal{B}_n), each having length m > 0. Let $\mathbf{X} = \langle x_1, \dots, x_m \rangle$ and $Y = \langle y_1, \dots, y_m \rangle$. If conditions (i) and (ii) are satisfied:
 - (i) **X** and **Y** have the same number of truths in every state of \mathcal{B}_n .
 - (ii) For all $i \in (1, m]$, $x_i \succeq y_i$.

then, condition (iii) must also hold

- (iii) $y_1 \succeq x_1$.
- Scott shows that {Totality, (A1), $p \geq \bot$, (SA)} are necessary and sufficient for full Pr-representability of $\succeq [viz., (\mathbb{C}_4)]$.
- Let (SA_m) be the *m*-instance (m > 0) of the schema (SA).
- Trivially, (A1) entails (SA₁), *i.e.*, Totality entails Reflexivity.
- It is well known that $(SA_2) \Rightarrow (A5)$ and $(SA_3) \Rightarrow$ Transitivity.
- **Q**: What needs to be *super-added* to (\mathbb{C}_2) to ensure (\mathbb{C}_4) ?

- Here is a proof that the 8-proposition fragment above cannot even be *partially* represented by any Pr-function. Note that \succeq contains the following four *strict* judgments:
 - 1. $\mathfrak{s}_1 \succ \mathfrak{s}_2 \vee \mathfrak{s}_4$
 - 2. $\mathfrak{s}_3 \vee \mathfrak{s}_4 \succ \mathfrak{s}_1 \vee \mathfrak{s}_2$
 - 3. $\mathfrak{s}_2 \vee \mathfrak{s}_5 \succ \mathfrak{s}_1 \vee \mathfrak{s}_4$
 - 4. $\mathfrak{s}_1 \vee \mathfrak{s}_2 \vee \mathfrak{s}_4 \succ \mathfrak{s}_3 \vee \mathfrak{s}_5$
- Suppose \geq does have a partial Pr-representation. Then there exists some probability mass function $\mathfrak{m}(\cdot)$ [with five masses $m_i = m(s_i)$] satisfying these four constraints:
 - (i) $m_1 > m_2 + m_4$
 - (ii) $m_3 + m_4 > m_1 + m_2$
 - (iii) $m_2 + m_5 > m_1 + m_4$
 - (iv) $\mathbf{m}_1 + \mathbf{m}_2 + \mathbf{m}_4 > \mathbf{m}_3 + \mathbf{m}_5$
- But, (i)-(iv) entail that 0 > 0. Contradiction, *OED*.

Branden Fitelson

Q & A Session: Bonus Material

- Newsflash: (A5) \Rightarrow (SA₂) and (A2) & (A5) \Rightarrow (SA₃). \therefore (A5) and (SA_2) are equivalent, as are (A2) & (A5) and $(SA_2) & (SA_3)!$
- The Kraft *et. al.* counterexample to (C_3) involves (SA_4) .
- \therefore A: The universal claim " $(\forall m \ge 4)(SA_m)$ " is exactly what needs to be *super-added* to (\mathbb{C}_2) , in order to ensure (\mathbb{C}_4) .
- Fun Fact: Let $(SA_n^m) \stackrel{\text{def}}{=} the \langle m, n \rangle$ -instance of (SA), where n is the # of states in \mathcal{B} . The Kraft et. al. counterexample to (\mathbb{C}_4) resides at (SA_5^4) . And, this is *smallest in both dimensions*.
- Various complaints about (SA) have been voiced. Fine and others have complained that (SA)'s condition (i) is not a "purely Boolean" condition (it "essentially involves counting").
- To be fair, condition (i) of (SA_m) is equivalent to the claim that a specific (antecedently constructible) Boolean formula (with 2m variables) is tautological, *i.e.*, that two specific multisets of sets of states of \mathcal{B} are identical. \therefore (SA)'s condition (i) is expressible *via* pure Boolean equations.

11

- Here is a way to see why (SA_m) 's (i) is equivalent (assuming \mathcal{B} is generated by a sentential language \mathcal{L}) to the tautologousness of a Boolean \mathcal{L} -formula with 2m atoms.
- Let's look at the (SA₂) case. When m=2, (SA_m)'s condition (i) asserts that $\mathbf{X}=\langle x_1,x_2\rangle$ and $\mathbf{Y}=\langle y_1,y_2\rangle$ have the same number of truths in every state of \mathcal{B} . This means:
 - (1) $x_1 \& x_2 = y_1 \& y_2$
 - (2) $(x_1 \& \neg x_2) \lor (\neg x_1 \& x_2) = (y_1 \& \neg y_2) \lor (\neg y_1 \& y_2)$, and
 - (3) $\neg x_1 \& \neg x_2 = \neg y_1 \& \neg y_2$.
- But, the joint truth of (1)-(3) is equivalent to the logical truth (tautologousness) of the following conjunction:

$$x_1 \& x_2 \equiv y_1 \& y_2 \\ \& \\ (x_1 \& \neg x_2) \lor (\neg x_1 \& x_2) \equiv (y_1 \& \neg y_2) \lor (\neg y_1 \& y_2) \\ \& \\ \neg x_1 \& \neg x_2 \equiv \neg y_1 \& \neg y_2$$

Branden Fitelson

Q & A Session: Bonus Material

13

• Here, I will prove that (SA₂) entails (A5).

• let $X = \langle p \vee r, q \rangle$ and $Y = \langle p \vee q, r \rangle$, where $\langle p, q \rangle$ are

• That is, $x_1 = p \vee r$, $y_1 = p \vee q$, $x_2 = q$, and $y_2 = r$.

• To see why, assume the left hand side of (A5). That is,

is show that $(p \lor q) \succeq (p \lor r)$, *i.e.*, that (iii) $y_1 \succeq x_1$.

• This will follow from (SA), provided that we can show condition (i) of (SA) must also be true in this case.

be seen via the following schematic truth-table.

mutually exclusive and $\langle p, r \rangle$ are mutually exclusive.

• Now, suppose (SA). Then, the (\Rightarrow) direction of (A5) follows.

suppose that $q \geq r$, *i.e.*, that $x_2 \geq y_2$. In the case at hand,

• Thus, in order to establish additivity (A5), all we need to do

• Indeed, (i) must be true in this case, and this can most easily

Q & A Session: Bonus Material

this is equivalent to condition (ii) in the antecedent of (SA).

Comparative Probability & Pr-Representability

ity Full Belief & Judgment Aggregation

Branden Fitelson

- Next, we'll prove *transitivity* of \succeq from (SA₃).
- For this proof, we'll need to exploit the fact that (SA) quantifies over (finite) *sequences* of propositions. Let:
 - $\mathbf{X} = \langle x_1, x_2, x_3 \rangle \stackrel{\text{def}}{=} \langle r, p, q \rangle$.
 - $\mathbf{Y} = \langle y_1, y_2, y_3 \rangle \stackrel{\text{def}}{=} \langle p, q, r \rangle$.
 - 1. (SA_3)
 - Assumption [for \Rightarrow I: (SA₃) \Rightarrow (A2)].
 - 2. (i) of (SA_3) .
 - X and Y *contain the same number of truths in all worlds*, since they involve the same (multiset of) propositions.
 - 3. $p \succeq r \& q \succeq r$. [i.e., (ii) of (SA₃): $x_2 \succeq y_2 \& x_3 \succeq y_3$]
 - Assumption [for \Rightarrow I: $(p \ge r \& q \ge r) \Rightarrow p \ge r$].
 - 4. $p \succeq r$. [i.e., (iii) of (SA₃): $y_1 \succeq x_1$]
- By 1-3 (logic). By 3-4 (\Rightarrow I).
- 5. $(p \ge r \& q \ge r) \Rightarrow p \ge r$. [i.e., (A2)]
- By 1-5 (⇒I). □

6. $(SA_3) \Rightarrow (A2)$

By 1-3 (⇒1). ∟

ll Belief & Judgment Aggregation Comparative Probability & Pr-Representability

○○○○○

○○○○○○

○

	p	q	r	$\mathfrak{s}_i \vDash p \lor r?$	$ \mathfrak{s}_i \vDash q? $	$\mathfrak{s}_i \vDash p \lor q$?	$\mathfrak{s}_i \vDash r?$
\mathfrak{s}_1	T	T	T	_	_	_	_
5 2	T	T	F	_	_	_	_
5 3	T	F	T	_	_	_	_
\mathfrak{s}_4	T	F	F	YES	No	YES	No
\$ 5	F	T	T	YES	YES	YES	YES
5 6	F	T	F	No	YES	YES	No
5 7	F	F	Т	YES	No	No	YES
5 8	F	F	F	No	No	No	No

- Because $\langle p, q \rangle$ and $\langle p, r \rangle$ are mutually exclusive, the (families of) state descriptions $\mathfrak{s}_1 \mathfrak{s}_3$ are *impossible*. So, we can ignore those rows of the schematic truth-table.
- Now, in oder to show that (i) holds in this case, we just need to show that each of the five (*possible* families of) state descriptions 5₄-58 satisfies condition (i) of (SA).
- This is easily verified by inspection of the table, since each
 of these rows contains the same number of "YES"s in both
 pairs of columns on the right. □ The (⇐) proof is similar.

15